postgresql/contrib/cube/cube.c

1181 lines
24 KiB
C
Raw Normal View History

/******************************************************************************
This file contains routines that can be bound to a Postgres backend and
called by the backend in the process of processing queries. The calling
format for these routines is dictated by Postgres architecture.
******************************************************************************/
#include "postgres.h"
#include <math.h>
#include "access/gist.h"
#include "access/rtree.h"
#include "utils/elog.h"
#include "utils/palloc.h"
#include "utils/builtins.h"
#include "cubedata.h"
2001-03-22 05:01:46 +01:00
#define max(a,b) ((a) > (b) ? (a) : (b))
#define min(a,b) ((a) <= (b) ? (a) : (b))
#define abs(a) ((a) < (0) ? (-a) : (a))
2001-03-22 05:01:46 +01:00
extern void set_parse_buffer(char *str);
extern int cube_yyparse();
/*
** Input/Output routines
*/
2001-03-22 05:01:46 +01:00
NDBOX *cube_in(char *str);
char *cube_out(NDBOX * cube);
2001-03-22 05:01:46 +01:00
/*
** GiST support methods
*/
2001-03-22 05:01:46 +01:00
bool g_cube_consistent(GISTENTRY *entry, NDBOX * query, StrategyNumber strategy);
GISTENTRY *g_cube_compress(GISTENTRY *entry);
GISTENTRY *g_cube_decompress(GISTENTRY *entry);
float *g_cube_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result);
GIST_SPLITVEC *g_cube_picksplit(bytea *entryvec, GIST_SPLITVEC *v);
bool g_cube_leaf_consistent(NDBOX * key, NDBOX * query, StrategyNumber strategy);
bool g_cube_internal_consistent(NDBOX * key, NDBOX * query, StrategyNumber strategy);
NDBOX *g_cube_union(bytea *entryvec, int *sizep);
NDBOX *g_cube_binary_union(NDBOX * r1, NDBOX * r2, int *sizep);
bool *g_cube_same(NDBOX * b1, NDBOX * b2, bool *result);
/*
** R-tree suport functions
*/
2001-03-22 05:01:46 +01:00
bool cube_same(NDBOX * a, NDBOX * b);
bool cube_different(NDBOX * a, NDBOX * b);
bool cube_contains(NDBOX * a, NDBOX * b);
bool cube_contained(NDBOX * a, NDBOX * b);
bool cube_overlap(NDBOX * a, NDBOX * b);
NDBOX *cube_union(NDBOX * a, NDBOX * b);
NDBOX *cube_inter(NDBOX * a, NDBOX * b);
float *cube_size(NDBOX * a);
void rt_cube_size(NDBOX * a, float *sz);
/*
** These make no sense for this type, but R-tree wants them
*/
2001-03-22 05:01:46 +01:00
bool cube_over_left(NDBOX * a, NDBOX * b);
bool cube_over_right(NDBOX * a, NDBOX * b);
bool cube_left(NDBOX * a, NDBOX * b);
bool cube_right(NDBOX * a, NDBOX * b);
/*
** miscellaneous
*/
2001-03-22 05:01:46 +01:00
bool cube_lt(NDBOX * a, NDBOX * b);
bool cube_gt(NDBOX * a, NDBOX * b);
float *cube_distance(NDBOX * a, NDBOX * b);
2001-03-22 05:01:46 +01:00
/*
** Auxiliary funxtions
*/
2001-03-22 05:01:46 +01:00
static float distance_1D(float a1, float a2, float b1, float b2);
static NDBOX *swap_corners(NDBOX * a);
/*****************************************************************************
* Input/Output functions
*****************************************************************************/
/* NdBox = [(lowerleft),(upperright)] */
/* [(xLL(1)...xLL(N)),(xUR(1)...xUR(n))] */
NDBOX *
cube_in(char *str)
{
2001-03-22 05:01:46 +01:00
void *result;
2001-03-22 05:01:46 +01:00
set_parse_buffer(str);
2001-03-22 05:01:46 +01:00
if (cube_yyparse(&result) != 0)
return NULL;
2001-03-22 05:01:46 +01:00
return ((NDBOX *) result);
}
/*
* You might have noticed a slight inconsistency between the following
* declaration and the SQL definition:
2001-03-22 05:01:46 +01:00
* CREATE FUNCTION cube_out(opaque) RETURNS opaque ...
* The reason is that the argument pass into cube_out is really just a
* pointer. POSTGRES thinks all output functions are:
2001-03-22 05:01:46 +01:00
* char *out_func(char *);
*/
char *
2001-03-22 05:01:46 +01:00
cube_out(NDBOX * cube)
{
2001-03-22 05:01:46 +01:00
char *result;
char *p;
int equal = 1;
int dim = cube->dim;
int i;
if (cube == NULL)
return (NULL);
p = result = (char *) palloc(100);
/*
* while printing the first (LL) corner, check if it is equal to the
* scond one
*/
p += sprintf(p, "(");
for (i = 0; i < dim; i++)
{
p += sprintf(p, "%g", cube->x[i]);
p += sprintf(p, ", ");
if (cube->x[i] != cube->x[i + dim])
equal = 0;
}
p -= 2; /* get rid of the last ", " */
p += sprintf(p, ")");
if (!equal)
{
p += sprintf(p, ",(");
for (i = dim; i < dim * 2; i++)
{
p += sprintf(p, "%g", cube->x[i]);
p += sprintf(p, ", ");
}
p -= 2;
p += sprintf(p, ")");
}
return (result);
}
/*****************************************************************************
2001-03-22 05:01:46 +01:00
* GiST functions
*****************************************************************************/
/*
** The GiST Consistent method for boxes
** Should return false if for all data items x below entry,
** the predicate x op query == FALSE, where op is the oper
** corresponding to strategy in the pg_amop table.
*/
2001-03-22 05:01:46 +01:00
bool
g_cube_consistent(GISTENTRY *entry,
2001-03-22 05:01:46 +01:00
NDBOX * query,
StrategyNumber strategy)
{
2001-03-22 05:01:46 +01:00
/*
* * if entry is not leaf, use g_cube_internal_consistent, * else use
* g_cube_leaf_consistent
*/
if (GIST_LEAF(entry))
return (g_cube_leaf_consistent((NDBOX *) (entry->pred), query, strategy));
else
return (g_cube_internal_consistent((NDBOX *) (entry->pred), query, strategy));
}
/*
** The GiST Union method for boxes
** returns the minimal bounding box that encloses all the entries in entryvec
*/
NDBOX *
g_cube_union(bytea *entryvec, int *sizep)
{
2001-03-22 05:01:46 +01:00
int numranges,
i;
NDBOX *out = (NDBOX *) NULL;
NDBOX *tmp;
/*
* fprintf(stderr, "union\n");
*/
numranges = (VARSIZE(entryvec) - VARHDRSZ) / sizeof(GISTENTRY);
tmp = (NDBOX *) (((GISTENTRY *) (VARDATA(entryvec)))[0]).pred;
/*
* sizep = sizeof(NDBOX); -- NDBOX has variable size
*/
*sizep = tmp->size;
for (i = 1; i < numranges; i++)
{
out = g_cube_binary_union(tmp, (NDBOX *)
(((GISTENTRY *) (VARDATA(entryvec)))[i]).pred,
sizep);
/*
* fprintf(stderr, "\t%s ^ %s -> %s\n", cube_out(tmp),
* cube_out((NDBOX *)(((GISTENTRY
* *)(VARDATA(entryvec)))[i]).pred), cube_out(out));
*/
if (i > 1)
pfree(tmp);
tmp = out;
}
return (out);
}
/*
** GiST Compress and Decompress methods for boxes
** do not do anything.
*/
2001-03-22 05:01:46 +01:00
GISTENTRY *
g_cube_compress(GISTENTRY *entry)
{
2001-03-22 05:01:46 +01:00
return (entry);
}
2001-03-22 05:01:46 +01:00
GISTENTRY *
g_cube_decompress(GISTENTRY *entry)
{
2001-03-22 05:01:46 +01:00
return (entry);
}
/*
** The GiST Penalty method for boxes
** As in the R-tree paper, we use change in area as our penalty metric
*/
float *
g_cube_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result)
{
2001-03-22 05:01:46 +01:00
Datum ud;
float tmp1,
tmp2;
ud = (Datum) cube_union((NDBOX *) (origentry->pred), (NDBOX *) (newentry->pred));
rt_cube_size((NDBOX *) ud, &tmp1);
rt_cube_size((NDBOX *) (origentry->pred), &tmp2);
*result = tmp1 - tmp2;
pfree((char *) ud);
/*
* fprintf(stderr, "penalty\n"); fprintf(stderr, "\t%g\n", *result);
*/
return (result);
}
/*
** The GiST PickSplit method for boxes
2001-03-22 05:01:46 +01:00
** We use Guttman's poly time split algorithm
*/
GIST_SPLITVEC *
g_cube_picksplit(bytea *entryvec,
2001-03-22 05:01:46 +01:00
GIST_SPLITVEC *v)
{
2001-03-22 05:01:46 +01:00
OffsetNumber i,
j;
NDBOX *datum_alpha,
*datum_beta;
NDBOX *datum_l,
*datum_r;
NDBOX *union_d,
*union_dl,
*union_dr;
NDBOX *inter_d;
bool firsttime;
float size_alpha,
size_beta,
size_union,
size_inter;
float size_waste,
waste;
float size_l,
size_r;
int nbytes;
OffsetNumber seed_1 = 0,
seed_2 = 0;
OffsetNumber *left,
*right;
OffsetNumber maxoff;
/*
2001-03-22 05:01:46 +01:00
* fprintf(stderr, "picksplit\n");
*/
2001-03-22 05:01:46 +01:00
maxoff = ((VARSIZE(entryvec) - VARHDRSZ) / sizeof(GISTENTRY)) - 2;
nbytes = (maxoff + 2) * sizeof(OffsetNumber);
v->spl_left = (OffsetNumber *) palloc(nbytes);
v->spl_right = (OffsetNumber *) palloc(nbytes);
firsttime = true;
waste = 0.0;
for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i))
{
datum_alpha = (NDBOX *) (((GISTENTRY *) (VARDATA(entryvec)))[i].pred);
for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j))
{
datum_beta = (NDBOX *) (((GISTENTRY *) (VARDATA(entryvec)))[j].pred);
/* compute the wasted space by unioning these guys */
/* size_waste = size_union - size_inter; */
union_d = (NDBOX *) cube_union(datum_alpha, datum_beta);
rt_cube_size(union_d, &size_union);
inter_d = (NDBOX *) cube_inter(datum_alpha, datum_beta);
rt_cube_size(inter_d, &size_inter);
size_waste = size_union - size_inter;
pfree(union_d);
if (inter_d != (NDBOX *) NULL)
pfree(inter_d);
/*
* are these a more promising split than what we've already
* seen?
*/
if (size_waste > waste || firsttime)
{
waste = size_waste;
seed_1 = i;
seed_2 = j;
firsttime = false;
}
}
}
2001-03-22 05:01:46 +01:00
left = v->spl_left;
v->spl_nleft = 0;
right = v->spl_right;
v->spl_nright = 0;
datum_alpha = (NDBOX *) (((GISTENTRY *) (VARDATA(entryvec)))[seed_1].pred);
datum_l = (NDBOX *) cube_union(datum_alpha, datum_alpha);
rt_cube_size((NDBOX *) datum_l, &size_l);
datum_beta = (NDBOX *) (((GISTENTRY *) (VARDATA(entryvec)))[seed_2].pred);;
datum_r = (NDBOX *) cube_union(datum_beta, datum_beta);
rt_cube_size((NDBOX *) datum_r, &size_r);
/*
* Now split up the regions between the two seeds. An important
* property of this split algorithm is that the split vector v has the
* indices of items to be split in order in its left and right
* vectors. We exploit this property by doing a merge in the code
* that actually splits the page.
*
* For efficiency, we also place the new index tuple in this loop. This
* is handled at the very end, when we have placed all the existing
* tuples and i == maxoff + 1.
*/
maxoff = OffsetNumberNext(maxoff);
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
{
/*
* If we've already decided where to place this item, just put it
* on the right list. Otherwise, we need to figure out which page
* needs the least enlargement in order to store the item.
*/
if (i == seed_1)
{
*left++ = i;
v->spl_nleft++;
continue;
}
else if (i == seed_2)
{
*right++ = i;
v->spl_nright++;
continue;
}
/* okay, which page needs least enlargement? */
datum_alpha = (NDBOX *) (((GISTENTRY *) (VARDATA(entryvec)))[i].pred);
union_dl = (NDBOX *) cube_union(datum_l, datum_alpha);
union_dr = (NDBOX *) cube_union(datum_r, datum_alpha);
rt_cube_size((NDBOX *) union_dl, &size_alpha);
rt_cube_size((NDBOX *) union_dr, &size_beta);
/* pick which page to add it to */
if (size_alpha - size_l < size_beta - size_r)
{
pfree(datum_l);
pfree(union_dr);
datum_l = union_dl;
size_l = size_alpha;
*left++ = i;
v->spl_nleft++;
}
else
{
pfree(datum_r);
pfree(union_dl);
datum_r = union_dr;
size_r = size_alpha;
*right++ = i;
v->spl_nright++;
}
}
2001-03-22 05:01:46 +01:00
*left = *right = FirstOffsetNumber; /* sentinel value, see dosplit() */
2001-03-22 05:01:46 +01:00
v->spl_ldatum = (char *) datum_l;
v->spl_rdatum = (char *) datum_r;
return v;
}
/*
** Equality method
*/
bool *
2001-03-22 05:01:46 +01:00
g_cube_same(NDBOX * b1, NDBOX * b2, bool *result)
{
2001-03-22 05:01:46 +01:00
if (cube_same(b1, b2))
*result = TRUE;
else
*result = FALSE;
/*
* fprintf(stderr, "same: %s\n", (*result ? "TRUE" : "FALSE" ));
*/
return (result);
}
2001-03-22 05:01:46 +01:00
/*
** SUPPORT ROUTINES
*/
2001-03-22 05:01:46 +01:00
bool
g_cube_leaf_consistent(NDBOX * key,
NDBOX * query,
StrategyNumber strategy)
{
2001-03-22 05:01:46 +01:00
bool retval;
/*
* fprintf(stderr, "leaf_consistent, %d\n", strategy);
*/
switch (strategy)
{
case RTLeftStrategyNumber:
retval = (bool) cube_left(key, query);
break;
case RTOverLeftStrategyNumber:
retval = (bool) cube_over_left(key, query);
break;
case RTOverlapStrategyNumber:
retval = (bool) cube_overlap(key, query);
break;
case RTOverRightStrategyNumber:
retval = (bool) cube_over_right(key, query);
break;
case RTRightStrategyNumber:
retval = (bool) cube_right(key, query);
break;
case RTSameStrategyNumber:
retval = (bool) cube_same(key, query);
break;
case RTContainsStrategyNumber:
retval = (bool) cube_contains(key, query);
break;
case RTContainedByStrategyNumber:
retval = (bool) cube_contained(key, query);
break;
default:
retval = FALSE;
}
return (retval);
}
2001-03-22 05:01:46 +01:00
bool
g_cube_internal_consistent(NDBOX * key,
NDBOX * query,
StrategyNumber strategy)
{
2001-03-22 05:01:46 +01:00
bool retval;
/*
* fprintf(stderr, "internal_consistent, %d\n", strategy);
*/
switch (strategy)
{
case RTLeftStrategyNumber:
case RTOverLeftStrategyNumber:
retval = (bool) cube_over_left(key, query);
break;
case RTOverlapStrategyNumber:
retval = (bool) cube_overlap(key, query);
break;
case RTOverRightStrategyNumber:
case RTRightStrategyNumber:
retval = (bool) cube_right(key, query);
break;
case RTSameStrategyNumber:
case RTContainsStrategyNumber:
retval = (bool) cube_contains(key, query);
break;
case RTContainedByStrategyNumber:
retval = (bool) cube_overlap(key, query);
break;
default:
retval = FALSE;
}
return (retval);
}
NDBOX *
2001-03-22 05:01:46 +01:00
g_cube_binary_union(NDBOX * r1, NDBOX * r2, int *sizep)
{
2001-03-22 05:01:46 +01:00
NDBOX *retval;
2001-03-22 05:01:46 +01:00
retval = cube_union(r1, r2);
*sizep = retval->size;
2001-03-22 05:01:46 +01:00
return (retval);
}
/* cube_union */
2001-03-22 05:01:46 +01:00
NDBOX *
cube_union(NDBOX * box_a, NDBOX * box_b)
{
2001-03-22 05:01:46 +01:00
int i;
NDBOX *result;
NDBOX *a = swap_corners(box_a);
NDBOX *b = swap_corners(box_b);
if (a->dim >= b->dim)
{
result = palloc(a->size);
result->size = a->size;
result->dim = a->dim;
}
else
{
result = palloc(b->size);
result->size = b->size;
result->dim = b->dim;
}
/* swap the box pointers if needed */
if (a->dim < b->dim)
{
NDBOX *tmp = b;
b = a;
a = tmp;
}
/*
* use the potentially smaller of the two boxes (b) to fill in the
* result, padding absent dimensions with zeroes
*/
for (i = 0; i < b->dim; i++)
{
result->x[i] = b->x[i];
result->x[i + a->dim] = b->x[i + b->dim];
}
for (i = b->dim; i < a->dim; i++)
{
result->x[i] = 0;
result->x[i + a->dim] = 0;
}
/* compute the union */
for (i = 0; i < a->dim; i++)
result->x[i] = min(a->x[i], result->x[i]);
for (i = a->dim; i < a->dim * 2; i++)
result->x[i] = max(a->x[i], result->x[i]);
pfree(a);
pfree(b);
return (result);
}
/* cube_inter */
2001-03-22 05:01:46 +01:00
NDBOX *
cube_inter(NDBOX * box_a, NDBOX * box_b)
{
2001-03-22 05:01:46 +01:00
int i;
NDBOX *result;
NDBOX *a = swap_corners(box_a);
NDBOX *b = swap_corners(box_b);
if (a->dim >= b->dim)
{
result = palloc(a->size);
result->size = a->size;
result->dim = a->dim;
}
else
{
result = palloc(b->size);
result->size = b->size;
result->dim = b->dim;
}
/* swap the box pointers if needed */
if (a->dim < b->dim)
{
NDBOX *tmp = b;
b = a;
a = tmp;
}
/*
* use the potentially smaller of the two boxes (b) to fill in the
* result, padding absent dimensions with zeroes
*/
for (i = 0; i < b->dim; i++)
{
result->x[i] = b->x[i];
result->x[i + a->dim] = b->x[i + b->dim];
}
for (i = b->dim; i < a->dim; i++)
{
result->x[i] = 0;
result->x[i + a->dim] = 0;
}
/* compute the intersection */
for (i = 0; i < a->dim; i++)
result->x[i] = max(a->x[i], result->x[i]);
for (i = a->dim; i < a->dim * 2; i++)
result->x[i] = min(a->x[i], result->x[i]);
pfree(a);
pfree(b);
/*
* Is it OK to return a non-null intersection for non-overlapping
* boxes?
*/
return (result);
}
/* cube_size */
2001-03-22 05:01:46 +01:00
float *
cube_size(NDBOX * a)
{
2001-03-22 05:01:46 +01:00
int i,
j;
float *result;
result = (float *) palloc(sizeof(float));
*result = 1.0;
for (i = 0, j = a->dim; i < a->dim; i++, j++)
*result = (*result) * abs((a->x[j] - a->x[i]));
return (result);
}
void
2001-03-22 05:01:46 +01:00
rt_cube_size(NDBOX * a, float *size)
{
2001-03-22 05:01:46 +01:00
int i,
j;
if (a == (NDBOX *) NULL)
*size = 0.0;
else
{
*size = 1.0;
for (i = 0, j = a->dim; i < a->dim; i++, j++)
*size = (*size) * abs((a->x[j] - a->x[i]));
}
return;
}
/* The following four methods compare the projections of the boxes
onto the 0-th coordinate axis. These methods are useless for dimensions
larger than 2, but it seems that R-tree requires all its strategies
map to real functions that return something */
2001-03-22 05:01:46 +01:00
/* is the right edge of (a) located to the left of
the right edge of (b)? */
bool
cube_over_left(NDBOX * box_a, NDBOX * box_b)
{
2001-03-22 05:01:46 +01:00
NDBOX *a;
NDBOX *b;
if ((box_a == NULL) || (box_b == NULL))
return (FALSE);
2001-03-22 05:01:46 +01:00
a = swap_corners(box_a);
b = swap_corners(box_b);
2001-03-22 05:01:46 +01:00
return (a->x[a->dim - 1] <= b->x[b->dim - 1] && !cube_left(a, b) && !cube_right(a, b));
}
2001-03-22 05:01:46 +01:00
/* is the left edge of (a) located to the right of
the left edge of (b)? */
bool
cube_over_right(NDBOX * box_a, NDBOX * box_b)
{
2001-03-22 05:01:46 +01:00
NDBOX *a;
NDBOX *b;
2001-03-22 05:01:46 +01:00
if ((box_a == NULL) || (box_b == NULL))
return (FALSE);
2001-03-22 05:01:46 +01:00
a = swap_corners(box_a);
b = swap_corners(box_b);
return (a->x[a->dim - 1] >= b->x[b->dim - 1] && !cube_left(a, b) && !cube_right(a, b));
}
/* return 'true' if the projection of 'a' is
entirely on the left of the projection of 'b' */
2001-03-22 05:01:46 +01:00
bool
cube_left(NDBOX * box_a, NDBOX * box_b)
{
2001-03-22 05:01:46 +01:00
NDBOX *a;
NDBOX *b;
if ((box_a == NULL) || (box_b == NULL))
return (FALSE);
2001-03-22 05:01:46 +01:00
a = swap_corners(box_a);
b = swap_corners(box_b);
2001-03-22 05:01:46 +01:00
return (a->x[a->dim - 1] < b->x[0]);
}
/* return 'true' if the projection of 'a' is
entirely on the right of the projection of 'b' */
2001-03-22 05:01:46 +01:00
bool
cube_right(NDBOX * box_a, NDBOX * box_b)
{
2001-03-22 05:01:46 +01:00
NDBOX *a;
NDBOX *b;
2001-03-22 05:01:46 +01:00
if ((box_a == NULL) || (box_b == NULL))
return (FALSE);
2001-03-22 05:01:46 +01:00
a = swap_corners(box_a);
b = swap_corners(box_b);
return (a->x[0] > b->x[b->dim - 1]);
}
/* make up a metric in which one box will be 'lower' than the other
-- this can be useful for srting and to determine uniqueness */
2001-03-22 05:01:46 +01:00
bool
cube_lt(NDBOX * box_a, NDBOX * box_b)
{
2001-03-22 05:01:46 +01:00
int i;
int dim;
NDBOX *a;
NDBOX *b;
if ((box_a == NULL) || (box_b == NULL))
return (FALSE);
a = swap_corners(box_a);
b = swap_corners(box_b);
dim = min(a->dim, b->dim);
/*
* if all common dimensions are equal, the cube with more dimensions
* wins
*/
if (cube_same(a, b))
{
if (a->dim < b->dim)
return (TRUE);
else
return (FALSE);
}
/* compare the common dimensions */
for (i = 0; i < dim; i++)
{
if (a->x[i] > b->x[i])
return (FALSE);
if (a->x[i] < b->x[i])
return (TRUE);
}
for (i = 0; i < dim; i++)
{
if (a->x[i + a->dim] > b->x[i + b->dim])
return (FALSE);
if (a->x[i + a->dim] < b->x[i + b->dim])
return (TRUE);
}
/* compare extra dimensions to zero */
if (a->dim > b->dim)
{
for (i = dim; i < a->dim; i++)
{
if (a->x[i] > 0)
return (FALSE);
if (a->x[i] < 0)
return (TRUE);
}
for (i = 0; i < dim; i++)
{
if (a->x[i + a->dim] > 0)
return (FALSE);
if (a->x[i + a->dim] < 0)
return (TRUE);
}
}
if (a->dim < b->dim)
{
for (i = dim; i < b->dim; i++)
{
if (b->x[i] > 0)
return (TRUE);
if (b->x[i] < 0)
return (FALSE);
}
for (i = 0; i < dim; i++)
{
if (b->x[i + b->dim] > 0)
return (TRUE);
if (b->x[i + b->dim] < 0)
return (FALSE);
}
}
return (FALSE);
}
2001-03-22 05:01:46 +01:00
bool
cube_gt(NDBOX * box_a, NDBOX * box_b)
{
2001-03-22 05:01:46 +01:00
int i;
int dim;
NDBOX *a;
NDBOX *b;
if ((box_a == NULL) || (box_b == NULL))
return (FALSE);
a = swap_corners(box_a);
b = swap_corners(box_b);
dim = min(a->dim, b->dim);
/*
* if all common dimensions are equal, the cube with more dimensions
* wins
*/
if (cube_same(a, b))
{
if (a->dim > b->dim)
return (TRUE);
else
return (FALSE);
}
/* compare the common dimensions */
for (i = 0; i < dim; i++)
{
if (a->x[i] < b->x[i])
return (FALSE);
if (a->x[i] > b->x[i])
return (TRUE);
}
for (i = 0; i < dim; i++)
{
if (a->x[i + a->dim] < b->x[i + b->dim])
return (FALSE);
if (a->x[i + a->dim] > b->x[i + b->dim])
return (TRUE);
}
/* compare extra dimensions to zero */
if (a->dim > b->dim)
{
for (i = dim; i < a->dim; i++)
{
if (a->x[i] < 0)
return (FALSE);
if (a->x[i] > 0)
return (TRUE);
}
for (i = 0; i < dim; i++)
{
if (a->x[i + a->dim] < 0)
return (FALSE);
if (a->x[i + a->dim] > 0)
return (TRUE);
}
}
if (a->dim < b->dim)
{
for (i = dim; i < b->dim; i++)
{
if (b->x[i] < 0)
return (TRUE);
if (b->x[i] > 0)
return (FALSE);
}
for (i = 0; i < dim; i++)
{
if (b->x[i + b->dim] < 0)
return (TRUE);
if (b->x[i + b->dim] > 0)
return (FALSE);
}
}
return (FALSE);
}
/* Equal */
2001-03-22 05:01:46 +01:00
bool
cube_same(NDBOX * box_a, NDBOX * box_b)
{
2001-03-22 05:01:46 +01:00
int i;
NDBOX *a;
NDBOX *b;
if ((box_a == NULL) || (box_b == NULL))
return (FALSE);
a = swap_corners(box_a);
b = swap_corners(box_b);
/* swap the box pointers if necessary */
if (a->dim < b->dim)
{
NDBOX *tmp = b;
b = a;
a = tmp;
}
for (i = 0; i < b->dim; i++)
{
if (a->x[i] != b->x[i])
return (FALSE);
if (a->x[i + a->dim] != b->x[i + b->dim])
return (FALSE);
}
/*
* all dimensions of (b) are compared to those of (a); instead of
* those in (a) absent in (b), compare (a) to zero
*/
for (i = b->dim; i < a->dim; i++)
{
if (a->x[i] != 0)
return (FALSE);
if (a->x[i + a->dim] != 0)
return (FALSE);
}
pfree(a);
pfree(b);
return (TRUE);
}
/* Different */
2001-03-22 05:01:46 +01:00
bool
cube_different(NDBOX * box_a, NDBOX * box_b)
{
2001-03-22 05:01:46 +01:00
return (!cube_same(box_a, box_b));
}
/* Contains */
/* Box(A) CONTAINS Box(B) IFF pt(A) < pt(B) */
2001-03-22 05:01:46 +01:00
bool
cube_contains(NDBOX * box_a, NDBOX * box_b)
{
2001-03-22 05:01:46 +01:00
int i;
NDBOX *a;
NDBOX *b;
if ((box_a == NULL) || (box_b == NULL))
return (FALSE);
a = swap_corners(box_a);
b = swap_corners(box_b);
if (a->dim < b->dim)
{
/*
* the further comparisons will make sense if the excess
* dimensions of (b) were zeroes
*/
for (i = a->dim; i < b->dim; i++)
{
if (b->x[i] != 0)
return (FALSE);
if (b->x[i + b->dim] != 0)
return (FALSE);
}
}
/* Can't care less about the excess dimensions of (a), if any */
for (i = 0; i < min(a->dim, b->dim); i++)
{
if (a->x[i] > b->x[i])
return (FALSE);
if (a->x[i + a->dim] < b->x[i + b->dim])
return (FALSE);
}
pfree(a);
pfree(b);
return (TRUE);
}
/* Contained */
/* Box(A) Contained by Box(B) IFF Box(B) Contains Box(A) */
2001-03-22 05:01:46 +01:00
bool
cube_contained(NDBOX * a, NDBOX * b)
{
2001-03-22 05:01:46 +01:00
if (cube_contains(b, a) == TRUE)
return (TRUE);
else
return (FALSE);
}
/* Overlap */
/* Box(A) Overlap Box(B) IFF (pt(a)LL < pt(B)UR) && (pt(b)LL < pt(a)UR) */
2001-03-22 05:01:46 +01:00
bool
cube_overlap(NDBOX * box_a, NDBOX * box_b)
{
2001-03-22 05:01:46 +01:00
int i;
NDBOX *a;
NDBOX *b;
/*
* This *very bad* error was found in the source: if ( (a==NULL) ||
* (b=NULL) ) return(FALSE);
*/
if ((box_a == NULL) || (box_b == NULL))
return (FALSE);
a = swap_corners(box_a);
b = swap_corners(box_b);
/* swap the box pointers if needed */
if (a->dim < b->dim)
{
NDBOX *tmp = b;
b = a;
a = tmp;
}
/* compare within the dimensions of (b) */
for (i = 0; i < b->dim; i++)
{
if (a->x[i] > b->x[i + b->dim])
return (FALSE);
if (a->x[i + a->dim] < b->x[i])
return (FALSE);
}
/* compare to zero those dimensions in (a) absent in (b) */
for (i = b->dim; i < a->dim; i++)
{
if (a->x[i] > 0)
return (FALSE);
if (a->x[i + a->dim] < 0)
return (FALSE);
}
pfree(a);
pfree(b);
return (TRUE);
}
/* Distance */
/* The distance is computed as a per axis sum of the squared distances
2001-03-22 05:01:46 +01:00
between 1D projections of the boxes onto Cartesian axes. Assuming zero
distance between overlapping projections, this metric coincides with the
"common sense" geometric distance */
2001-03-22 05:01:46 +01:00
float *
cube_distance(NDBOX * a, NDBOX * b)
{
2001-03-22 05:01:46 +01:00
int i;
double d,
distance;
float *result;
result = (float *) palloc(sizeof(float));
/* swap the box pointers if needed */
if (a->dim < b->dim)
{
NDBOX *tmp = b;
b = a;
a = tmp;
}
distance = 0.0;
/* compute within the dimensions of (b) */
for (i = 0; i < b->dim; i++)
{
d = distance_1D(a->x[i], a->x[i + a->dim], b->x[i], b->x[i + b->dim]);
distance += d * d;
}
/* compute distance to zero for those dimensions in (a) absent in (b) */
for (i = b->dim; i < a->dim; i++)
{
d = distance_1D(a->x[i], a->x[i + a->dim], 0.0, 0.0);
distance += d * d;
}
*result = (float) sqrt(distance);
return (result);
}
2001-03-22 05:01:46 +01:00
static float
distance_1D(float a1, float a2, float b1, float b2)
{
2001-03-22 05:01:46 +01:00
/* interval (a) is entirely on the left of (b) */
if ((a1 <= b1) && (a2 <= b1) && (a1 <= b2) && (a2 <= b2))
return (min(b1, b2) - max(a1, a2));
/* interval (a) is entirely on the right of (b) */
if ((a1 > b1) && (a2 > b1) && (a1 > b2) && (a2 > b2))
return (min(a1, a2) - max(b1, b2));
/* the rest are all sorts of intersections */
return (0.0);
}
/* normalize the box's co-ordinates by placing min(xLL,xUR) to LL
2001-03-22 05:01:46 +01:00
and max(xLL,xUR) to UR
*/
2001-03-22 05:01:46 +01:00
static NDBOX *
swap_corners(NDBOX * a)
{
2001-03-22 05:01:46 +01:00
int i,
j;
NDBOX *result;
result = palloc(a->size);
result->size = a->size;
result->dim = a->dim;
for (i = 0, j = a->dim; i < a->dim; i++, j++)
{
result->x[i] = min(a->x[i], a->x[j]);
result->x[j] = max(a->x[i], a->x[j]);
}
return (result);
}