postgresql/src/test/regress/expected/select_parallel.out

1111 lines
34 KiB
Plaintext
Raw Normal View History

--
-- PARALLEL
--
Clean up duplicate table and function names in regression tests. Many of the objects we create during the regression tests are put in the public schema, so that using the same names in different regression tests creates a hazard of test failures if any two such scripts run concurrently. This patch cleans up a bunch of latent hazards of that sort, as well as two live hazards. The current situation in this regard is far worse than it was a year or two back, because practically all of the partitioning-related test cases have reused table names with enthusiasm. I despaired of cleaning up that mess within the five most-affected tests (create_table, alter_table, insert, update, inherit); fortunately those don't run concurrently. Other than partitioning problems, most of the issues boil down to using names like "foo", "bar", "tmp", etc, without thought for the fact that other test scripts might use similar names concurrently. I've made an effort to make all such names more specific. One of the live hazards was that commit 7421f4b8 caused with.sql to create a table named "test", conflicting with a similarly-named table in alter_table.sql; this was exposed in the buildfarm recently. The other one was that join.sql and transactions.sql both create tables named "foo" and "bar"; but join.sql's uses of those names date back only to December or so. Since commit 7421f4b8 was back-patched to v10, back-patch a minimal fix for that problem. The rest of this is just future-proofing. Discussion: https://postgr.es/m/4627.1521070268@sss.pgh.pa.us
2018-03-15 22:08:51 +01:00
create function sp_parallel_restricted(int) returns int as
$$begin return $1; end$$ language plpgsql parallel restricted;
-- Serializable isolation would disable parallel query, so explicitly use an
-- arbitrary other level.
begin isolation level repeatable read;
-- encourage use of parallel plans
set parallel_setup_cost=0;
set parallel_tuple_cost=0;
set min_parallel_table_scan_size=0;
set max_parallel_workers_per_gather=4;
-- Parallel Append with partial-subplans
explain (costs off)
select round(avg(aa)), sum(aa) from a_star;
QUERY PLAN
-----------------------------------------------------
Finalize Aggregate
-> Gather
Workers Planned: 3
-> Partial Aggregate
-> Parallel Append
-> Parallel Seq Scan on d_star
-> Parallel Seq Scan on f_star
-> Parallel Seq Scan on e_star
-> Parallel Seq Scan on b_star
-> Parallel Seq Scan on c_star
-> Parallel Seq Scan on a_star
(11 rows)
select round(avg(aa)), sum(aa) from a_star a1;
round | sum
-------+-----
14 | 355
(1 row)
-- Parallel Append with both partial and non-partial subplans
alter table c_star set (parallel_workers = 0);
alter table d_star set (parallel_workers = 0);
explain (costs off)
select round(avg(aa)), sum(aa) from a_star;
QUERY PLAN
-----------------------------------------------------
Finalize Aggregate
-> Gather
Workers Planned: 3
-> Partial Aggregate
-> Parallel Append
-> Seq Scan on d_star
-> Seq Scan on c_star
-> Parallel Seq Scan on f_star
-> Parallel Seq Scan on e_star
-> Parallel Seq Scan on b_star
-> Parallel Seq Scan on a_star
(11 rows)
select round(avg(aa)), sum(aa) from a_star a2;
round | sum
-------+-----
14 | 355
(1 row)
-- Parallel Append with only non-partial subplans
alter table a_star set (parallel_workers = 0);
alter table b_star set (parallel_workers = 0);
alter table e_star set (parallel_workers = 0);
alter table f_star set (parallel_workers = 0);
explain (costs off)
select round(avg(aa)), sum(aa) from a_star;
QUERY PLAN
--------------------------------------------
Finalize Aggregate
-> Gather
Workers Planned: 3
-> Partial Aggregate
-> Parallel Append
-> Seq Scan on d_star
-> Seq Scan on f_star
-> Seq Scan on e_star
-> Seq Scan on b_star
-> Seq Scan on c_star
-> Seq Scan on a_star
(11 rows)
select round(avg(aa)), sum(aa) from a_star a3;
round | sum
-------+-----
14 | 355
(1 row)
-- Disable Parallel Append
alter table a_star reset (parallel_workers);
alter table b_star reset (parallel_workers);
alter table c_star reset (parallel_workers);
alter table d_star reset (parallel_workers);
alter table e_star reset (parallel_workers);
alter table f_star reset (parallel_workers);
set enable_parallel_append to off;
explain (costs off)
select round(avg(aa)), sum(aa) from a_star;
QUERY PLAN
-----------------------------------------------------
Finalize Aggregate
-> Gather
Workers Planned: 1
-> Partial Aggregate
-> Append
-> Parallel Seq Scan on a_star
-> Parallel Seq Scan on b_star
-> Parallel Seq Scan on c_star
-> Parallel Seq Scan on d_star
-> Parallel Seq Scan on e_star
-> Parallel Seq Scan on f_star
(11 rows)
select round(avg(aa)), sum(aa) from a_star a4;
round | sum
-------+-----
14 | 355
(1 row)
reset enable_parallel_append;
-- Parallel Append that runs serially
Clean up duplicate table and function names in regression tests. Many of the objects we create during the regression tests are put in the public schema, so that using the same names in different regression tests creates a hazard of test failures if any two such scripts run concurrently. This patch cleans up a bunch of latent hazards of that sort, as well as two live hazards. The current situation in this regard is far worse than it was a year or two back, because practically all of the partitioning-related test cases have reused table names with enthusiasm. I despaired of cleaning up that mess within the five most-affected tests (create_table, alter_table, insert, update, inherit); fortunately those don't run concurrently. Other than partitioning problems, most of the issues boil down to using names like "foo", "bar", "tmp", etc, without thought for the fact that other test scripts might use similar names concurrently. I've made an effort to make all such names more specific. One of the live hazards was that commit 7421f4b8 caused with.sql to create a table named "test", conflicting with a similarly-named table in alter_table.sql; this was exposed in the buildfarm recently. The other one was that join.sql and transactions.sql both create tables named "foo" and "bar"; but join.sql's uses of those names date back only to December or so. Since commit 7421f4b8 was back-patched to v10, back-patch a minimal fix for that problem. The rest of this is just future-proofing. Discussion: https://postgr.es/m/4627.1521070268@sss.pgh.pa.us
2018-03-15 22:08:51 +01:00
create function sp_test_func() returns setof text as
$$ select 'foo'::varchar union all select 'bar'::varchar $$
language sql stable;
Clean up duplicate table and function names in regression tests. Many of the objects we create during the regression tests are put in the public schema, so that using the same names in different regression tests creates a hazard of test failures if any two such scripts run concurrently. This patch cleans up a bunch of latent hazards of that sort, as well as two live hazards. The current situation in this regard is far worse than it was a year or two back, because practically all of the partitioning-related test cases have reused table names with enthusiasm. I despaired of cleaning up that mess within the five most-affected tests (create_table, alter_table, insert, update, inherit); fortunately those don't run concurrently. Other than partitioning problems, most of the issues boil down to using names like "foo", "bar", "tmp", etc, without thought for the fact that other test scripts might use similar names concurrently. I've made an effort to make all such names more specific. One of the live hazards was that commit 7421f4b8 caused with.sql to create a table named "test", conflicting with a similarly-named table in alter_table.sql; this was exposed in the buildfarm recently. The other one was that join.sql and transactions.sql both create tables named "foo" and "bar"; but join.sql's uses of those names date back only to December or so. Since commit 7421f4b8 was back-patched to v10, back-patch a minimal fix for that problem. The rest of this is just future-proofing. Discussion: https://postgr.es/m/4627.1521070268@sss.pgh.pa.us
2018-03-15 22:08:51 +01:00
select sp_test_func() order by 1;
sp_test_func
--------------
bar
foo
(2 rows)
-- Parallel Append is not to be used when the subpath depends on the outer param
create table part_pa_test(a int, b int) partition by range(a);
create table part_pa_test_p1 partition of part_pa_test for values from (minvalue) to (0);
create table part_pa_test_p2 partition of part_pa_test for values from (0) to (maxvalue);
explain (costs off)
select (select max((select pa1.b from part_pa_test pa1 where pa1.a = pa2.a)))
from part_pa_test pa2;
QUERY PLAN
--------------------------------------------------------------
Aggregate
-> Gather
Workers Planned: 3
-> Parallel Append
-> Parallel Seq Scan on part_pa_test_p1 pa2
-> Parallel Seq Scan on part_pa_test_p2 pa2_1
SubPlan 2
-> Result
SubPlan 1
-> Append
-> Seq Scan on part_pa_test_p1 pa1
Filter: (a = pa2.a)
-> Seq Scan on part_pa_test_p2 pa1_1
Filter: (a = pa2.a)
(14 rows)
drop table part_pa_test;
-- test with leader participation disabled
set parallel_leader_participation = off;
explain (costs off)
select count(*) from tenk1 where stringu1 = 'GRAAAA';
QUERY PLAN
---------------------------------------------------------
Finalize Aggregate
-> Gather
Workers Planned: 4
-> Partial Aggregate
-> Parallel Seq Scan on tenk1
Filter: (stringu1 = 'GRAAAA'::name)
(6 rows)
select count(*) from tenk1 where stringu1 = 'GRAAAA';
count
-------
15
(1 row)
-- test with leader participation disabled, but no workers available (so
-- the leader will have to run the plan despite the setting)
set max_parallel_workers = 0;
explain (costs off)
select count(*) from tenk1 where stringu1 = 'GRAAAA';
QUERY PLAN
---------------------------------------------------------
Finalize Aggregate
-> Gather
Workers Planned: 4
-> Partial Aggregate
-> Parallel Seq Scan on tenk1
Filter: (stringu1 = 'GRAAAA'::name)
(6 rows)
select count(*) from tenk1 where stringu1 = 'GRAAAA';
count
-------
15
(1 row)
reset max_parallel_workers;
reset parallel_leader_participation;
-- test that parallel_restricted function doesn't run in worker
alter table tenk1 set (parallel_workers = 4);
explain (verbose, costs off)
Clean up duplicate table and function names in regression tests. Many of the objects we create during the regression tests are put in the public schema, so that using the same names in different regression tests creates a hazard of test failures if any two such scripts run concurrently. This patch cleans up a bunch of latent hazards of that sort, as well as two live hazards. The current situation in this regard is far worse than it was a year or two back, because practically all of the partitioning-related test cases have reused table names with enthusiasm. I despaired of cleaning up that mess within the five most-affected tests (create_table, alter_table, insert, update, inherit); fortunately those don't run concurrently. Other than partitioning problems, most of the issues boil down to using names like "foo", "bar", "tmp", etc, without thought for the fact that other test scripts might use similar names concurrently. I've made an effort to make all such names more specific. One of the live hazards was that commit 7421f4b8 caused with.sql to create a table named "test", conflicting with a similarly-named table in alter_table.sql; this was exposed in the buildfarm recently. The other one was that join.sql and transactions.sql both create tables named "foo" and "bar"; but join.sql's uses of those names date back only to December or so. Since commit 7421f4b8 was back-patched to v10, back-patch a minimal fix for that problem. The rest of this is just future-proofing. Discussion: https://postgr.es/m/4627.1521070268@sss.pgh.pa.us
2018-03-15 22:08:51 +01:00
select sp_parallel_restricted(unique1) from tenk1
where stringu1 = 'GRAAAA' order by 1;
QUERY PLAN
---------------------------------------------------------
Sort
Clean up duplicate table and function names in regression tests. Many of the objects we create during the regression tests are put in the public schema, so that using the same names in different regression tests creates a hazard of test failures if any two such scripts run concurrently. This patch cleans up a bunch of latent hazards of that sort, as well as two live hazards. The current situation in this regard is far worse than it was a year or two back, because practically all of the partitioning-related test cases have reused table names with enthusiasm. I despaired of cleaning up that mess within the five most-affected tests (create_table, alter_table, insert, update, inherit); fortunately those don't run concurrently. Other than partitioning problems, most of the issues boil down to using names like "foo", "bar", "tmp", etc, without thought for the fact that other test scripts might use similar names concurrently. I've made an effort to make all such names more specific. One of the live hazards was that commit 7421f4b8 caused with.sql to create a table named "test", conflicting with a similarly-named table in alter_table.sql; this was exposed in the buildfarm recently. The other one was that join.sql and transactions.sql both create tables named "foo" and "bar"; but join.sql's uses of those names date back only to December or so. Since commit 7421f4b8 was back-patched to v10, back-patch a minimal fix for that problem. The rest of this is just future-proofing. Discussion: https://postgr.es/m/4627.1521070268@sss.pgh.pa.us
2018-03-15 22:08:51 +01:00
Output: (sp_parallel_restricted(unique1))
Sort Key: (sp_parallel_restricted(tenk1.unique1))
-> Gather
Clean up duplicate table and function names in regression tests. Many of the objects we create during the regression tests are put in the public schema, so that using the same names in different regression tests creates a hazard of test failures if any two such scripts run concurrently. This patch cleans up a bunch of latent hazards of that sort, as well as two live hazards. The current situation in this regard is far worse than it was a year or two back, because practically all of the partitioning-related test cases have reused table names with enthusiasm. I despaired of cleaning up that mess within the five most-affected tests (create_table, alter_table, insert, update, inherit); fortunately those don't run concurrently. Other than partitioning problems, most of the issues boil down to using names like "foo", "bar", "tmp", etc, without thought for the fact that other test scripts might use similar names concurrently. I've made an effort to make all such names more specific. One of the live hazards was that commit 7421f4b8 caused with.sql to create a table named "test", conflicting with a similarly-named table in alter_table.sql; this was exposed in the buildfarm recently. The other one was that join.sql and transactions.sql both create tables named "foo" and "bar"; but join.sql's uses of those names date back only to December or so. Since commit 7421f4b8 was back-patched to v10, back-patch a minimal fix for that problem. The rest of this is just future-proofing. Discussion: https://postgr.es/m/4627.1521070268@sss.pgh.pa.us
2018-03-15 22:08:51 +01:00
Output: sp_parallel_restricted(unique1)
Workers Planned: 4
-> Parallel Seq Scan on public.tenk1
Output: unique1
Filter: (tenk1.stringu1 = 'GRAAAA'::name)
(9 rows)
-- test parallel plan when group by expression is in target list.
explain (costs off)
select length(stringu1) from tenk1 group by length(stringu1);
QUERY PLAN
---------------------------------------------------
Finalize HashAggregate
Group Key: (length((stringu1)::text))
-> Gather
Workers Planned: 4
-> Partial HashAggregate
Group Key: length((stringu1)::text)
-> Parallel Seq Scan on tenk1
(7 rows)
select length(stringu1) from tenk1 group by length(stringu1);
length
--------
6
(1 row)
explain (costs off)
select stringu1, count(*) from tenk1 group by stringu1 order by stringu1;
QUERY PLAN
----------------------------------------------------
Sort
Sort Key: stringu1
-> Finalize HashAggregate
Group Key: stringu1
-> Gather
Workers Planned: 4
-> Partial HashAggregate
Group Key: stringu1
-> Parallel Seq Scan on tenk1
(9 rows)
-- test that parallel plan for aggregates is not selected when
-- target list contains parallel restricted clause.
explain (costs off)
Clean up duplicate table and function names in regression tests. Many of the objects we create during the regression tests are put in the public schema, so that using the same names in different regression tests creates a hazard of test failures if any two such scripts run concurrently. This patch cleans up a bunch of latent hazards of that sort, as well as two live hazards. The current situation in this regard is far worse than it was a year or two back, because practically all of the partitioning-related test cases have reused table names with enthusiasm. I despaired of cleaning up that mess within the five most-affected tests (create_table, alter_table, insert, update, inherit); fortunately those don't run concurrently. Other than partitioning problems, most of the issues boil down to using names like "foo", "bar", "tmp", etc, without thought for the fact that other test scripts might use similar names concurrently. I've made an effort to make all such names more specific. One of the live hazards was that commit 7421f4b8 caused with.sql to create a table named "test", conflicting with a similarly-named table in alter_table.sql; this was exposed in the buildfarm recently. The other one was that join.sql and transactions.sql both create tables named "foo" and "bar"; but join.sql's uses of those names date back only to December or so. Since commit 7421f4b8 was back-patched to v10, back-patch a minimal fix for that problem. The rest of this is just future-proofing. Discussion: https://postgr.es/m/4627.1521070268@sss.pgh.pa.us
2018-03-15 22:08:51 +01:00
select sum(sp_parallel_restricted(unique1)) from tenk1
group by(sp_parallel_restricted(unique1));
QUERY PLAN
-------------------------------------------------------------------
HashAggregate
Clean up duplicate table and function names in regression tests. Many of the objects we create during the regression tests are put in the public schema, so that using the same names in different regression tests creates a hazard of test failures if any two such scripts run concurrently. This patch cleans up a bunch of latent hazards of that sort, as well as two live hazards. The current situation in this regard is far worse than it was a year or two back, because practically all of the partitioning-related test cases have reused table names with enthusiasm. I despaired of cleaning up that mess within the five most-affected tests (create_table, alter_table, insert, update, inherit); fortunately those don't run concurrently. Other than partitioning problems, most of the issues boil down to using names like "foo", "bar", "tmp", etc, without thought for the fact that other test scripts might use similar names concurrently. I've made an effort to make all such names more specific. One of the live hazards was that commit 7421f4b8 caused with.sql to create a table named "test", conflicting with a similarly-named table in alter_table.sql; this was exposed in the buildfarm recently. The other one was that join.sql and transactions.sql both create tables named "foo" and "bar"; but join.sql's uses of those names date back only to December or so. Since commit 7421f4b8 was back-patched to v10, back-patch a minimal fix for that problem. The rest of this is just future-proofing. Discussion: https://postgr.es/m/4627.1521070268@sss.pgh.pa.us
2018-03-15 22:08:51 +01:00
Group Key: sp_parallel_restricted(unique1)
-> Gather
Workers Planned: 4
-> Parallel Index Only Scan using tenk1_unique1 on tenk1
(5 rows)
-- test prepared statement
prepare tenk1_count(integer) As select count((unique1)) from tenk1 where hundred > $1;
explain (costs off) execute tenk1_count(1);
QUERY PLAN
----------------------------------------------
Finalize Aggregate
-> Gather
Workers Planned: 4
-> Partial Aggregate
-> Parallel Seq Scan on tenk1
Filter: (hundred > 1)
(6 rows)
execute tenk1_count(1);
count
-------
9800
(1 row)
deallocate tenk1_count;
-- test parallel plans for queries containing un-correlated subplans.
alter table tenk2 set (parallel_workers = 0);
explain (costs off)
select count(*) from tenk1 where (two, four) not in
(select hundred, thousand from tenk2 where thousand > 100);
QUERY PLAN
------------------------------------------------------
Finalize Aggregate
-> Gather
Workers Planned: 4
-> Partial Aggregate
-> Parallel Seq Scan on tenk1
Filter: (NOT (hashed SubPlan 1))
SubPlan 1
-> Seq Scan on tenk2
Filter: (thousand > 100)
(9 rows)
select count(*) from tenk1 where (two, four) not in
(select hundred, thousand from tenk2 where thousand > 100);
count
-------
10000
(1 row)
-- this is not parallel-safe due to use of random() within SubLink's testexpr:
explain (costs off)
select * from tenk1 where (unique1 + random())::integer not in
(select ten from tenk2);
QUERY PLAN
------------------------------------
Seq Scan on tenk1
Filter: (NOT (hashed SubPlan 1))
SubPlan 1
-> Seq Scan on tenk2
(4 rows)
alter table tenk2 reset (parallel_workers);
-- test parallel plan for a query containing initplan.
set enable_indexscan = off;
set enable_indexonlyscan = off;
set enable_bitmapscan = off;
alter table tenk2 set (parallel_workers = 2);
explain (costs off)
select count(*) from tenk1
where tenk1.unique1 = (Select max(tenk2.unique1) from tenk2);
QUERY PLAN
------------------------------------------------------
Aggregate
InitPlan 1 (returns $2)
-> Finalize Aggregate
-> Gather
Workers Planned: 2
-> Partial Aggregate
-> Parallel Seq Scan on tenk2
-> Gather
Workers Planned: 4
Params Evaluated: $2
-> Parallel Seq Scan on tenk1
Filter: (unique1 = $2)
(12 rows)
select count(*) from tenk1
where tenk1.unique1 = (Select max(tenk2.unique1) from tenk2);
count
-------
1
(1 row)
reset enable_indexscan;
reset enable_indexonlyscan;
reset enable_bitmapscan;
alter table tenk2 reset (parallel_workers);
-- test parallel index scans.
set enable_seqscan to off;
set enable_bitmapscan to off;
explain (costs off)
select count((unique1)) from tenk1 where hundred > 1;
QUERY PLAN
--------------------------------------------------------------------
Finalize Aggregate
-> Gather
Workers Planned: 4
-> Partial Aggregate
-> Parallel Index Scan using tenk1_hundred on tenk1
Index Cond: (hundred > 1)
(6 rows)
select count((unique1)) from tenk1 where hundred > 1;
count
-------
9800
(1 row)
-- test parallel index-only scans.
explain (costs off)
select count(*) from tenk1 where thousand > 95;
QUERY PLAN
--------------------------------------------------------------------------------
Finalize Aggregate
-> Gather
Workers Planned: 4
-> Partial Aggregate
-> Parallel Index Only Scan using tenk1_thous_tenthous on tenk1
Index Cond: (thousand > 95)
(6 rows)
select count(*) from tenk1 where thousand > 95;
count
-------
9040
(1 row)
-- test rescan cases too
set enable_material = false;
explain (costs off)
select * from
(select count(unique1) from tenk1 where hundred > 10) ss
right join (values (1),(2),(3)) v(x) on true;
QUERY PLAN
--------------------------------------------------------------------------
Nested Loop Left Join
-> Values Scan on "*VALUES*"
-> Finalize Aggregate
-> Gather
Workers Planned: 4
-> Partial Aggregate
-> Parallel Index Scan using tenk1_hundred on tenk1
Index Cond: (hundred > 10)
(8 rows)
select * from
(select count(unique1) from tenk1 where hundred > 10) ss
right join (values (1),(2),(3)) v(x) on true;
count | x
-------+---
8900 | 1
8900 | 2
8900 | 3
(3 rows)
explain (costs off)
select * from
(select count(*) from tenk1 where thousand > 99) ss
right join (values (1),(2),(3)) v(x) on true;
QUERY PLAN
--------------------------------------------------------------------------------------
Nested Loop Left Join
-> Values Scan on "*VALUES*"
-> Finalize Aggregate
-> Gather
Workers Planned: 4
-> Partial Aggregate
-> Parallel Index Only Scan using tenk1_thous_tenthous on tenk1
Index Cond: (thousand > 99)
(8 rows)
select * from
(select count(*) from tenk1 where thousand > 99) ss
right join (values (1),(2),(3)) v(x) on true;
count | x
-------+---
9000 | 1
9000 | 2
9000 | 3
(3 rows)
reset enable_material;
reset enable_seqscan;
reset enable_bitmapscan;
-- test parallel bitmap heap scan.
set enable_seqscan to off;
set enable_indexscan to off;
set enable_hashjoin to off;
set enable_mergejoin to off;
set enable_material to off;
-- test prefetching, if the platform allows it
DO $$
BEGIN
SET effective_io_concurrency = 50;
EXCEPTION WHEN invalid_parameter_value THEN
END $$;
set work_mem='64kB'; --set small work mem to force lossy pages
explain (costs off)
select count(*) from tenk1, tenk2 where tenk1.hundred > 1 and tenk2.thousand=0;
QUERY PLAN
------------------------------------------------------------
Aggregate
-> Nested Loop
-> Seq Scan on tenk2
Filter: (thousand = 0)
-> Gather
Workers Planned: 4
-> Parallel Bitmap Heap Scan on tenk1
Recheck Cond: (hundred > 1)
-> Bitmap Index Scan on tenk1_hundred
Index Cond: (hundred > 1)
(10 rows)
select count(*) from tenk1, tenk2 where tenk1.hundred > 1 and tenk2.thousand=0;
count
-------
98000
(1 row)
create table bmscantest (a int, t text);
insert into bmscantest select r, 'fooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo' FROM generate_series(1,100000) r;
create index i_bmtest ON bmscantest(a);
select count(*) from bmscantest where a>1;
count
-------
99999
(1 row)
-- test accumulation of stats for parallel nodes
reset enable_seqscan;
alter table tenk2 set (parallel_workers = 0);
explain (analyze, timing off, summary off, costs off)
select count(*) from tenk1, tenk2 where tenk1.hundred > 1
and tenk2.thousand=0;
QUERY PLAN
--------------------------------------------------------------------------
Aggregate (actual rows=1 loops=1)
-> Nested Loop (actual rows=98000 loops=1)
-> Seq Scan on tenk2 (actual rows=10 loops=1)
Filter: (thousand = 0)
Rows Removed by Filter: 9990
-> Gather (actual rows=9800 loops=10)
Workers Planned: 4
Workers Launched: 4
-> Parallel Seq Scan on tenk1 (actual rows=1960 loops=50)
Filter: (hundred > 1)
Rows Removed by Filter: 40
(11 rows)
alter table tenk2 reset (parallel_workers);
reset work_mem;
create function explain_parallel_sort_stats() returns setof text
language plpgsql as
$$
declare ln text;
begin
for ln in
explain (analyze, timing off, summary off, costs off)
select * from
(select ten from tenk1 where ten < 100 order by ten) ss
right join (values (1),(2),(3)) v(x) on true
loop
ln := regexp_replace(ln, 'Memory: \S*', 'Memory: xxx');
return next ln;
end loop;
end;
$$;
select * from explain_parallel_sort_stats();
explain_parallel_sort_stats
--------------------------------------------------------------------------
Nested Loop Left Join (actual rows=30000 loops=1)
-> Values Scan on "*VALUES*" (actual rows=3 loops=1)
-> Gather Merge (actual rows=10000 loops=3)
Workers Planned: 4
Workers Launched: 4
-> Sort (actual rows=2000 loops=15)
Sort Key: tenk1.ten
Sort Method: quicksort Memory: xxx
Worker 0: Sort Method: quicksort Memory: xxx
Worker 1: Sort Method: quicksort Memory: xxx
Worker 2: Sort Method: quicksort Memory: xxx
Worker 3: Sort Method: quicksort Memory: xxx
-> Parallel Seq Scan on tenk1 (actual rows=2000 loops=15)
Filter: (ten < 100)
(14 rows)
reset enable_indexscan;
reset enable_hashjoin;
reset enable_mergejoin;
reset enable_material;
reset effective_io_concurrency;
drop table bmscantest;
drop function explain_parallel_sort_stats();
-- test parallel merge join path.
set enable_hashjoin to off;
set enable_nestloop to off;
explain (costs off)
select count(*) from tenk1, tenk2 where tenk1.unique1 = tenk2.unique1;
QUERY PLAN
-------------------------------------------------------------------------------
Finalize Aggregate
-> Gather
Workers Planned: 4
-> Partial Aggregate
-> Merge Join
Merge Cond: (tenk1.unique1 = tenk2.unique1)
-> Parallel Index Only Scan using tenk1_unique1 on tenk1
-> Index Only Scan using tenk2_unique1 on tenk2
(8 rows)
select count(*) from tenk1, tenk2 where tenk1.unique1 = tenk2.unique1;
count
-------
10000
(1 row)
reset enable_hashjoin;
reset enable_nestloop;
-- test gather merge
set enable_hashagg = false;
explain (costs off)
select count(*) from tenk1 group by twenty;
QUERY PLAN
----------------------------------------------------
Finalize GroupAggregate
Group Key: twenty
-> Gather Merge
Workers Planned: 4
-> Partial GroupAggregate
Group Key: twenty
-> Sort
Sort Key: twenty
-> Parallel Seq Scan on tenk1
(9 rows)
select count(*) from tenk1 group by twenty;
count
-------
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
(20 rows)
--test expressions in targetlist are pushed down for gather merge
Clean up duplicate table and function names in regression tests. Many of the objects we create during the regression tests are put in the public schema, so that using the same names in different regression tests creates a hazard of test failures if any two such scripts run concurrently. This patch cleans up a bunch of latent hazards of that sort, as well as two live hazards. The current situation in this regard is far worse than it was a year or two back, because practically all of the partitioning-related test cases have reused table names with enthusiasm. I despaired of cleaning up that mess within the five most-affected tests (create_table, alter_table, insert, update, inherit); fortunately those don't run concurrently. Other than partitioning problems, most of the issues boil down to using names like "foo", "bar", "tmp", etc, without thought for the fact that other test scripts might use similar names concurrently. I've made an effort to make all such names more specific. One of the live hazards was that commit 7421f4b8 caused with.sql to create a table named "test", conflicting with a similarly-named table in alter_table.sql; this was exposed in the buildfarm recently. The other one was that join.sql and transactions.sql both create tables named "foo" and "bar"; but join.sql's uses of those names date back only to December or so. Since commit 7421f4b8 was back-patched to v10, back-patch a minimal fix for that problem. The rest of this is just future-proofing. Discussion: https://postgr.es/m/4627.1521070268@sss.pgh.pa.us
2018-03-15 22:08:51 +01:00
create function sp_simple_func(var1 integer) returns integer
as $$
begin
return var1 + 10;
end;
$$ language plpgsql PARALLEL SAFE;
explain (costs off, verbose)
Clean up duplicate table and function names in regression tests. Many of the objects we create during the regression tests are put in the public schema, so that using the same names in different regression tests creates a hazard of test failures if any two such scripts run concurrently. This patch cleans up a bunch of latent hazards of that sort, as well as two live hazards. The current situation in this regard is far worse than it was a year or two back, because practically all of the partitioning-related test cases have reused table names with enthusiasm. I despaired of cleaning up that mess within the five most-affected tests (create_table, alter_table, insert, update, inherit); fortunately those don't run concurrently. Other than partitioning problems, most of the issues boil down to using names like "foo", "bar", "tmp", etc, without thought for the fact that other test scripts might use similar names concurrently. I've made an effort to make all such names more specific. One of the live hazards was that commit 7421f4b8 caused with.sql to create a table named "test", conflicting with a similarly-named table in alter_table.sql; this was exposed in the buildfarm recently. The other one was that join.sql and transactions.sql both create tables named "foo" and "bar"; but join.sql's uses of those names date back only to December or so. Since commit 7421f4b8 was back-patched to v10, back-patch a minimal fix for that problem. The rest of this is just future-proofing. Discussion: https://postgr.es/m/4627.1521070268@sss.pgh.pa.us
2018-03-15 22:08:51 +01:00
select ten, sp_simple_func(ten) from tenk1 where ten < 100 order by ten;
QUERY PLAN
-----------------------------------------------------
Gather Merge
Clean up duplicate table and function names in regression tests. Many of the objects we create during the regression tests are put in the public schema, so that using the same names in different regression tests creates a hazard of test failures if any two such scripts run concurrently. This patch cleans up a bunch of latent hazards of that sort, as well as two live hazards. The current situation in this regard is far worse than it was a year or two back, because practically all of the partitioning-related test cases have reused table names with enthusiasm. I despaired of cleaning up that mess within the five most-affected tests (create_table, alter_table, insert, update, inherit); fortunately those don't run concurrently. Other than partitioning problems, most of the issues boil down to using names like "foo", "bar", "tmp", etc, without thought for the fact that other test scripts might use similar names concurrently. I've made an effort to make all such names more specific. One of the live hazards was that commit 7421f4b8 caused with.sql to create a table named "test", conflicting with a similarly-named table in alter_table.sql; this was exposed in the buildfarm recently. The other one was that join.sql and transactions.sql both create tables named "foo" and "bar"; but join.sql's uses of those names date back only to December or so. Since commit 7421f4b8 was back-patched to v10, back-patch a minimal fix for that problem. The rest of this is just future-proofing. Discussion: https://postgr.es/m/4627.1521070268@sss.pgh.pa.us
2018-03-15 22:08:51 +01:00
Output: ten, (sp_simple_func(ten))
Workers Planned: 4
-> Result
Clean up duplicate table and function names in regression tests. Many of the objects we create during the regression tests are put in the public schema, so that using the same names in different regression tests creates a hazard of test failures if any two such scripts run concurrently. This patch cleans up a bunch of latent hazards of that sort, as well as two live hazards. The current situation in this regard is far worse than it was a year or two back, because practically all of the partitioning-related test cases have reused table names with enthusiasm. I despaired of cleaning up that mess within the five most-affected tests (create_table, alter_table, insert, update, inherit); fortunately those don't run concurrently. Other than partitioning problems, most of the issues boil down to using names like "foo", "bar", "tmp", etc, without thought for the fact that other test scripts might use similar names concurrently. I've made an effort to make all such names more specific. One of the live hazards was that commit 7421f4b8 caused with.sql to create a table named "test", conflicting with a similarly-named table in alter_table.sql; this was exposed in the buildfarm recently. The other one was that join.sql and transactions.sql both create tables named "foo" and "bar"; but join.sql's uses of those names date back only to December or so. Since commit 7421f4b8 was back-patched to v10, back-patch a minimal fix for that problem. The rest of this is just future-proofing. Discussion: https://postgr.es/m/4627.1521070268@sss.pgh.pa.us
2018-03-15 22:08:51 +01:00
Output: ten, sp_simple_func(ten)
-> Sort
Output: ten
Sort Key: tenk1.ten
-> Parallel Seq Scan on public.tenk1
Output: ten
Filter: (tenk1.ten < 100)
(11 rows)
Clean up duplicate table and function names in regression tests. Many of the objects we create during the regression tests are put in the public schema, so that using the same names in different regression tests creates a hazard of test failures if any two such scripts run concurrently. This patch cleans up a bunch of latent hazards of that sort, as well as two live hazards. The current situation in this regard is far worse than it was a year or two back, because practically all of the partitioning-related test cases have reused table names with enthusiasm. I despaired of cleaning up that mess within the five most-affected tests (create_table, alter_table, insert, update, inherit); fortunately those don't run concurrently. Other than partitioning problems, most of the issues boil down to using names like "foo", "bar", "tmp", etc, without thought for the fact that other test scripts might use similar names concurrently. I've made an effort to make all such names more specific. One of the live hazards was that commit 7421f4b8 caused with.sql to create a table named "test", conflicting with a similarly-named table in alter_table.sql; this was exposed in the buildfarm recently. The other one was that join.sql and transactions.sql both create tables named "foo" and "bar"; but join.sql's uses of those names date back only to December or so. Since commit 7421f4b8 was back-patched to v10, back-patch a minimal fix for that problem. The rest of this is just future-proofing. Discussion: https://postgr.es/m/4627.1521070268@sss.pgh.pa.us
2018-03-15 22:08:51 +01:00
drop function sp_simple_func(integer);
-- test handling of SRFs in targetlist (bug in 10.0)
explain (costs off)
select count(*), generate_series(1,2) from tenk1 group by twenty;
QUERY PLAN
----------------------------------------------------------
ProjectSet
-> Finalize GroupAggregate
Group Key: twenty
-> Gather Merge
Workers Planned: 4
-> Partial GroupAggregate
Group Key: twenty
-> Sort
Sort Key: twenty
-> Parallel Seq Scan on tenk1
(10 rows)
select count(*), generate_series(1,2) from tenk1 group by twenty;
count | generate_series
-------+-----------------
500 | 1
500 | 2
500 | 1
500 | 2
500 | 1
500 | 2
500 | 1
500 | 2
500 | 1
500 | 2
500 | 1
500 | 2
500 | 1
500 | 2
500 | 1
500 | 2
500 | 1
500 | 2
500 | 1
500 | 2
500 | 1
500 | 2
500 | 1
500 | 2
500 | 1
500 | 2
500 | 1
500 | 2
500 | 1
500 | 2
500 | 1
500 | 2
500 | 1
500 | 2
500 | 1
500 | 2
500 | 1
500 | 2
500 | 1
500 | 2
(40 rows)
-- test gather merge with parallel leader participation disabled
set parallel_leader_participation = off;
explain (costs off)
select count(*) from tenk1 group by twenty;
QUERY PLAN
----------------------------------------------------
Finalize GroupAggregate
Group Key: twenty
-> Gather Merge
Workers Planned: 4
-> Partial GroupAggregate
Group Key: twenty
-> Sort
Sort Key: twenty
-> Parallel Seq Scan on tenk1
(9 rows)
select count(*) from tenk1 group by twenty;
count
-------
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
(20 rows)
reset parallel_leader_participation;
--test rescan behavior of gather merge
set enable_material = false;
explain (costs off)
select * from
(select string4, count(unique2)
from tenk1 group by string4 order by string4) ss
right join (values (1),(2),(3)) v(x) on true;
QUERY PLAN
----------------------------------------------------------
Nested Loop Left Join
-> Values Scan on "*VALUES*"
-> Finalize GroupAggregate
Group Key: tenk1.string4
-> Gather Merge
Workers Planned: 4
-> Partial GroupAggregate
Group Key: tenk1.string4
-> Sort
Sort Key: tenk1.string4
-> Parallel Seq Scan on tenk1
(11 rows)
select * from
(select string4, count(unique2)
from tenk1 group by string4 order by string4) ss
right join (values (1),(2),(3)) v(x) on true;
string4 | count | x
---------+-------+---
AAAAxx | 2500 | 1
HHHHxx | 2500 | 1
OOOOxx | 2500 | 1
VVVVxx | 2500 | 1
AAAAxx | 2500 | 2
HHHHxx | 2500 | 2
OOOOxx | 2500 | 2
VVVVxx | 2500 | 2
AAAAxx | 2500 | 3
HHHHxx | 2500 | 3
OOOOxx | 2500 | 3
VVVVxx | 2500 | 3
(12 rows)
reset enable_material;
reset enable_hashagg;
Prevent int128 from requiring more than MAXALIGN alignment. Our initial work with int128 neglected alignment considerations, an oversight that came back to bite us in bug #14897 from Vincent Lachenal. It is unsurprising that int128 might have a 16-byte alignment requirement; what's slightly more surprising is that even notoriously lax Intel chips sometimes enforce that. Raising MAXALIGN seems out of the question: the costs in wasted disk and memory space would be significant, and there would also be an on-disk compatibility break. Nor does it seem very practical to try to allow some data structures to have more-than-MAXALIGN alignment requirement, as we'd have to push knowledge of that throughout various code that copies data structures around. The only way out of the box is to make type int128 conform to the system's alignment assumptions. Fortunately, gcc supports that via its __attribute__(aligned()) pragma; and since we don't currently support int128 on non-gcc-workalike compilers, we shouldn't be losing any platform support this way. Although we could have just done pg_attribute_aligned(MAXIMUM_ALIGNOF) and called it a day, I did a little bit of extra work to make the code more portable than that: it will also support int128 on compilers without __attribute__(aligned()), if the native alignment of their 128-bit-int type is no more than that of int64. Add a regression test case that exercises the one known instance of the problem, in parallel aggregation over a bigint column. This will need to be back-patched, along with the preparatory commit 91aec93e6. But let's see what the buildfarm makes of it first. Discussion: https://postgr.es/m/20171110185747.31519.28038@wrigleys.postgresql.org
2017-11-14 21:03:55 +01:00
-- check parallelized int8 aggregate (bug #14897)
explain (costs off)
select avg(unique1::int8) from tenk1;
QUERY PLAN
-------------------------------------------------------------------------
Finalize Aggregate
-> Gather
Workers Planned: 4
-> Partial Aggregate
-> Parallel Index Only Scan using tenk1_unique1 on tenk1
(5 rows)
select avg(unique1::int8) from tenk1;
avg
-----------------------
4999.5000000000000000
(1 row)
-- gather merge test with a LIMIT
explain (costs off)
select fivethous from tenk1 order by fivethous limit 4;
QUERY PLAN
----------------------------------------------
Limit
-> Gather Merge
Workers Planned: 4
-> Sort
Sort Key: fivethous
-> Parallel Seq Scan on tenk1
(6 rows)
select fivethous from tenk1 order by fivethous limit 4;
fivethous
-----------
0
0
1
1
(4 rows)
-- gather merge test with 0 worker
set max_parallel_workers = 0;
explain (costs off)
select string4 from tenk1 order by string4 limit 5;
QUERY PLAN
----------------------------------------------
Limit
-> Gather Merge
Workers Planned: 4
-> Sort
Sort Key: string4
-> Parallel Seq Scan on tenk1
(6 rows)
select string4 from tenk1 order by string4 limit 5;
string4
---------
AAAAxx
AAAAxx
AAAAxx
AAAAxx
AAAAxx
(5 rows)
-- gather merge test with 0 workers, with parallel leader
-- participation disabled (the leader will have to run the plan
-- despite the setting)
set parallel_leader_participation = off;
explain (costs off)
select string4 from tenk1 order by string4 limit 5;
QUERY PLAN
----------------------------------------------
Limit
-> Gather Merge
Workers Planned: 4
-> Sort
Sort Key: string4
-> Parallel Seq Scan on tenk1
(6 rows)
select string4 from tenk1 order by string4 limit 5;
string4
---------
AAAAxx
AAAAxx
AAAAxx
AAAAxx
AAAAxx
(5 rows)
reset parallel_leader_participation;
reset max_parallel_workers;
SAVEPOINT settings;
SET LOCAL force_parallel_mode = 1;
explain (costs off)
select stringu1::int2 from tenk1 where unique1 = 1;
QUERY PLAN
-----------------------------------------------
Gather
Workers Planned: 1
Single Copy: true
-> Index Scan using tenk1_unique1 on tenk1
Index Cond: (unique1 = 1)
(5 rows)
ROLLBACK TO SAVEPOINT settings;
-- exercise record typmod remapping between backends
Clean up duplicate table and function names in regression tests. Many of the objects we create during the regression tests are put in the public schema, so that using the same names in different regression tests creates a hazard of test failures if any two such scripts run concurrently. This patch cleans up a bunch of latent hazards of that sort, as well as two live hazards. The current situation in this regard is far worse than it was a year or two back, because practically all of the partitioning-related test cases have reused table names with enthusiasm. I despaired of cleaning up that mess within the five most-affected tests (create_table, alter_table, insert, update, inherit); fortunately those don't run concurrently. Other than partitioning problems, most of the issues boil down to using names like "foo", "bar", "tmp", etc, without thought for the fact that other test scripts might use similar names concurrently. I've made an effort to make all such names more specific. One of the live hazards was that commit 7421f4b8 caused with.sql to create a table named "test", conflicting with a similarly-named table in alter_table.sql; this was exposed in the buildfarm recently. The other one was that join.sql and transactions.sql both create tables named "foo" and "bar"; but join.sql's uses of those names date back only to December or so. Since commit 7421f4b8 was back-patched to v10, back-patch a minimal fix for that problem. The rest of this is just future-proofing. Discussion: https://postgr.es/m/4627.1521070268@sss.pgh.pa.us
2018-03-15 22:08:51 +01:00
CREATE FUNCTION make_record(n int)
RETURNS RECORD LANGUAGE plpgsql PARALLEL SAFE AS
$$
BEGIN
RETURN CASE n
WHEN 1 THEN ROW(1)
WHEN 2 THEN ROW(1, 2)
WHEN 3 THEN ROW(1, 2, 3)
WHEN 4 THEN ROW(1, 2, 3, 4)
ELSE ROW(1, 2, 3, 4, 5)
END;
END;
$$;
SAVEPOINT settings;
SET LOCAL force_parallel_mode = 1;
SELECT make_record(x) FROM (SELECT generate_series(1, 5) x) ss ORDER BY x;
make_record
-------------
(1)
(1,2)
(1,2,3)
(1,2,3,4)
(1,2,3,4,5)
(5 rows)
ROLLBACK TO SAVEPOINT settings;
DROP function make_record(n int);
-- test the sanity of parallel query after the active role is dropped.
drop role if exists regress_parallel_worker;
NOTICE: role "regress_parallel_worker" does not exist, skipping
create role regress_parallel_worker;
set role regress_parallel_worker;
reset session authorization;
drop role regress_parallel_worker;
set force_parallel_mode = 1;
select count(*) from tenk1;
count
-------
10000
(1 row)
reset force_parallel_mode;
reset role;
-- Window function calculation can't be pushed to workers.
explain (costs off, verbose)
select count(*) from tenk1 a where (unique1, two) in
(select unique1, row_number() over() from tenk1 b);
QUERY PLAN
----------------------------------------------------------------------------------------------
Aggregate
Output: count(*)
-> Hash Semi Join
Hash Cond: ((a.unique1 = b.unique1) AND (a.two = (row_number() OVER (?))))
-> Gather
Output: a.unique1, a.two
Workers Planned: 4
-> Parallel Seq Scan on public.tenk1 a
Output: a.unique1, a.two
-> Hash
Output: b.unique1, (row_number() OVER (?))
-> WindowAgg
Output: b.unique1, row_number() OVER (?)
-> Gather
Output: b.unique1
Workers Planned: 4
-> Parallel Index Only Scan using tenk1_unique1 on public.tenk1 b
Output: b.unique1
(18 rows)
-- LIMIT/OFFSET within sub-selects can't be pushed to workers.
explain (costs off)
select * from tenk1 a where two in
(select two from tenk1 b where stringu1 like '%AAAA' limit 3);
QUERY PLAN
---------------------------------------------------------------
Hash Semi Join
Hash Cond: (a.two = b.two)
-> Gather
Workers Planned: 4
-> Parallel Seq Scan on tenk1 a
-> Hash
-> Limit
-> Gather
Workers Planned: 4
-> Parallel Seq Scan on tenk1 b
Filter: (stringu1 ~~ '%AAAA'::text)
(11 rows)
-- to increase the parallel query test coverage
SAVEPOINT settings;
SET LOCAL force_parallel_mode = 1;
EXPLAIN (analyze, timing off, summary off, costs off) SELECT * FROM tenk1;
QUERY PLAN
-------------------------------------------------------------
Gather (actual rows=10000 loops=1)
Workers Planned: 4
Workers Launched: 4
-> Parallel Seq Scan on tenk1 (actual rows=2000 loops=5)
(4 rows)
ROLLBACK TO SAVEPOINT settings;
-- provoke error in worker
SAVEPOINT settings;
SET LOCAL force_parallel_mode = 1;
select stringu1::int2 from tenk1 where unique1 = 1;
ERROR: invalid input syntax for type smallint: "BAAAAA"
CONTEXT: parallel worker
ROLLBACK TO SAVEPOINT settings;
-- test interaction with set-returning functions
SAVEPOINT settings;
-- multiple subqueries under a single Gather node
-- must set parallel_setup_cost > 0 to discourage multiple Gather nodes
SET LOCAL parallel_setup_cost = 10;
EXPLAIN (COSTS OFF)
SELECT unique1 FROM tenk1 WHERE fivethous = tenthous + 1
UNION ALL
SELECT unique1 FROM tenk1 WHERE fivethous = tenthous + 1;
QUERY PLAN
----------------------------------------------------
Gather
Workers Planned: 4
-> Parallel Append
-> Parallel Seq Scan on tenk1
Filter: (fivethous = (tenthous + 1))
-> Parallel Seq Scan on tenk1 tenk1_1
Filter: (fivethous = (tenthous + 1))
(7 rows)
ROLLBACK TO SAVEPOINT settings;
-- can't use multiple subqueries under a single Gather node due to initPlans
EXPLAIN (COSTS OFF)
SELECT unique1 FROM tenk1 WHERE fivethous =
(SELECT unique1 FROM tenk1 WHERE fivethous = 1 LIMIT 1)
UNION ALL
SELECT unique1 FROM tenk1 WHERE fivethous =
(SELECT unique2 FROM tenk1 WHERE fivethous = 1 LIMIT 1)
ORDER BY 1;
QUERY PLAN
--------------------------------------------------------------------
Sort
Sort Key: tenk1.unique1
-> Append
-> Gather
Workers Planned: 4
Params Evaluated: $1
InitPlan 1 (returns $1)
-> Limit
-> Gather
Workers Planned: 4
-> Parallel Seq Scan on tenk1 tenk1_2
Filter: (fivethous = 1)
-> Parallel Seq Scan on tenk1
Filter: (fivethous = $1)
-> Gather
Workers Planned: 4
Params Evaluated: $3
InitPlan 2 (returns $3)
-> Limit
-> Gather
Workers Planned: 4
-> Parallel Seq Scan on tenk1 tenk1_3
Filter: (fivethous = 1)
-> Parallel Seq Scan on tenk1 tenk1_1
Filter: (fivethous = $3)
(25 rows)
-- test interaction with SRFs
SELECT * FROM information_schema.foreign_data_wrapper_options
ORDER BY 1, 2, 3;
foreign_data_wrapper_catalog | foreign_data_wrapper_name | option_name | option_value
------------------------------+---------------------------+-------------+--------------
(0 rows)
-- test interation between subquery and partial_paths
SET LOCAL min_parallel_table_scan_size TO 0;
CREATE VIEW tenk1_vw_sec WITH (security_barrier) AS SELECT * FROM tenk1;
EXPLAIN (COSTS OFF)
SELECT 1 FROM tenk1_vw_sec WHERE EXISTS (SELECT 1 WHERE unique1 = 0);
QUERY PLAN
-------------------------------------------------------------------
Subquery Scan on tenk1_vw_sec
Filter: (alternatives: SubPlan 1 or hashed SubPlan 2)
-> Gather
Workers Planned: 4
-> Parallel Index Only Scan using tenk1_unique1 on tenk1
SubPlan 1
-> Result
One-Time Filter: (tenk1_vw_sec.unique1 = 0)
SubPlan 2
-> Result
(10 rows)
rollback;