postgresql/src/test/regress/sql/with.sql

452 lines
11 KiB
MySQL
Raw Normal View History

--
-- Tests for common table expressions (WITH query, ... SELECT ...)
--
-- Basic WITH
WITH q1(x,y) AS (SELECT 1,2)
SELECT * FROM q1, q1 AS q2;
-- Multiple uses are evaluated only once
SELECT count(*) FROM (
WITH q1(x) AS (SELECT random() FROM generate_series(1, 5))
SELECT * FROM q1
UNION
SELECT * FROM q1
) ss;
-- WITH RECURSIVE
-- sum of 1..100
WITH RECURSIVE t(n) AS (
VALUES (1)
UNION ALL
SELECT n+1 FROM t WHERE n < 100
)
SELECT sum(n) FROM t;
WITH RECURSIVE t(n) AS (
SELECT (VALUES(1))
UNION ALL
SELECT n+1 FROM t WHERE n < 5
)
SELECT * FROM t;
-- This is an infinite loop with UNION ALL, but not with UNION
WITH RECURSIVE t(n) AS (
SELECT 1
UNION
SELECT 10-n FROM t)
SELECT * FROM t;
-- This'd be an infinite loop, but outside query reads only as much as needed
WITH RECURSIVE t(n) AS (
VALUES (1)
UNION ALL
SELECT n+1 FROM t)
SELECT * FROM t LIMIT 10;
-- UNION case should have same property
WITH RECURSIVE t(n) AS (
SELECT 1
UNION
SELECT n+1 FROM t)
SELECT * FROM t LIMIT 10;
-- Test behavior with an unknown-type literal in the WITH
WITH q AS (SELECT 'foo' AS x)
SELECT x, x IS OF (unknown) as is_unknown FROM q;
WITH RECURSIVE t(n) AS (
SELECT 'foo'
UNION ALL
SELECT n || ' bar' FROM t WHERE length(n) < 20
)
SELECT n, n IS OF (text) as is_text FROM t;
--
-- Some examples with a tree
--
-- department structure represented here is as follows:
--
-- ROOT-+->A-+->B-+->C
-- | |
-- | +->D-+->F
-- +->E-+->G
CREATE TEMP TABLE department (
id INTEGER PRIMARY KEY, -- department ID
parent_department INTEGER REFERENCES department, -- upper department ID
name TEXT -- department name
);
INSERT INTO department VALUES (0, NULL, 'ROOT');
INSERT INTO department VALUES (1, 0, 'A');
INSERT INTO department VALUES (2, 1, 'B');
INSERT INTO department VALUES (3, 2, 'C');
INSERT INTO department VALUES (4, 2, 'D');
INSERT INTO department VALUES (5, 0, 'E');
INSERT INTO department VALUES (6, 4, 'F');
INSERT INTO department VALUES (7, 5, 'G');
-- extract all departments under 'A'. Result should be A, B, C, D and F
WITH RECURSIVE subdepartment AS
(
-- non recursive term
SELECT name as root_name, * FROM department WHERE name = 'A'
UNION ALL
-- recursive term
SELECT sd.root_name, d.* FROM department AS d, subdepartment AS sd
WHERE d.parent_department = sd.id
)
SELECT * FROM subdepartment ORDER BY name;
-- extract all departments under 'A' with "level" number
WITH RECURSIVE subdepartment(level, id, parent_department, name) AS
(
-- non recursive term
SELECT 1, * FROM department WHERE name = 'A'
UNION ALL
-- recursive term
SELECT sd.level + 1, d.* FROM department AS d, subdepartment AS sd
WHERE d.parent_department = sd.id
)
SELECT * FROM subdepartment ORDER BY name;
-- extract all departments under 'A' with "level" number.
-- Only shows level 2 or more
WITH RECURSIVE subdepartment(level, id, parent_department, name) AS
(
-- non recursive term
SELECT 1, * FROM department WHERE name = 'A'
UNION ALL
-- recursive term
SELECT sd.level + 1, d.* FROM department AS d, subdepartment AS sd
WHERE d.parent_department = sd.id
)
SELECT * FROM subdepartment WHERE level >= 2 ORDER BY name;
-- "RECURSIVE" is ignored if the query has no self-reference
WITH RECURSIVE subdepartment AS
(
-- note lack of recursive UNION structure
SELECT * FROM department WHERE name = 'A'
)
SELECT * FROM subdepartment ORDER BY name;
-- inside subqueries
SELECT count(*) FROM (
WITH RECURSIVE t(n) AS (
SELECT 1 UNION ALL SELECT n + 1 FROM t WHERE n < 500
)
SELECT * FROM t) AS t WHERE n < (
SELECT count(*) FROM (
WITH RECURSIVE t(n) AS (
SELECT 1 UNION ALL SELECT n + 1 FROM t WHERE n < 100
)
SELECT * FROM t WHERE n < 50000
) AS t WHERE n < 100);
-- use same CTE twice at different subquery levels
WITH q1(x,y) AS (
SELECT hundred, sum(ten) FROM tenk1 GROUP BY hundred
)
SELECT count(*) FROM q1 WHERE y > (SELECT sum(y)/100 FROM q1 qsub);
-- via a VIEW
CREATE TEMPORARY VIEW vsubdepartment AS
WITH RECURSIVE subdepartment AS
(
-- non recursive term
SELECT * FROM department WHERE name = 'A'
UNION ALL
-- recursive term
SELECT d.* FROM department AS d, subdepartment AS sd
WHERE d.parent_department = sd.id
)
SELECT * FROM subdepartment;
SELECT * FROM vsubdepartment ORDER BY name;
-- Check reverse listing
SELECT pg_get_viewdef('vsubdepartment'::regclass);
SELECT pg_get_viewdef('vsubdepartment'::regclass, true);
-- corner case in which sub-WITH gets initialized first
with recursive q as (
select * from department
union all
(with x as (select * from q)
select * from x)
)
select * from q limit 24;
with recursive q as (
select * from department
union all
(with recursive x as (
select * from department
union all
(select * from q union all select * from x)
)
select * from x)
)
select * from q limit 32;
-- recursive term has sub-UNION
WITH RECURSIVE t(i,j) AS (
VALUES (1,2)
UNION ALL
SELECT t2.i, t.j+1 FROM
(SELECT 2 AS i UNION ALL SELECT 3 AS i) AS t2
JOIN t ON (t2.i = t.i+1))
SELECT * FROM t;
--
-- different tree example
--
CREATE TEMPORARY TABLE tree(
id INTEGER PRIMARY KEY,
parent_id INTEGER REFERENCES tree(id)
);
INSERT INTO tree
VALUES (1, NULL), (2, 1), (3,1), (4,2), (5,2), (6,2), (7,3), (8,3),
(9,4), (10,4), (11,7), (12,7), (13,7), (14, 9), (15,11), (16,11);
--
-- get all paths from "second level" nodes to leaf nodes
--
WITH RECURSIVE t(id, path) AS (
VALUES(1,ARRAY[]::integer[])
UNION ALL
SELECT tree.id, t.path || tree.id
FROM tree JOIN t ON (tree.parent_id = t.id)
)
SELECT t1.*, t2.* FROM t AS t1 JOIN t AS t2 ON
(t1.path[1] = t2.path[1] AND
array_upper(t1.path,1) = 1 AND
array_upper(t2.path,1) > 1)
ORDER BY t1.id, t2.id;
-- just count 'em
WITH RECURSIVE t(id, path) AS (
VALUES(1,ARRAY[]::integer[])
UNION ALL
SELECT tree.id, t.path || tree.id
FROM tree JOIN t ON (tree.parent_id = t.id)
)
SELECT t1.id, count(t2.*) FROM t AS t1 JOIN t AS t2 ON
(t1.path[1] = t2.path[1] AND
array_upper(t1.path,1) = 1 AND
array_upper(t2.path,1) > 1)
GROUP BY t1.id
ORDER BY t1.id;
--
-- test cycle detection
--
create temp table graph( f int, t int, label text );
insert into graph values
(1, 2, 'arc 1 -> 2'),
(1, 3, 'arc 1 -> 3'),
(2, 3, 'arc 2 -> 3'),
(1, 4, 'arc 1 -> 4'),
(4, 5, 'arc 4 -> 5'),
(5, 1, 'arc 5 -> 1');
with recursive search_graph(f, t, label, path, cycle) as (
select *, array[row(g.f, g.t)], false from graph g
union all
select g.*, path || array[row(g.f, g.t)], row(g.f, g.t) = any(path)
from graph g, search_graph sg
where g.f = sg.t and not cycle
)
select * from search_graph;
--
-- test multiple WITH queries
--
WITH RECURSIVE
y (id) AS (VALUES (1)),
x (id) AS (SELECT * FROM y UNION ALL SELECT id+1 FROM x WHERE id < 5)
SELECT * FROM x;
-- forward reference OK
WITH RECURSIVE
x(id) AS (SELECT * FROM y UNION ALL SELECT id+1 FROM x WHERE id < 5),
y(id) AS (values (1))
SELECT * FROM x;
WITH RECURSIVE
x(id) AS
(VALUES (1) UNION ALL SELECT id+1 FROM x WHERE id < 5),
y(id) AS
(VALUES (1) UNION ALL SELECT id+1 FROM y WHERE id < 10)
SELECT y.*, x.* FROM y LEFT JOIN x USING (id);
WITH RECURSIVE
x(id) AS
(VALUES (1) UNION ALL SELECT id+1 FROM x WHERE id < 5),
y(id) AS
(VALUES (1) UNION ALL SELECT id+1 FROM x WHERE id < 10)
SELECT y.*, x.* FROM y LEFT JOIN x USING (id);
WITH RECURSIVE
x(id) AS
(SELECT 1 UNION ALL SELECT id+1 FROM x WHERE id < 3 ),
y(id) AS
(SELECT * FROM x UNION ALL SELECT * FROM x),
z(id) AS
(SELECT * FROM x UNION ALL SELECT id+1 FROM z WHERE id < 10)
SELECT * FROM z;
WITH RECURSIVE
x(id) AS
(SELECT 1 UNION ALL SELECT id+1 FROM x WHERE id < 3 ),
y(id) AS
(SELECT * FROM x UNION ALL SELECT * FROM x),
z(id) AS
(SELECT * FROM y UNION ALL SELECT id+1 FROM z WHERE id < 10)
SELECT * FROM z;
--
-- error cases
--
-- INTERSECT
WITH RECURSIVE x(n) AS (SELECT 1 INTERSECT SELECT n+1 FROM x)
SELECT * FROM x;
WITH RECURSIVE x(n) AS (SELECT 1 INTERSECT ALL SELECT n+1 FROM x)
SELECT * FROM x;
-- EXCEPT
WITH RECURSIVE x(n) AS (SELECT 1 EXCEPT SELECT n+1 FROM x)
SELECT * FROM x;
WITH RECURSIVE x(n) AS (SELECT 1 EXCEPT ALL SELECT n+1 FROM x)
SELECT * FROM x;
-- no non-recursive term
WITH RECURSIVE x(n) AS (SELECT n FROM x)
SELECT * FROM x;
-- recursive term in the left hand side (strictly speaking, should allow this)
WITH RECURSIVE x(n) AS (SELECT n FROM x UNION ALL SELECT 1)
SELECT * FROM x;
CREATE TEMPORARY TABLE y (a INTEGER);
INSERT INTO y SELECT generate_series(1, 10);
-- LEFT JOIN
WITH RECURSIVE x(n) AS (SELECT a FROM y WHERE a = 1
UNION ALL
SELECT x.n+1 FROM y LEFT JOIN x ON x.n = y.a WHERE n < 10)
SELECT * FROM x;
-- RIGHT JOIN
WITH RECURSIVE x(n) AS (SELECT a FROM y WHERE a = 1
UNION ALL
SELECT x.n+1 FROM x RIGHT JOIN y ON x.n = y.a WHERE n < 10)
SELECT * FROM x;
-- FULL JOIN
WITH RECURSIVE x(n) AS (SELECT a FROM y WHERE a = 1
UNION ALL
SELECT x.n+1 FROM x FULL JOIN y ON x.n = y.a WHERE n < 10)
SELECT * FROM x;
-- subquery
WITH RECURSIVE x(n) AS (SELECT 1 UNION ALL SELECT n+1 FROM x
WHERE n IN (SELECT * FROM x))
SELECT * FROM x;
-- aggregate functions
WITH RECURSIVE x(n) AS (SELECT 1 UNION ALL SELECT count(*) FROM x)
SELECT * FROM x;
WITH RECURSIVE x(n) AS (SELECT 1 UNION ALL SELECT sum(n) FROM x)
SELECT * FROM x;
-- ORDER BY
WITH RECURSIVE x(n) AS (SELECT 1 UNION ALL SELECT n+1 FROM x ORDER BY 1)
SELECT * FROM x;
-- LIMIT/OFFSET
WITH RECURSIVE x(n) AS (SELECT 1 UNION ALL SELECT n+1 FROM x LIMIT 10 OFFSET 1)
SELECT * FROM x;
-- FOR UPDATE
WITH RECURSIVE x(n) AS (SELECT 1 UNION ALL SELECT n+1 FROM x FOR UPDATE)
SELECT * FROM x;
-- target list has a recursive query name
WITH RECURSIVE x(id) AS (values (1)
UNION ALL
SELECT (SELECT * FROM x) FROM x WHERE id < 5
) SELECT * FROM x;
-- mutual recursive query (not implemented)
WITH RECURSIVE
x (id) AS (SELECT 1 UNION ALL SELECT id+1 FROM y WHERE id < 5),
y (id) AS (SELECT 1 UNION ALL SELECT id+1 FROM x WHERE id < 5)
SELECT * FROM x;
-- non-linear recursion is not allowed
WITH RECURSIVE foo(i) AS
(values (1)
UNION ALL
(SELECT i+1 FROM foo WHERE i < 10
UNION ALL
SELECT i+1 FROM foo WHERE i < 5)
) SELECT * FROM foo;
WITH RECURSIVE foo(i) AS
(values (1)
UNION ALL
SELECT * FROM
(SELECT i+1 FROM foo WHERE i < 10
UNION ALL
SELECT i+1 FROM foo WHERE i < 5) AS t
) SELECT * FROM foo;
WITH RECURSIVE foo(i) AS
(values (1)
UNION ALL
(SELECT i+1 FROM foo WHERE i < 10
EXCEPT
SELECT i+1 FROM foo WHERE i < 5)
) SELECT * FROM foo;
WITH RECURSIVE foo(i) AS
(values (1)
UNION ALL
(SELECT i+1 FROM foo WHERE i < 10
INTERSECT
SELECT i+1 FROM foo WHERE i < 5)
) SELECT * FROM foo;
-- Wrong type induced from non-recursive term
WITH RECURSIVE foo(i) AS
(SELECT i FROM (VALUES(1),(2)) t(i)
UNION ALL
SELECT (i+1)::numeric(10,0) FROM foo WHERE i < 10)
SELECT * FROM foo;
-- rejects different typmod, too (should we allow this?)
WITH RECURSIVE foo(i) AS
(SELECT i::numeric(3,0) FROM (VALUES(1),(2)) t(i)
UNION ALL
SELECT (i+1)::numeric(10,0) FROM foo WHERE i < 10)
SELECT * FROM foo;