postgresql/src/timezone/localtime.c

1612 lines
37 KiB
C
Raw Normal View History

2004-04-30 06:44:06 +02:00
/*
* This file is in the public domain, so clarified as of
* 1996-06-05 by Arthur David Olson.
*
* IDENTIFICATION
2010-09-20 22:08:53 +02:00
* src/timezone/localtime.c
*/
2004-04-30 06:44:06 +02:00
/*
* Leap second handling from Bradley White.
* POSIX-style TZ environment variable handling from Guy Harris.
*/
2004-04-30 06:44:06 +02:00
/* this file needs to build in both frontend and backend contexts */
#include "c.h"
2004-04-30 06:44:06 +02:00
#include <fcntl.h>
#include "datatype/timestamp.h"
2004-04-30 06:44:06 +02:00
#include "private.h"
#include "pgtz.h"
2004-04-30 06:44:06 +02:00
#include "tzfile.h"
#ifndef WILDABBR
/*----------
* Someone might make incorrect use of a time zone abbreviation:
* 1. They might reference tzname[0] before calling tzset (explicitly
* or implicitly).
* 2. They might reference tzname[1] before calling tzset (explicitly
* or implicitly).
* 3. They might reference tzname[1] after setting to a time zone
* in which Daylight Saving Time is never observed.
* 4. They might reference tzname[0] after setting to a time zone
* in which Standard Time is never observed.
* 5. They might reference tm.TM_ZONE after calling offtime.
* What's best to do in the above cases is open to debate;
* for now, we just set things up so that in any of the five cases
* WILDABBR is used. Another possibility: initialize tzname[0] to the
* string "tzname[0] used before set", and similarly for the other cases.
* And another: initialize tzname[0] to "ERA", with an explanation in the
* manual page of what this "time zone abbreviation" means (doing this so
* that tzname[0] has the "normal" length of three characters).
*----------
*/
2004-04-30 06:44:06 +02:00
#define WILDABBR " "
#endif /* !defined WILDABBR */
2004-04-30 06:44:06 +02:00
static char wildabbr[] = WILDABBR;
2004-04-30 06:44:06 +02:00
static const char gmt[] = "GMT";
2004-04-30 06:44:06 +02:00
/*
* The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
* We default to US rules as of 1999-08-17.
* POSIX 1003.1 section 8.1.1 says that the default DST rules are
* implementation dependent; for historical reasons, US rules are a
* common default.
*/
2004-04-30 06:44:06 +02:00
#define TZDEFRULESTRING ",M4.1.0,M10.5.0"
struct rule
{
int r_type; /* type of rule--see below */
int r_day; /* day number of rule */
int r_week; /* week number of rule */
int r_mon; /* month number of rule */
long r_time; /* transition time of rule */
2004-04-30 06:44:06 +02:00
};
#define JULIAN_DAY 0 /* Jn - Julian day */
#define DAY_OF_YEAR 1 /* n - day of year */
2005-10-15 04:49:52 +02:00
#define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
2004-04-30 06:44:06 +02:00
/*
* Prototypes for static functions.
*/
2004-04-30 06:44:06 +02:00
static long detzcode(const char *codep);
static pg_time_t detzcode64(const char *codep);
static int differ_by_repeat(pg_time_t t1, pg_time_t t0);
static const char *getzname(const char *strp);
static const char *getqzname(const char *strp, int delim);
static const char *getnum(const char *strp, int *nump, int min, int max);
static const char *getsecs(const char *strp, long *secsp);
static const char *getoffset(const char *strp, long *offsetp);
2005-10-15 04:49:52 +02:00
static const char *getrule(const char *strp, struct rule * rulep);
static void gmtload(struct state * sp);
static struct pg_tm *gmtsub(const pg_time_t *timep, long offset,
struct pg_tm * tmp);
static struct pg_tm *localsub(const pg_time_t *timep, long offset,
struct pg_tm * tmp, const pg_tz *tz);
static int increment_overflow(int *number, int delta);
static pg_time_t transtime(pg_time_t janfirst, int year,
const struct rule * rulep, long offset);
static int typesequiv(const struct state * sp, int a, int b);
static struct pg_tm *timesub(const pg_time_t *timep, long offset,
const struct state * sp, struct pg_tm * tmp);
/* GMT timezone */
static struct state gmtmem;
2004-04-30 06:44:06 +02:00
#define gmtptr (&gmtmem)
static int gmt_is_set = 0;
2004-04-30 06:44:06 +02:00
/*
* Section 4.12.3 of X3.159-1989 requires that
* Except for the strftime function, these functions [asctime,
* ctime, gmtime, localtime] return values in one of two static
* objects: a broken-down time structure and an array of char.
* Thanks to Paul Eggert for noting this.
*/
2004-04-30 06:44:06 +02:00
static struct pg_tm tm;
2004-04-30 06:44:06 +02:00
static long
detzcode(const char *codep)
2004-04-30 06:44:06 +02:00
{
2005-10-15 04:49:52 +02:00
long result;
int i;
2004-04-30 06:44:06 +02:00
result = (codep[0] & 0x80) ? ~0L : 0;
2004-04-30 06:44:06 +02:00
for (i = 0; i < 4; ++i)
result = (result << 8) | (codep[i] & 0xff);
return result;
}
static pg_time_t
detzcode64(const char *codep)
{
pg_time_t result;
int i;
result = (codep[0] & 0x80) ? (~(int64) 0) : 0;
for (i = 0; i < 8; ++i)
result = result * 256 + (codep[i] & 0xff);
return result;
}
static int
differ_by_repeat(pg_time_t t1, pg_time_t t0)
{
if (TYPE_INTEGRAL(pg_time_t) &&
TYPE_BIT(pg_time_t) -TYPE_SIGNED(pg_time_t) <SECSPERREPEAT_BITS)
return 0;
return t1 - t0 == SECSPERREPEAT;
}
int
tzload(const char *name, char *canonname, struct state * sp, int doextend)
2004-04-30 06:44:06 +02:00
{
const char *p;
2005-10-15 04:49:52 +02:00
int i;
int fid;
int stored;
int nread;
union
{
struct tzhead tzhead;
char buf[2 * sizeof(struct tzhead) +
2 * sizeof *sp +
4 * TZ_MAX_TIMES];
} u;
2004-04-30 06:44:06 +02:00
sp->goback = sp->goahead = FALSE;
2004-04-30 06:44:06 +02:00
if (name == NULL && (name = TZDEFAULT) == NULL)
return -1;
if (name[0] == ':')
++name;
fid = pg_open_tzfile(name, canonname);
if (fid < 0)
return -1;
nread = read(fid, u.buf, sizeof u.buf);
if (close(fid) != 0 || nread <= 0)
return -1;
for (stored = 4; stored <= 8; stored *= 2)
2004-04-30 06:44:06 +02:00
{
int ttisstdcnt;
int ttisgmtcnt;
2004-04-30 06:44:06 +02:00
ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
return -1;
if (nread - (p - u.buf) <
sp->timecnt * stored + /* ats */
sp->timecnt + /* types */
sp->typecnt * 6 + /* ttinfos */
sp->charcnt + /* chars */
sp->leapcnt * (stored + 4) + /* lsinfos */
ttisstdcnt + /* ttisstds */
2004-04-30 06:44:06 +02:00
ttisgmtcnt) /* ttisgmts */
return -1;
for (i = 0; i < sp->timecnt; ++i)
{
sp->ats[i] = (stored == 4) ? detzcode(p) : detzcode64(p);
p += stored;
2004-04-30 06:44:06 +02:00
}
for (i = 0; i < sp->timecnt; ++i)
{
2004-04-30 06:44:06 +02:00
sp->types[i] = (unsigned char) *p++;
if (sp->types[i] >= sp->typecnt)
return -1;
}
for (i = 0; i < sp->typecnt; ++i)
{
struct ttinfo *ttisp;
2004-04-30 06:44:06 +02:00
ttisp = &sp->ttis[i];
ttisp->tt_gmtoff = detzcode(p);
p += 4;
ttisp->tt_isdst = (unsigned char) *p++;
if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
return -1;
ttisp->tt_abbrind = (unsigned char) *p++;
if (ttisp->tt_abbrind < 0 ||
ttisp->tt_abbrind > sp->charcnt)
return -1;
2004-04-30 06:44:06 +02:00
}
for (i = 0; i < sp->charcnt; ++i)
sp->chars[i] = *p++;
sp->chars[i] = '\0'; /* ensure '\0' at end */
for (i = 0; i < sp->leapcnt; ++i)
{
struct lsinfo *lsisp;
2004-04-30 06:44:06 +02:00
lsisp = &sp->lsis[i];
lsisp->ls_trans = (stored == 4) ? detzcode(p) : detzcode64(p);
p += stored;
2004-04-30 06:44:06 +02:00
lsisp->ls_corr = detzcode(p);
p += 4;
}
for (i = 0; i < sp->typecnt; ++i)
{
struct ttinfo *ttisp;
2004-04-30 06:44:06 +02:00
ttisp = &sp->ttis[i];
if (ttisstdcnt == 0)
ttisp->tt_ttisstd = FALSE;
else
{
2004-04-30 06:44:06 +02:00
ttisp->tt_ttisstd = *p++;
if (ttisp->tt_ttisstd != TRUE &&
ttisp->tt_ttisstd != FALSE)
return -1;
2004-04-30 06:44:06 +02:00
}
}
for (i = 0; i < sp->typecnt; ++i)
{
struct ttinfo *ttisp;
2004-04-30 06:44:06 +02:00
ttisp = &sp->ttis[i];
if (ttisgmtcnt == 0)
ttisp->tt_ttisgmt = FALSE;
else
{
2004-04-30 06:44:06 +02:00
ttisp->tt_ttisgmt = *p++;
if (ttisp->tt_ttisgmt != TRUE &&
ttisp->tt_ttisgmt != FALSE)
return -1;
2004-04-30 06:44:06 +02:00
}
}
/*
* Out-of-sort ats should mean we're running on a signed time_t system
* but using a data file with unsigned values (or vice versa).
*/
for (i = 0; i < sp->timecnt - 2; ++i)
if (sp->ats[i] > sp->ats[i + 1])
{
++i;
if (TYPE_SIGNED(pg_time_t))
{
/*
* Ignore the end (easy).
*/
sp->timecnt = i;
}
else
{
/*
* Ignore the beginning (harder).
*/
int j;
for (j = 0; j + i < sp->timecnt; ++j)
{
sp->ats[j] = sp->ats[j + i];
sp->types[j] = sp->types[j + i];
}
sp->timecnt = j;
}
break;
}
/*
* If this is an old file, we're done.
*/
if (u.tzhead.tzh_version[0] == '\0')
break;
nread -= p - u.buf;
for (i = 0; i < nread; ++i)
u.buf[i] = p[i];
/*
* If this is a narrow integer time_t system, we're done.
*/
if (stored >= (int) sizeof(pg_time_t) && TYPE_INTEGRAL(pg_time_t))
break;
2004-04-30 06:44:06 +02:00
}
if (doextend && nread > 2 &&
u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
sp->typecnt + 2 <= TZ_MAX_TYPES)
{
struct state ts;
int result;
u.buf[nread - 1] = '\0';
result = tzparse(&u.buf[1], &ts, FALSE);
if (result == 0 && ts.typecnt == 2 &&
sp->charcnt + ts.charcnt <= TZ_MAX_CHARS)
{
for (i = 0; i < 2; ++i)
ts.ttis[i].tt_abbrind +=
sp->charcnt;
for (i = 0; i < ts.charcnt; ++i)
sp->chars[sp->charcnt++] =
ts.chars[i];
i = 0;
while (i < ts.timecnt &&
ts.ats[i] <=
sp->ats[sp->timecnt - 1])
++i;
while (i < ts.timecnt &&
sp->timecnt < TZ_MAX_TIMES)
{
sp->ats[sp->timecnt] =
ts.ats[i];
sp->types[sp->timecnt] =
sp->typecnt +
ts.types[i];
++sp->timecnt;
++i;
}
sp->ttis[sp->typecnt++] = ts.ttis[0];
sp->ttis[sp->typecnt++] = ts.ttis[1];
}
}
if (sp->timecnt > 1)
{
for (i = 1; i < sp->timecnt; ++i)
if (typesequiv(sp, sp->types[i], sp->types[0]) &&
differ_by_repeat(sp->ats[i], sp->ats[0]))
{
sp->goback = TRUE;
break;
}
for (i = sp->timecnt - 2; i >= 0; --i)
if (typesequiv(sp, sp->types[sp->timecnt - 1],
sp->types[i]) &&
differ_by_repeat(sp->ats[sp->timecnt - 1],
sp->ats[i]))
{
sp->goahead = TRUE;
break;
}
}
2004-04-30 06:44:06 +02:00
return 0;
}
static int
typesequiv(const struct state * sp, int a, int b)
{
int result;
if (sp == NULL ||
a < 0 || a >= sp->typecnt ||
b < 0 || b >= sp->typecnt)
result = FALSE;
else
{
const struct ttinfo *ap = &sp->ttis[a];
const struct ttinfo *bp = &sp->ttis[b];
result = ap->tt_gmtoff == bp->tt_gmtoff &&
ap->tt_isdst == bp->tt_isdst &&
ap->tt_ttisstd == bp->tt_ttisstd &&
ap->tt_ttisgmt == bp->tt_ttisgmt &&
strcmp(&sp->chars[ap->tt_abbrind],
&sp->chars[bp->tt_abbrind]) == 0;
}
return result;
}
static const int mon_lengths[2][MONSPERYEAR] = {
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
2004-04-30 06:44:06 +02:00
};
static const int year_lengths[2] = {
2004-04-30 06:44:06 +02:00
DAYSPERNYEAR, DAYSPERLYEAR
};
/*
* Given a pointer into a time zone string, scan until a character that is not
* a valid character in a zone name is found. Return a pointer to that
* character.
*/
static const char *
getzname(const char *strp)
2004-04-30 06:44:06 +02:00
{
2005-10-15 04:49:52 +02:00
char c;
2004-04-30 06:44:06 +02:00
while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
c != '+')
++strp;
2004-04-30 06:44:06 +02:00
return strp;
}
/*
* Given a pointer into an extended time zone string, scan until the ending
* delimiter of the zone name is located. Return a pointer to the delimiter.
*
* As with getzname above, the legal character set is actually quite
* restricted, with other characters producing undefined results.
* We don't do any checking here; checking is done later in common-case code.
*/
static const char *
getqzname(const char *strp, int delim)
{
int c;
while ((c = *strp) != '\0' && c != delim)
++strp;
return strp;
}
2004-04-30 06:44:06 +02:00
/*
* Given a pointer into a time zone string, extract a number from that string.
* Check that the number is within a specified range; if it is not, return
* NULL.
* Otherwise, return a pointer to the first character not part of the number.
*/
static const char *
getnum(const char *strp, int *nump, int min, int max)
2004-04-30 06:44:06 +02:00
{
2005-10-15 04:49:52 +02:00
char c;
int num;
2004-04-30 06:44:06 +02:00
if (strp == NULL || !is_digit(c = *strp))
return NULL;
num = 0;
do
{
2004-04-30 06:44:06 +02:00
num = num * 10 + (c - '0');
if (num > max)
return NULL; /* illegal value */
2004-04-30 06:44:06 +02:00
c = *++strp;
} while (is_digit(c));
if (num < min)
return NULL; /* illegal value */
2004-04-30 06:44:06 +02:00
*nump = num;
return strp;
}
/*
* Given a pointer into a time zone string, extract a number of seconds,
* in hh[:mm[:ss]] form, from the string.
* If any error occurs, return NULL.
* Otherwise, return a pointer to the first character not part of the number
* of seconds.
*/
static const char *
getsecs(const char *strp, long *secsp)
2004-04-30 06:44:06 +02:00
{
int num;
2004-04-30 06:44:06 +02:00
/*
* `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
2005-10-15 04:49:52 +02:00
* "M10.4.6/26", which does not conform to Posix, but which specifies the
* equivalent of ``02:00 on the first Sunday on or after 23 Oct''.
*/
2004-04-30 06:44:06 +02:00
strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
if (strp == NULL)
return NULL;
*secsp = num * (long) SECSPERHOUR;
if (*strp == ':')
{
2004-04-30 06:44:06 +02:00
++strp;
strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
if (strp == NULL)
return NULL;
*secsp += num * SECSPERMIN;
if (*strp == ':')
{
2004-04-30 06:44:06 +02:00
++strp;
/* `SECSPERMIN' allows for leap seconds. */
2004-04-30 06:44:06 +02:00
strp = getnum(strp, &num, 0, SECSPERMIN);
if (strp == NULL)
return NULL;
*secsp += num;
}
}
return strp;
}
/*
* Given a pointer into a time zone string, extract an offset, in
* [+-]hh[:mm[:ss]] form, from the string.
* If any error occurs, return NULL.
* Otherwise, return a pointer to the first character not part of the time.
*/
static const char *
getoffset(const char *strp, long *offsetp)
2004-04-30 06:44:06 +02:00
{
2005-10-15 04:49:52 +02:00
int neg = 0;
2004-04-30 06:44:06 +02:00
if (*strp == '-')
{
2004-04-30 06:44:06 +02:00
neg = 1;
++strp;
}
else if (*strp == '+')
2004-04-30 06:44:06 +02:00
++strp;
strp = getsecs(strp, offsetp);
if (strp == NULL)
return NULL; /* illegal time */
2004-04-30 06:44:06 +02:00
if (neg)
*offsetp = -*offsetp;
return strp;
}
/*
* Given a pointer into a time zone string, extract a rule in the form
* date[/time]. See POSIX section 8 for the format of "date" and "time".
* If a valid rule is not found, return NULL.
* Otherwise, return a pointer to the first character not part of the rule.
*/
static const char *
2005-10-15 04:49:52 +02:00
getrule(const char *strp, struct rule * rulep)
2004-04-30 06:44:06 +02:00
{
if (*strp == 'J')
{
2004-04-30 06:44:06 +02:00
/*
* Julian day.
*/
2004-04-30 06:44:06 +02:00
rulep->r_type = JULIAN_DAY;
++strp;
strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
}
else if (*strp == 'M')
{
2004-04-30 06:44:06 +02:00
/*
* Month, week, day.
*/
2004-04-30 06:44:06 +02:00
rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
++strp;
strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
if (strp == NULL)
return NULL;
if (*strp++ != '.')
return NULL;
strp = getnum(strp, &rulep->r_week, 1, 5);
if (strp == NULL)
return NULL;
if (*strp++ != '.')
return NULL;
strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
}
else if (is_digit(*strp))
{
2004-04-30 06:44:06 +02:00
/*
* Day of year.
*/
2004-04-30 06:44:06 +02:00
rulep->r_type = DAY_OF_YEAR;
strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
}
else
return NULL; /* invalid format */
2004-04-30 06:44:06 +02:00
if (strp == NULL)
return NULL;
if (*strp == '/')
{
2004-04-30 06:44:06 +02:00
/*
* Time specified.
*/
2004-04-30 06:44:06 +02:00
++strp;
strp = getsecs(strp, &rulep->r_time);
}
else
rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
2004-04-30 06:44:06 +02:00
return strp;
}
/*
* Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
* year, a rule, and the offset from UTC at the time that rule takes effect,
* calculate the Epoch-relative time that rule takes effect.
*/
static pg_time_t
transtime(pg_time_t janfirst, int year,
2005-10-15 04:49:52 +02:00
const struct rule * rulep, long offset)
2004-04-30 06:44:06 +02:00
{
2005-10-15 04:49:52 +02:00
int leapyear;
pg_time_t value = 0;
int i,
d,
m1,
yy0,
yy1,
yy2,
dow;
2004-04-30 06:44:06 +02:00
leapyear = isleap(year);
switch (rulep->r_type)
{
2004-04-30 06:44:06 +02:00
case JULIAN_DAY:
2004-04-30 06:44:06 +02:00
/*
2004-08-29 07:07:03 +02:00
* Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
2005-10-15 04:49:52 +02:00
* years. In non-leap years, or if the day number is 59 or less,
* just add SECSPERDAY times the day number-1 to the time of
* January 1, midnight, to get the day.
*/
value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
if (leapyear && rulep->r_day >= 60)
value += SECSPERDAY;
break;
2004-04-30 06:44:06 +02:00
case DAY_OF_YEAR:
/*
2005-10-15 04:49:52 +02:00
* n - day of year. Just add SECSPERDAY times the day number to
* the time of January 1, midnight, to get the day.
*/
value = janfirst + rulep->r_day * SECSPERDAY;
break;
case MONTH_NTH_DAY_OF_WEEK:
/*
* Mm.n.d - nth "dth day" of month m.
*/
value = janfirst;
for (i = 0; i < rulep->r_mon - 1; ++i)
value += mon_lengths[leapyear][i] * SECSPERDAY;
/*
2004-08-29 07:07:03 +02:00
* Use Zeller's Congruence to get day-of-week of first day of
* month.
*/
m1 = (rulep->r_mon + 9) % 12 + 1;
yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
yy1 = yy0 / 100;
yy2 = yy0 % 100;
dow = ((26 * m1 - 2) / 10 +
1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
if (dow < 0)
dow += DAYSPERWEEK;
/*
2005-10-15 04:49:52 +02:00
* "dow" is the day-of-week of the first day of the month. Get the
* day-of-month (zero-origin) of the first "dow" day of the month.
*/
d = rulep->r_day - dow;
if (d < 0)
d += DAYSPERWEEK;
for (i = 1; i < rulep->r_week; ++i)
{
if (d + DAYSPERWEEK >=
mon_lengths[leapyear][rulep->r_mon - 1])
2004-04-30 06:44:06 +02:00
break;
d += DAYSPERWEEK;
}
2004-04-30 06:44:06 +02:00
/*
* "d" is the day-of-month (zero-origin) of the day we want.
*/
value += d * SECSPERDAY;
break;
2004-04-30 06:44:06 +02:00
}
/*
* "value" is the Epoch-relative time of 00:00:00 UTC on the day in
2005-10-15 04:49:52 +02:00
* question. To get the Epoch-relative time of the specified local time
* on that day, add the transition time and the current offset from UTC.
*/
2004-04-30 06:44:06 +02:00
return value + rulep->r_time + offset;
}
/*
* Given a POSIX section 8-style TZ string, fill in the rule tables as
* appropriate.
*/
2004-04-30 06:44:06 +02:00
int
2005-10-15 04:49:52 +02:00
tzparse(const char *name, struct state * sp, int lastditch)
2004-04-30 06:44:06 +02:00
{
const char *stdname;
const char *dstname = NULL;
size_t stdlen;
size_t dstlen;
long stdoffset;
long dstoffset;
2005-10-15 04:49:52 +02:00
pg_time_t *atp;
unsigned char *typep;
2005-10-15 04:49:52 +02:00
char *cp;
int load_result;
2004-04-30 06:44:06 +02:00
stdname = name;
if (lastditch)
{
2004-04-30 06:44:06 +02:00
stdlen = strlen(name); /* length of standard zone name */
name += stdlen;
if (stdlen >= sizeof sp->chars)
stdlen = (sizeof sp->chars) - 1;
stdoffset = 0;
2007-11-15 22:14:46 +01:00
/*
2007-11-15 22:14:46 +01:00
* Unlike the original zic library, do NOT invoke tzload() here; we
* can't assume pg_open_tzfile() is sane yet, and we don't care about
* leap seconds anyway.
*/
sp->goback = sp->goahead = FALSE;
load_result = -1;
}
else
{
if (*name == '<')
{
name++;
stdname = name;
name = getqzname(name, '>');
if (*name != '>')
return (-1);
stdlen = name - stdname;
name++;
}
else
{
name = getzname(name);
stdlen = name - stdname;
}
2004-04-30 06:44:06 +02:00
if (*name == '\0')
return -1;
name = getoffset(name, &stdoffset);
if (name == NULL)
return -1;
load_result = tzload(TZDEFRULES, NULL, sp, FALSE);
2004-04-30 06:44:06 +02:00
}
if (load_result != 0)
sp->leapcnt = 0; /* so, we're off a little */
if (*name != '\0')
{
if (*name == '<')
{
dstname = ++name;
name = getqzname(name, '>');
if (*name != '>')
return -1;
dstlen = name - dstname;
name++;
}
else
{
dstname = name;
name = getzname(name);
dstlen = name - dstname; /* length of DST zone name */
}
if (*name != '\0' && *name != ',' && *name != ';')
{
2004-04-30 06:44:06 +02:00
name = getoffset(name, &dstoffset);
if (name == NULL)
return -1;
}
else
dstoffset = stdoffset - SECSPERHOUR;
2004-04-30 06:44:06 +02:00
if (*name == '\0' && load_result != 0)
name = TZDEFRULESTRING;
if (*name == ',' || *name == ';')
{
struct rule start;
struct rule end;
2005-10-15 04:49:52 +02:00
int year;
pg_time_t janfirst;
2004-08-29 07:07:03 +02:00
pg_time_t starttime;
pg_time_t endtime;
2004-04-30 06:44:06 +02:00
++name;
if ((name = getrule(name, &start)) == NULL)
return -1;
if (*name++ != ',')
return -1;
if ((name = getrule(name, &end)) == NULL)
return -1;
if (*name != '\0')
return -1;
sp->typecnt = 2; /* standard time and DST */
2004-04-30 06:44:06 +02:00
/*
* Two transitions per year, from EPOCH_YEAR forward.
*/
2004-04-30 06:44:06 +02:00
sp->ttis[0].tt_gmtoff = -dstoffset;
sp->ttis[0].tt_isdst = 1;
sp->ttis[0].tt_abbrind = stdlen + 1;
sp->ttis[1].tt_gmtoff = -stdoffset;
sp->ttis[1].tt_isdst = 0;
sp->ttis[1].tt_abbrind = 0;
atp = sp->ats;
typep = sp->types;
janfirst = 0;
sp->timecnt = 0;
for (year = EPOCH_YEAR;
sp->timecnt + 2 <= TZ_MAX_TIMES;
++year)
{
pg_time_t newfirst;
2004-04-30 06:44:06 +02:00
starttime = transtime(janfirst, year, &start,
stdoffset);
2004-04-30 06:44:06 +02:00
endtime = transtime(janfirst, year, &end,
dstoffset);
if (starttime > endtime)
{
2004-04-30 06:44:06 +02:00
*atp++ = endtime;
*typep++ = 1; /* DST ends */
2004-04-30 06:44:06 +02:00
*atp++ = starttime;
*typep++ = 0; /* DST begins */
}
else
{
2004-04-30 06:44:06 +02:00
*atp++ = starttime;
*typep++ = 0; /* DST begins */
2004-04-30 06:44:06 +02:00
*atp++ = endtime;
*typep++ = 1; /* DST ends */
2004-04-30 06:44:06 +02:00
}
sp->timecnt += 2;
newfirst = janfirst;
newfirst += year_lengths[isleap(year)] *
2004-04-30 06:44:06 +02:00
SECSPERDAY;
if (newfirst <= janfirst)
break;
janfirst = newfirst;
2004-04-30 06:44:06 +02:00
}
}
else
{
2005-10-15 04:49:52 +02:00
long theirstdoffset;
long theirdstoffset;
long theiroffset;
int isdst;
int i;
int j;
2004-04-30 06:44:06 +02:00
if (*name != '\0')
return -1;
2004-04-30 06:44:06 +02:00
/*
* Initial values of theirstdoffset and theirdstoffset.
*/
2004-04-30 06:44:06 +02:00
theirstdoffset = 0;
for (i = 0; i < sp->timecnt; ++i)
{
2004-04-30 06:44:06 +02:00
j = sp->types[i];
if (!sp->ttis[j].tt_isdst)
{
2004-04-30 06:44:06 +02:00
theirstdoffset =
-sp->ttis[j].tt_gmtoff;
break;
}
}
theirdstoffset = 0;
for (i = 0; i < sp->timecnt; ++i)
{
2004-04-30 06:44:06 +02:00
j = sp->types[i];
if (sp->ttis[j].tt_isdst)
{
2004-04-30 06:44:06 +02:00
theirdstoffset =
-sp->ttis[j].tt_gmtoff;
break;
}
}
2004-04-30 06:44:06 +02:00
/*
* Initially we're assumed to be in standard time.
*/
2004-04-30 06:44:06 +02:00
isdst = FALSE;
theiroffset = theirstdoffset;
2004-04-30 06:44:06 +02:00
/*
2005-10-15 04:49:52 +02:00
* Now juggle transition times and types tracking offsets as you
* do.
*/
for (i = 0; i < sp->timecnt; ++i)
{
2004-04-30 06:44:06 +02:00
j = sp->types[i];
sp->types[i] = sp->ttis[j].tt_isdst;
if (sp->ttis[j].tt_ttisgmt)
{
2004-04-30 06:44:06 +02:00
/* No adjustment to transition time */
}
else
{
2004-04-30 06:44:06 +02:00
/*
2005-10-15 04:49:52 +02:00
* If summer time is in effect, and the transition time
* was not specified as standard time, add the summer time
* offset to the transition time; otherwise, add the
* standard time offset to the transition time.
*/
2004-04-30 06:44:06 +02:00
/*
2005-10-15 04:49:52 +02:00
* Transitions from DST to DDST will effectively disappear
* since POSIX provides for only one DST offset.
*/
if (isdst && !sp->ttis[j].tt_ttisstd)
{
2004-04-30 06:44:06 +02:00
sp->ats[i] += dstoffset -
theirdstoffset;
}
else
{
2004-04-30 06:44:06 +02:00
sp->ats[i] += stdoffset -
theirstdoffset;
}
}
theiroffset = -sp->ttis[j].tt_gmtoff;
if (sp->ttis[j].tt_isdst)
theirdstoffset = theiroffset;
else
theirstdoffset = theiroffset;
2004-04-30 06:44:06 +02:00
}
2004-04-30 06:44:06 +02:00
/*
2005-10-15 04:49:52 +02:00
* Finally, fill in ttis. ttisstd and ttisgmt need not be handled.
*/
2004-04-30 06:44:06 +02:00
sp->ttis[0].tt_gmtoff = -stdoffset;
sp->ttis[0].tt_isdst = FALSE;
sp->ttis[0].tt_abbrind = 0;
sp->ttis[1].tt_gmtoff = -dstoffset;
sp->ttis[1].tt_isdst = TRUE;
sp->ttis[1].tt_abbrind = stdlen + 1;
sp->typecnt = 2;
}
}
else
{
2004-04-30 06:44:06 +02:00
dstlen = 0;
sp->typecnt = 1; /* only standard time */
sp->timecnt = 0;
sp->ttis[0].tt_gmtoff = -stdoffset;
sp->ttis[0].tt_isdst = 0;
sp->ttis[0].tt_abbrind = 0;
}
sp->charcnt = stdlen + 1;
if (dstlen != 0)
sp->charcnt += dstlen + 1;
if ((size_t) sp->charcnt > sizeof sp->chars)
return -1;
cp = sp->chars;
(void) strncpy(cp, stdname, stdlen);
cp += stdlen;
*cp++ = '\0';
if (dstlen != 0)
{
2004-04-30 06:44:06 +02:00
(void) strncpy(cp, dstname, dstlen);
*(cp + dstlen) = '\0';
}
return 0;
}
static void
2005-10-15 04:49:52 +02:00
gmtload(struct state * sp)
2004-04-30 06:44:06 +02:00
{
if (tzload(gmt, NULL, sp, TRUE) != 0)
2004-04-30 06:44:06 +02:00
(void) tzparse(gmt, sp, TRUE);
}
/*
* The easy way to behave "as if no library function calls" localtime
* is to not call it--so we drop its guts into "localsub", which can be
* freely called. (And no, the PANS doesn't require the above behavior--
* but it *is* desirable.)
*
* The unused offset argument is for the benefit of mktime variants.
*/
static struct pg_tm *
localsub(const pg_time_t *timep, long offset,
struct pg_tm * tmp, const pg_tz *tz)
2004-04-30 06:44:06 +02:00
{
2005-10-15 04:49:52 +02:00
const struct state *sp;
const struct ttinfo *ttisp;
2005-10-15 04:49:52 +02:00
int i;
struct pg_tm *result;
const pg_time_t t = *timep;
2004-04-30 06:44:06 +02:00
sp = &tz->state;
if ((sp->goback && t < sp->ats[0]) ||
(sp->goahead && t > sp->ats[sp->timecnt - 1]))
{
pg_time_t newt = t;
pg_time_t seconds;
pg_time_t tcycles;
int64 icycles;
if (t < sp->ats[0])
seconds = sp->ats[0] - t;
else
seconds = t - sp->ats[sp->timecnt - 1];
--seconds;
tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
++tcycles;
icycles = tcycles;
if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
return NULL;
seconds = icycles;
seconds *= YEARSPERREPEAT;
seconds *= AVGSECSPERYEAR;
if (t < sp->ats[0])
newt += seconds;
else
newt -= seconds;
if (newt < sp->ats[0] ||
newt > sp->ats[sp->timecnt - 1])
return NULL; /* "cannot happen" */
result = localsub(&newt, offset, tmp, tz);
if (result == tmp)
{
pg_time_t newy;
newy = tmp->tm_year;
if (t < sp->ats[0])
newy -= icycles * YEARSPERREPEAT;
else
newy += icycles * YEARSPERREPEAT;
tmp->tm_year = newy;
if (tmp->tm_year != newy)
return NULL;
}
return result;
}
if (sp->timecnt == 0 || t < sp->ats[0])
{
2004-04-30 06:44:06 +02:00
i = 0;
while (sp->ttis[i].tt_isdst)
if (++i >= sp->typecnt)
{
2004-04-30 06:44:06 +02:00
i = 0;
break;
}
}
else
{
int lo = 1;
int hi = sp->timecnt;
while (lo < hi)
{
int mid = (lo + hi) >> 1;
if (t < sp->ats[mid])
hi = mid;
else
lo = mid + 1;
}
i = (int) sp->types[lo - 1];
2004-04-30 06:44:06 +02:00
}
ttisp = &sp->ttis[i];
result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
2004-04-30 06:44:06 +02:00
tmp->tm_isdst = ttisp->tt_isdst;
tmp->tm_zone = &sp->chars[ttisp->tt_abbrind];
return result;
2004-04-30 06:44:06 +02:00
}
struct pg_tm *
pg_localtime(const pg_time_t *timep, const pg_tz *tz)
2004-04-30 06:44:06 +02:00
{
return localsub(timep, 0L, &tm, tz);
2004-04-30 06:44:06 +02:00
}
/*
* gmtsub is to gmtime as localsub is to localtime.
*/
static struct pg_tm *
gmtsub(const pg_time_t *timep, long offset, struct pg_tm * tmp)
2004-04-30 06:44:06 +02:00
{
struct pg_tm *result;
if (!gmt_is_set)
{
2004-04-30 06:44:06 +02:00
gmt_is_set = TRUE;
gmtload(gmtptr);
2004-04-30 06:44:06 +02:00
}
result = timesub(timep, offset, gmtptr, tmp);
2004-04-30 06:44:06 +02:00
/*
2004-08-29 07:07:03 +02:00
* Could get fancy here and deliver something such as "UTC+xxxx" or
2005-10-15 04:49:52 +02:00
* "UTC-xxxx" if offset is non-zero, but this is no time for a treasure
* hunt.
*/
2004-04-30 06:44:06 +02:00
if (offset != 0)
tmp->tm_zone = wildabbr;
else
tmp->tm_zone = gmtptr->chars;
return result;
2004-04-30 06:44:06 +02:00
}
struct pg_tm *
pg_gmtime(const pg_time_t *timep)
2004-04-30 06:44:06 +02:00
{
return gmtsub(timep, 0L, &tm);
2004-04-30 06:44:06 +02:00
}
/*
* Return the number of leap years through the end of the given year
* where, to make the math easy, the answer for year zero is defined as zero.
*/
static int
leaps_thru_end_of(const int y)
{
return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
-(leaps_thru_end_of(-(y + 1)) + 1);
}
2004-04-30 06:44:06 +02:00
static struct pg_tm *
timesub(const pg_time_t *timep, long offset,
const struct state * sp, struct pg_tm * tmp)
2004-04-30 06:44:06 +02:00
{
const struct lsinfo *lp;
pg_time_t tdays;
int idays; /* unsigned would be so 2003 */
2005-10-15 04:49:52 +02:00
long rem;
int y;
const int *ip;
long corr;
int hit;
int i;
2004-04-30 06:44:06 +02:00
corr = 0;
hit = 0;
i = sp->leapcnt;
while (--i >= 0)
{
2004-04-30 06:44:06 +02:00
lp = &sp->lsis[i];
if (*timep >= lp->ls_trans)
{
if (*timep == lp->ls_trans)
{
2004-04-30 06:44:06 +02:00
hit = ((i == 0 && lp->ls_corr > 0) ||
lp->ls_corr > sp->lsis[i - 1].ls_corr);
2004-04-30 06:44:06 +02:00
if (hit)
while (i > 0 &&
sp->lsis[i].ls_trans ==
sp->lsis[i - 1].ls_trans + 1 &&
sp->lsis[i].ls_corr ==
sp->lsis[i - 1].ls_corr + 1)
{
++hit;
--i;
2004-04-30 06:44:06 +02:00
}
}
corr = lp->ls_corr;
break;
}
}
y = EPOCH_YEAR;
tdays = *timep / SECSPERDAY;
rem = *timep - tdays * SECSPERDAY;
while (tdays < 0 || tdays >= year_lengths[isleap(y)])
{
int newy;
pg_time_t tdelta;
int idelta;
int leapdays;
tdelta = tdays / DAYSPERLYEAR;
idelta = tdelta;
if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
return NULL;
if (idelta == 0)
idelta = (tdays < 0) ? -1 : 1;
newy = y;
if (increment_overflow(&newy, idelta))
return NULL;
leapdays = leaps_thru_end_of(newy - 1) -
leaps_thru_end_of(y - 1);
tdays -= ((pg_time_t) newy - y) * DAYSPERNYEAR;
tdays -= leapdays;
y = newy;
}
{
long seconds;
seconds = tdays * SECSPERDAY + 0.5;
tdays = seconds / SECSPERDAY;
rem += seconds - tdays * SECSPERDAY;
2004-04-30 06:44:06 +02:00
}
/*
* Given the range, we can now fearlessly cast...
*/
idays = tdays;
rem += offset - corr;
while (rem < 0)
{
2004-04-30 06:44:06 +02:00
rem += SECSPERDAY;
--idays;
2004-04-30 06:44:06 +02:00
}
while (rem >= SECSPERDAY)
{
2004-04-30 06:44:06 +02:00
rem -= SECSPERDAY;
++idays;
2004-04-30 06:44:06 +02:00
}
while (idays < 0)
{
if (increment_overflow(&y, -1))
return NULL;
idays += year_lengths[isleap(y)];
}
while (idays >= year_lengths[isleap(y)])
{
idays -= year_lengths[isleap(y)];
if (increment_overflow(&y, 1))
return NULL;
}
tmp->tm_year = y;
if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
return NULL;
tmp->tm_yday = idays;
2004-04-30 06:44:06 +02:00
/*
* The "extra" mods below avoid overflow problems.
*/
tmp->tm_wday = EPOCH_WDAY +
((y - EPOCH_YEAR) % DAYSPERWEEK) *
(DAYSPERNYEAR % DAYSPERWEEK) +
leaps_thru_end_of(y - 1) -
leaps_thru_end_of(EPOCH_YEAR - 1) +
idays;
tmp->tm_wday %= DAYSPERWEEK;
2004-04-30 06:44:06 +02:00
if (tmp->tm_wday < 0)
tmp->tm_wday += DAYSPERWEEK;
tmp->tm_hour = (int) (rem / SECSPERHOUR);
rem %= SECSPERHOUR;
tmp->tm_min = (int) (rem / SECSPERMIN);
2004-08-29 07:07:03 +02:00
/*
* A positive leap second requires a special representation. This uses
* "... ??:59:60" et seq.
*/
tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
ip = mon_lengths[isleap(y)];
for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
idays -= ip[tmp->tm_mon];
tmp->tm_mday = (int) (idays + 1);
2004-04-30 06:44:06 +02:00
tmp->tm_isdst = 0;
tmp->tm_gmtoff = offset;
return tmp;
}
/*
* Simplified normalize logic courtesy Paul Eggert.
*/
static int
increment_overflow(int *number, int delta)
{
int number0;
number0 = *number;
*number += delta;
return (*number < number0) != (delta < 0);
2004-04-30 06:44:06 +02:00
}
/*
Support timezone abbreviations that sometimes change. Up to now, PG has assumed that any given timezone abbreviation (such as "EDT") represents a constant GMT offset in the usage of any particular region; we had a way to configure what that offset was, but not for it to be changeable over time. But, as with most things horological, this view of the world is too simplistic: there are numerous regions that have at one time or another switched to a different GMT offset but kept using the same timezone abbreviation. Almost the entire Russian Federation did that a few years ago, and later this month they're going to do it again. And there are similar examples all over the world. To cope with this, invent the notion of a "dynamic timezone abbreviation", which is one that is referenced to a particular underlying timezone (as defined in the IANA timezone database) and means whatever it currently means in that zone. For zones that use or have used daylight-savings time, the standard and DST abbreviations continue to have the property that you can specify standard or DST time and get that time offset whether or not DST was theoretically in effect at the time. However, the abbreviations mean what they meant at the time in question (or most recently before that time) rather than being absolutely fixed. The standard abbreviation-list files have been changed to use this behavior for abbreviations that have actually varied in meaning since 1970. The old simple-numeric definitions are kept for abbreviations that have not changed, since they are a bit faster to resolve. While this is clearly a new feature, it seems necessary to back-patch it into all active branches, because otherwise use of Russian zone abbreviations is going to become even more problematic than it already was. This change supersedes the changes in commit 513d06ded et al to modify the fixed meanings of the Russian abbreviations; since we've not shipped that yet, this will avoid an undesirably incompatible (not to mention incorrect) change in behavior for timestamps between 2011 and 2014. This patch makes some cosmetic changes in ecpglib to keep its usage of datetime lookup tables as similar as possible to the backend code, but doesn't do anything about the increasingly obsolete set of timezone abbreviation definitions that are hard-wired into ecpglib. Whatever we do about that will likely not be appropriate material for back-patching. Also, a potential free() of a garbage pointer after an out-of-memory failure in ecpglib has been fixed. This patch also fixes pre-existing bugs in DetermineTimeZoneOffset() that caused it to produce unexpected results near a timezone transition, if both the "before" and "after" states are marked as standard time. We'd only ever thought about or tested transitions between standard and DST time, but that's not what's happening when a zone simply redefines their base GMT offset. In passing, update the SGML documentation to refer to the Olson/zoneinfo/ zic timezone database as the "IANA" database, since it's now being maintained under the auspices of IANA.
2014-10-16 21:22:10 +02:00
* Find the next DST transition time in the given zone after the given time
*
Support timezone abbreviations that sometimes change. Up to now, PG has assumed that any given timezone abbreviation (such as "EDT") represents a constant GMT offset in the usage of any particular region; we had a way to configure what that offset was, but not for it to be changeable over time. But, as with most things horological, this view of the world is too simplistic: there are numerous regions that have at one time or another switched to a different GMT offset but kept using the same timezone abbreviation. Almost the entire Russian Federation did that a few years ago, and later this month they're going to do it again. And there are similar examples all over the world. To cope with this, invent the notion of a "dynamic timezone abbreviation", which is one that is referenced to a particular underlying timezone (as defined in the IANA timezone database) and means whatever it currently means in that zone. For zones that use or have used daylight-savings time, the standard and DST abbreviations continue to have the property that you can specify standard or DST time and get that time offset whether or not DST was theoretically in effect at the time. However, the abbreviations mean what they meant at the time in question (or most recently before that time) rather than being absolutely fixed. The standard abbreviation-list files have been changed to use this behavior for abbreviations that have actually varied in meaning since 1970. The old simple-numeric definitions are kept for abbreviations that have not changed, since they are a bit faster to resolve. While this is clearly a new feature, it seems necessary to back-patch it into all active branches, because otherwise use of Russian zone abbreviations is going to become even more problematic than it already was. This change supersedes the changes in commit 513d06ded et al to modify the fixed meanings of the Russian abbreviations; since we've not shipped that yet, this will avoid an undesirably incompatible (not to mention incorrect) change in behavior for timestamps between 2011 and 2014. This patch makes some cosmetic changes in ecpglib to keep its usage of datetime lookup tables as similar as possible to the backend code, but doesn't do anything about the increasingly obsolete set of timezone abbreviation definitions that are hard-wired into ecpglib. Whatever we do about that will likely not be appropriate material for back-patching. Also, a potential free() of a garbage pointer after an out-of-memory failure in ecpglib has been fixed. This patch also fixes pre-existing bugs in DetermineTimeZoneOffset() that caused it to produce unexpected results near a timezone transition, if both the "before" and "after" states are marked as standard time. We'd only ever thought about or tested transitions between standard and DST time, but that's not what's happening when a zone simply redefines their base GMT offset. In passing, update the SGML documentation to refer to the Olson/zoneinfo/ zic timezone database as the "IANA" database, since it's now being maintained under the auspices of IANA.
2014-10-16 21:22:10 +02:00
* *timep and *tz are input arguments, the other parameters are output values.
*
* When the function result is 1, *boundary is set to the time_t
* representation of the next DST transition time after *timep,
* *before_gmtoff and *before_isdst are set to the GMT offset and isdst
* state prevailing just before that boundary (in particular, the state
* prevailing at *timep), and *after_gmtoff and *after_isdst are set to
* the state prevailing just after that boundary.
*
* When the function result is 0, there is no known DST transition
* after *timep, but *before_gmtoff and *before_isdst indicate the GMT
* offset and isdst state prevailing at *timep. (This would occur in
* DST-less time zones, or if a zone has permanently ceased using DST.)
*
* A function result of -1 indicates failure (this case does not actually
* occur in our current implementation).
*/
int
pg_next_dst_boundary(const pg_time_t *timep,
long int *before_gmtoff,
int *before_isdst,
pg_time_t *boundary,
long int *after_gmtoff,
int *after_isdst,
2005-10-15 04:49:52 +02:00
const pg_tz *tz)
{
const struct state *sp;
const struct ttinfo *ttisp;
2005-10-15 04:49:52 +02:00
int i;
int j;
const pg_time_t t = *timep;
sp = &tz->state;
if (sp->timecnt == 0)
{
/* non-DST zone, use lowest-numbered standard type */
i = 0;
while (sp->ttis[i].tt_isdst)
if (++i >= sp->typecnt)
{
i = 0;
break;
}
ttisp = &sp->ttis[i];
*before_gmtoff = ttisp->tt_gmtoff;
*before_isdst = ttisp->tt_isdst;
return 0;
}
if ((sp->goback && t < sp->ats[0]) ||
(sp->goahead && t > sp->ats[sp->timecnt - 1]))
{
/* For values outside the transition table, extrapolate */
pg_time_t newt = t;
pg_time_t seconds;
pg_time_t tcycles;
int64 icycles;
int result;
if (t < sp->ats[0])
seconds = sp->ats[0] - t;
else
seconds = t - sp->ats[sp->timecnt - 1];
--seconds;
tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
++tcycles;
icycles = tcycles;
if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
return -1;
seconds = icycles;
seconds *= YEARSPERREPEAT;
seconds *= AVGSECSPERYEAR;
if (t < sp->ats[0])
newt += seconds;
else
newt -= seconds;
if (newt < sp->ats[0] ||
newt > sp->ats[sp->timecnt - 1])
return -1; /* "cannot happen" */
result = pg_next_dst_boundary(&newt, before_gmtoff,
before_isdst,
boundary,
after_gmtoff,
after_isdst,
tz);
if (t < sp->ats[0])
*boundary -= seconds;
else
*boundary += seconds;
return result;
}
if (t >= sp->ats[sp->timecnt - 1])
{
/* No known transition > t, so use last known segment's type */
i = sp->types[sp->timecnt - 1];
ttisp = &sp->ttis[i];
*before_gmtoff = ttisp->tt_gmtoff;
*before_isdst = ttisp->tt_isdst;
return 0;
}
if (t < sp->ats[0])
{
/* For "before", use lowest-numbered standard type */
i = 0;
while (sp->ttis[i].tt_isdst)
if (++i >= sp->typecnt)
{
i = 0;
break;
}
ttisp = &sp->ttis[i];
*before_gmtoff = ttisp->tt_gmtoff;
*before_isdst = ttisp->tt_isdst;
*boundary = sp->ats[0];
/* And for "after", use the first segment's type */
i = sp->types[0];
ttisp = &sp->ttis[i];
*after_gmtoff = ttisp->tt_gmtoff;
*after_isdst = ttisp->tt_isdst;
return 1;
}
/* Else search to find the boundary following t */
{
int lo = 1;
int hi = sp->timecnt - 1;
while (lo < hi)
{
int mid = (lo + hi) >> 1;
if (t < sp->ats[mid])
hi = mid;
else
lo = mid + 1;
}
i = lo;
}
j = sp->types[i - 1];
ttisp = &sp->ttis[j];
*before_gmtoff = ttisp->tt_gmtoff;
*before_isdst = ttisp->tt_isdst;
*boundary = sp->ats[i];
j = sp->types[i];
ttisp = &sp->ttis[j];
*after_gmtoff = ttisp->tt_gmtoff;
*after_isdst = ttisp->tt_isdst;
return 1;
}
2004-04-30 06:44:06 +02:00
Support timezone abbreviations that sometimes change. Up to now, PG has assumed that any given timezone abbreviation (such as "EDT") represents a constant GMT offset in the usage of any particular region; we had a way to configure what that offset was, but not for it to be changeable over time. But, as with most things horological, this view of the world is too simplistic: there are numerous regions that have at one time or another switched to a different GMT offset but kept using the same timezone abbreviation. Almost the entire Russian Federation did that a few years ago, and later this month they're going to do it again. And there are similar examples all over the world. To cope with this, invent the notion of a "dynamic timezone abbreviation", which is one that is referenced to a particular underlying timezone (as defined in the IANA timezone database) and means whatever it currently means in that zone. For zones that use or have used daylight-savings time, the standard and DST abbreviations continue to have the property that you can specify standard or DST time and get that time offset whether or not DST was theoretically in effect at the time. However, the abbreviations mean what they meant at the time in question (or most recently before that time) rather than being absolutely fixed. The standard abbreviation-list files have been changed to use this behavior for abbreviations that have actually varied in meaning since 1970. The old simple-numeric definitions are kept for abbreviations that have not changed, since they are a bit faster to resolve. While this is clearly a new feature, it seems necessary to back-patch it into all active branches, because otherwise use of Russian zone abbreviations is going to become even more problematic than it already was. This change supersedes the changes in commit 513d06ded et al to modify the fixed meanings of the Russian abbreviations; since we've not shipped that yet, this will avoid an undesirably incompatible (not to mention incorrect) change in behavior for timestamps between 2011 and 2014. This patch makes some cosmetic changes in ecpglib to keep its usage of datetime lookup tables as similar as possible to the backend code, but doesn't do anything about the increasingly obsolete set of timezone abbreviation definitions that are hard-wired into ecpglib. Whatever we do about that will likely not be appropriate material for back-patching. Also, a potential free() of a garbage pointer after an out-of-memory failure in ecpglib has been fixed. This patch also fixes pre-existing bugs in DetermineTimeZoneOffset() that caused it to produce unexpected results near a timezone transition, if both the "before" and "after" states are marked as standard time. We'd only ever thought about or tested transitions between standard and DST time, but that's not what's happening when a zone simply redefines their base GMT offset. In passing, update the SGML documentation to refer to the Olson/zoneinfo/ zic timezone database as the "IANA" database, since it's now being maintained under the auspices of IANA.
2014-10-16 21:22:10 +02:00
/*
* Identify a timezone abbreviation's meaning in the given zone
*
* Determine the GMT offset and DST flag associated with the abbreviation.
* This is generally used only when the abbreviation has actually changed
* meaning over time; therefore, we also take a UTC cutoff time, and return
* the meaning in use at or most recently before that time, or the meaning
* in first use after that time if the abbrev was never used before that.
*
* On success, returns TRUE and sets *gmtoff and *isdst. If the abbreviation
* was never used at all in this zone, returns FALSE.
*
* Note: abbrev is matched case-sensitively; it should be all-upper-case.
*/
bool
pg_interpret_timezone_abbrev(const char *abbrev,
const pg_time_t *timep,
long int *gmtoff,
int *isdst,
const pg_tz *tz)
{
const struct state *sp;
const char *abbrs;
const struct ttinfo *ttisp;
int abbrind;
int cutoff;
int i;
const pg_time_t t = *timep;
sp = &tz->state;
/*
* Locate the abbreviation in the zone's abbreviation list. We assume
* there are not duplicates in the list.
*/
abbrs = sp->chars;
abbrind = 0;
while (abbrind < sp->charcnt)
{
if (strcmp(abbrev, abbrs + abbrind) == 0)
break;
while (abbrs[abbrind] != '\0')
abbrind++;
abbrind++;
}
if (abbrind >= sp->charcnt)
return FALSE; /* not there! */
/*
* Unlike pg_next_dst_boundary, we needn't sweat about extrapolation
* (goback/goahead zones). Finding the newest or oldest meaning of the
* abbreviation should get us what we want, since extrapolation would just
* be repeating the newest or oldest meanings.
*
* Use binary search to locate the first transition > cutoff time.
*/
{
int lo = 0;
int hi = sp->timecnt;
while (lo < hi)
{
int mid = (lo + hi) >> 1;
if (t < sp->ats[mid])
hi = mid;
else
lo = mid + 1;
}
cutoff = lo;
}
/*
* Scan backwards to find the latest interval using the given abbrev
* before the cutoff time.
*/
for (i = cutoff - 1; i >= 0; i--)
{
ttisp = &sp->ttis[sp->types[i]];
if (ttisp->tt_abbrind == abbrind)
{
*gmtoff = ttisp->tt_gmtoff;
*isdst = ttisp->tt_isdst;
return TRUE;
}
}
/*
* Not there, so scan forwards to find the first one after.
*/
for (i = cutoff; i < sp->timecnt; i++)
{
ttisp = &sp->ttis[sp->types[i]];
if (ttisp->tt_abbrind == abbrind)
{
*gmtoff = ttisp->tt_gmtoff;
*isdst = ttisp->tt_isdst;
return TRUE;
}
}
return FALSE; /* hm, not actually used in any interval? */
}
/*
* If the given timezone uses only one GMT offset, store that offset
* into *gmtoff and return TRUE, else return FALSE.
*/
bool
pg_get_timezone_offset(const pg_tz *tz, long int *gmtoff)
{
/*
* The zone could have more than one ttinfo, if it's historically used
* more than one abbreviation. We return TRUE as long as they all have
* the same gmtoff.
*/
const struct state *sp;
int i;
sp = &tz->state;
for (i = 1; i < sp->typecnt; i++)
{
if (sp->ttis[i].tt_gmtoff != sp->ttis[0].tt_gmtoff)
return false;
}
*gmtoff = sp->ttis[0].tt_gmtoff;
return true;
}
2004-04-30 06:44:06 +02:00
/*
* Return the name of the current timezone
*/
const char *
pg_get_timezone_name(pg_tz *tz)
{
if (tz)
return tz->TZname;
return NULL;
2004-04-30 06:44:06 +02:00
}
/*
* Check whether timezone is acceptable.
*
* What we are doing here is checking for leap-second-aware timekeeping.
* We need to reject such TZ settings because they'll wreak havoc with our
* date/time arithmetic.
*/
bool
pg_tz_acceptable(pg_tz *tz)
{
struct pg_tm *tt;
pg_time_t time2000;
/*
* To detect leap-second timekeeping, run pg_localtime for what should be
* GMT midnight, 2000-01-01. Insist that the tm_sec value be zero; any
* other result has to be due to leap seconds.
*/
time2000 = (POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY;
tt = pg_localtime(&time2000, tz);
if (!tt || tt->tm_sec != 0)
return false;
return true;
}