postgresql/src/include/catalog/pg_opfamily.h

59 lines
1.5 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* pg_opfamily.h
* definition of the system "opfamily" relation (pg_opfamily)
*
*
* Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
2010-09-20 22:08:53 +02:00
* src/include/catalog/pg_opfamily.h
*
* NOTES
Replace our traditional initial-catalog-data format with a better design. Historically, the initial catalog data to be installed during bootstrap has been written in DATA() lines in the catalog header files. This had lots of disadvantages: the format was badly underdocumented, it was very difficult to edit the data in any mechanized way, and due to the lack of any abstraction the data was verbose, hard to read/understand, and easy to get wrong. Hence, move this data into separate ".dat" files and represent it in a way that can easily be read and rewritten by Perl scripts. The new format is essentially "key => value" for each column; while it's a bit repetitive, explicit labeling of each value makes the data far more readable and less error-prone. Provide a way to abbreviate entries by omitting field values that match a specified default value for their column. This allows removal of a large amount of repetitive boilerplate and also lowers the barrier to adding new columns. Also teach genbki.pl how to translate symbolic OID references into numeric OIDs for more cases than just "regproc"-like pg_proc references. It can now do that for regprocedure-like references (thus solving the problem that regproc is ambiguous for overloaded functions), operators, types, opfamilies, opclasses, and access methods. Use this to turn nearly all OID cross-references in the initial data into symbolic form. This represents a very large step forward in readability and error resistance of the initial catalog data. It should also reduce the difficulty of renumbering OID assignments in uncommitted patches. Also, solve the longstanding problem that frontend code that would like to use OID macros and other information from the catalog headers often had difficulty with backend-only code in the headers. To do this, arrange for all generated macros, plus such other declarations as we deem fit, to be placed in "derived" header files that are safe for frontend inclusion. (Once clients migrate to using these pg_*_d.h headers, it will be possible to get rid of the pg_*_fn.h headers, which only exist to quarantine code away from clients. That is left for follow-on patches, however.) The now-automatically-generated macros include the Anum_xxx and Natts_xxx constants that we used to have to update by hand when adding or removing catalog columns. Replace the former manual method of generating OID macros for pg_type entries with an automatic method, ensuring that all built-in types have OID macros. (But note that this patch does not change the way that OID macros for pg_proc entries are built and used. It's not clear that making that match the other catalogs would be worth extra code churn.) Add SGML documentation explaining what the new data format is and how to work with it. Despite being a very large change in the catalog headers, there is no catversion bump here, because postgres.bki and related output files haven't changed at all. John Naylor, based on ideas from various people; review and minor additional coding by me; previous review by Alvaro Herrera Discussion: https://postgr.es/m/CAJVSVGWO48JbbwXkJz_yBFyGYW-M9YWxnPdxJBUosDC9ou_F0Q@mail.gmail.com
2018-04-08 19:16:50 +02:00
* The Catalog.pm module reads this file and derives schema
* information.
*
*-------------------------------------------------------------------------
*/
#ifndef PG_OPFAMILY_H
#define PG_OPFAMILY_H
#include "catalog/genbki.h"
Replace our traditional initial-catalog-data format with a better design. Historically, the initial catalog data to be installed during bootstrap has been written in DATA() lines in the catalog header files. This had lots of disadvantages: the format was badly underdocumented, it was very difficult to edit the data in any mechanized way, and due to the lack of any abstraction the data was verbose, hard to read/understand, and easy to get wrong. Hence, move this data into separate ".dat" files and represent it in a way that can easily be read and rewritten by Perl scripts. The new format is essentially "key => value" for each column; while it's a bit repetitive, explicit labeling of each value makes the data far more readable and less error-prone. Provide a way to abbreviate entries by omitting field values that match a specified default value for their column. This allows removal of a large amount of repetitive boilerplate and also lowers the barrier to adding new columns. Also teach genbki.pl how to translate symbolic OID references into numeric OIDs for more cases than just "regproc"-like pg_proc references. It can now do that for regprocedure-like references (thus solving the problem that regproc is ambiguous for overloaded functions), operators, types, opfamilies, opclasses, and access methods. Use this to turn nearly all OID cross-references in the initial data into symbolic form. This represents a very large step forward in readability and error resistance of the initial catalog data. It should also reduce the difficulty of renumbering OID assignments in uncommitted patches. Also, solve the longstanding problem that frontend code that would like to use OID macros and other information from the catalog headers often had difficulty with backend-only code in the headers. To do this, arrange for all generated macros, plus such other declarations as we deem fit, to be placed in "derived" header files that are safe for frontend inclusion. (Once clients migrate to using these pg_*_d.h headers, it will be possible to get rid of the pg_*_fn.h headers, which only exist to quarantine code away from clients. That is left for follow-on patches, however.) The now-automatically-generated macros include the Anum_xxx and Natts_xxx constants that we used to have to update by hand when adding or removing catalog columns. Replace the former manual method of generating OID macros for pg_type entries with an automatic method, ensuring that all built-in types have OID macros. (But note that this patch does not change the way that OID macros for pg_proc entries are built and used. It's not clear that making that match the other catalogs would be worth extra code churn.) Add SGML documentation explaining what the new data format is and how to work with it. Despite being a very large change in the catalog headers, there is no catversion bump here, because postgres.bki and related output files haven't changed at all. John Naylor, based on ideas from various people; review and minor additional coding by me; previous review by Alvaro Herrera Discussion: https://postgr.es/m/CAJVSVGWO48JbbwXkJz_yBFyGYW-M9YWxnPdxJBUosDC9ou_F0Q@mail.gmail.com
2018-04-08 19:16:50 +02:00
#include "catalog/pg_opfamily_d.h"
/* ----------------
* pg_opfamily definition. cpp turns this into
* typedef struct FormData_pg_opfamily
* ----------------
*/
Replace our traditional initial-catalog-data format with a better design. Historically, the initial catalog data to be installed during bootstrap has been written in DATA() lines in the catalog header files. This had lots of disadvantages: the format was badly underdocumented, it was very difficult to edit the data in any mechanized way, and due to the lack of any abstraction the data was verbose, hard to read/understand, and easy to get wrong. Hence, move this data into separate ".dat" files and represent it in a way that can easily be read and rewritten by Perl scripts. The new format is essentially "key => value" for each column; while it's a bit repetitive, explicit labeling of each value makes the data far more readable and less error-prone. Provide a way to abbreviate entries by omitting field values that match a specified default value for their column. This allows removal of a large amount of repetitive boilerplate and also lowers the barrier to adding new columns. Also teach genbki.pl how to translate symbolic OID references into numeric OIDs for more cases than just "regproc"-like pg_proc references. It can now do that for regprocedure-like references (thus solving the problem that regproc is ambiguous for overloaded functions), operators, types, opfamilies, opclasses, and access methods. Use this to turn nearly all OID cross-references in the initial data into symbolic form. This represents a very large step forward in readability and error resistance of the initial catalog data. It should also reduce the difficulty of renumbering OID assignments in uncommitted patches. Also, solve the longstanding problem that frontend code that would like to use OID macros and other information from the catalog headers often had difficulty with backend-only code in the headers. To do this, arrange for all generated macros, plus such other declarations as we deem fit, to be placed in "derived" header files that are safe for frontend inclusion. (Once clients migrate to using these pg_*_d.h headers, it will be possible to get rid of the pg_*_fn.h headers, which only exist to quarantine code away from clients. That is left for follow-on patches, however.) The now-automatically-generated macros include the Anum_xxx and Natts_xxx constants that we used to have to update by hand when adding or removing catalog columns. Replace the former manual method of generating OID macros for pg_type entries with an automatic method, ensuring that all built-in types have OID macros. (But note that this patch does not change the way that OID macros for pg_proc entries are built and used. It's not clear that making that match the other catalogs would be worth extra code churn.) Add SGML documentation explaining what the new data format is and how to work with it. Despite being a very large change in the catalog headers, there is no catversion bump here, because postgres.bki and related output files haven't changed at all. John Naylor, based on ideas from various people; review and minor additional coding by me; previous review by Alvaro Herrera Discussion: https://postgr.es/m/CAJVSVGWO48JbbwXkJz_yBFyGYW-M9YWxnPdxJBUosDC9ou_F0Q@mail.gmail.com
2018-04-08 19:16:50 +02:00
CATALOG(pg_opfamily,2753,OperatorFamilyRelationId)
{
Replace our traditional initial-catalog-data format with a better design. Historically, the initial catalog data to be installed during bootstrap has been written in DATA() lines in the catalog header files. This had lots of disadvantages: the format was badly underdocumented, it was very difficult to edit the data in any mechanized way, and due to the lack of any abstraction the data was verbose, hard to read/understand, and easy to get wrong. Hence, move this data into separate ".dat" files and represent it in a way that can easily be read and rewritten by Perl scripts. The new format is essentially "key => value" for each column; while it's a bit repetitive, explicit labeling of each value makes the data far more readable and less error-prone. Provide a way to abbreviate entries by omitting field values that match a specified default value for their column. This allows removal of a large amount of repetitive boilerplate and also lowers the barrier to adding new columns. Also teach genbki.pl how to translate symbolic OID references into numeric OIDs for more cases than just "regproc"-like pg_proc references. It can now do that for regprocedure-like references (thus solving the problem that regproc is ambiguous for overloaded functions), operators, types, opfamilies, opclasses, and access methods. Use this to turn nearly all OID cross-references in the initial data into symbolic form. This represents a very large step forward in readability and error resistance of the initial catalog data. It should also reduce the difficulty of renumbering OID assignments in uncommitted patches. Also, solve the longstanding problem that frontend code that would like to use OID macros and other information from the catalog headers often had difficulty with backend-only code in the headers. To do this, arrange for all generated macros, plus such other declarations as we deem fit, to be placed in "derived" header files that are safe for frontend inclusion. (Once clients migrate to using these pg_*_d.h headers, it will be possible to get rid of the pg_*_fn.h headers, which only exist to quarantine code away from clients. That is left for follow-on patches, however.) The now-automatically-generated macros include the Anum_xxx and Natts_xxx constants that we used to have to update by hand when adding or removing catalog columns. Replace the former manual method of generating OID macros for pg_type entries with an automatic method, ensuring that all built-in types have OID macros. (But note that this patch does not change the way that OID macros for pg_proc entries are built and used. It's not clear that making that match the other catalogs would be worth extra code churn.) Add SGML documentation explaining what the new data format is and how to work with it. Despite being a very large change in the catalog headers, there is no catversion bump here, because postgres.bki and related output files haven't changed at all. John Naylor, based on ideas from various people; review and minor additional coding by me; previous review by Alvaro Herrera Discussion: https://postgr.es/m/CAJVSVGWO48JbbwXkJz_yBFyGYW-M9YWxnPdxJBUosDC9ou_F0Q@mail.gmail.com
2018-04-08 19:16:50 +02:00
/* index access method opfamily is for */
Oid opfmethod BKI_LOOKUP(pg_am);
/* name of this opfamily */
NameData opfname;
/* namespace of this opfamily */
Oid opfnamespace BKI_DEFAULT(PGNSP);
/* opfamily owner */
Oid opfowner BKI_DEFAULT(PGUID);
} FormData_pg_opfamily;
/* ----------------
* Form_pg_opfamily corresponds to a pointer to a tuple with
* the format of pg_opfamily relation.
* ----------------
*/
typedef FormData_pg_opfamily *Form_pg_opfamily;
Replace our traditional initial-catalog-data format with a better design. Historically, the initial catalog data to be installed during bootstrap has been written in DATA() lines in the catalog header files. This had lots of disadvantages: the format was badly underdocumented, it was very difficult to edit the data in any mechanized way, and due to the lack of any abstraction the data was verbose, hard to read/understand, and easy to get wrong. Hence, move this data into separate ".dat" files and represent it in a way that can easily be read and rewritten by Perl scripts. The new format is essentially "key => value" for each column; while it's a bit repetitive, explicit labeling of each value makes the data far more readable and less error-prone. Provide a way to abbreviate entries by omitting field values that match a specified default value for their column. This allows removal of a large amount of repetitive boilerplate and also lowers the barrier to adding new columns. Also teach genbki.pl how to translate symbolic OID references into numeric OIDs for more cases than just "regproc"-like pg_proc references. It can now do that for regprocedure-like references (thus solving the problem that regproc is ambiguous for overloaded functions), operators, types, opfamilies, opclasses, and access methods. Use this to turn nearly all OID cross-references in the initial data into symbolic form. This represents a very large step forward in readability and error resistance of the initial catalog data. It should also reduce the difficulty of renumbering OID assignments in uncommitted patches. Also, solve the longstanding problem that frontend code that would like to use OID macros and other information from the catalog headers often had difficulty with backend-only code in the headers. To do this, arrange for all generated macros, plus such other declarations as we deem fit, to be placed in "derived" header files that are safe for frontend inclusion. (Once clients migrate to using these pg_*_d.h headers, it will be possible to get rid of the pg_*_fn.h headers, which only exist to quarantine code away from clients. That is left for follow-on patches, however.) The now-automatically-generated macros include the Anum_xxx and Natts_xxx constants that we used to have to update by hand when adding or removing catalog columns. Replace the former manual method of generating OID macros for pg_type entries with an automatic method, ensuring that all built-in types have OID macros. (But note that this patch does not change the way that OID macros for pg_proc entries are built and used. It's not clear that making that match the other catalogs would be worth extra code churn.) Add SGML documentation explaining what the new data format is and how to work with it. Despite being a very large change in the catalog headers, there is no catversion bump here, because postgres.bki and related output files haven't changed at all. John Naylor, based on ideas from various people; review and minor additional coding by me; previous review by Alvaro Herrera Discussion: https://postgr.es/m/CAJVSVGWO48JbbwXkJz_yBFyGYW-M9YWxnPdxJBUosDC9ou_F0Q@mail.gmail.com
2018-04-08 19:16:50 +02:00
#ifdef EXPOSE_TO_CLIENT_CODE
#define IsBooleanOpfamily(opfamily) \
((opfamily) == BOOL_BTREE_FAM_OID || (opfamily) == BOOL_HASH_FAM_OID)
Replace our traditional initial-catalog-data format with a better design. Historically, the initial catalog data to be installed during bootstrap has been written in DATA() lines in the catalog header files. This had lots of disadvantages: the format was badly underdocumented, it was very difficult to edit the data in any mechanized way, and due to the lack of any abstraction the data was verbose, hard to read/understand, and easy to get wrong. Hence, move this data into separate ".dat" files and represent it in a way that can easily be read and rewritten by Perl scripts. The new format is essentially "key => value" for each column; while it's a bit repetitive, explicit labeling of each value makes the data far more readable and less error-prone. Provide a way to abbreviate entries by omitting field values that match a specified default value for their column. This allows removal of a large amount of repetitive boilerplate and also lowers the barrier to adding new columns. Also teach genbki.pl how to translate symbolic OID references into numeric OIDs for more cases than just "regproc"-like pg_proc references. It can now do that for regprocedure-like references (thus solving the problem that regproc is ambiguous for overloaded functions), operators, types, opfamilies, opclasses, and access methods. Use this to turn nearly all OID cross-references in the initial data into symbolic form. This represents a very large step forward in readability and error resistance of the initial catalog data. It should also reduce the difficulty of renumbering OID assignments in uncommitted patches. Also, solve the longstanding problem that frontend code that would like to use OID macros and other information from the catalog headers often had difficulty with backend-only code in the headers. To do this, arrange for all generated macros, plus such other declarations as we deem fit, to be placed in "derived" header files that are safe for frontend inclusion. (Once clients migrate to using these pg_*_d.h headers, it will be possible to get rid of the pg_*_fn.h headers, which only exist to quarantine code away from clients. That is left for follow-on patches, however.) The now-automatically-generated macros include the Anum_xxx and Natts_xxx constants that we used to have to update by hand when adding or removing catalog columns. Replace the former manual method of generating OID macros for pg_type entries with an automatic method, ensuring that all built-in types have OID macros. (But note that this patch does not change the way that OID macros for pg_proc entries are built and used. It's not clear that making that match the other catalogs would be worth extra code churn.) Add SGML documentation explaining what the new data format is and how to work with it. Despite being a very large change in the catalog headers, there is no catversion bump here, because postgres.bki and related output files haven't changed at all. John Naylor, based on ideas from various people; review and minor additional coding by me; previous review by Alvaro Herrera Discussion: https://postgr.es/m/CAJVSVGWO48JbbwXkJz_yBFyGYW-M9YWxnPdxJBUosDC9ou_F0Q@mail.gmail.com
2018-04-08 19:16:50 +02:00
#endif /* EXPOSE_TO_CLIENT_CODE */
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
#endif /* PG_OPFAMILY_H */