postgresql/src/backend/access/gin/ginfast.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1066 lines
28 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* ginfast.c
* Fast insert routines for the Postgres inverted index access method.
* Pending entries are stored in linear list of pages. Later on
* (typically during VACUUM), ginInsertCleanup() will be invoked to
* transfer pending entries into the regular index structure. This
* wins because bulk insertion is much more efficient than retail.
*
* Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
2010-09-20 22:08:53 +02:00
* src/backend/access/gin/ginfast.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
#include "access/gin_private.h"
#include "access/ginxlog.h"
#include "access/xlog.h"
#include "access/xloginsert.h"
#include "catalog/pg_am.h"
#include "commands/vacuum.h"
#include "miscadmin.h"
#include "port/pg_bitutils.h"
#include "postmaster/autovacuum.h"
#include "storage/indexfsm.h"
#include "storage/lmgr.h"
Re-think predicate locking on GIN indexes. The principle behind the locking was not very well thought-out, and not documented. Add a section in the README to explain how it's supposed to work, and change the code so that it actually works that way. This fixes two bugs: 1. If fast update was turned on concurrently, subsequent inserts to the pending list would not conflict with predicate locks that were acquired earlier, on entry pages. The included 'predicate-gin-fastupdate' test demonstrates that. To fix, make all scans acquire a predicate lock on the metapage. That lock represents a scan of the pending list, whether or not there is a pending list at the moment. Forget about the optimization to skip locking/checking for locks, when fastupdate=off. 2. If a scan finds no match, it still needs to lock the entry page. The point of predicate locks is to lock the gabs between values, whether or not there is a match. The included 'predicate-gin-nomatch' test tests that case. In addition to those two bug fixes, this removes some unnecessary locking, following the principle laid out in the README. Because all items in a posting tree have the same key value, a lock on the posting tree root is enough to cover all the items. (With a very large posting tree, it would possibly be better to lock the posting tree leaf pages instead, so that a "skip scan" with a query like "A & B", you could avoid unnecessary conflict if a new tuple is inserted with A but !B. But let's keep this simple.) Also, some spelling fixes. Author: Heikki Linnakangas with some editorization by me Review: Andrey Borodin, Alexander Korotkov Discussion: https://www.postgresql.org/message-id/0b3ad2c2-2692-62a9-3a04-5724f2af9114@iki.fi
2018-05-04 10:27:50 +02:00
#include "storage/predicate.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/memutils.h"
#include "utils/rel.h"
/* GUC parameter */
int gin_pending_list_limit = 0;
#define GIN_PAGE_FREESIZE \
( BLCKSZ - MAXALIGN(SizeOfPageHeaderData) - MAXALIGN(sizeof(GinPageOpaqueData)) )
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
typedef struct KeyArray
{
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
Datum *keys; /* expansible array */
GinNullCategory *categories; /* another expansible array */
int32 nvalues; /* current number of valid entries */
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
int32 maxvalues; /* allocated size of arrays */
} KeyArray;
/*
* Build a pending-list page from the given array of tuples, and write it out.
*
* Returns amount of free space left on the page.
*/
static int32
writeListPage(Relation index, Buffer buffer,
IndexTuple *tuples, int32 ntuples, BlockNumber rightlink)
{
Page page = BufferGetPage(buffer);
int32 i,
freesize,
size = 0;
OffsetNumber l,
off;
PGAlignedBlock workspace;
char *ptr;
START_CRIT_SECTION();
GinInitBuffer(buffer, GIN_LIST);
off = FirstOffsetNumber;
ptr = workspace.data;
for (i = 0; i < ntuples; i++)
{
int this_size = IndexTupleSize(tuples[i]);
memcpy(ptr, tuples[i], this_size);
ptr += this_size;
size += this_size;
l = PageAddItem(page, (Item) tuples[i], this_size, off, false, false);
if (l == InvalidOffsetNumber)
elog(ERROR, "failed to add item to index page in \"%s\"",
RelationGetRelationName(index));
off++;
}
Assert(size <= BLCKSZ); /* else we overran workspace */
GinPageGetOpaque(page)->rightlink = rightlink;
/*
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
* tail page may contain only whole row(s) or final part of row placed on
* previous pages (a "row" here meaning all the index tuples generated for
* one heap tuple)
*/
if (rightlink == InvalidBlockNumber)
{
GinPageSetFullRow(page);
GinPageGetOpaque(page)->maxoff = 1;
}
else
{
GinPageGetOpaque(page)->maxoff = 0;
}
MarkBufferDirty(buffer);
if (RelationNeedsWAL(index))
{
ginxlogInsertListPage data;
XLogRecPtr recptr;
data.rightlink = rightlink;
data.ntuples = ntuples;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
XLogBeginInsert();
XLogRegisterData((char *) &data, sizeof(ginxlogInsertListPage));
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
XLogRegisterBuffer(0, buffer, REGBUF_WILL_INIT);
XLogRegisterBufData(0, workspace.data, size);
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
recptr = XLogInsert(RM_GIN_ID, XLOG_GIN_INSERT_LISTPAGE);
PageSetLSN(page, recptr);
}
/* get free space before releasing buffer */
freesize = PageGetExactFreeSpace(page);
UnlockReleaseBuffer(buffer);
END_CRIT_SECTION();
return freesize;
}
static void
makeSublist(Relation index, IndexTuple *tuples, int32 ntuples,
GinMetaPageData *res)
{
Buffer curBuffer = InvalidBuffer;
Buffer prevBuffer = InvalidBuffer;
int i,
size = 0,
tupsize;
int startTuple = 0;
Assert(ntuples > 0);
/*
* Split tuples into pages
*/
for (i = 0; i < ntuples; i++)
{
if (curBuffer == InvalidBuffer)
{
curBuffer = GinNewBuffer(index);
if (prevBuffer != InvalidBuffer)
{
res->nPendingPages++;
writeListPage(index, prevBuffer,
tuples + startTuple,
i - startTuple,
BufferGetBlockNumber(curBuffer));
}
else
{
res->head = BufferGetBlockNumber(curBuffer);
}
prevBuffer = curBuffer;
startTuple = i;
size = 0;
}
tupsize = MAXALIGN(IndexTupleSize(tuples[i])) + sizeof(ItemIdData);
if (size + tupsize > GinListPageSize)
{
/* won't fit, force a new page and reprocess */
i--;
curBuffer = InvalidBuffer;
}
else
{
size += tupsize;
}
}
/*
* Write last page
*/
res->tail = BufferGetBlockNumber(curBuffer);
res->tailFreeSize = writeListPage(index, curBuffer,
tuples + startTuple,
ntuples - startTuple,
InvalidBlockNumber);
res->nPendingPages++;
/* that was only one heap tuple */
res->nPendingHeapTuples = 1;
}
/*
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
* Write the index tuples contained in *collector into the index's
* pending list.
*
* Function guarantees that all these tuples will be inserted consecutively,
* preserving order
*/
void
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
ginHeapTupleFastInsert(GinState *ginstate, GinTupleCollector *collector)
{
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
Relation index = ginstate->index;
Buffer metabuffer;
Page metapage;
GinMetaPageData *metadata = NULL;
Buffer buffer = InvalidBuffer;
Page page = NULL;
ginxlogUpdateMeta data;
bool separateList = false;
bool needCleanup = false;
int cleanupSize;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
bool needWal;
if (collector->ntuples == 0)
return;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
needWal = RelationNeedsWAL(index);
Change internal RelFileNode references to RelFileNumber or RelFileLocator. We have been using the term RelFileNode to refer to either (1) the integer that is used to name the sequence of files for a certain relation within the directory set aside for that tablespace/database combination; or (2) that value plus the OIDs of the tablespace and database; or occasionally (3) the whole series of files created for a relation based on those values. Using the same name for more than one thing is confusing. Replace RelFileNode with RelFileNumber when we're talking about just the single number, i.e. (1) from above, and with RelFileLocator when we're talking about all the things that are needed to locate a relation's files on disk, i.e. (2) from above. In the places where we refer to (3) as a relfilenode, instead refer to "relation storage". Since there is a ton of SQL code in the world that knows about pg_class.relfilenode, don't change the name of that column, or of other SQL-facing things that derive their name from it. On the other hand, do adjust closely-related internal terminology. For example, the structure member names dbNode and spcNode appear to be derived from the fact that the structure itself was called RelFileNode, so change those to dbOid and spcOid. Likewise, various variables with names like rnode and relnode get renamed appropriately, according to how they're being used in context. Hopefully, this is clearer than before. It is also preparation for future patches that intend to widen the relfilenumber fields from its current width of 32 bits. Variables that store a relfilenumber are now declared as type RelFileNumber rather than type Oid; right now, these are the same, but that can now more easily be changed. Dilip Kumar, per an idea from me. Reviewed also by Andres Freund. I fixed some whitespace issues, changed a couple of words in a comment, and made one other minor correction. Discussion: http://postgr.es/m/CA+TgmoamOtXbVAQf9hWFzonUo6bhhjS6toZQd7HZ-pmojtAmag@mail.gmail.com Discussion: http://postgr.es/m/CA+Tgmobp7+7kmi4gkq7Y+4AM9fTvL+O1oQ4-5gFTT+6Ng-dQ=g@mail.gmail.com Discussion: http://postgr.es/m/CAFiTN-vTe79M8uDH1yprOU64MNFE+R3ODRuA+JWf27JbhY4hJw@mail.gmail.com
2022-07-06 17:39:09 +02:00
data.locator = index->rd_locator;
data.ntuples = 0;
data.newRightlink = data.prevTail = InvalidBlockNumber;
metabuffer = ReadBuffer(index, GIN_METAPAGE_BLKNO);
metapage = BufferGetPage(metabuffer);
Re-think predicate locking on GIN indexes. The principle behind the locking was not very well thought-out, and not documented. Add a section in the README to explain how it's supposed to work, and change the code so that it actually works that way. This fixes two bugs: 1. If fast update was turned on concurrently, subsequent inserts to the pending list would not conflict with predicate locks that were acquired earlier, on entry pages. The included 'predicate-gin-fastupdate' test demonstrates that. To fix, make all scans acquire a predicate lock on the metapage. That lock represents a scan of the pending list, whether or not there is a pending list at the moment. Forget about the optimization to skip locking/checking for locks, when fastupdate=off. 2. If a scan finds no match, it still needs to lock the entry page. The point of predicate locks is to lock the gabs between values, whether or not there is a match. The included 'predicate-gin-nomatch' test tests that case. In addition to those two bug fixes, this removes some unnecessary locking, following the principle laid out in the README. Because all items in a posting tree have the same key value, a lock on the posting tree root is enough to cover all the items. (With a very large posting tree, it would possibly be better to lock the posting tree leaf pages instead, so that a "skip scan" with a query like "A & B", you could avoid unnecessary conflict if a new tuple is inserted with A but !B. But let's keep this simple.) Also, some spelling fixes. Author: Heikki Linnakangas with some editorization by me Review: Andrey Borodin, Alexander Korotkov Discussion: https://www.postgresql.org/message-id/0b3ad2c2-2692-62a9-3a04-5724f2af9114@iki.fi
2018-05-04 10:27:50 +02:00
/*
* An insertion to the pending list could logically belong anywhere in the
* tree, so it conflicts with all serializable scans. All scans acquire a
* predicate lock on the metabuffer to represent that.
*/
CheckForSerializableConflictIn(index, NULL, GIN_METAPAGE_BLKNO);
Re-think predicate locking on GIN indexes. The principle behind the locking was not very well thought-out, and not documented. Add a section in the README to explain how it's supposed to work, and change the code so that it actually works that way. This fixes two bugs: 1. If fast update was turned on concurrently, subsequent inserts to the pending list would not conflict with predicate locks that were acquired earlier, on entry pages. The included 'predicate-gin-fastupdate' test demonstrates that. To fix, make all scans acquire a predicate lock on the metapage. That lock represents a scan of the pending list, whether or not there is a pending list at the moment. Forget about the optimization to skip locking/checking for locks, when fastupdate=off. 2. If a scan finds no match, it still needs to lock the entry page. The point of predicate locks is to lock the gabs between values, whether or not there is a match. The included 'predicate-gin-nomatch' test tests that case. In addition to those two bug fixes, this removes some unnecessary locking, following the principle laid out in the README. Because all items in a posting tree have the same key value, a lock on the posting tree root is enough to cover all the items. (With a very large posting tree, it would possibly be better to lock the posting tree leaf pages instead, so that a "skip scan" with a query like "A & B", you could avoid unnecessary conflict if a new tuple is inserted with A but !B. But let's keep this simple.) Also, some spelling fixes. Author: Heikki Linnakangas with some editorization by me Review: Andrey Borodin, Alexander Korotkov Discussion: https://www.postgresql.org/message-id/0b3ad2c2-2692-62a9-3a04-5724f2af9114@iki.fi
2018-05-04 10:27:50 +02:00
if (collector->sumsize + collector->ntuples * sizeof(ItemIdData) > GinListPageSize)
{
/*
* Total size is greater than one page => make sublist
*/
separateList = true;
}
else
{
LockBuffer(metabuffer, GIN_EXCLUSIVE);
metadata = GinPageGetMeta(metapage);
if (metadata->head == InvalidBlockNumber ||
collector->sumsize + collector->ntuples * sizeof(ItemIdData) > metadata->tailFreeSize)
{
/*
* Pending list is empty or total size is greater than freespace
* on tail page => make sublist
*
* We unlock metabuffer to keep high concurrency
*/
separateList = true;
LockBuffer(metabuffer, GIN_UNLOCK);
}
}
if (separateList)
{
/*
* We should make sublist separately and append it to the tail
*/
GinMetaPageData sublist;
memset(&sublist, 0, sizeof(GinMetaPageData));
makeSublist(index, collector->tuples, collector->ntuples, &sublist);
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
if (needWal)
XLogBeginInsert();
/*
* metapage was unlocked, see above
*/
LockBuffer(metabuffer, GIN_EXCLUSIVE);
metadata = GinPageGetMeta(metapage);
if (metadata->head == InvalidBlockNumber)
{
/*
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-13 04:05:08 +01:00
* Main list is empty, so just insert sublist as main list
*/
START_CRIT_SECTION();
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
metadata->head = sublist.head;
metadata->tail = sublist.tail;
metadata->tailFreeSize = sublist.tailFreeSize;
metadata->nPendingPages = sublist.nPendingPages;
metadata->nPendingHeapTuples = sublist.nPendingHeapTuples;
}
else
{
/*
* Merge lists
*/
data.prevTail = metadata->tail;
data.newRightlink = sublist.head;
buffer = ReadBuffer(index, metadata->tail);
LockBuffer(buffer, GIN_EXCLUSIVE);
page = BufferGetPage(buffer);
Assert(GinPageGetOpaque(page)->rightlink == InvalidBlockNumber);
START_CRIT_SECTION();
GinPageGetOpaque(page)->rightlink = sublist.head;
MarkBufferDirty(buffer);
metadata->tail = sublist.tail;
metadata->tailFreeSize = sublist.tailFreeSize;
metadata->nPendingPages += sublist.nPendingPages;
metadata->nPendingHeapTuples += sublist.nPendingHeapTuples;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
if (needWal)
XLogRegisterBuffer(1, buffer, REGBUF_STANDARD);
}
}
else
{
/*
* Insert into tail page. Metapage is already locked
*/
OffsetNumber l,
off;
int i,
tupsize;
char *ptr;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
char *collectordata;
buffer = ReadBuffer(index, metadata->tail);
LockBuffer(buffer, GIN_EXCLUSIVE);
page = BufferGetPage(buffer);
off = (PageIsEmpty(page)) ? FirstOffsetNumber :
OffsetNumberNext(PageGetMaxOffsetNumber(page));
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
collectordata = ptr = (char *) palloc(collector->sumsize);
data.ntuples = collector->ntuples;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
if (needWal)
XLogBeginInsert();
START_CRIT_SECTION();
/*
* Increase counter of heap tuples
*/
Assert(GinPageGetOpaque(page)->maxoff <= metadata->nPendingHeapTuples);
GinPageGetOpaque(page)->maxoff++;
metadata->nPendingHeapTuples++;
for (i = 0; i < collector->ntuples; i++)
{
tupsize = IndexTupleSize(collector->tuples[i]);
l = PageAddItem(page, (Item) collector->tuples[i], tupsize, off, false, false);
if (l == InvalidOffsetNumber)
elog(ERROR, "failed to add item to index page in \"%s\"",
RelationGetRelationName(index));
memcpy(ptr, collector->tuples[i], tupsize);
ptr += tupsize;
off++;
}
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
Assert((ptr - collectordata) <= collector->sumsize);
if (needWal)
{
XLogRegisterBuffer(1, buffer, REGBUF_STANDARD);
XLogRegisterBufData(1, collectordata, collector->sumsize);
}
metadata->tailFreeSize = PageGetExactFreeSpace(page);
MarkBufferDirty(buffer);
}
/*
* Set pd_lower just past the end of the metadata. This is essential,
* because without doing so, metadata will be lost if xlog.c compresses
* the page. (We must do this here because pre-v11 versions of PG did not
* set the metapage's pd_lower correctly, so a pg_upgraded index might
* contain the wrong value.)
*/
((PageHeader) metapage)->pd_lower =
((char *) metadata + sizeof(GinMetaPageData)) - (char *) metapage;
/*
* Write metabuffer, make xlog entry
*/
MarkBufferDirty(metabuffer);
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
if (needWal)
{
XLogRecPtr recptr;
memcpy(&data.metadata, metadata, sizeof(GinMetaPageData));
XLogRegisterBuffer(0, metabuffer, REGBUF_WILL_INIT | REGBUF_STANDARD);
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
XLogRegisterData((char *) &data, sizeof(ginxlogUpdateMeta));
recptr = XLogInsert(RM_GIN_ID, XLOG_GIN_UPDATE_META_PAGE);
PageSetLSN(metapage, recptr);
if (buffer != InvalidBuffer)
{
PageSetLSN(page, recptr);
}
}
if (buffer != InvalidBuffer)
UnlockReleaseBuffer(buffer);
/*
* Force pending list cleanup when it becomes too long. And,
* ginInsertCleanup could take significant amount of time, so we prefer to
* call it when it can do all the work in a single collection cycle. In
* non-vacuum mode, it shouldn't require maintenance_work_mem, so fire it
* while pending list is still small enough to fit into
* gin_pending_list_limit.
*
* ginInsertCleanup() should not be called inside our CRIT_SECTION.
*/
cleanupSize = GinGetPendingListCleanupSize(index);
if (metadata->nPendingPages * GIN_PAGE_FREESIZE > cleanupSize * 1024L)
needCleanup = true;
UnlockReleaseBuffer(metabuffer);
END_CRIT_SECTION();
/*
* Since it could contend with concurrent cleanup process we cleanup
* pending list not forcibly.
*/
if (needCleanup)
ginInsertCleanup(ginstate, false, true, false, NULL);
}
/*
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
* Create temporary index tuples for a single indexable item (one index column
* for the heap tuple specified by ht_ctid), and append them to the array
* in *collector. They will subsequently be written out using
* ginHeapTupleFastInsert. Note that to guarantee consistent state, all
* temp tuples for a given heap tuple must be written in one call to
* ginHeapTupleFastInsert.
*/
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
void
ginHeapTupleFastCollect(GinState *ginstate,
GinTupleCollector *collector,
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
OffsetNumber attnum, Datum value, bool isNull,
ItemPointer ht_ctid)
{
Datum *entries;
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
GinNullCategory *categories;
int32 i,
nentries;
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/*
* Extract the key values that need to be inserted in the index
*/
entries = ginExtractEntries(ginstate, attnum, value, isNull,
&nentries, &categories);
/*
* Protect against integer overflow in allocation calculations
*/
if (nentries < 0 ||
collector->ntuples + nentries > MaxAllocSize / sizeof(IndexTuple))
elog(ERROR, "too many entries for GIN index");
/*
* Allocate/reallocate memory for storing collected tuples
*/
if (collector->tuples == NULL)
{
/*
* Determine the number of elements to allocate in the tuples array
* initially. Make it a power of 2 to avoid wasting memory when
* resizing (since palloc likes powers of 2).
*/
collector->lentuples = pg_nextpower2_32(Max(16, nentries));
collector->tuples = palloc_array(IndexTuple, collector->lentuples);
}
else if (collector->lentuples < collector->ntuples + nentries)
{
/*
* Advance lentuples to the next suitable power of 2. This won't
* overflow, though we could get to a value that exceeds
* MaxAllocSize/sizeof(IndexTuple), causing an error in repalloc.
*/
collector->lentuples = pg_nextpower2_32(collector->ntuples + nentries);
collector->tuples = repalloc_array(collector->tuples,
IndexTuple, collector->lentuples);
}
/*
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
* Build an index tuple for each key value, and add to array. In pending
* tuples we just stick the heap TID into t_tid.
*/
for (i = 0; i < nentries; i++)
{
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
IndexTuple itup;
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
itup = GinFormTuple(ginstate, attnum, entries[i], categories[i],
NULL, 0, 0, true);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
itup->t_tid = *ht_ctid;
collector->tuples[collector->ntuples++] = itup;
collector->sumsize += IndexTupleSize(itup);
}
}
/*
* Deletes pending list pages up to (not including) newHead page.
* If newHead == InvalidBlockNumber then function drops the whole list.
*
* metapage is pinned and exclusive-locked throughout this function.
*/
static void
shiftList(Relation index, Buffer metabuffer, BlockNumber newHead,
bool fill_fsm, IndexBulkDeleteResult *stats)
{
Page metapage;
GinMetaPageData *metadata;
BlockNumber blknoToDelete;
metapage = BufferGetPage(metabuffer);
metadata = GinPageGetMeta(metapage);
blknoToDelete = metadata->head;
do
{
Page page;
int i;
int64 nDeletedHeapTuples = 0;
ginxlogDeleteListPages data;
Buffer buffers[GIN_NDELETE_AT_ONCE];
BlockNumber freespace[GIN_NDELETE_AT_ONCE];
data.ndeleted = 0;
while (data.ndeleted < GIN_NDELETE_AT_ONCE && blknoToDelete != newHead)
{
freespace[data.ndeleted] = blknoToDelete;
buffers[data.ndeleted] = ReadBuffer(index, blknoToDelete);
LockBuffer(buffers[data.ndeleted], GIN_EXCLUSIVE);
page = BufferGetPage(buffers[data.ndeleted]);
data.ndeleted++;
Assert(!GinPageIsDeleted(page));
nDeletedHeapTuples += GinPageGetOpaque(page)->maxoff;
blknoToDelete = GinPageGetOpaque(page)->rightlink;
}
if (stats)
stats->pages_deleted += data.ndeleted;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
/*
* This operation touches an unusually large number of pages, so
* prepare the XLogInsert machinery for that before entering the
* critical section.
*/
if (RelationNeedsWAL(index))
XLogEnsureRecordSpace(data.ndeleted, 0);
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
START_CRIT_SECTION();
metadata->head = blknoToDelete;
Assert(metadata->nPendingPages >= data.ndeleted);
metadata->nPendingPages -= data.ndeleted;
Assert(metadata->nPendingHeapTuples >= nDeletedHeapTuples);
metadata->nPendingHeapTuples -= nDeletedHeapTuples;
if (blknoToDelete == InvalidBlockNumber)
{
metadata->tail = InvalidBlockNumber;
metadata->tailFreeSize = 0;
metadata->nPendingPages = 0;
metadata->nPendingHeapTuples = 0;
}
/*
* Set pd_lower just past the end of the metadata. This is essential,
* because without doing so, metadata will be lost if xlog.c
* compresses the page. (We must do this here because pre-v11
* versions of PG did not set the metapage's pd_lower correctly, so a
* pg_upgraded index might contain the wrong value.)
*/
((PageHeader) metapage)->pd_lower =
((char *) metadata + sizeof(GinMetaPageData)) - (char *) metapage;
MarkBufferDirty(metabuffer);
for (i = 0; i < data.ndeleted; i++)
{
page = BufferGetPage(buffers[i]);
GinPageGetOpaque(page)->flags = GIN_DELETED;
MarkBufferDirty(buffers[i]);
}
if (RelationNeedsWAL(index))
{
XLogRecPtr recptr;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
XLogBeginInsert();
XLogRegisterBuffer(0, metabuffer,
REGBUF_WILL_INIT | REGBUF_STANDARD);
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
for (i = 0; i < data.ndeleted; i++)
XLogRegisterBuffer(i + 1, buffers[i], REGBUF_WILL_INIT);
memcpy(&data.metadata, metadata, sizeof(GinMetaPageData));
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
XLogRegisterData((char *) &data,
sizeof(ginxlogDeleteListPages));
recptr = XLogInsert(RM_GIN_ID, XLOG_GIN_DELETE_LISTPAGE);
PageSetLSN(metapage, recptr);
for (i = 0; i < data.ndeleted; i++)
{
page = BufferGetPage(buffers[i]);
PageSetLSN(page, recptr);
}
}
for (i = 0; i < data.ndeleted; i++)
UnlockReleaseBuffer(buffers[i]);
END_CRIT_SECTION();
for (i = 0; fill_fsm && i < data.ndeleted; i++)
RecordFreeIndexPage(index, freespace[i]);
} while (blknoToDelete != newHead);
}
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/* Initialize empty KeyArray */
static void
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
initKeyArray(KeyArray *keys, int32 maxvalues)
{
keys->keys = palloc_array(Datum, maxvalues);
keys->categories = palloc_array(GinNullCategory, maxvalues);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
keys->nvalues = 0;
keys->maxvalues = maxvalues;
}
/* Add datum to KeyArray, resizing if needed */
static void
addDatum(KeyArray *keys, Datum datum, GinNullCategory category)
{
if (keys->nvalues >= keys->maxvalues)
{
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
keys->maxvalues *= 2;
keys->keys = repalloc_array(keys->keys, Datum, keys->maxvalues);
keys->categories = repalloc_array(keys->categories, GinNullCategory, keys->maxvalues);
}
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
keys->keys[keys->nvalues] = datum;
keys->categories[keys->nvalues] = category;
keys->nvalues++;
}
/*
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
* Collect data from a pending-list page in preparation for insertion into
* the main index.
*
* Go through all tuples >= startoff on page and collect values in accum
*
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
* Note that ka is just workspace --- it does not carry any state across
* calls.
*/
static void
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
processPendingPage(BuildAccumulator *accum, KeyArray *ka,
Page page, OffsetNumber startoff)
{
ItemPointerData heapptr;
OffsetNumber i,
maxoff;
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
OffsetNumber attrnum;
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/* reset *ka to empty */
ka->nvalues = 0;
maxoff = PageGetMaxOffsetNumber(page);
Assert(maxoff >= FirstOffsetNumber);
ItemPointerSetInvalid(&heapptr);
attrnum = 0;
for (i = startoff; i <= maxoff; i = OffsetNumberNext(i))
{
IndexTuple itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, i));
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
OffsetNumber curattnum;
Datum curkey;
GinNullCategory curcategory;
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/* Check for change of heap TID or attnum */
curattnum = gintuple_get_attrnum(accum->ginstate, itup);
if (!ItemPointerIsValid(&heapptr))
{
heapptr = itup->t_tid;
attrnum = curattnum;
}
else if (!(ItemPointerEquals(&heapptr, &itup->t_tid) &&
curattnum == attrnum))
{
/*
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
* ginInsertBAEntries can insert several datums per call, but only
* for one heap tuple and one column. So call it at a boundary,
* and reset ka.
*/
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
ginInsertBAEntries(accum, &heapptr, attrnum,
ka->keys, ka->categories, ka->nvalues);
ka->nvalues = 0;
heapptr = itup->t_tid;
attrnum = curattnum;
}
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/* Add key to KeyArray */
curkey = gintuple_get_key(accum->ginstate, itup, &curcategory);
addDatum(ka, curkey, curcategory);
}
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
/* Dump out all remaining keys */
ginInsertBAEntries(accum, &heapptr, attrnum,
ka->keys, ka->categories, ka->nvalues);
}
/*
* Move tuples from pending pages into regular GIN structure.
*
* On first glance it looks completely not crash-safe. But if we crash
* after posting entries to the main index and before removing them from the
* pending list, it's okay because when we redo the posting later on, nothing
* bad will happen.
*
* fill_fsm indicates that ginInsertCleanup should add deleted pages
* to FSM otherwise caller is responsible to put deleted pages into
* FSM.
*
* If stats isn't null, we count deleted pending pages into the counts.
*/
void
ginInsertCleanup(GinState *ginstate, bool full_clean,
bool fill_fsm, bool forceCleanup,
IndexBulkDeleteResult *stats)
{
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
Relation index = ginstate->index;
Buffer metabuffer,
buffer;
Page metapage,
page;
GinMetaPageData *metadata;
MemoryContext opCtx,
oldCtx;
BuildAccumulator accum;
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
KeyArray datums;
BlockNumber blkno,
blknoFinish;
bool cleanupFinish = false;
bool fsm_vac = false;
Size workMemory;
/*
* We would like to prevent concurrent cleanup process. For that we will
* lock metapage in exclusive mode using LockPage() call. Nobody other
* will use that lock for metapage, so we keep possibility of concurrent
* insertion into pending list
*/
if (forceCleanup)
{
/*
* We are called from [auto]vacuum/analyze or gin_clean_pending_list()
* and we would like to wait concurrent cleanup to finish.
*/
LockPage(index, GIN_METAPAGE_BLKNO, ExclusiveLock);
workMemory =
(IsAutoVacuumWorkerProcess() && autovacuum_work_mem != -1) ?
autovacuum_work_mem : maintenance_work_mem;
}
else
{
/*
* We are called from regular insert and if we see concurrent cleanup
* just exit in hope that concurrent process will clean up pending
* list.
*/
if (!ConditionalLockPage(index, GIN_METAPAGE_BLKNO, ExclusiveLock))
return;
workMemory = work_mem;
}
metabuffer = ReadBuffer(index, GIN_METAPAGE_BLKNO);
LockBuffer(metabuffer, GIN_SHARE);
metapage = BufferGetPage(metabuffer);
metadata = GinPageGetMeta(metapage);
if (metadata->head == InvalidBlockNumber)
{
/* Nothing to do */
UnlockReleaseBuffer(metabuffer);
UnlockPage(index, GIN_METAPAGE_BLKNO, ExclusiveLock);
return;
}
/*
* Remember a tail page to prevent infinite cleanup if other backends add
* new tuples faster than we can cleanup.
*/
blknoFinish = metadata->tail;
/*
* Read and lock head of pending list
*/
blkno = metadata->head;
buffer = ReadBuffer(index, blkno);
LockBuffer(buffer, GIN_SHARE);
page = BufferGetPage(buffer);
LockBuffer(metabuffer, GIN_UNLOCK);
/*
* Initialize. All temporary space will be in opCtx
*/
opCtx = AllocSetContextCreate(CurrentMemoryContext,
"GIN insert cleanup temporary context",
Add macros to make AllocSetContextCreate() calls simpler and safer. I found that half a dozen (nearly 5%) of our AllocSetContextCreate calls had typos in the context-sizing parameters. While none of these led to especially significant problems, they did create minor inefficiencies, and it's now clear that expecting people to copy-and-paste those calls accurately is not a great idea. Let's reduce the risk of future errors by introducing single macros that encapsulate the common use-cases. Three such macros are enough to cover all but two special-purpose contexts; those two calls can be left as-is, I think. While this patch doesn't in itself improve matters for third-party extensions, it doesn't break anything for them either, and they can gradually adopt the simplified notation over time. In passing, change TopMemoryContext to use the default allocation parameters. Formerly it could only be extended 8K at a time. That was probably reasonable when this code was written; but nowadays we create many more contexts than we did then, so that it's not unusual to have a couple hundred K in TopMemoryContext, even without considering various dubious code that sticks other things there. There seems no good reason not to let it use growing blocks like most other contexts. Back-patch to 9.6, mostly because that's still close enough to HEAD that it's easy to do so, and keeping the branches in sync can be expected to avoid some future back-patching pain. The bugs fixed by these changes don't seem to be significant enough to justify fixing them further back. Discussion: <21072.1472321324@sss.pgh.pa.us>
2016-08-27 23:50:38 +02:00
ALLOCSET_DEFAULT_SIZES);
oldCtx = MemoryContextSwitchTo(opCtx);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
initKeyArray(&datums, 128);
ginInitBA(&accum);
accum.ginstate = ginstate;
/*
* At the top of this loop, we have pin and lock on the current page of
* the pending list. However, we'll release that before exiting the loop.
* Note we also have pin but not lock on the metapage.
*/
for (;;)
{
Assert(!GinPageIsDeleted(page));
/*
* Are we walk through the page which as we remember was a tail when
* we start our cleanup? But if caller asks us to clean up whole
* pending list then ignore old tail, we will work until list becomes
* empty.
*/
if (blkno == blknoFinish && full_clean == false)
cleanupFinish = true;
/*
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
* read page's datums into accum
*/
processPendingPage(&accum, &datums, page, FirstOffsetNumber);
vacuum_delay_point();
/*
* Is it time to flush memory to disk? Flush if we are at the end of
* the pending list, or if we have a full row and memory is getting
* full.
*/
if (GinPageGetOpaque(page)->rightlink == InvalidBlockNumber ||
(GinPageHasFullRow(page) &&
(accum.allocatedMemory >= workMemory * 1024L)))
{
ItemPointerData *list;
uint32 nlist;
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
Datum key;
GinNullCategory category;
OffsetNumber maxoff,
attnum;
/*
* Unlock current page to increase performance. Changes of page
* will be checked later by comparing maxoff after completion of
* memory flush.
*/
maxoff = PageGetMaxOffsetNumber(page);
LockBuffer(buffer, GIN_UNLOCK);
/*
* Moving collected data into regular structure can take
* significant amount of time - so, run it without locking pending
* list.
*/
ginBeginBAScan(&accum);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
while ((list = ginGetBAEntry(&accum,
&attnum, &key, &category, &nlist)) != NULL)
{
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
ginEntryInsert(ginstate, attnum, key, category,
list, nlist, NULL);
vacuum_delay_point();
}
/*
* Lock the whole list to remove pages
*/
LockBuffer(metabuffer, GIN_EXCLUSIVE);
LockBuffer(buffer, GIN_SHARE);
Assert(!GinPageIsDeleted(page));
/*
* While we left the page unlocked, more stuff might have gotten
* added to it. If so, process those entries immediately. There
* shouldn't be very many, so we don't worry about the fact that
* we're doing this with exclusive lock. Insertion algorithm
* guarantees that inserted row(s) will not continue on next page.
* NOTE: intentionally no vacuum_delay_point in this loop.
*/
if (PageGetMaxOffsetNumber(page) != maxoff)
{
ginInitBA(&accum);
processPendingPage(&accum, &datums, page, maxoff + 1);
ginBeginBAScan(&accum);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
while ((list = ginGetBAEntry(&accum,
&attnum, &key, &category, &nlist)) != NULL)
ginEntryInsert(ginstate, attnum, key, category,
list, nlist, NULL);
}
/*
* Remember next page - it will become the new list head
*/
blkno = GinPageGetOpaque(page)->rightlink;
UnlockReleaseBuffer(buffer); /* shiftList will do exclusive
* locking */
/*
* remove read pages from pending list, at this point all content
* of read pages is in regular structure
*/
shiftList(index, metabuffer, blkno, fill_fsm, stats);
/* At this point, some pending pages have been freed up */
fsm_vac = true;
Assert(blkno == metadata->head);
LockBuffer(metabuffer, GIN_UNLOCK);
/*
* if we removed the whole pending list or we cleanup tail (which
* we remembered on start our cleanup process) then just exit
*/
if (blkno == InvalidBlockNumber || cleanupFinish)
break;
/*
* release memory used so far and reinit state
*/
MemoryContextReset(opCtx);
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-08 01:16:24 +01:00
initKeyArray(&datums, datums.maxvalues);
ginInitBA(&accum);
}
else
{
blkno = GinPageGetOpaque(page)->rightlink;
UnlockReleaseBuffer(buffer);
}
/*
* Read next page in pending list
*/
vacuum_delay_point();
buffer = ReadBuffer(index, blkno);
LockBuffer(buffer, GIN_SHARE);
page = BufferGetPage(buffer);
}
UnlockPage(index, GIN_METAPAGE_BLKNO, ExclusiveLock);
ReleaseBuffer(metabuffer);
/*
* As pending list pages can have a high churn rate, it is desirable to
* recycle them immediately to the FreeSpaceMap when ordinary backends
* clean the list.
*/
if (fsm_vac && fill_fsm)
IndexFreeSpaceMapVacuum(index);
/* Clean up temporary space */
MemoryContextSwitchTo(oldCtx);
MemoryContextDelete(opCtx);
}
/*
* SQL-callable function to clean the insert pending list
*/
Datum
gin_clean_pending_list(PG_FUNCTION_ARGS)
{
Oid indexoid = PG_GETARG_OID(0);
Make queries' locking of indexes more consistent. The assertions added by commit b04aeb0a0 exposed that there are some code paths wherein the executor will try to open an index without holding any lock on it. We do have some lock on the index's table, so it seems likely that there's no fatal problem with this (for instance, the index couldn't get dropped from under us). Still, it's bad practice and we should fix it. To do so, remove the optimizations in ExecInitIndexScan and friends that tried to avoid taking a lock on an index belonging to a target relation, and just take the lock always. In non-bug cases, this will result in no additional shared-memory access, since we'll find in the local lock table that we already have a lock of the desired type; hence, no significant performance degradation should occur. Also, adjust the planner and executor so that the type of lock taken on an index is always identical to the type of lock taken for its table, by relying on the recently added RangeTblEntry.rellockmode field. This avoids some corner cases where that might not have been true before (possibly resulting in extra locking overhead), and prevents future maintenance issues from having multiple bits of logic that all needed to be in sync. In addition, this change removes all core calls to ExecRelationIsTargetRelation, which avoids a possible O(N^2) startup penalty for queries with large numbers of target relations. (We'd probably remove that function altogether, were it not that we advertise it as something that FDWs might want to use.) Also adjust some places in selfuncs.c to not take any lock on indexes they are transiently opening, since we can assume that plancat.c did that already. In passing, change gin_clean_pending_list() to take RowExclusiveLock not AccessShareLock on its target index. Although it's not clear that that's actually a bug, it seemed very strange for a function that's explicitly going to modify the index to use only AccessShareLock. David Rowley, reviewed by Julien Rouhaud and Amit Langote, a bit of further tweaking by me Discussion: https://postgr.es/m/19465.1541636036@sss.pgh.pa.us
2019-04-04 21:12:51 +02:00
Relation indexRel = index_open(indexoid, RowExclusiveLock);
IndexBulkDeleteResult stats;
GinState ginstate;
if (RecoveryInProgress())
2016-01-30 21:58:20 +01:00
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("recovery is in progress"),
errhint("GIN pending list cannot be cleaned up during recovery.")));
/* Must be a GIN index */
if (indexRel->rd_rel->relkind != RELKIND_INDEX ||
indexRel->rd_rel->relam != GIN_AM_OID)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a GIN index",
RelationGetRelationName(indexRel))));
/*
* Reject attempts to read non-local temporary relations; we would be
* likely to get wrong data since we have no visibility into the owning
* session's local buffers.
*/
if (RELATION_IS_OTHER_TEMP(indexRel))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot access temporary indexes of other sessions")));
/* User must own the index (comparable to privileges needed for VACUUM) */
if (!pg_class_ownercheck(indexoid, GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, OBJECT_INDEX,
RelationGetRelationName(indexRel));
memset(&stats, 0, sizeof(stats));
initGinState(&ginstate, indexRel);
ginInsertCleanup(&ginstate, true, true, true, &stats);
Make queries' locking of indexes more consistent. The assertions added by commit b04aeb0a0 exposed that there are some code paths wherein the executor will try to open an index without holding any lock on it. We do have some lock on the index's table, so it seems likely that there's no fatal problem with this (for instance, the index couldn't get dropped from under us). Still, it's bad practice and we should fix it. To do so, remove the optimizations in ExecInitIndexScan and friends that tried to avoid taking a lock on an index belonging to a target relation, and just take the lock always. In non-bug cases, this will result in no additional shared-memory access, since we'll find in the local lock table that we already have a lock of the desired type; hence, no significant performance degradation should occur. Also, adjust the planner and executor so that the type of lock taken on an index is always identical to the type of lock taken for its table, by relying on the recently added RangeTblEntry.rellockmode field. This avoids some corner cases where that might not have been true before (possibly resulting in extra locking overhead), and prevents future maintenance issues from having multiple bits of logic that all needed to be in sync. In addition, this change removes all core calls to ExecRelationIsTargetRelation, which avoids a possible O(N^2) startup penalty for queries with large numbers of target relations. (We'd probably remove that function altogether, were it not that we advertise it as something that FDWs might want to use.) Also adjust some places in selfuncs.c to not take any lock on indexes they are transiently opening, since we can assume that plancat.c did that already. In passing, change gin_clean_pending_list() to take RowExclusiveLock not AccessShareLock on its target index. Although it's not clear that that's actually a bug, it seemed very strange for a function that's explicitly going to modify the index to use only AccessShareLock. David Rowley, reviewed by Julien Rouhaud and Amit Langote, a bit of further tweaking by me Discussion: https://postgr.es/m/19465.1541636036@sss.pgh.pa.us
2019-04-04 21:12:51 +02:00
index_close(indexRel, RowExclusiveLock);
PG_RETURN_INT64((int64) stats.pages_deleted);
}