postgresql/src/common/unicode/generate-unicode_norm_table.pl

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

413 lines
11 KiB
Perl
Raw Normal View History

Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
#!/usr/bin/perl
#
# Generate a composition table and its lookup utilities, using Unicode data
# files as input.
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
#
# Input: UnicodeData.txt and CompositionExclusions.txt
# Output: unicode_norm_table.h and unicode_norm_hashfunc.h
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
#
# Copyright (c) 2000-2023, PostgreSQL Global Development Group
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
use strict;
use warnings;
use Getopt::Long;
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
use FindBin;
use lib "$FindBin::RealBin/../../tools/";
use PerfectHash;
my $output_path = '.';
GetOptions('outdir:s' => \$output_path);
my $output_table_file = "$output_path/unicode_norm_table.h";
my $output_func_file = "$output_path/unicode_norm_hashfunc.h";
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
my $FH;
# Read list of codes that should be excluded from re-composition.
my @composition_exclusion_codes = ();
open($FH, '<', "$output_path/CompositionExclusions.txt")
or die "Could not open $output_path/CompositionExclusions.txt: $!.";
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
while (my $line = <$FH>)
{
if ($line =~ /^([[:xdigit:]]+)/)
{
push @composition_exclusion_codes, $1;
}
}
close $FH;
# Read entries from UnicodeData.txt into a list, and a hash table. We need
# three fields from each row: the codepoint, canonical combining class,
# and character decomposition mapping
my @characters = ();
my %character_hash = ();
open($FH, '<', "$output_path/UnicodeData.txt")
or die "Could not open $output_path/UnicodeData.txt: $!.";
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
while (my $line = <$FH>)
{
2017-05-18 01:01:23 +02:00
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
# Split the line wanted and get the fields needed:
# - Unicode code value
# - Canonical Combining Class
# - Character Decomposition Mapping
my @elts = split(';', $line);
my $code = $elts[0];
my $class = $elts[3];
my $decomp = $elts[5];
# Skip codepoints above U+10FFFF. They cannot be represented in 4 bytes
# in UTF-8, and PostgreSQL doesn't support UTF-8 characters longer than
# 4 bytes. (This is just pro forma, as there aren't any such entries in
# the data file, currently.)
next if hex($code) > 0x10FFFF;
# Skip characters with no decompositions and a class of 0, to reduce the
# table size.
next if $class eq '0' && $decomp eq '';
my %char_entry = (code => $code, class => $class, decomp => $decomp);
push(@characters, \%char_entry);
$character_hash{$code} = \%char_entry;
}
close $FH;
my $num_characters = scalar @characters;
# Start writing out the output files
open my $OT, '>', $output_table_file
or die "Could not open output file $output_table_file: $!\n";
open my $OF, '>', $output_func_file
or die "Could not open output file $output_func_file: $!\n";
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
print $OT <<HEADER;
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
/*-------------------------------------------------------------------------
*
* unicode_norm_table.h
* Composition table used for Unicode normalization
*
* Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
* Portions Copyright (c) 1994, Regents of the University of California
*
* src/include/common/unicode_norm_table.h
*
*-------------------------------------------------------------------------
*/
/*
* File auto-generated by src/common/unicode/generate-unicode_norm_table.pl,
* do not edit. There is deliberately not an #ifndef PG_UNICODE_NORM_TABLE_H
* here.
*/
typedef struct
{
uint32 codepoint; /* Unicode codepoint */
uint8 comb_class; /* combining class of character */
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
uint8 dec_size_flags; /* size and flags of decomposition code list */
uint16 dec_index; /* index into UnicodeDecomp_codepoints, or the
* decomposition itself if DECOMP_INLINE */
} pg_unicode_decomposition;
#define DECOMP_NO_COMPOSE 0x80 /* don't use for re-composition */
#define DECOMP_INLINE 0x40 /* decomposition is stored inline in
* dec_index */
#define DECOMP_COMPAT 0x20 /* compatibility mapping */
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
#define DECOMPOSITION_SIZE(x) ((x)->dec_size_flags & 0x1F)
#define DECOMPOSITION_NO_COMPOSE(x) (((x)->dec_size_flags & (DECOMP_NO_COMPOSE | DECOMP_COMPAT)) != 0)
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
#define DECOMPOSITION_IS_INLINE(x) (((x)->dec_size_flags & DECOMP_INLINE) != 0)
#define DECOMPOSITION_IS_COMPAT(x) (((x)->dec_size_flags & DECOMP_COMPAT) != 0)
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
/* Table of Unicode codepoints and their decompositions */
static const pg_unicode_decomposition UnicodeDecompMain[$num_characters] =
{
HEADER
print $OF <<HEADER;
/*-------------------------------------------------------------------------
*
* unicode_norm_hashfunc.h
* Perfect hash functions used for Unicode normalization
*
* Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* src/include/common/unicode_norm_hashfunc.h
*
*-------------------------------------------------------------------------
*/
/*
* File auto-generated by src/common/unicode/generate-unicode_norm_table.pl,
* do not edit. There is deliberately not an #ifndef PG_UNICODE_NORM_HASHFUNC_H
* here.
*/
#include "common/unicode_norm_table.h"
/* Typedef for perfect hash functions */
typedef int (*cp_hash_func) (const void *key);
/* Information for lookups with perfect hash functions */
typedef struct
{
const pg_unicode_decomposition *decomps;
cp_hash_func hash;
int num_decomps;
} pg_unicode_decompinfo;
typedef struct
{
const uint16 *inverse_lookup;
cp_hash_func hash;
int num_recomps;
} pg_unicode_recompinfo;
HEADER
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
my $decomp_index = 0;
my $decomp_string = "";
my @dec_cp_packed;
my $main_index = 0;
my @rec_info;
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
my $last_code = $characters[-1]->{code};
foreach my $char (@characters)
{
my $code = $char->{code};
my $class = $char->{class};
my $decomp = $char->{decomp};
# Save the code point bytes as a string in network order.
push @dec_cp_packed, pack('N', hex($char->{code}));
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
# The character decomposition mapping field in UnicodeData.txt is a list
# of unicode codepoints, separated by space. But it can be prefixed with
# so-called compatibility formatting tag, like "<compat>", or "<font>".
# The entries with compatibility formatting tags should not be used for
# re-composing characters during normalization, so flag them in the table.
# (The tag doesn't matter, only whether there is a tag or not)
my $compat = 0;
if ($decomp =~ /\<.*\>/)
{
$compat = 1;
$decomp =~ s/\<[^][]*\>//g;
}
my @decomp_elts = split(" ", $decomp);
# Decomposition size
# Print size of decomposition
my $decomp_size = scalar(@decomp_elts);
die if $decomp_size > 0x1F; # to not overrun bitmask
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
my $first_decomp = shift @decomp_elts;
my $flags = "";
my $comment = "";
if ($compat)
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
{
$flags .= " | DECOMP_COMPAT";
}
2017-05-18 01:01:23 +02:00
if ($decomp_size == 2)
{
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
# Should this be used for recomposition?
if ( $character_hash{$first_decomp}
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
&& $character_hash{$first_decomp}->{class} != 0)
{
$flags .= " | DECOMP_NO_COMPOSE";
$comment = "non-starter decomposition";
}
else
{
foreach my $lcode (@composition_exclusion_codes)
{
if ($lcode eq $code)
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
{
$flags .= " | DECOMP_NO_COMPOSE";
$comment = "in exclusion list";
last;
}
}
}
# Save info for recomposeable codepoints.
# Note that this MUST match the macro DECOMPOSITION_NO_COMPOSE in C
# above! See also the inverse lookup in recompose_code() found in
# src/common/unicode_norm.c.
if (!($flags =~ /DECOMP_COMPAT/ || $flags =~ /DECOMP_NO_COMPOSE/))
{
push @rec_info,
{
code => $code,
main_index => $main_index,
first => $first_decomp,
second => $decomp_elts[0]
};
}
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
}
if ($decomp_size == 0)
{
print $OT "\t{0x$code, $class, 0$flags, 0}";
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
}
elsif ($decomp_size == 1 && length($first_decomp) <= 4)
{
2017-05-18 01:01:23 +02:00
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
# The decomposition consists of a single codepoint, and it fits
# in a uint16, so we can store it "inline" in the main table.
$flags .= " | DECOMP_INLINE";
print $OT "\t{0x$code, $class, 1$flags, 0x$first_decomp}";
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
}
else
{
print $OT "\t{0x$code, $class, $decomp_size$flags, $decomp_index}";
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
# Now save the decompositions into a dedicated area that will
# be written afterwards. First build the entry dedicated to
# a sub-table with the code and decomposition.
$decomp_string .= ",\n" if ($decomp_string ne "");
$decomp_string .= "\t /* $decomp_index */ 0x$first_decomp";
foreach (@decomp_elts)
{
$decomp_string .= ", 0x$_";
}
$decomp_index = $decomp_index + $decomp_size;
}
# Print a comma after all items except the last one.
print $OT "," unless ($code eq $last_code);
2017-05-18 01:01:23 +02:00
print $OT "\t/* $comment */" if ($comment ne "");
print $OT "\n";
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
$main_index++;
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
}
print $OT "\n};\n\n";
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
# Print the array of decomposed codes.
print $OT <<HEADER;
Use SASLprep to normalize passwords for SCRAM authentication. An important step of SASLprep normalization, is to convert the string to Unicode normalization form NFKC. Unicode normalization requires a fairly large table of character decompositions, which is generated from data published by the Unicode consortium. The script to generate the table is put in src/common/unicode, as well test code for the normalization. A pre-generated version of the tables is included in src/include/common, so you don't need the code in src/common/unicode to build PostgreSQL, only if you wish to modify the normalization tables. The SASLprep implementation depends on the UTF-8 functions from src/backend/utils/mb/wchar.c. So to use it, you must also compile and link that. That doesn't change anything for the current users of these functions, the backend and libpq, as they both already link with wchar.o. It would be good to move those functions into a separate file in src/commmon, but I'll leave that for another day. No documentation changes included, because there is no details on the SCRAM mechanism in the docs anyway. An overview on that in the protocol specification would probably be good, even though SCRAM is documented in detail in RFC5802. I'll write that as a separate patch. An important thing to mention there is that we apply SASLprep even on invalid UTF-8 strings, to support other encodings. Patch by Michael Paquier and me. Discussion: https://www.postgresql.org/message-id/CAB7nPqSByyEmAVLtEf1KxTRh=PWNKiWKEKQR=e1yGehz=wbymQ@mail.gmail.com
2017-04-07 13:56:05 +02:00
/* codepoints array */
static const uint32 UnicodeDecomp_codepoints[$decomp_index] =
{
$decomp_string
};
HEADER
# Emit the definition of the decomp hash function.
my $dec_funcname = 'Decomp_hash_func';
my $dec_func = PerfectHash::generate_hash_function(\@dec_cp_packed,
$dec_funcname, fixed_key_length => 4);
print $OF "/* Perfect hash function for decomposition */\n";
print $OF "static $dec_func\n";
# Emit the structure that wraps the hash lookup information into
# one variable.
print $OF <<HEADER;
/* Hash lookup information for decomposition */
static const pg_unicode_decompinfo UnicodeDecompInfo =
{
UnicodeDecompMain,
$dec_funcname,
$num_characters
};
HEADER
# Find the lowest codepoint that decomposes to each recomposeable
# code pair and create a mapping to it.
my $recomp_string = "";
my @rec_cp_packed;
my %seenit;
my $firstentry = 1;
foreach my $rec (sort recomp_sort @rec_info)
{
# The hash key is formed by concatenating the bytes of the two
# codepoints. See also recompose_code() in common/unicode_norm.c.
my $hashkey = (hex($rec->{first}) << 32) | hex($rec->{second});
# We are only interested in the lowest code point that decomposes
# to the given code pair.
next if $seenit{$hashkey};
# Save the hash key bytes in network order
push @rec_cp_packed, pack('Q>', $hashkey);
# Append inverse lookup element
$recomp_string .= ",\n" if !$firstentry;
$recomp_string .= sprintf "\t/* U+%s+%s -> U+%s */ %s",
$rec->{first},
$rec->{second},
$rec->{code},
$rec->{main_index};
$seenit{$hashkey} = 1;
$firstentry = 0;
}
# Emit the inverse lookup array containing indexes into UnicodeDecompMain.
my $num_recomps = scalar @rec_cp_packed;
print $OF <<HEADER;
/* Inverse lookup array -- contains indexes into UnicodeDecompMain[] */
static const uint16 RecompInverseLookup[$num_recomps] =
{
$recomp_string
};
HEADER
# Emit the definition of the recomposition hash function.
my $rec_funcname = 'Recomp_hash_func';
my $rec_func =
PerfectHash::generate_hash_function(\@rec_cp_packed, $rec_funcname,
fixed_key_length => 8);
print $OF "/* Perfect hash function for recomposition */\n";
print $OF "static $rec_func\n";
# Emit the structure that wraps the hash lookup information into
# one variable.
print $OF <<HEADER;
/* Hash lookup information for recomposition */
static const pg_unicode_recompinfo UnicodeRecompInfo =
{
RecompInverseLookup,
$rec_funcname,
$num_recomps
};
HEADER
close $OT;
close $OF;
sub recomp_sort
{
my $a1 = hex($a->{first});
my $b1 = hex($b->{first});
my $a2 = hex($a->{second});
my $b2 = hex($b->{second});
# First sort by the first code point
return -1 if $a1 < $b1;
return 1 if $a1 > $b1;
# Then sort by the second code point
return -1 if $a2 < $b2;
return 1 if $a2 > $b2;
# Finally sort by the code point that decomposes into first and
# second ones.
my $acode = hex($a->{code});
my $bcode = hex($b->{code});
return -1 if $acode < $bcode;
return 1 if $acode > $bcode;
die "found duplicate entries of recomposeable code pairs";
}