postgresql/src/backend/access/heap/rewriteheap.c

662 lines
21 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* rewriteheap.c
* Support functions to rewrite tables.
*
* These functions provide a facility to completely rewrite a heap, while
* preserving visibility information and update chains.
*
* INTERFACE
*
* The caller is responsible for creating the new heap, all catalog
* changes, supplying the tuples to be written to the new heap, and
2007-11-15 22:14:46 +01:00
* rebuilding indexes. The caller must hold AccessExclusiveLock on the
* target table, because we assume no one else is writing into it.
*
* To use the facility:
*
* begin_heap_rewrite
* while (fetch next tuple)
* {
2007-11-15 22:14:46 +01:00
* if (tuple is dead)
* rewrite_heap_dead_tuple
* else
* {
* // do any transformations here if required
* rewrite_heap_tuple
* }
* }
* end_heap_rewrite
*
* The contents of the new relation shouldn't be relied on until after
* end_heap_rewrite is called.
*
*
* IMPLEMENTATION
*
* This would be a fairly trivial affair, except that we need to maintain
* the ctid chains that link versions of an updated tuple together.
* Since the newly stored tuples will have tids different from the original
* ones, if we just copied t_ctid fields to the new table the links would
* be wrong. When we are required to copy a (presumably recently-dead or
* delete-in-progress) tuple whose ctid doesn't point to itself, we have
* to substitute the correct ctid instead.
*
* For each ctid reference from A -> B, we might encounter either A first
2007-11-15 22:14:46 +01:00
* or B first. (Note that a tuple in the middle of a chain is both A and B
* of different pairs.)
*
* If we encounter A first, we'll store the tuple in the unresolved_tups
* hash table. When we later encounter B, we remove A from the hash table,
* fix the ctid to point to the new location of B, and insert both A and B
* to the new heap.
*
* If we encounter B first, we can insert B to the new heap right away.
* We then add an entry to the old_new_tid_map hash table showing B's
* original tid (in the old heap) and new tid (in the new heap).
* When we later encounter A, we get the new location of B from the table,
* and can write A immediately with the correct ctid.
*
* Entries in the hash tables can be removed as soon as the later tuple
2007-11-15 22:14:46 +01:00
* is encountered. That helps to keep the memory usage down. At the end,
* both tables are usually empty; we should have encountered both A and B
* of each pair. However, it's possible for A to be RECENTLY_DEAD and B
* entirely DEAD according to HeapTupleSatisfiesVacuum, because the test
2007-11-15 22:14:46 +01:00
* for deadness using OldestXmin is not exact. In such a case we might
* encounter B first, and skip it, and find A later. Then A would be added
* to unresolved_tups, and stay there until end of the rewrite. Since
* this case is very unusual, we don't worry about the memory usage.
*
* Using in-memory hash tables means that we use some memory for each live
* update chain in the table, from the time we find one end of the
* reference until we find the other end. That shouldn't be a problem in
* practice, but if you do something like an UPDATE without a where-clause
* on a large table, and then run CLUSTER in the same transaction, you
* could run out of memory. It doesn't seem worthwhile to add support for
* spill-to-disk, as there shouldn't be that many RECENTLY_DEAD tuples in a
* table under normal circumstances. Furthermore, in the typical scenario
* of CLUSTERing on an unchanging key column, we'll see all the versions
* of a given tuple together anyway, and so the peak memory usage is only
* proportional to the number of RECENTLY_DEAD versions of a single row, not
2007-11-15 22:14:46 +01:00
* in the whole table. Note that if we do fail halfway through a CLUSTER,
* the old table is still valid, so failure is not catastrophic.
*
* We can't use the normal heap_insert function to insert into the new
* heap, because heap_insert overwrites the visibility information.
* We use a special-purpose raw_heap_insert function instead, which
* is optimized for bulk inserting a lot of tuples, knowing that we have
* exclusive access to the heap. raw_heap_insert builds new pages in
* local storage. When a page is full, or at the end of the process,
* we insert it to WAL as a single record and then write it to disk
* directly through smgr. Note, however, that any data sent to the new
* heap's TOAST table will go through the normal bufmgr.
*
*
* Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
* Portions Copyright (c) 1994-5, Regents of the University of California
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/access/heap/rewriteheap.c,v 1.14 2008/06/19 00:46:03 alvherre Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/heapam.h"
#include "access/rewriteheap.h"
#include "access/transam.h"
#include "access/tuptoaster.h"
#include "storage/bufmgr.h"
#include "storage/smgr.h"
#include "utils/memutils.h"
#include "utils/rel.h"
/*
* State associated with a rewrite operation. This is opaque to the user
* of the rewrite facility.
*/
typedef struct RewriteStateData
{
2007-11-15 22:14:46 +01:00
Relation rs_new_rel; /* destination heap */
Page rs_buffer; /* page currently being built */
BlockNumber rs_blockno; /* block where page will go */
bool rs_buffer_valid; /* T if any tuples in buffer */
bool rs_use_wal; /* must we WAL-log inserts? */
TransactionId rs_oldest_xmin; /* oldest xmin used by caller to
* determine tuple visibility */
2007-11-15 22:14:46 +01:00
TransactionId rs_freeze_xid;/* Xid that will be used as freeze cutoff
* point */
MemoryContext rs_cxt; /* for hash tables and entries and tuples in
* them */
HTAB *rs_unresolved_tups; /* unmatched A tuples */
HTAB *rs_old_new_tid_map; /* unmatched B tuples */
} RewriteStateData;
/*
* The lookup keys for the hash tables are tuple TID and xmin (we must check
* both to avoid false matches from dead tuples). Beware that there is
* probably some padding space in this struct; it must be zeroed out for
* correct hashtable operation.
*/
typedef struct
{
2007-11-15 22:14:46 +01:00
TransactionId xmin; /* tuple xmin */
ItemPointerData tid; /* tuple location in old heap */
} TidHashKey;
/*
* Entry structures for the hash tables
*/
typedef struct
{
2007-11-15 22:14:46 +01:00
TidHashKey key; /* expected xmin/old location of B tuple */
ItemPointerData old_tid; /* A's location in the old heap */
2007-11-15 22:14:46 +01:00
HeapTuple tuple; /* A's tuple contents */
} UnresolvedTupData;
typedef UnresolvedTupData *UnresolvedTup;
typedef struct
{
2007-11-15 22:14:46 +01:00
TidHashKey key; /* actual xmin/old location of B tuple */
ItemPointerData new_tid; /* where we put it in the new heap */
} OldToNewMappingData;
typedef OldToNewMappingData *OldToNewMapping;
/* prototypes for internal functions */
static void raw_heap_insert(RewriteState state, HeapTuple tup);
/*
* Begin a rewrite of a table
*
* new_heap new, locked heap relation to insert tuples to
* oldest_xmin xid used by the caller to determine which tuples are dead
* freeze_xid xid before which tuples will be frozen
* use_wal should the inserts to the new heap be WAL-logged?
*
* Returns an opaque RewriteState, allocated in current memory context,
* to be used in subsequent calls to the other functions.
*/
RewriteState
begin_heap_rewrite(Relation new_heap, TransactionId oldest_xmin,
TransactionId freeze_xid, bool use_wal)
{
RewriteState state;
MemoryContext rw_cxt;
MemoryContext old_cxt;
HASHCTL hash_ctl;
/*
2007-11-15 22:14:46 +01:00
* To ease cleanup, make a separate context that will contain the
* RewriteState struct itself plus all subsidiary data.
*/
rw_cxt = AllocSetContextCreate(CurrentMemoryContext,
"Table rewrite",
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
old_cxt = MemoryContextSwitchTo(rw_cxt);
/* Create and fill in the state struct */
state = palloc0(sizeof(RewriteStateData));
state->rs_new_rel = new_heap;
state->rs_buffer = (Page) palloc(BLCKSZ);
/* new_heap needn't be empty, just locked */
state->rs_blockno = RelationGetNumberOfBlocks(new_heap);
state->rs_buffer_valid = false;
state->rs_use_wal = use_wal;
state->rs_oldest_xmin = oldest_xmin;
state->rs_freeze_xid = freeze_xid;
state->rs_cxt = rw_cxt;
/* Initialize hash tables used to track update chains */
memset(&hash_ctl, 0, sizeof(hash_ctl));
hash_ctl.keysize = sizeof(TidHashKey);
hash_ctl.entrysize = sizeof(UnresolvedTupData);
hash_ctl.hcxt = state->rs_cxt;
hash_ctl.hash = tag_hash;
state->rs_unresolved_tups =
hash_create("Rewrite / Unresolved ctids",
2007-11-15 22:14:46 +01:00
128, /* arbitrary initial size */
&hash_ctl,
HASH_ELEM | HASH_FUNCTION | HASH_CONTEXT);
hash_ctl.entrysize = sizeof(OldToNewMappingData);
state->rs_old_new_tid_map =
hash_create("Rewrite / Old to new tid map",
2007-11-15 22:14:46 +01:00
128, /* arbitrary initial size */
&hash_ctl,
HASH_ELEM | HASH_FUNCTION | HASH_CONTEXT);
MemoryContextSwitchTo(old_cxt);
return state;
}
/*
* End a rewrite.
*
* state and any other resources are freed.
*/
void
end_heap_rewrite(RewriteState state)
{
HASH_SEQ_STATUS seq_status;
UnresolvedTup unresolved;
/*
2007-11-15 22:14:46 +01:00
* Write any remaining tuples in the UnresolvedTups table. If we have any
* left, they should in fact be dead, but let's err on the safe side.
*
* XXX this really is a waste of code no?
*/
hash_seq_init(&seq_status, state->rs_unresolved_tups);
while ((unresolved = hash_seq_search(&seq_status)) != NULL)
{
ItemPointerSetInvalid(&unresolved->tuple->t_data->t_ctid);
raw_heap_insert(state, unresolved->tuple);
}
/* Write the last page, if any */
if (state->rs_buffer_valid)
{
if (state->rs_use_wal)
log_newpage(&state->rs_new_rel->rd_node,
state->rs_blockno,
state->rs_buffer);
RelationOpenSmgr(state->rs_new_rel);
smgrextend(state->rs_new_rel->rd_smgr, state->rs_blockno,
(char *) state->rs_buffer, true);
}
/*
2007-11-15 22:14:46 +01:00
* If the rel isn't temp, must fsync before commit. We use heap_sync to
* ensure that the toast table gets fsync'd too.
*
* It's obvious that we must do this when not WAL-logging. It's less
2007-11-15 22:14:46 +01:00
* obvious that we have to do it even if we did WAL-log the pages. The
* reason is the same as in tablecmds.c's copy_relation_data(): we're
* writing data that's not in shared buffers, and so a CHECKPOINT
* occurring during the rewriteheap operation won't have fsync'd data we
* wrote before the checkpoint.
*/
if (!state->rs_new_rel->rd_istemp)
heap_sync(state->rs_new_rel);
/* Deleting the context frees everything */
MemoryContextDelete(state->rs_cxt);
}
/*
* Add a tuple to the new heap.
*
* Visibility information is copied from the original tuple, except that
* we "freeze" very-old tuples. Note that since we scribble on new_tuple,
* it had better be temp storage not a pointer to the original tuple.
*
* state opaque state as returned by begin_heap_rewrite
* old_tuple original tuple in the old heap
* new_tuple new, rewritten tuple to be inserted to new heap
*/
void
rewrite_heap_tuple(RewriteState state,
HeapTuple old_tuple, HeapTuple new_tuple)
{
MemoryContext old_cxt;
ItemPointerData old_tid;
2007-11-15 22:14:46 +01:00
TidHashKey hashkey;
bool found;
bool free_new;
old_cxt = MemoryContextSwitchTo(state->rs_cxt);
/*
* Copy the original tuple's visibility information into new_tuple.
*
2007-11-15 22:14:46 +01:00
* XXX we might later need to copy some t_infomask2 bits, too? Right now,
* we intentionally clear the HOT status bits.
*/
memcpy(&new_tuple->t_data->t_choice.t_heap,
&old_tuple->t_data->t_choice.t_heap,
sizeof(HeapTupleFields));
new_tuple->t_data->t_infomask &= ~HEAP_XACT_MASK;
new_tuple->t_data->t_infomask2 &= ~HEAP2_XACT_MASK;
new_tuple->t_data->t_infomask |=
old_tuple->t_data->t_infomask & HEAP_XACT_MASK;
/*
* While we have our hands on the tuple, we may as well freeze any
* very-old xmin or xmax, so that future VACUUM effort can be saved.
*
2007-11-15 22:14:46 +01:00
* Note we abuse heap_freeze_tuple() a bit here, since it's expecting to
* be given a pointer to a tuple in a disk buffer. It happens though that
* we can get the right things to happen by passing InvalidBuffer for the
* buffer.
*/
heap_freeze_tuple(new_tuple->t_data, state->rs_freeze_xid, InvalidBuffer);
/*
2007-11-15 22:14:46 +01:00
* Invalid ctid means that ctid should point to the tuple itself. We'll
* override it later if the tuple is part of an update chain.
*/
ItemPointerSetInvalid(&new_tuple->t_data->t_ctid);
/*
* If the tuple has been updated, check the old-to-new mapping hash table.
*/
if (!(old_tuple->t_data->t_infomask & (HEAP_XMAX_INVALID |
HEAP_IS_LOCKED)) &&
!(ItemPointerEquals(&(old_tuple->t_self),
&(old_tuple->t_data->t_ctid))))
{
OldToNewMapping mapping;
memset(&hashkey, 0, sizeof(hashkey));
hashkey.xmin = HeapTupleHeaderGetXmax(old_tuple->t_data);
hashkey.tid = old_tuple->t_data->t_ctid;
mapping = (OldToNewMapping)
hash_search(state->rs_old_new_tid_map, &hashkey,
HASH_FIND, NULL);
if (mapping != NULL)
{
/*
2007-11-15 22:14:46 +01:00
* We've already copied the tuple that t_ctid points to, so we can
* set the ctid of this tuple to point to the new location, and
* insert it right away.
*/
new_tuple->t_data->t_ctid = mapping->new_tid;
/* We don't need the mapping entry anymore */
hash_search(state->rs_old_new_tid_map, &hashkey,
HASH_REMOVE, &found);
Assert(found);
}
else
{
/*
* We haven't seen the tuple t_ctid points to yet. Stash this
* tuple into unresolved_tups to be written later.
*/
UnresolvedTup unresolved;
unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
HASH_ENTER, &found);
Assert(!found);
unresolved->old_tid = old_tuple->t_self;
unresolved->tuple = heap_copytuple(new_tuple);
/*
* We can't do anything more now, since we don't know where the
* tuple will be written.
*/
MemoryContextSwitchTo(old_cxt);
return;
}
}
/*
2007-11-15 22:14:46 +01:00
* Now we will write the tuple, and then check to see if it is the B tuple
* in any new or known pair. When we resolve a known pair, we will be
* able to write that pair's A tuple, and then we have to check if it
* resolves some other pair. Hence, we need a loop here.
*/
old_tid = old_tuple->t_self;
free_new = false;
for (;;)
{
ItemPointerData new_tid;
/* Insert the tuple and find out where it's put in new_heap */
raw_heap_insert(state, new_tuple);
new_tid = new_tuple->t_self;
/*
2007-11-15 22:14:46 +01:00
* If the tuple is the updated version of a row, and the prior version
* wouldn't be DEAD yet, then we need to either resolve the prior
* version (if it's waiting in rs_unresolved_tups), or make an entry
* in rs_old_new_tid_map (so we can resolve it when we do see it). The
* previous tuple's xmax would equal this one's xmin, so it's
2007-11-15 22:14:46 +01:00
* RECENTLY_DEAD if and only if the xmin is not before OldestXmin.
*/
if ((new_tuple->t_data->t_infomask & HEAP_UPDATED) &&
!TransactionIdPrecedes(HeapTupleHeaderGetXmin(new_tuple->t_data),
state->rs_oldest_xmin))
{
/*
* Okay, this is B in an update pair. See if we've seen A.
*/
UnresolvedTup unresolved;
memset(&hashkey, 0, sizeof(hashkey));
hashkey.xmin = HeapTupleHeaderGetXmin(new_tuple->t_data);
hashkey.tid = old_tid;
unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
HASH_FIND, NULL);
if (unresolved != NULL)
{
/*
2007-11-15 22:14:46 +01:00
* We have seen and memorized the previous tuple already. Now
* that we know where we inserted the tuple its t_ctid points
* to, fix its t_ctid and insert it to the new heap.
*/
if (free_new)
heap_freetuple(new_tuple);
new_tuple = unresolved->tuple;
free_new = true;
old_tid = unresolved->old_tid;
new_tuple->t_data->t_ctid = new_tid;
/*
2007-11-15 22:14:46 +01:00
* We don't need the hash entry anymore, but don't free its
* tuple just yet.
*/
hash_search(state->rs_unresolved_tups, &hashkey,
HASH_REMOVE, &found);
Assert(found);
/* loop back to insert the previous tuple in the chain */
continue;
}
else
{
/*
2007-11-15 22:14:46 +01:00
* Remember the new tid of this tuple. We'll use it to set the
* ctid when we find the previous tuple in the chain.
*/
OldToNewMapping mapping;
mapping = hash_search(state->rs_old_new_tid_map, &hashkey,
HASH_ENTER, &found);
Assert(!found);
mapping->new_tid = new_tid;
}
}
/* Done with this (chain of) tuples, for now */
if (free_new)
heap_freetuple(new_tuple);
break;
}
MemoryContextSwitchTo(old_cxt);
}
/*
* Register a dead tuple with an ongoing rewrite. Dead tuples are not
* copied to the new table, but we still make note of them so that we
* can release some resources earlier.
*/
void
rewrite_heap_dead_tuple(RewriteState state, HeapTuple old_tuple)
{
/*
* If we have already seen an earlier tuple in the update chain that
2007-11-15 22:14:46 +01:00
* points to this tuple, let's forget about that earlier tuple. It's in
* fact dead as well, our simple xmax < OldestXmin test in
* HeapTupleSatisfiesVacuum just wasn't enough to detect it. It happens
* when xmin of a tuple is greater than xmax, which sounds
* counter-intuitive but is perfectly valid.
*
2007-11-15 22:14:46 +01:00
* We don't bother to try to detect the situation the other way round,
* when we encounter the dead tuple first and then the recently dead one
* that points to it. If that happens, we'll have some unmatched entries
* in the UnresolvedTups hash table at the end. That can happen anyway,
* because a vacuum might have removed the dead tuple in the chain before
* us.
*/
UnresolvedTup unresolved;
2007-11-15 22:14:46 +01:00
TidHashKey hashkey;
bool found;
memset(&hashkey, 0, sizeof(hashkey));
hashkey.xmin = HeapTupleHeaderGetXmin(old_tuple->t_data);
hashkey.tid = old_tuple->t_self;
unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
HASH_FIND, NULL);
if (unresolved != NULL)
{
/* Need to free the contained tuple as well as the hashtable entry */
heap_freetuple(unresolved->tuple);
hash_search(state->rs_unresolved_tups, &hashkey,
HASH_REMOVE, &found);
Assert(found);
}
}
/*
2007-11-15 22:14:46 +01:00
* Insert a tuple to the new relation. This has to track heap_insert
* and its subsidiary functions!
*
* t_self of the tuple is set to the new TID of the tuple. If t_ctid of the
* tuple is invalid on entry, it's replaced with the new TID as well (in
* the inserted data only, not in the caller's copy).
*/
static void
raw_heap_insert(RewriteState state, HeapTuple tup)
{
2007-11-15 22:14:46 +01:00
Page page = state->rs_buffer;
Size pageFreeSpace,
saveFreeSpace;
Size len;
OffsetNumber newoff;
HeapTuple heaptup;
/*
* If the new tuple is too big for storage or contains already toasted
* out-of-line attributes from some other relation, invoke the toaster.
*
* Note: below this point, heaptup is the data we actually intend to store
* into the relation; tup is the caller's original untoasted data.
*/
if (state->rs_new_rel->rd_rel->relkind == RELKIND_TOASTVALUE)
{
/* toast table entries should never be recursively toasted */
Assert(!HeapTupleHasExternal(tup));
heaptup = tup;
}
else if (HeapTupleHasExternal(tup) || tup->t_len > TOAST_TUPLE_THRESHOLD)
heaptup = toast_insert_or_update(state->rs_new_rel, tup, NULL,
state->rs_use_wal, false);
else
heaptup = tup;
len = MAXALIGN(heaptup->t_len); /* be conservative */
/*
* If we're gonna fail for oversize tuple, do it right away
*/
if (len > MaxHeapTupleSize)
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("row is too big: size %lu, maximum size %lu",
(unsigned long) len,
(unsigned long) MaxHeapTupleSize)));
/* Compute desired extra freespace due to fillfactor option */
saveFreeSpace = RelationGetTargetPageFreeSpace(state->rs_new_rel,
HEAP_DEFAULT_FILLFACTOR);
/* Now we can check to see if there's enough free space already. */
if (state->rs_buffer_valid)
{
pageFreeSpace = PageGetHeapFreeSpace(page);
if (len + saveFreeSpace > pageFreeSpace)
{
/* Doesn't fit, so write out the existing page */
/* XLOG stuff */
if (state->rs_use_wal)
log_newpage(&state->rs_new_rel->rd_node,
state->rs_blockno,
page);
/*
* Now write the page. We say isTemp = true even if it's not a
* temp table, because there's no need for smgr to schedule an
2007-11-15 22:14:46 +01:00
* fsync for this write; we'll do it ourselves in
* end_heap_rewrite.
*/
RelationOpenSmgr(state->rs_new_rel);
smgrextend(state->rs_new_rel->rd_smgr, state->rs_blockno,
(char *) page, true);
state->rs_blockno++;
state->rs_buffer_valid = false;
}
}
if (!state->rs_buffer_valid)
{
/* Initialize a new empty page */
PageInit(page, BLCKSZ, 0);
state->rs_buffer_valid = true;
}
/* And now we can insert the tuple into the page */
newoff = PageAddItem(page, (Item) heaptup->t_data, len,
InvalidOffsetNumber, false, true);
if (newoff == InvalidOffsetNumber)
elog(ERROR, "failed to add tuple");
/* Update caller's t_self to the actual position where it was stored */
ItemPointerSet(&(tup->t_self), state->rs_blockno, newoff);
/*
2007-11-15 22:14:46 +01:00
* Insert the correct position into CTID of the stored tuple, too, if the
* caller didn't supply a valid CTID.
*/
2007-11-15 22:14:46 +01:00
if (!ItemPointerIsValid(&tup->t_data->t_ctid))
{
2007-11-15 22:14:46 +01:00
ItemId newitemid;
HeapTupleHeader onpage_tup;
newitemid = PageGetItemId(page, newoff);
onpage_tup = (HeapTupleHeader) PageGetItem(page, newitemid);
onpage_tup->t_ctid = tup->t_self;
}
/* If heaptup is a private copy, release it. */
if (heaptup != tup)
heap_freetuple(heaptup);
}