postgresql/src/backend/utils/misc/pg_controldata.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

345 lines
10 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* pg_controldata.c
*
* Routines to expose the contents of the control data file via
* a set of SQL functions.
*
* Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/utils/misc/pg_controldata.c
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "access/transam.h"
#include "access/xlog.h"
#include "access/xlog_internal.h"
#include "catalog/pg_control.h"
#include "catalog/pg_type.h"
#include "common/controldata_utils.h"
#include "funcapi.h"
#include "miscadmin.h"
#include "utils/builtins.h"
#include "utils/pg_lsn.h"
#include "utils/timestamp.h"
Datum
pg_control_system(PG_FUNCTION_ARGS)
{
Datum values[4];
bool nulls[4];
TupleDesc tupdesc;
HeapTuple htup;
ControlFileData *ControlFile;
bool crc_ok;
/*
* Construct a tuple descriptor for the result row. This must match this
* function's pg_proc entry!
*/
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
tupdesc = CreateTemplateTupleDesc(4);
TupleDescInitEntry(tupdesc, (AttrNumber) 1, "pg_control_version",
INT4OID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 2, "catalog_version_no",
INT4OID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 3, "system_identifier",
INT8OID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 4, "pg_control_last_modified",
TIMESTAMPTZOID, -1, 0);
tupdesc = BlessTupleDesc(tupdesc);
/* read the control file */
Unified logging system for command-line programs This unifies the various ad hoc logging (message printing, error printing) systems used throughout the command-line programs. Features: - Program name is automatically prefixed. - Message string does not end with newline. This removes a common source of inconsistencies and omissions. - Additionally, a final newline is automatically stripped, simplifying use of PQerrorMessage() etc., another common source of mistakes. - I converted error message strings to use %m where possible. - As a result of the above several points, more translatable message strings can be shared between different components and between frontends and backend, without gratuitous punctuation or whitespace differences. - There is support for setting a "log level". This is not meant to be user-facing, but can be used internally to implement debug or verbose modes. - Lazy argument evaluation, so no significant overhead if logging at some level is disabled. - Some color in the messages, similar to gcc and clang. Set PG_COLOR=auto to try it out. Some colors are predefined, but can be customized by setting PG_COLORS. - Common files (common/, fe_utils/, etc.) can handle logging much more simply by just using one API without worrying too much about the context of the calling program, requiring callbacks, or having to pass "progname" around everywhere. - Some programs called setvbuf() to make sure that stderr is unbuffered, even on Windows. But not all programs did that. This is now done centrally. Soft goals: - Reduces vertical space use and visual complexity of error reporting in the source code. - Encourages more deliberate classification of messages. For example, in some cases it wasn't clear without analyzing the surrounding code whether a message was meant as an error or just an info. - Concepts and terms are vaguely aligned with popular logging frameworks such as log4j and Python logging. This is all just about printing stuff out. Nothing affects program flow (e.g., fatal exits). The uses are just too varied to do that. Some existing code had wrappers that do some kind of print-and-exit, and I adapted those. I tried to keep the output mostly the same, but there is a lot of historical baggage to unwind and special cases to consider, and I might not always have succeeded. One significant change is that pg_rewind used to write all error messages to stdout. That is now changed to stderr. Reviewed-by: Donald Dong <xdong@csumb.edu> Reviewed-by: Arthur Zakirov <a.zakirov@postgrespro.ru> Discussion: https://www.postgresql.org/message-id/flat/6a609b43-4f57-7348-6480-bd022f924310@2ndquadrant.com
2019-04-01 14:24:37 +02:00
ControlFile = get_controlfile(DataDir, &crc_ok);
if (!crc_ok)
ereport(ERROR,
(errmsg("calculated CRC checksum does not match value stored in file")));
values[0] = Int32GetDatum(ControlFile->pg_control_version);
nulls[0] = false;
values[1] = Int32GetDatum(ControlFile->catalog_version_no);
nulls[1] = false;
values[2] = Int64GetDatum(ControlFile->system_identifier);
nulls[2] = false;
values[3] = TimestampTzGetDatum(time_t_to_timestamptz(ControlFile->time));
nulls[3] = false;
htup = heap_form_tuple(tupdesc, values, nulls);
PG_RETURN_DATUM(HeapTupleGetDatum(htup));
}
Datum
pg_control_checkpoint(PG_FUNCTION_ARGS)
{
Datum values[18];
bool nulls[18];
TupleDesc tupdesc;
HeapTuple htup;
ControlFileData *ControlFile;
XLogSegNo segno;
char xlogfilename[MAXFNAMELEN];
bool crc_ok;
/*
* Construct a tuple descriptor for the result row. This must match this
* function's pg_proc entry!
*/
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
tupdesc = CreateTemplateTupleDesc(18);
TupleDescInitEntry(tupdesc, (AttrNumber) 1, "checkpoint_lsn",
PG_LSNOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 2, "redo_lsn",
PG_LSNOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 3, "redo_wal_file",
TEXTOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 4, "timeline_id",
INT4OID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 5, "prev_timeline_id",
INT4OID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 6, "full_page_writes",
BOOLOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 7, "next_xid",
TEXTOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 8, "next_oid",
OIDOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 9, "next_multixact_id",
XIDOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 10, "next_multi_offset",
XIDOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 11, "oldest_xid",
XIDOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 12, "oldest_xid_dbid",
OIDOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 13, "oldest_active_xid",
XIDOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 14, "oldest_multi_xid",
XIDOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 15, "oldest_multi_dbid",
OIDOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 16, "oldest_commit_ts_xid",
XIDOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 17, "newest_commit_ts_xid",
XIDOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 18, "checkpoint_time",
TIMESTAMPTZOID, -1, 0);
tupdesc = BlessTupleDesc(tupdesc);
/* Read the control file. */
Unified logging system for command-line programs This unifies the various ad hoc logging (message printing, error printing) systems used throughout the command-line programs. Features: - Program name is automatically prefixed. - Message string does not end with newline. This removes a common source of inconsistencies and omissions. - Additionally, a final newline is automatically stripped, simplifying use of PQerrorMessage() etc., another common source of mistakes. - I converted error message strings to use %m where possible. - As a result of the above several points, more translatable message strings can be shared between different components and between frontends and backend, without gratuitous punctuation or whitespace differences. - There is support for setting a "log level". This is not meant to be user-facing, but can be used internally to implement debug or verbose modes. - Lazy argument evaluation, so no significant overhead if logging at some level is disabled. - Some color in the messages, similar to gcc and clang. Set PG_COLOR=auto to try it out. Some colors are predefined, but can be customized by setting PG_COLORS. - Common files (common/, fe_utils/, etc.) can handle logging much more simply by just using one API without worrying too much about the context of the calling program, requiring callbacks, or having to pass "progname" around everywhere. - Some programs called setvbuf() to make sure that stderr is unbuffered, even on Windows. But not all programs did that. This is now done centrally. Soft goals: - Reduces vertical space use and visual complexity of error reporting in the source code. - Encourages more deliberate classification of messages. For example, in some cases it wasn't clear without analyzing the surrounding code whether a message was meant as an error or just an info. - Concepts and terms are vaguely aligned with popular logging frameworks such as log4j and Python logging. This is all just about printing stuff out. Nothing affects program flow (e.g., fatal exits). The uses are just too varied to do that. Some existing code had wrappers that do some kind of print-and-exit, and I adapted those. I tried to keep the output mostly the same, but there is a lot of historical baggage to unwind and special cases to consider, and I might not always have succeeded. One significant change is that pg_rewind used to write all error messages to stdout. That is now changed to stderr. Reviewed-by: Donald Dong <xdong@csumb.edu> Reviewed-by: Arthur Zakirov <a.zakirov@postgrespro.ru> Discussion: https://www.postgresql.org/message-id/flat/6a609b43-4f57-7348-6480-bd022f924310@2ndquadrant.com
2019-04-01 14:24:37 +02:00
ControlFile = get_controlfile(DataDir, &crc_ok);
if (!crc_ok)
ereport(ERROR,
(errmsg("calculated CRC checksum does not match value stored in file")));
/*
* Calculate name of the WAL file containing the latest checkpoint's REDO
* start point.
*/
XLByteToSeg(ControlFile->checkPointCopy.redo, segno, wal_segment_size);
XLogFileName(xlogfilename, ControlFile->checkPointCopy.ThisTimeLineID,
segno, wal_segment_size);
/* Populate the values and null arrays */
values[0] = LSNGetDatum(ControlFile->checkPoint);
nulls[0] = false;
values[1] = LSNGetDatum(ControlFile->checkPointCopy.redo);
nulls[1] = false;
values[2] = CStringGetTextDatum(xlogfilename);
nulls[2] = false;
values[3] = Int32GetDatum(ControlFile->checkPointCopy.ThisTimeLineID);
nulls[3] = false;
values[4] = Int32GetDatum(ControlFile->checkPointCopy.PrevTimeLineID);
nulls[4] = false;
values[5] = BoolGetDatum(ControlFile->checkPointCopy.fullPageWrites);
nulls[5] = false;
values[6] = CStringGetTextDatum(psprintf("%u:%u",
EpochFromFullTransactionId(ControlFile->checkPointCopy.nextXid),
XidFromFullTransactionId(ControlFile->checkPointCopy.nextXid)));
nulls[6] = false;
values[7] = ObjectIdGetDatum(ControlFile->checkPointCopy.nextOid);
nulls[7] = false;
values[8] = TransactionIdGetDatum(ControlFile->checkPointCopy.nextMulti);
nulls[8] = false;
values[9] = TransactionIdGetDatum(ControlFile->checkPointCopy.nextMultiOffset);
nulls[9] = false;
values[10] = TransactionIdGetDatum(ControlFile->checkPointCopy.oldestXid);
nulls[10] = false;
values[11] = ObjectIdGetDatum(ControlFile->checkPointCopy.oldestXidDB);
nulls[11] = false;
values[12] = TransactionIdGetDatum(ControlFile->checkPointCopy.oldestActiveXid);
nulls[12] = false;
values[13] = TransactionIdGetDatum(ControlFile->checkPointCopy.oldestMulti);
nulls[13] = false;
values[14] = ObjectIdGetDatum(ControlFile->checkPointCopy.oldestMultiDB);
nulls[14] = false;
values[15] = TransactionIdGetDatum(ControlFile->checkPointCopy.oldestCommitTsXid);
nulls[15] = false;
values[16] = TransactionIdGetDatum(ControlFile->checkPointCopy.newestCommitTsXid);
nulls[16] = false;
values[17] = TimestampTzGetDatum(time_t_to_timestamptz(ControlFile->checkPointCopy.time));
nulls[17] = false;
htup = heap_form_tuple(tupdesc, values, nulls);
PG_RETURN_DATUM(HeapTupleGetDatum(htup));
}
Datum
pg_control_recovery(PG_FUNCTION_ARGS)
{
Datum values[5];
bool nulls[5];
TupleDesc tupdesc;
HeapTuple htup;
ControlFileData *ControlFile;
bool crc_ok;
/*
* Construct a tuple descriptor for the result row. This must match this
* function's pg_proc entry!
*/
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
tupdesc = CreateTemplateTupleDesc(5);
TupleDescInitEntry(tupdesc, (AttrNumber) 1, "min_recovery_end_lsn",
PG_LSNOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 2, "min_recovery_end_timeline",
INT4OID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 3, "backup_start_lsn",
PG_LSNOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 4, "backup_end_lsn",
PG_LSNOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 5, "end_of_backup_record_required",
BOOLOID, -1, 0);
tupdesc = BlessTupleDesc(tupdesc);
/* read the control file */
Unified logging system for command-line programs This unifies the various ad hoc logging (message printing, error printing) systems used throughout the command-line programs. Features: - Program name is automatically prefixed. - Message string does not end with newline. This removes a common source of inconsistencies and omissions. - Additionally, a final newline is automatically stripped, simplifying use of PQerrorMessage() etc., another common source of mistakes. - I converted error message strings to use %m where possible. - As a result of the above several points, more translatable message strings can be shared between different components and between frontends and backend, without gratuitous punctuation or whitespace differences. - There is support for setting a "log level". This is not meant to be user-facing, but can be used internally to implement debug or verbose modes. - Lazy argument evaluation, so no significant overhead if logging at some level is disabled. - Some color in the messages, similar to gcc and clang. Set PG_COLOR=auto to try it out. Some colors are predefined, but can be customized by setting PG_COLORS. - Common files (common/, fe_utils/, etc.) can handle logging much more simply by just using one API without worrying too much about the context of the calling program, requiring callbacks, or having to pass "progname" around everywhere. - Some programs called setvbuf() to make sure that stderr is unbuffered, even on Windows. But not all programs did that. This is now done centrally. Soft goals: - Reduces vertical space use and visual complexity of error reporting in the source code. - Encourages more deliberate classification of messages. For example, in some cases it wasn't clear without analyzing the surrounding code whether a message was meant as an error or just an info. - Concepts and terms are vaguely aligned with popular logging frameworks such as log4j and Python logging. This is all just about printing stuff out. Nothing affects program flow (e.g., fatal exits). The uses are just too varied to do that. Some existing code had wrappers that do some kind of print-and-exit, and I adapted those. I tried to keep the output mostly the same, but there is a lot of historical baggage to unwind and special cases to consider, and I might not always have succeeded. One significant change is that pg_rewind used to write all error messages to stdout. That is now changed to stderr. Reviewed-by: Donald Dong <xdong@csumb.edu> Reviewed-by: Arthur Zakirov <a.zakirov@postgrespro.ru> Discussion: https://www.postgresql.org/message-id/flat/6a609b43-4f57-7348-6480-bd022f924310@2ndquadrant.com
2019-04-01 14:24:37 +02:00
ControlFile = get_controlfile(DataDir, &crc_ok);
if (!crc_ok)
ereport(ERROR,
(errmsg("calculated CRC checksum does not match value stored in file")));
values[0] = LSNGetDatum(ControlFile->minRecoveryPoint);
nulls[0] = false;
values[1] = Int32GetDatum(ControlFile->minRecoveryPointTLI);
nulls[1] = false;
values[2] = LSNGetDatum(ControlFile->backupStartPoint);
nulls[2] = false;
values[3] = LSNGetDatum(ControlFile->backupEndPoint);
nulls[3] = false;
values[4] = BoolGetDatum(ControlFile->backupEndRequired);
nulls[4] = false;
htup = heap_form_tuple(tupdesc, values, nulls);
PG_RETURN_DATUM(HeapTupleGetDatum(htup));
}
Datum
pg_control_init(PG_FUNCTION_ARGS)
{
Datum values[11];
bool nulls[11];
TupleDesc tupdesc;
HeapTuple htup;
ControlFileData *ControlFile;
bool crc_ok;
/*
* Construct a tuple descriptor for the result row. This must match this
* function's pg_proc entry!
*/
tupdesc = CreateTemplateTupleDesc(11);
TupleDescInitEntry(tupdesc, (AttrNumber) 1, "max_data_alignment",
INT4OID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 2, "database_block_size",
INT4OID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 3, "blocks_per_segment",
INT4OID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 4, "wal_block_size",
INT4OID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 5, "bytes_per_wal_segment",
INT4OID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 6, "max_identifier_length",
INT4OID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 7, "max_index_columns",
INT4OID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 8, "max_toast_chunk_size",
INT4OID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 9, "large_object_chunk_size",
INT4OID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 10, "float8_pass_by_value",
BOOLOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 11, "data_page_checksum_version",
INT4OID, -1, 0);
tupdesc = BlessTupleDesc(tupdesc);
/* read the control file */
Unified logging system for command-line programs This unifies the various ad hoc logging (message printing, error printing) systems used throughout the command-line programs. Features: - Program name is automatically prefixed. - Message string does not end with newline. This removes a common source of inconsistencies and omissions. - Additionally, a final newline is automatically stripped, simplifying use of PQerrorMessage() etc., another common source of mistakes. - I converted error message strings to use %m where possible. - As a result of the above several points, more translatable message strings can be shared between different components and between frontends and backend, without gratuitous punctuation or whitespace differences. - There is support for setting a "log level". This is not meant to be user-facing, but can be used internally to implement debug or verbose modes. - Lazy argument evaluation, so no significant overhead if logging at some level is disabled. - Some color in the messages, similar to gcc and clang. Set PG_COLOR=auto to try it out. Some colors are predefined, but can be customized by setting PG_COLORS. - Common files (common/, fe_utils/, etc.) can handle logging much more simply by just using one API without worrying too much about the context of the calling program, requiring callbacks, or having to pass "progname" around everywhere. - Some programs called setvbuf() to make sure that stderr is unbuffered, even on Windows. But not all programs did that. This is now done centrally. Soft goals: - Reduces vertical space use and visual complexity of error reporting in the source code. - Encourages more deliberate classification of messages. For example, in some cases it wasn't clear without analyzing the surrounding code whether a message was meant as an error or just an info. - Concepts and terms are vaguely aligned with popular logging frameworks such as log4j and Python logging. This is all just about printing stuff out. Nothing affects program flow (e.g., fatal exits). The uses are just too varied to do that. Some existing code had wrappers that do some kind of print-and-exit, and I adapted those. I tried to keep the output mostly the same, but there is a lot of historical baggage to unwind and special cases to consider, and I might not always have succeeded. One significant change is that pg_rewind used to write all error messages to stdout. That is now changed to stderr. Reviewed-by: Donald Dong <xdong@csumb.edu> Reviewed-by: Arthur Zakirov <a.zakirov@postgrespro.ru> Discussion: https://www.postgresql.org/message-id/flat/6a609b43-4f57-7348-6480-bd022f924310@2ndquadrant.com
2019-04-01 14:24:37 +02:00
ControlFile = get_controlfile(DataDir, &crc_ok);
if (!crc_ok)
ereport(ERROR,
(errmsg("calculated CRC checksum does not match value stored in file")));
values[0] = Int32GetDatum(ControlFile->maxAlign);
nulls[0] = false;
values[1] = Int32GetDatum(ControlFile->blcksz);
nulls[1] = false;
values[2] = Int32GetDatum(ControlFile->relseg_size);
nulls[2] = false;
values[3] = Int32GetDatum(ControlFile->xlog_blcksz);
nulls[3] = false;
values[4] = Int32GetDatum(ControlFile->xlog_seg_size);
nulls[4] = false;
values[5] = Int32GetDatum(ControlFile->nameDataLen);
nulls[5] = false;
values[6] = Int32GetDatum(ControlFile->indexMaxKeys);
nulls[6] = false;
values[7] = Int32GetDatum(ControlFile->toast_max_chunk_size);
nulls[7] = false;
values[8] = Int32GetDatum(ControlFile->loblksize);
nulls[8] = false;
values[9] = BoolGetDatum(ControlFile->float8ByVal);
nulls[9] = false;
values[10] = Int32GetDatum(ControlFile->data_checksum_version);
nulls[10] = false;
htup = heap_form_tuple(tupdesc, values, nulls);
PG_RETURN_DATUM(HeapTupleGetDatum(htup));
}