postgresql/src/include/executor/spi.h

171 lines
6.4 KiB
C
Raw Normal View History

1997-08-29 11:05:57 +02:00
/*-------------------------------------------------------------------------
*
* spi.h
* Server Programming Interface public declarations
*
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
2010-09-20 22:08:53 +02:00
* src/include/executor/spi.h
1997-08-29 11:05:57 +02:00
*
*-------------------------------------------------------------------------
*/
#ifndef SPI_H
1997-08-29 11:05:57 +02:00
#define SPI_H
#include "commands/trigger.h"
Prevent leakage of SPI tuple tables during subtransaction abort. plpgsql often just remembers SPI-result tuple tables in local variables, and has no mechanism for freeing them if an ereport(ERROR) causes an escape out of the execution function whose local variable it is. In the original coding, that wasn't a problem because the tuple table would be cleaned up when the function's SPI context went away during transaction abort. However, once plpgsql grew the ability to trap exceptions, repeated trapping of errors within a function could result in significant intra-function-call memory leakage, as illustrated in bug #8279 from Chad Wagner. We could fix this locally in plpgsql with a bunch of PG_TRY/PG_CATCH coding, but that would be tedious, probably slow, and prone to bugs of omission; moreover it would do nothing for similar risks elsewhere. What seems like a better plan is to make SPI itself responsible for freeing tuple tables at subtransaction abort. This patch attacks the problem that way, keeping a list of live tuple tables within each SPI function context. Currently, such freeing is automatic for tuple tables made within the failed subtransaction. We might later add a SPI call to mark a tuple table as not to be freed this way, allowing callers to opt out; but until someone exhibits a clear use-case for such behavior, it doesn't seem worth bothering. A very useful side-effect of this change is that SPI_freetuptable() can now defend itself against bad calls, such as duplicate free requests; this should make things more robust in many places. (In particular, this reduces the risks involved if a third-party extension contains now-redundant SPI_freetuptable() calls in error cleanup code.) Even though the leakage problem is of long standing, it seems imprudent to back-patch this into stable branches, since it does represent an API semantics change for SPI users. We'll patch this in 9.3, but live with the leakage in older branches.
2013-07-25 22:45:43 +02:00
#include "lib/ilist.h"
#include "nodes/parsenodes.h"
#include "utils/portal.h"
1997-08-29 11:05:57 +02:00
typedef struct SPITupleTable
{
MemoryContext tuptabcxt; /* memory context of result table */
uint64 alloced; /* # of alloced vals */
uint64 free; /* # of free vals */
TupleDesc tupdesc; /* tuple descriptor */
HeapTuple *vals; /* tuples */
Prevent leakage of SPI tuple tables during subtransaction abort. plpgsql often just remembers SPI-result tuple tables in local variables, and has no mechanism for freeing them if an ereport(ERROR) causes an escape out of the execution function whose local variable it is. In the original coding, that wasn't a problem because the tuple table would be cleaned up when the function's SPI context went away during transaction abort. However, once plpgsql grew the ability to trap exceptions, repeated trapping of errors within a function could result in significant intra-function-call memory leakage, as illustrated in bug #8279 from Chad Wagner. We could fix this locally in plpgsql with a bunch of PG_TRY/PG_CATCH coding, but that would be tedious, probably slow, and prone to bugs of omission; moreover it would do nothing for similar risks elsewhere. What seems like a better plan is to make SPI itself responsible for freeing tuple tables at subtransaction abort. This patch attacks the problem that way, keeping a list of live tuple tables within each SPI function context. Currently, such freeing is automatic for tuple tables made within the failed subtransaction. We might later add a SPI call to mark a tuple table as not to be freed this way, allowing callers to opt out; but until someone exhibits a clear use-case for such behavior, it doesn't seem worth bothering. A very useful side-effect of this change is that SPI_freetuptable() can now defend itself against bad calls, such as duplicate free requests; this should make things more robust in many places. (In particular, this reduces the risks involved if a third-party extension contains now-redundant SPI_freetuptable() calls in error cleanup code.) Even though the leakage problem is of long standing, it seems imprudent to back-patch this into stable branches, since it does represent an API semantics change for SPI users. We'll patch this in 9.3, but live with the leakage in older branches.
2013-07-25 22:45:43 +02:00
slist_node next; /* link for internal bookkeeping */
SubTransactionId subid; /* subxact in which tuptable was created */
} SPITupleTable;
1997-08-29 11:05:57 +02:00
/* Plans are opaque structs for standard users of SPI */
typedef struct _SPI_plan *SPIPlanPtr;
#define SPI_ERROR_CONNECT (-1)
#define SPI_ERROR_COPY (-2)
#define SPI_ERROR_OPUNKNOWN (-3)
#define SPI_ERROR_UNCONNECTED (-4)
2007-11-15 22:14:46 +01:00
#define SPI_ERROR_CURSOR (-5) /* not used anymore */
#define SPI_ERROR_ARGUMENT (-6)
#define SPI_ERROR_PARAM (-7)
#define SPI_ERROR_TRANSACTION (-8)
#define SPI_ERROR_NOATTRIBUTE (-9)
#define SPI_ERROR_NOOUTFUNC (-10)
#define SPI_ERROR_TYPUNKNOWN (-11)
#define SPI_ERROR_REL_DUPLICATE (-12)
#define SPI_ERROR_REL_NOT_FOUND (-13)
1997-08-29 11:05:57 +02:00
#define SPI_OK_CONNECT 1
#define SPI_OK_FINISH 2
#define SPI_OK_FETCH 3
#define SPI_OK_UTILITY 4
#define SPI_OK_SELECT 5
#define SPI_OK_SELINTO 6
#define SPI_OK_INSERT 7
#define SPI_OK_DELETE 8
#define SPI_OK_UPDATE 9
#define SPI_OK_CURSOR 10
2006-10-04 02:30:14 +02:00
#define SPI_OK_INSERT_RETURNING 11
#define SPI_OK_DELETE_RETURNING 12
#define SPI_OK_UPDATE_RETURNING 13
#define SPI_OK_REWRITTEN 14
#define SPI_OK_REL_REGISTER 15
#define SPI_OK_REL_UNREGISTER 16
#define SPI_OK_TD_REGISTER 17
1997-09-04 15:26:19 +02:00
Transaction control in PL procedures In each of the supplied procedural languages (PL/pgSQL, PL/Perl, PL/Python, PL/Tcl), add language-specific commit and rollback functions/commands to control transactions in procedures in that language. Add similar underlying functions to SPI. Some additional cleanup so that transaction commit or abort doesn't blow away data structures still used by the procedure call. Add execution context tracking to CALL and DO statements so that transaction control commands can only be issued in top-level procedure and block calls, not function calls or other procedure or block calls. - SPI Add a new function SPI_connect_ext() that is like SPI_connect() but allows passing option flags. The only option flag right now is SPI_OPT_NONATOMIC. A nonatomic SPI connection can execute transaction control commands, otherwise it's not allowed. This is meant to be passed down from CALL and DO statements which themselves know in which context they are called. A nonatomic SPI connection uses different memory management. A normal SPI connection allocates its memory in TopTransactionContext. For nonatomic connections we use PortalContext instead. As the comment in SPI_connect_ext() (previously SPI_connect()) indicates, one could potentially use PortalContext in all cases, but it seems safest to leave the existing uses alone, because this stuff is complicated enough already. SPI also gets new functions SPI_start_transaction(), SPI_commit(), and SPI_rollback(), which can be used by PLs to implement their transaction control logic. - portalmem.c Some adjustments were made in the code that cleans up portals at transaction abort. The portal code could already handle a command *committing* a transaction and continuing (e.g., VACUUM), but it was not quite prepared for a command *aborting* a transaction and continuing. In AtAbort_Portals(), remove the code that marks an active portal as failed. As the comment there already predicted, this doesn't work if the running command wants to keep running after transaction abort. And it's actually not necessary, because pquery.c is careful to run all portal code in a PG_TRY block and explicitly runs MarkPortalFailed() if there is an exception. So the code in AtAbort_Portals() is never used anyway. In AtAbort_Portals() and AtCleanup_Portals(), we need to be careful not to clean up active portals too much. This mirrors similar code in PreCommit_Portals(). - PL/Perl Gets new functions spi_commit() and spi_rollback() - PL/pgSQL Gets new commands COMMIT and ROLLBACK. Update the PL/SQL porting example in the documentation to reflect that transactions are now possible in procedures. - PL/Python Gets new functions plpy.commit and plpy.rollback. - PL/Tcl Gets new commands commit and rollback. Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
2018-01-22 14:30:16 +01:00
#define SPI_OPT_NONATOMIC (1 << 0)
Simplify code by getting rid of SPI_push, SPI_pop, SPI_restore_connection. The idea behind SPI_push was to allow transitioning back into an "unconnected" state when a SPI-using procedure calls unrelated code that might or might not invoke SPI. That sounds good, but in practice the only thing it does for us is to catch cases where a called SPI-using function forgets to call SPI_connect --- which is a highly improbable failure mode, since it would be exposed immediately by direct testing of said function. As against that, we've had multiple bugs induced by forgetting to call SPI_push/SPI_pop around code that might invoke SPI-using functions; these are much harder to catch and indeed have gone undetected for years in some cases. And we've had to band-aid around some problems of this ilk by introducing conditional push/pop pairs in some places, which really kind of defeats the purpose altogether; if we can't draw bright lines between connected and unconnected code, what's the point? Hence, get rid of SPI_push[_conditional], SPI_pop[_conditional], and the underlying state variable _SPI_curid. It turns out SPI_restore_connection can go away too, which is a nice side benefit since it was never more than a kluge. Provide no-op macros for the deleted functions so as to avoid an API break for external modules. A side effect of this removal is that SPI_palloc and allied functions no longer permit being called when unconnected; they'll throw an error instead. The apparent usefulness of the previous behavior was a mirage as well, because it was depended on by only a few places (which I fixed in preceding commits), and it posed a risk of allocations being unexpectedly long-lived if someone forgot a SPI_push call. Discussion: <20808.1478481403@sss.pgh.pa.us>
2016-11-08 23:39:45 +01:00
/* These used to be functions, now just no-ops for backwards compatibility */
#define SPI_push() ((void) 0)
#define SPI_pop() ((void) 0)
#define SPI_push_conditional() false
#define SPI_pop_conditional(pushed) ((void) 0)
#define SPI_restore_connection() ((void) 0)
extern PGDLLIMPORT uint64 SPI_processed;
extern PGDLLIMPORT SPITupleTable *SPI_tuptable;
extern PGDLLIMPORT int SPI_result;
1997-08-29 11:05:57 +02:00
extern int SPI_connect(void);
Transaction control in PL procedures In each of the supplied procedural languages (PL/pgSQL, PL/Perl, PL/Python, PL/Tcl), add language-specific commit and rollback functions/commands to control transactions in procedures in that language. Add similar underlying functions to SPI. Some additional cleanup so that transaction commit or abort doesn't blow away data structures still used by the procedure call. Add execution context tracking to CALL and DO statements so that transaction control commands can only be issued in top-level procedure and block calls, not function calls or other procedure or block calls. - SPI Add a new function SPI_connect_ext() that is like SPI_connect() but allows passing option flags. The only option flag right now is SPI_OPT_NONATOMIC. A nonatomic SPI connection can execute transaction control commands, otherwise it's not allowed. This is meant to be passed down from CALL and DO statements which themselves know in which context they are called. A nonatomic SPI connection uses different memory management. A normal SPI connection allocates its memory in TopTransactionContext. For nonatomic connections we use PortalContext instead. As the comment in SPI_connect_ext() (previously SPI_connect()) indicates, one could potentially use PortalContext in all cases, but it seems safest to leave the existing uses alone, because this stuff is complicated enough already. SPI also gets new functions SPI_start_transaction(), SPI_commit(), and SPI_rollback(), which can be used by PLs to implement their transaction control logic. - portalmem.c Some adjustments were made in the code that cleans up portals at transaction abort. The portal code could already handle a command *committing* a transaction and continuing (e.g., VACUUM), but it was not quite prepared for a command *aborting* a transaction and continuing. In AtAbort_Portals(), remove the code that marks an active portal as failed. As the comment there already predicted, this doesn't work if the running command wants to keep running after transaction abort. And it's actually not necessary, because pquery.c is careful to run all portal code in a PG_TRY block and explicitly runs MarkPortalFailed() if there is an exception. So the code in AtAbort_Portals() is never used anyway. In AtAbort_Portals() and AtCleanup_Portals(), we need to be careful not to clean up active portals too much. This mirrors similar code in PreCommit_Portals(). - PL/Perl Gets new functions spi_commit() and spi_rollback() - PL/pgSQL Gets new commands COMMIT and ROLLBACK. Update the PL/SQL porting example in the documentation to reflect that transactions are now possible in procedures. - PL/Python Gets new functions plpy.commit and plpy.rollback. - PL/Tcl Gets new commands commit and rollback. Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
2018-01-22 14:30:16 +01:00
extern int SPI_connect_ext(int options);
extern int SPI_finish(void);
extern int SPI_execute(const char *src, bool read_only, long tcount);
2007-11-15 22:14:46 +01:00
extern int SPI_execute_plan(SPIPlanPtr plan, Datum *Values, const char *Nulls,
2005-10-15 04:49:52 +02:00
bool read_only, long tcount);
extern int SPI_execute_plan_with_paramlist(SPIPlanPtr plan,
2010-02-26 03:01:40 +01:00
ParamListInfo params,
bool read_only, long tcount);
extern int SPI_exec(const char *src, long tcount);
2007-11-15 22:14:46 +01:00
extern int SPI_execp(SPIPlanPtr plan, Datum *Values, const char *Nulls,
2005-10-15 04:49:52 +02:00
long tcount);
2007-11-15 22:14:46 +01:00
extern int SPI_execute_snapshot(SPIPlanPtr plan,
2005-10-15 04:49:52 +02:00
Datum *Values, const char *Nulls,
Snapshot snapshot,
Snapshot crosscheck_snapshot,
bool read_only, bool fire_triggers, long tcount);
extern int SPI_execute_with_args(const char *src,
int nargs, Oid *argtypes,
Datum *Values, const char *Nulls,
bool read_only, long tcount);
extern SPIPlanPtr SPI_prepare(const char *src, int nargs, Oid *argtypes);
extern SPIPlanPtr SPI_prepare_cursor(const char *src, int nargs, Oid *argtypes,
2007-11-15 22:14:46 +01:00
int cursorOptions);
extern SPIPlanPtr SPI_prepare_params(const char *src,
2010-02-26 03:01:40 +01:00
ParserSetupHook parserSetup,
void *parserSetupArg,
int cursorOptions);
extern int SPI_keepplan(SPIPlanPtr plan);
extern SPIPlanPtr SPI_saveplan(SPIPlanPtr plan);
extern int SPI_freeplan(SPIPlanPtr plan);
1997-09-04 15:26:19 +02:00
extern Oid SPI_getargtypeid(SPIPlanPtr plan, int argIndex);
extern int SPI_getargcount(SPIPlanPtr plan);
extern bool SPI_is_cursor_plan(SPIPlanPtr plan);
extern bool SPI_plan_is_valid(SPIPlanPtr plan);
extern const char *SPI_result_code_string(int code);
Fix plpgsql's reporting of plan-time errors in possibly-simple expressions. exec_simple_check_plan and exec_eval_simple_expr attempted to call GetCachedPlan directly. This meant that if an error was thrown during planning, the resulting context traceback would not include the line normally contributed by _SPI_error_callback. This is already inconsistent, but just to be really odd, a re-execution of the very same expression *would* show the additional context line, because we'd already have cached the plan and marked the expression as non-simple. The problem is easy to demonstrate in 9.2 and HEAD because planning of a cached plan doesn't occur at all until GetCachedPlan is done. In earlier versions, it could only be an issue if initial planning had succeeded, then a replan was forced (already somewhat improbable for a simple expression), and the replan attempt failed. Since the issue is mainly cosmetic in older branches anyway, it doesn't seem worth the risk of trying to fix it there. It is worth fixing in 9.2 since the instability of the context printout can affect the results of GET STACKED DIAGNOSTICS, as per a recent discussion on pgsql-novice. To fix, introduce a SPI function that wraps GetCachedPlan while installing the correct callback function. Use this instead of calling GetCachedPlan directly from plpgsql. Also introduce a wrapper function for extracting a SPI plan's CachedPlanSource list. This lets us stop including spi_priv.h in pl_exec.c, which was never a very good idea from a modularity standpoint. In passing, fix a similar inconsistency that could occur in SPI_cursor_open, which was also calling GetCachedPlan without setting up a context callback.
2013-01-31 02:02:23 +01:00
extern List *SPI_plan_get_plan_sources(SPIPlanPtr plan);
extern CachedPlan *SPI_plan_get_cached_plan(SPIPlanPtr plan);
extern HeapTuple SPI_copytuple(HeapTuple tuple);
extern HeapTupleHeader SPI_returntuple(HeapTuple tuple, TupleDesc tupdesc);
extern HeapTuple SPI_modifytuple(Relation rel, HeapTuple tuple, int natts,
int *attnum, Datum *Values, const char *Nulls);
extern int SPI_fnumber(TupleDesc tupdesc, const char *fname);
1997-09-11 09:24:37 +02:00
extern char *SPI_fname(TupleDesc tupdesc, int fnumber);
extern char *SPI_getvalue(HeapTuple tuple, TupleDesc tupdesc, int fnumber);
extern Datum SPI_getbinval(HeapTuple tuple, TupleDesc tupdesc, int fnumber, bool *isnull);
extern char *SPI_gettype(TupleDesc tupdesc, int fnumber);
extern Oid SPI_gettypeid(TupleDesc tupdesc, int fnumber);
extern char *SPI_getrelname(Relation rel);
extern char *SPI_getnspname(Relation rel);
extern void *SPI_palloc(Size size);
extern void *SPI_repalloc(void *pointer, Size size);
extern void SPI_pfree(void *pointer);
Support "expanded" objects, particularly arrays, for better performance. This patch introduces the ability for complex datatypes to have an in-memory representation that is different from their on-disk format. On-disk formats are typically optimized for minimal size, and in any case they can't contain pointers, so they are often not well-suited for computation. Now a datatype can invent an "expanded" in-memory format that is better suited for its operations, and then pass that around among the C functions that operate on the datatype. There are also provisions (rudimentary as yet) to allow an expanded object to be modified in-place under suitable conditions, so that operations like assignment to an element of an array need not involve copying the entire array. The initial application for this feature is arrays, but it is not hard to foresee using it for other container types like JSON, XML and hstore. I have hopes that it will be useful to PostGIS as well. In this initial implementation, a few heuristics have been hard-wired into plpgsql to improve performance for arrays that are stored in plpgsql variables. We would like to generalize those hacks so that other datatypes can obtain similar improvements, but figuring out some appropriate APIs is left as a task for future work. (The heuristics themselves are probably not optimal yet, either, as they sometimes force expansion of arrays that would be better left alone.) Preliminary performance testing shows impressive speed gains for plpgsql functions that do element-by-element access or update of large arrays. There are other cases that get a little slower, as a result of added array format conversions; but we can hope to improve anything that's annoyingly bad. In any case most applications should see a net win. Tom Lane, reviewed by Andres Freund
2015-05-14 18:08:40 +02:00
extern Datum SPI_datumTransfer(Datum value, bool typByVal, int typLen);
extern void SPI_freetuple(HeapTuple pointer);
extern void SPI_freetuptable(SPITupleTable *tuptable);
extern Portal SPI_cursor_open(const char *name, SPIPlanPtr plan,
Datum *Values, const char *Nulls, bool read_only);
extern Portal SPI_cursor_open_with_args(const char *name,
const char *src,
int nargs, Oid *argtypes,
Datum *Values, const char *Nulls,
bool read_only, int cursorOptions);
extern Portal SPI_cursor_open_with_paramlist(const char *name, SPIPlanPtr plan,
ParamListInfo params, bool read_only);
extern Portal SPI_cursor_find(const char *name);
extern void SPI_cursor_fetch(Portal portal, bool forward, long count);
extern void SPI_cursor_move(Portal portal, bool forward, long count);
extern void SPI_scroll_cursor_fetch(Portal, FetchDirection direction, long count);
extern void SPI_scroll_cursor_move(Portal, FetchDirection direction, long count);
extern void SPI_cursor_close(Portal portal);
1997-08-29 11:05:57 +02:00
extern int SPI_register_relation(EphemeralNamedRelation enr);
extern int SPI_unregister_relation(const char *name);
extern int SPI_register_trigger_data(TriggerData *tdata);
Transaction control in PL procedures In each of the supplied procedural languages (PL/pgSQL, PL/Perl, PL/Python, PL/Tcl), add language-specific commit and rollback functions/commands to control transactions in procedures in that language. Add similar underlying functions to SPI. Some additional cleanup so that transaction commit or abort doesn't blow away data structures still used by the procedure call. Add execution context tracking to CALL and DO statements so that transaction control commands can only be issued in top-level procedure and block calls, not function calls or other procedure or block calls. - SPI Add a new function SPI_connect_ext() that is like SPI_connect() but allows passing option flags. The only option flag right now is SPI_OPT_NONATOMIC. A nonatomic SPI connection can execute transaction control commands, otherwise it's not allowed. This is meant to be passed down from CALL and DO statements which themselves know in which context they are called. A nonatomic SPI connection uses different memory management. A normal SPI connection allocates its memory in TopTransactionContext. For nonatomic connections we use PortalContext instead. As the comment in SPI_connect_ext() (previously SPI_connect()) indicates, one could potentially use PortalContext in all cases, but it seems safest to leave the existing uses alone, because this stuff is complicated enough already. SPI also gets new functions SPI_start_transaction(), SPI_commit(), and SPI_rollback(), which can be used by PLs to implement their transaction control logic. - portalmem.c Some adjustments were made in the code that cleans up portals at transaction abort. The portal code could already handle a command *committing* a transaction and continuing (e.g., VACUUM), but it was not quite prepared for a command *aborting* a transaction and continuing. In AtAbort_Portals(), remove the code that marks an active portal as failed. As the comment there already predicted, this doesn't work if the running command wants to keep running after transaction abort. And it's actually not necessary, because pquery.c is careful to run all portal code in a PG_TRY block and explicitly runs MarkPortalFailed() if there is an exception. So the code in AtAbort_Portals() is never used anyway. In AtAbort_Portals() and AtCleanup_Portals(), we need to be careful not to clean up active portals too much. This mirrors similar code in PreCommit_Portals(). - PL/Perl Gets new functions spi_commit() and spi_rollback() - PL/pgSQL Gets new commands COMMIT and ROLLBACK. Update the PL/SQL porting example in the documentation to reflect that transactions are now possible in procedures. - PL/Python Gets new functions plpy.commit and plpy.rollback. - PL/Tcl Gets new commands commit and rollback. Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
2018-01-22 14:30:16 +01:00
extern void SPI_start_transaction(void);
extern void SPI_commit(void);
extern void SPI_rollback(void);
extern void SPICleanup(void);
extern void AtEOXact_SPI(bool isCommit);
extern void AtEOSubXact_SPI(bool isCommit, SubTransactionId mySubid);
extern bool SPI_inside_nonatomic_context(void);
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
#endif /* SPI_H */