postgresql/src/include/executor/tuptable.h

174 lines
8.4 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* tuptable.h
* tuple table support stuff
*
*
2017-01-03 19:48:53 +01:00
* Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
2010-09-20 22:08:53 +02:00
* src/include/executor/tuptable.h
*
*-------------------------------------------------------------------------
*/
#ifndef TUPTABLE_H
#define TUPTABLE_H
#include "access/htup.h"
#include "access/tupdesc.h"
2006-07-13 19:47:02 +02:00
#include "storage/buf.h"
/*----------
* The executor stores tuples in a "tuple table" which is a List of
* independent TupleTableSlots. There are several cases we need to handle:
* 1. physical tuple in a disk buffer page
* 2. physical tuple constructed in palloc'ed memory
* 3. "minimal" physical tuple constructed in palloc'ed memory
* 4. "virtual" tuple consisting of Datum/isnull arrays
*
* The first two cases are similar in that they both deal with "materialized"
* tuples, but resource management is different. For a tuple in a disk page
* we need to hold a pin on the buffer until the TupleTableSlot's reference
* to the tuple is dropped; while for a palloc'd tuple we usually want the
* tuple pfree'd when the TupleTableSlot's reference is dropped.
*
* A "minimal" tuple is handled similarly to a palloc'd regular tuple.
* At present, minimal tuples never are stored in buffers, so there is no
* parallel to case 1. Note that a minimal tuple has no "system columns".
* (Actually, it could have an OID, but we have no need to access the OID.)
*
* A "virtual" tuple is an optimization used to minimize physical data
* copying in a nest of plan nodes. Any pass-by-reference Datums in the
* tuple point to storage that is not directly associated with the
* TupleTableSlot; generally they will point to part of a tuple stored in
* a lower plan node's output TupleTableSlot, or to a function result
* constructed in a plan node's per-tuple econtext. It is the responsibility
* of the generating plan node to be sure these resources are not released
* for as long as the virtual tuple needs to be valid. We only use virtual
* tuples in the result slots of plan nodes --- tuples to be copied anywhere
* else need to be "materialized" into physical tuples. Note also that a
* virtual tuple does not have any "system columns".
*
* It is also possible for a TupleTableSlot to hold both physical and minimal
* copies of a tuple. This is done when the slot is requested to provide
* the format other than the one it currently holds. (Originally we attempted
* to handle such requests by replacing one format with the other, but that
* had the fatal defect of invalidating any pass-by-reference Datums pointing
* into the existing slot contents.) Both copies must contain identical data
* payloads when this is the case.
*
* The Datum/isnull arrays of a TupleTableSlot serve double duty. When the
* slot contains a virtual tuple, they are the authoritative data. When the
* slot contains a physical tuple, the arrays contain data extracted from
* the tuple. (In this state, any pass-by-reference Datums point into
* the physical tuple.) The extracted information is built "lazily",
* ie, only as needed. This serves to avoid repeated extraction of data
* from the physical tuple.
*
* A TupleTableSlot can also be "empty", holding no valid data. This is
* the only valid state for a freshly-created slot that has not yet had a
* tuple descriptor assigned to it. In this state, tts_isempty must be
* TRUE, tts_shouldFree FALSE, tts_tuple NULL, tts_buffer InvalidBuffer,
* and tts_nvalid zero.
*
* The tupleDescriptor is simply referenced, not copied, by the TupleTableSlot
* code. The caller of ExecSetSlotDescriptor() is responsible for providing
* a descriptor that will live as long as the slot does. (Typically, both
* slots and descriptors are in per-query memory and are freed by memory
* context deallocation at query end; so it's not worth providing any extra
* mechanism to do more. However, the slot will increment the tupdesc
* reference count if a reference-counted tupdesc is supplied.)
*
* When tts_shouldFree is true, the physical tuple is "owned" by the slot
* and should be freed when the slot's reference to the tuple is dropped.
1999-02-23 08:36:31 +01:00
*
* If tts_buffer is not InvalidBuffer, then the slot is holding a pin
* on the indicated buffer page; drop the pin when we release the
* slot's reference to that buffer. (tts_shouldFree should always be
* false in such a case, since presumably tts_tuple is pointing at the
* buffer page.)
1999-02-23 08:36:31 +01:00
*
* tts_nvalid indicates the number of valid columns in the tts_values/isnull
* arrays. When the slot is holding a "virtual" tuple this must be equal
* to the descriptor's natts. When the slot is holding a physical tuple
* this is equal to the number of columns we have extracted (we always
* extract columns from left to right, so there are no holes).
*
* tts_values/tts_isnull are allocated when a descriptor is assigned to the
* slot; they are of length equal to the descriptor's natts.
*
* tts_mintuple must always be NULL if the slot does not hold a "minimal"
* tuple. When it does, tts_mintuple points to the actual MinimalTupleData
* object (the thing to be pfree'd if tts_shouldFreeMin is true). If the slot
* has only a minimal and not also a regular physical tuple, then tts_tuple
* points at tts_minhdr and the fields of that struct are set correctly
* for access to the minimal tuple; in particular, tts_minhdr.t_data points
* MINIMAL_TUPLE_OFFSET bytes before tts_mintuple. This allows column
* extraction to treat the case identically to regular physical tuples.
*
* tts_slow/tts_off are saved state for slot_deform_tuple, and should not
* be touched by any other code.
*----------
*/
typedef struct TupleTableSlot
{
NodeTag type;
2005-10-15 04:49:52 +02:00
bool tts_isempty; /* true = slot is empty */
bool tts_shouldFree; /* should pfree tts_tuple? */
bool tts_shouldFreeMin; /* should pfree tts_mintuple? */
bool tts_slow; /* saved state for slot_deform_tuple */
HeapTuple tts_tuple; /* physical tuple, or NULL if virtual */
TupleDesc tts_tupleDescriptor; /* slot's tuple descriptor */
MemoryContext tts_mcxt; /* slot itself is in this context */
Buffer tts_buffer; /* tuple's buffer, or InvalidBuffer */
int tts_nvalid; /* # of valid values in tts_values */
Datum *tts_values; /* current per-attribute values */
bool *tts_isnull; /* current per-attribute isnull flags */
MinimalTuple tts_mintuple; /* minimal tuple, or NULL if none */
HeapTupleData tts_minhdr; /* workspace for minimal-tuple-only case */
long tts_off; /* saved state for slot_deform_tuple */
} TupleTableSlot;
#define TTS_HAS_PHYSICAL_TUPLE(slot) \
((slot)->tts_tuple != NULL && (slot)->tts_tuple != &((slot)->tts_minhdr))
/*
* TupIsNull -- is a TupleTableSlot empty?
*/
#define TupIsNull(slot) \
((slot) == NULL || (slot)->tts_isempty)
/* in executor/execTuples.c */
extern TupleTableSlot *MakeTupleTableSlot(void);
extern TupleTableSlot *ExecAllocTableSlot(List **tupleTable);
extern void ExecResetTupleTable(List *tupleTable, bool shouldFree);
extern TupleTableSlot *MakeSingleTupleTableSlot(TupleDesc tupdesc);
extern void ExecDropSingleTupleTableSlot(TupleTableSlot *slot);
extern void ExecSetSlotDescriptor(TupleTableSlot *slot, TupleDesc tupdesc);
extern TupleTableSlot *ExecStoreTuple(HeapTuple tuple,
TupleTableSlot *slot,
Buffer buffer,
bool shouldFree);
extern TupleTableSlot *ExecStoreMinimalTuple(MinimalTuple mtup,
2006-10-04 02:30:14 +02:00
TupleTableSlot *slot,
bool shouldFree);
extern TupleTableSlot *ExecClearTuple(TupleTableSlot *slot);
extern TupleTableSlot *ExecStoreVirtualTuple(TupleTableSlot *slot);
extern TupleTableSlot *ExecStoreAllNullTuple(TupleTableSlot *slot);
extern HeapTuple ExecCopySlotTuple(TupleTableSlot *slot);
extern MinimalTuple ExecCopySlotMinimalTuple(TupleTableSlot *slot);
extern HeapTuple ExecFetchSlotTuple(TupleTableSlot *slot);
extern MinimalTuple ExecFetchSlotMinimalTuple(TupleTableSlot *slot);
extern Datum ExecFetchSlotTupleDatum(TupleTableSlot *slot);
extern HeapTuple ExecMaterializeSlot(TupleTableSlot *slot);
extern TupleTableSlot *ExecCopySlot(TupleTableSlot *dstslot,
2005-10-15 04:49:52 +02:00
TupleTableSlot *srcslot);
/* in access/common/heaptuple.c */
extern Datum slot_getattr(TupleTableSlot *slot, int attnum, bool *isnull);
extern void slot_getallattrs(TupleTableSlot *slot);
extern void slot_getsomeattrs(TupleTableSlot *slot, int attnum);
extern bool slot_attisnull(TupleTableSlot *slot, int attnum);
#endif /* TUPTABLE_H */