postgresql/src/backend/access/nbtree/nbtsearch.c

1173 lines
34 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* btsearch.c--
* search code for postgres btrees.
*
* Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/access/nbtree/nbtsearch.c,v 1.5 1996/10/30 06:08:01 scrappy Exp $
*
*-------------------------------------------------------------------------
*/
#include <time.h>
1996-10-20 12:53:18 +02:00
#include "postgres.h"
1996-10-20 12:53:18 +02:00
#include "catalog/pg_attribute.h"
#include "access/attnum.h"
#include "nodes/pg_list.h"
#include "access/tupdesc.h"
#include "storage/fd.h"
#include "catalog/pg_am.h"
#include "catalog/pg_class.h"
#include "nodes/nodes.h"
#include "rewrite/prs2lock.h"
#include "access/skey.h"
#include "access/strat.h"
#include "utils/rel.h"
1996-10-20 12:53:18 +02:00
#include "storage/block.h"
#include "storage/off.h"
#include "storage/itemptr.h"
#include "access/itup.h"
#include "access/funcindex.h"
#include "storage/itemid.h"
#include "storage/item.h"
#include "storage/buf.h"
#include "storage/bufpage.h"
#include "storage/bufmgr.h"
1996-10-20 12:53:18 +02:00
#include "utils/nabstime.h"
#include "access/htup.h"
#include "utils/tqual.h"
#include "utils/palloc.h"
1996-10-20 12:53:18 +02:00
#include "access/relscan.h"
#include "access/sdir.h"
#include "access/nbtree.h"
#include "access/genam.h"
#include "fmgr.h"
static BTStack _bt_searchr(Relation rel, int keysz, ScanKey scankey, Buffer *bufP, BTStack stack_in);
static OffsetNumber _bt_firsteq(Relation rel, TupleDesc itupdesc, Page page, Size keysz, ScanKey scankey, OffsetNumber offnum);
static int _bt_compare(Relation rel, TupleDesc itupdesc, Page page, int keysz, ScanKey scankey, OffsetNumber offnum);
static bool _bt_twostep(IndexScanDesc scan, Buffer *bufP, ScanDirection dir);
static RetrieveIndexResult _bt_endpoint(IndexScanDesc scan, ScanDirection dir);
/*
* _bt_search() -- Search for a scan key in the index.
*
* This routine is actually just a helper that sets things up and
* calls a recursive-descent search routine on the tree.
*/
BTStack
_bt_search(Relation rel, int keysz, ScanKey scankey, Buffer *bufP)
{
*bufP = _bt_getroot(rel, BT_READ);
return (_bt_searchr(rel, keysz, scankey, bufP, (BTStack) NULL));
}
/*
* _bt_searchr() -- Search the tree recursively for a particular scankey.
*/
static BTStack
_bt_searchr(Relation rel,
int keysz,
ScanKey scankey,
Buffer *bufP,
BTStack stack_in)
{
BTStack stack;
OffsetNumber offnum;
Page page;
BTPageOpaque opaque;
BlockNumber par_blkno;
BlockNumber blkno;
ItemId itemid;
BTItem btitem;
BTItem item_save;
int item_nbytes;
IndexTuple itup;
/* if this is a leaf page, we're done */
page = BufferGetPage(*bufP);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
if (opaque->btpo_flags & BTP_LEAF)
return (stack_in);
/*
* Find the appropriate item on the internal page, and get the child
* page that it points to.
*/
par_blkno = BufferGetBlockNumber(*bufP);
offnum = _bt_binsrch(rel, *bufP, keysz, scankey, BT_DESCENT);
itemid = PageGetItemId(page, offnum);
btitem = (BTItem) PageGetItem(page, itemid);
itup = &(btitem->bti_itup);
blkno = ItemPointerGetBlockNumber(&(itup->t_tid));
/*
* We need to save the bit image of the index entry we chose in the
* parent page on a stack. In case we split the tree, we'll use this
* bit image to figure out what our real parent page is, in case the
* parent splits while we're working lower in the tree. See the paper
* by Lehman and Yao for how this is detected and handled. (We use
* unique OIDs to disambiguate duplicate keys in the index -- Lehman
* and Yao disallow duplicate keys).
*/
item_nbytes = ItemIdGetLength(itemid);
item_save = (BTItem) palloc(item_nbytes);
memmove((char *) item_save, (char *) btitem, item_nbytes);
stack = (BTStack) palloc(sizeof(BTStackData));
stack->bts_blkno = par_blkno;
stack->bts_offset = offnum;
stack->bts_btitem = item_save;
stack->bts_parent = stack_in;
/* drop the read lock on the parent page and acquire one on the child */
_bt_relbuf(rel, *bufP, BT_READ);
*bufP = _bt_getbuf(rel, blkno, BT_READ);
/*
* Race -- the page we just grabbed may have split since we read its
* pointer in the parent. If it has, we may need to move right to its
* new sibling. Do that.
*/
*bufP = _bt_moveright(rel, *bufP, keysz, scankey, BT_READ);
/* okay, all set to move down a level */
return (_bt_searchr(rel, keysz, scankey, bufP, stack));
}
/*
* _bt_moveright() -- move right in the btree if necessary.
*
* When we drop and reacquire a pointer to a page, it is possible that
* the page has changed in the meanwhile. If this happens, we're
* guaranteed that the page has "split right" -- that is, that any
* data that appeared on the page originally is either on the page
* or strictly to the right of it.
*
* This routine decides whether or not we need to move right in the
* tree by examining the high key entry on the page. If that entry
* is strictly less than one we expect to be on the page, then our
* picture of the page is incorrect and we need to move right.
*
* On entry, we have the buffer pinned and a lock of the proper type.
* If we move right, we release the buffer and lock and acquire the
* same on the right sibling.
*/
Buffer
_bt_moveright(Relation rel,
Buffer buf,
int keysz,
ScanKey scankey,
int access)
{
Page page;
BTPageOpaque opaque;
ItemId hikey;
ItemId itemid;
BlockNumber rblkno;
page = BufferGetPage(buf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
/* if we're on a rightmost page, we don't need to move right */
if (P_RIGHTMOST(opaque))
return (buf);
/* by convention, item 0 on non-rightmost pages is the high key */
hikey = PageGetItemId(page, P_HIKEY);
/*
* If the scan key that brought us to this page is >= the high key
* stored on the page, then the page has split and we need to move
* right.
*/
if (_bt_skeycmp(rel, keysz, scankey, page, hikey,
BTGreaterEqualStrategyNumber)) {
/* move right as long as we need to */
do {
/*
* If this page consists of all duplicate keys (hikey and first
* key on the page have the same value), then we don't need to
* step right.
*/
if (PageGetMaxOffsetNumber(page) > P_HIKEY) {
itemid = PageGetItemId(page, P_FIRSTKEY);
if (_bt_skeycmp(rel, keysz, scankey, page, itemid,
BTEqualStrategyNumber)) {
/* break is for the "move right" while loop */
break;
}
}
/* step right one page */
rblkno = opaque->btpo_next;
_bt_relbuf(rel, buf, access);
buf = _bt_getbuf(rel, rblkno, access);
page = BufferGetPage(buf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
hikey = PageGetItemId(page, P_HIKEY);
} while (! P_RIGHTMOST(opaque)
&& _bt_skeycmp(rel, keysz, scankey, page, hikey,
BTGreaterEqualStrategyNumber));
}
return (buf);
}
/*
* _bt_skeycmp() -- compare a scan key to a particular item on a page using
* a requested strategy (<, <=, =, >=, >).
*
* We ignore the unique OIDs stored in the btree item here. Those
* numbers are intended for use internally only, in repositioning a
* scan after a page split. They do not impose any meaningful ordering.
*
* The comparison is A <op> B, where A is the scan key and B is the
* tuple pointed at by itemid on page.
*/
bool
_bt_skeycmp(Relation rel,
Size keysz,
ScanKey scankey,
Page page,
ItemId itemid,
StrategyNumber strat)
{
BTItem item;
IndexTuple indexTuple;
TupleDesc tupDes;
ScanKey entry;
int i;
Datum attrDatum;
Datum keyDatum;
bool compare;
bool isNull;
item = (BTItem) PageGetItem(page, itemid);
indexTuple = &(item->bti_itup);
tupDes = RelationGetTupleDescriptor(rel);
/* see if the comparison is true for all of the key attributes */
for (i=1; i <= keysz; i++) {
entry = &scankey[i-1];
attrDatum = index_getattr(indexTuple,
entry->sk_attno,
tupDes,
&isNull);
keyDatum = entry->sk_argument;
/*
* This may happen in a nested loop if an attribute used
* as scan key is null. DZ 29-10-1996
*/
if ((entry->sk_flags & SK_ISNULL) || (isNull)) {
if ((entry->sk_flags & SK_ISNULL) && (isNull)) {
return (true);
} else {
return (false);
}
}
compare = _bt_invokestrat(rel, i, strat, keyDatum, attrDatum);
if (!compare)
return (false);
}
return (true);
}
/*
* _bt_binsrch() -- Do a binary search for a key on a particular page.
*
* The scankey we get has the compare function stored in the procedure
* entry of each data struct. We invoke this regproc to do the
* comparison for every key in the scankey. _bt_binsrch() returns
* the OffsetNumber of the first matching key on the page, or the
* OffsetNumber at which the matching key would appear if it were
* on this page.
*
* By the time this procedure is called, we're sure we're looking
* at the right page -- don't need to walk right. _bt_binsrch() has
* no lock or refcount side effects on the buffer.
*/
OffsetNumber
_bt_binsrch(Relation rel,
Buffer buf,
int keysz,
ScanKey scankey,
int srchtype)
{
TupleDesc itupdesc;
Page page;
BTPageOpaque opaque;
OffsetNumber low, mid, high;
int result;
page = BufferGetPage(buf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
/* by convention, item 0 on any non-rightmost page is the high key */
low = mid = P_RIGHTMOST(opaque) ? P_HIKEY : P_FIRSTKEY;
high = PageGetMaxOffsetNumber(page);
/*
* Since for non-rightmost pages, the zeroeth item on the page is the
* high key, there are two notions of emptiness. One is if nothing
* appears on the page. The other is if nothing but the high key does.
* The reason we test high <= low, rather than high == low, is that
* after vacuuming there may be nothing *but* the high key on a page.
* In that case, given the scheme above, low = 1 and high = 0.
*/
if (PageIsEmpty(page) || (! P_RIGHTMOST(opaque) && high <= low))
return (low);
itupdesc = RelationGetTupleDescriptor(rel);
while ((high - low) > 1) {
mid = low + ((high - low) / 2);
result = _bt_compare(rel, itupdesc, page, keysz, scankey, mid);
if (result > 0)
low = mid;
else if (result < 0)
high = mid - 1;
else
return (_bt_firsteq(rel, itupdesc, page, keysz, scankey, mid));
}
/*
* We terminated because the endpoints got too close together. There
* are two cases to take care of.
*
* For non-insertion searches on internal pages, we want to point at
* the last key <, or first key =, the scankey on the page. This
* guarantees that we'll descend the tree correctly.
*
* For all other cases, we want to point at the first key >=
* the scankey on the page. This guarantees that scans and
* insertions will happen correctly.
*/
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
if (!(opaque->btpo_flags & BTP_LEAF) && srchtype == BT_DESCENT) {
/*
* We want the last key <, or first key ==, the scan key.
*/
result = _bt_compare(rel, itupdesc, page, keysz, scankey, high);
if (result == 0) {
return (_bt_firsteq(rel, itupdesc, page, keysz, scankey, high));
} else if (result > 0) {
return (high);
} else {
return (low);
}
} else {
/* we want the first key >= the scan key */
result = _bt_compare(rel, itupdesc, page, keysz, scankey, low);
if (result <= 0) {
return (low);
} else {
if (low == high)
return (OffsetNumberNext(low));
result = _bt_compare(rel, itupdesc, page, keysz, scankey, high);
if (result <= 0)
return (high);
else
return (OffsetNumberNext(high));
}
}
}
static OffsetNumber
_bt_firsteq(Relation rel,
TupleDesc itupdesc,
Page page,
Size keysz,
ScanKey scankey,
OffsetNumber offnum)
{
BTPageOpaque opaque;
OffsetNumber limit;
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
/* skip the high key, if any */
limit = P_RIGHTMOST(opaque) ? P_HIKEY : P_FIRSTKEY;
/* walk backwards looking for the first key in the chain of duplicates */
while (offnum > limit
&& _bt_compare(rel, itupdesc, page,
keysz, scankey, OffsetNumberPrev(offnum)) == 0) {
offnum = OffsetNumberPrev(offnum);
}
return (offnum);
}
/*
* _bt_compare() -- Compare scankey to a particular tuple on the page.
*
* This routine returns:
* -1 if scankey < tuple at offnum;
* 0 if scankey == tuple at offnum;
* +1 if scankey > tuple at offnum.
*
* In order to avoid having to propagate changes up the tree any time
* a new minimal key is inserted, the leftmost entry on the leftmost
* page is less than all possible keys, by definition.
*/
static int
_bt_compare(Relation rel,
TupleDesc itupdesc,
Page page,
int keysz,
ScanKey scankey,
OffsetNumber offnum)
{
Datum datum;
BTItem btitem;
ItemId itemid;
IndexTuple itup;
BTPageOpaque opaque;
ScanKey entry;
AttrNumber attno;
int result;
int i;
bool null;
/*
* If this is a leftmost internal page, and if our comparison is
* with the first key on the page, then the item at that position is
* by definition less than the scan key.
*/
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
if (!(opaque->btpo_flags & BTP_LEAF)
&& P_LEFTMOST(opaque)
&& offnum == P_HIKEY) {
itemid = PageGetItemId(page, offnum);
/*
* we just have to believe that this will only be called with
* offnum == P_HIKEY when P_HIKEY is the OffsetNumber of the
* first actual data key (i.e., this is also a rightmost
* page). there doesn't seem to be any code that implies
* that the leftmost page is normally missing a high key as
* well as the rightmost page. but that implies that this
* code path only applies to the root -- which seems
* unlikely..
*/
if (! P_RIGHTMOST(opaque)) {
elog(WARN, "_bt_compare: invalid comparison to high key");
}
/*
* If the item on the page is equal to the scankey, that's
* okay to admit. We just can't claim that the first key on
* the page is greater than anything.
*/
if (_bt_skeycmp(rel, keysz, scankey, page, itemid,
BTEqualStrategyNumber)) {
return (0);
}
return (1);
}
btitem = (BTItem) PageGetItem(page, PageGetItemId(page, offnum));
itup = &(btitem->bti_itup);
/*
* The scan key is set up with the attribute number associated with each
* term in the key. It is important that, if the index is multi-key,
* the scan contain the first k key attributes, and that they be in
* order. If you think about how multi-key ordering works, you'll
* understand why this is.
*
* We don't test for violation of this condition here.
*/
for (i = 1; i <= keysz; i++) {
long tmpres;
entry = &scankey[i - 1];
attno = entry->sk_attno;
datum = index_getattr(itup, attno, itupdesc, &null);
/*
* This may happen in a nested loop if an attribute used
* as scan key is null. DZ 29-10-1996
*/
if ((entry->sk_flags & SK_ISNULL) || (null)) {
if ((entry->sk_flags & SK_ISNULL) && (null)) {
return (0);
} else {
return (null ? +1 : -1);
}
}
tmpres = (long) FMGR_PTR2(entry->sk_func, entry->sk_procedure,
entry->sk_argument, datum);
result = tmpres;
/* if the keys are unequal, return the difference */
if (result != 0)
return (result);
}
/* by here, the keys are equal */
return (0);
}
/*
* _bt_next() -- Get the next item in a scan.
*
* On entry, we have a valid currentItemData in the scan, and a
* read lock on the page that contains that item. We do not have
* the page pinned. We return the next item in the scan. On
* exit, we have the page containing the next item locked but not
* pinned.
*/
RetrieveIndexResult
_bt_next(IndexScanDesc scan, ScanDirection dir)
{
Relation rel;
Buffer buf;
Page page;
OffsetNumber offnum;
RetrieveIndexResult res;
BlockNumber blkno;
ItemPointer current;
ItemPointer iptr;
BTItem btitem;
IndexTuple itup;
BTScanOpaque so;
rel = scan->relation;
so = (BTScanOpaque) scan->opaque;
current = &(scan->currentItemData);
/*
* XXX 10 may 91: somewhere there's a bug in our management of the
* cached buffer for this scan. wei discovered it. the following
* is a workaround so he can work until i figure out what's going on.
*/
if (!BufferIsValid(so->btso_curbuf))
so->btso_curbuf = _bt_getbuf(rel, ItemPointerGetBlockNumber(current),
BT_READ);
/* we still have the buffer pinned and locked */
buf = so->btso_curbuf;
blkno = BufferGetBlockNumber(buf);
/* step one tuple in the appropriate direction */
if (!_bt_step(scan, &buf, dir))
return ((RetrieveIndexResult) NULL);
/* by here, current is the tuple we want to return */
offnum = ItemPointerGetOffsetNumber(current);
page = BufferGetPage(buf);
btitem = (BTItem) PageGetItem(page, PageGetItemId(page, offnum));
itup = &btitem->bti_itup;
if (_bt_checkqual(scan, itup)) {
iptr = (ItemPointer) palloc(sizeof(ItemPointerData));
memmove((char *) iptr, (char *) &(itup->t_tid),
sizeof(ItemPointerData));
res = FormRetrieveIndexResult(current, iptr);
/* remember which buffer we have pinned and locked */
so->btso_curbuf = buf;
} else {
ItemPointerSetInvalid(current);
so->btso_curbuf = InvalidBuffer;
_bt_relbuf(rel, buf, BT_READ);
res = (RetrieveIndexResult) NULL;
}
return (res);
}
/*
* _bt_first() -- Find the first item in a scan.
*
* We need to be clever about the type of scan, the operation it's
* performing, and the tree ordering. We return the RetrieveIndexResult
* of the first item in the tree that satisfies the qualification
* associated with the scan descriptor. On exit, the page containing
* the current index tuple is read locked and pinned, and the scan's
* opaque data entry is updated to include the buffer.
*/
RetrieveIndexResult
_bt_first(IndexScanDesc scan, ScanDirection dir)
{
Relation rel;
TupleDesc itupdesc;
Buffer buf;
Page page;
BTStack stack;
OffsetNumber offnum, maxoff;
BTItem btitem;
IndexTuple itup;
ItemPointer current;
ItemPointer iptr;
BlockNumber blkno;
StrategyNumber strat;
RetrieveIndexResult res;
RegProcedure proc;
int result;
BTScanOpaque so;
ScanKeyData skdata;
so = (BTScanOpaque) scan->opaque;
if ( so->qual_ok == 0 ) /* may be set by _bt_orderkeys */
return ((RetrieveIndexResult) NULL);
/* if we just need to walk down one edge of the tree, do that */
if (scan->scanFromEnd)
return (_bt_endpoint(scan, dir));
rel = scan->relation;
itupdesc = RelationGetTupleDescriptor(scan->relation);
current = &(scan->currentItemData);
/*
* Okay, we want something more complicated. What we'll do is use
* the first item in the scan key passed in (which has been correctly
* ordered to take advantage of index ordering) to position ourselves
* at the right place in the scan.
*/
/*
* XXX -- The attribute number stored in the scan key is the attno
* in the heap relation. We need to transmogrify this into
* the index relation attno here. For the moment, we have
* hardwired attno == 1.
*/
proc = index_getprocid(rel, 1, BTORDER_PROC);
ScanKeyEntryInitialize(&skdata, so->keyData[0].sk_flags, 1, proc,
so->keyData[0].sk_argument);
stack = _bt_search(rel, 1, &skdata, &buf);
_bt_freestack(stack);
/* find the nearest match to the manufactured scan key on the page */
offnum = _bt_binsrch(rel, buf, 1, &skdata, BT_DESCENT);
page = BufferGetPage(buf);
/*
* This will happen if the tree we're searching is entirely empty,
* or if we're doing a search for a key that would appear on an
* entirely empty internal page. In either case, there are no
* matching tuples in the index.
*/
if (PageIsEmpty(page)) {
ItemPointerSetInvalid(current);
so->btso_curbuf = InvalidBuffer;
_bt_relbuf(rel, buf, BT_READ);
return ((RetrieveIndexResult) NULL);
}
maxoff = PageGetMaxOffsetNumber(page);
if (offnum > maxoff)
offnum = maxoff;
blkno = BufferGetBlockNumber(buf);
ItemPointerSet(current, blkno, offnum);
/*
* Now find the right place to start the scan. Result is the
* value we're looking for minus the value we're looking at
* in the index.
*/
result = _bt_compare(rel, itupdesc, page, 1, &skdata, offnum);
strat = _bt_getstrat(rel, 1, so->keyData[0].sk_procedure);
switch (strat) {
case BTLessStrategyNumber:
if (result <= 0) {
do {
if (!_bt_twostep(scan, &buf, BackwardScanDirection))
break;
offnum = ItemPointerGetOffsetNumber(current);
page = BufferGetPage(buf);
result = _bt_compare(rel, itupdesc, page, 1, &skdata, offnum);
} while (result <= 0);
/* if this is true, the key we just looked at is gone */
if (result > 0)
(void) _bt_twostep(scan, &buf, ForwardScanDirection);
}
break;
case BTLessEqualStrategyNumber:
if (result >= 0) {
do {
if (!_bt_twostep(scan, &buf, ForwardScanDirection))
break;
offnum = ItemPointerGetOffsetNumber(current);
page = BufferGetPage(buf);
result = _bt_compare(rel, itupdesc, page, 1, &skdata, offnum);
} while (result >= 0);
if (result < 0)
(void) _bt_twostep(scan, &buf, BackwardScanDirection);
}
break;
case BTEqualStrategyNumber:
if (result != 0) {
_bt_relbuf(scan->relation, buf, BT_READ);
so->btso_curbuf = InvalidBuffer;
ItemPointerSetInvalid(&(scan->currentItemData));
return ((RetrieveIndexResult) NULL);
}
break;
case BTGreaterEqualStrategyNumber:
if (result < 0) {
do {
if (!_bt_twostep(scan, &buf, BackwardScanDirection))
break;
page = BufferGetPage(buf);
offnum = ItemPointerGetOffsetNumber(current);
result = _bt_compare(rel, itupdesc, page, 1, &skdata, offnum);
} while (result < 0);
if (result > 0)
(void) _bt_twostep(scan, &buf, ForwardScanDirection);
}
break;
case BTGreaterStrategyNumber:
if (result >= 0) {
do {
if (!_bt_twostep(scan, &buf, ForwardScanDirection))
break;
offnum = ItemPointerGetOffsetNumber(current);
page = BufferGetPage(buf);
result = _bt_compare(rel, itupdesc, page, 1, &skdata, offnum);
} while (result >= 0);
}
break;
}
/* okay, current item pointer for the scan is right */
offnum = ItemPointerGetOffsetNumber(current);
page = BufferGetPage(buf);
btitem = (BTItem) PageGetItem(page, PageGetItemId(page, offnum));
itup = &btitem->bti_itup;
if (_bt_checkqual(scan, itup)) {
iptr = (ItemPointer) palloc(sizeof(ItemPointerData));
memmove((char *) iptr, (char *) &(itup->t_tid),
sizeof(ItemPointerData));
res = FormRetrieveIndexResult(current, iptr);
pfree(iptr);
/* remember which buffer we have pinned */
so->btso_curbuf = buf;
} else {
ItemPointerSetInvalid(current);
so->btso_curbuf = InvalidBuffer;
_bt_relbuf(rel, buf, BT_READ);
res = (RetrieveIndexResult) NULL;
}
return (res);
}
/*
* _bt_step() -- Step one item in the requested direction in a scan on
* the tree.
*
* If no adjacent record exists in the requested direction, return
* false. Else, return true and set the currentItemData for the
* scan to the right thing.
*/
bool
_bt_step(IndexScanDesc scan, Buffer *bufP, ScanDirection dir)
{
Page page;
BTPageOpaque opaque;
OffsetNumber offnum, maxoff;
OffsetNumber start;
BlockNumber blkno;
BlockNumber obknum;
BTScanOpaque so;
ItemPointer current;
Relation rel;
rel = scan->relation;
current = &(scan->currentItemData);
offnum = ItemPointerGetOffsetNumber(current);
page = BufferGetPage(*bufP);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
so = (BTScanOpaque) scan->opaque;
maxoff = PageGetMaxOffsetNumber(page);
/* get the next tuple */
if (ScanDirectionIsForward(dir)) {
if (!PageIsEmpty(page) && offnum < maxoff) {
offnum = OffsetNumberNext(offnum);
} else {
/* if we're at end of scan, release the buffer and return */
blkno = opaque->btpo_next;
if (P_RIGHTMOST(opaque)) {
_bt_relbuf(rel, *bufP, BT_READ);
ItemPointerSetInvalid(current);
*bufP = so->btso_curbuf = InvalidBuffer;
return (false);
} else {
/* walk right to the next page with data */
_bt_relbuf(rel, *bufP, BT_READ);
for (;;) {
*bufP = _bt_getbuf(rel, blkno, BT_READ);
page = BufferGetPage(*bufP);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
maxoff = PageGetMaxOffsetNumber(page);
start = P_RIGHTMOST(opaque) ? P_HIKEY : P_FIRSTKEY;
if (!PageIsEmpty(page) && start <= maxoff) {
break;
} else {
blkno = opaque->btpo_next;
_bt_relbuf(rel, *bufP, BT_READ);
if (blkno == P_NONE) {
*bufP = so->btso_curbuf = InvalidBuffer;
ItemPointerSetInvalid(current);
return (false);
}
}
}
offnum = start;
}
}
} else if (ScanDirectionIsBackward(dir)) {
/* remember that high key is item zero on non-rightmost pages */
start = P_RIGHTMOST(opaque) ? P_HIKEY : P_FIRSTKEY;
if (offnum > start) {
offnum = OffsetNumberPrev(offnum);
} else {
/* if we're at end of scan, release the buffer and return */
blkno = opaque->btpo_prev;
if (P_LEFTMOST(opaque)) {
_bt_relbuf(rel, *bufP, BT_READ);
*bufP = so->btso_curbuf = InvalidBuffer;
ItemPointerSetInvalid(current);
return (false);
} else {
obknum = BufferGetBlockNumber(*bufP);
/* walk right to the next page with data */
_bt_relbuf(rel, *bufP, BT_READ);
for (;;) {
*bufP = _bt_getbuf(rel, blkno, BT_READ);
page = BufferGetPage(*bufP);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
maxoff = PageGetMaxOffsetNumber(page);
/*
* If the adjacent page just split, then we may have the
* wrong block. Handle this case. Because pages only
* split right, we don't have to worry about this failing
* to terminate.
*/
while (opaque->btpo_next != obknum) {
blkno = opaque->btpo_next;
_bt_relbuf(rel, *bufP, BT_READ);
*bufP = _bt_getbuf(rel, blkno, BT_READ);
page = BufferGetPage(*bufP);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
maxoff = PageGetMaxOffsetNumber(page);
}
/* don't consider the high key */
start = P_RIGHTMOST(opaque) ? P_HIKEY : P_FIRSTKEY;
/* anything to look at here? */
if (!PageIsEmpty(page) && maxoff >= start) {
break;
} else {
blkno = opaque->btpo_prev;
obknum = BufferGetBlockNumber(*bufP);
_bt_relbuf(rel, *bufP, BT_READ);
if (blkno == P_NONE) {
*bufP = so->btso_curbuf = InvalidBuffer;
ItemPointerSetInvalid(current);
return (false);
}
}
}
offnum = maxoff; /* XXX PageIsEmpty? */
}
}
}
blkno = BufferGetBlockNumber(*bufP);
so->btso_curbuf = *bufP;
ItemPointerSet(current, blkno, offnum);
return (true);
}
/*
* _bt_twostep() -- Move to an adjacent record in a scan on the tree,
* if an adjacent record exists.
*
* This is like _bt_step, except that if no adjacent record exists
* it restores us to where we were before trying the step. This is
* only hairy when you cross page boundaries, since the page you cross
* from could have records inserted or deleted, or could even split.
* This is unlikely, but we try to handle it correctly here anyway.
*
* This routine contains the only case in which our changes to Lehman
* and Yao's algorithm.
*
* Like step, this routine leaves the scan's currentItemData in the
* proper state and acquires a lock and pin on *bufP. If the twostep
* succeeded, we return true; otherwise, we return false.
*/
static bool
_bt_twostep(IndexScanDesc scan, Buffer *bufP, ScanDirection dir)
{
Page page;
BTPageOpaque opaque;
OffsetNumber offnum, maxoff;
OffsetNumber start;
ItemPointer current;
ItemId itemid;
int itemsz;
BTItem btitem;
BTItem svitem;
BlockNumber blkno;
blkno = BufferGetBlockNumber(*bufP);
page = BufferGetPage(*bufP);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
maxoff = PageGetMaxOffsetNumber(page);
current = &(scan->currentItemData);
offnum = ItemPointerGetOffsetNumber(current);
start = P_RIGHTMOST(opaque) ? P_HIKEY : P_FIRSTKEY;
/* if we're safe, just do it */
if (ScanDirectionIsForward(dir) && offnum < maxoff) { /* XXX PageIsEmpty? */
ItemPointerSet(current, blkno, OffsetNumberNext(offnum));
return (true);
} else if (ScanDirectionIsBackward(dir) && offnum > start) {
ItemPointerSet(current, blkno, OffsetNumberPrev(offnum));
return (true);
}
/* if we've hit end of scan we don't have to do any work */
if (ScanDirectionIsForward(dir) && P_RIGHTMOST(opaque)) {
return (false);
} else if (ScanDirectionIsBackward(dir) && P_LEFTMOST(opaque)) {
return (false);
}
/*
* Okay, it's off the page; let _bt_step() do the hard work, and we'll
* try to remember where we were. This is not guaranteed to work; this
* is the only place in the code where concurrency can screw us up,
* and it's because we want to be able to move in two directions in
* the scan.
*/
itemid = PageGetItemId(page, offnum);
itemsz = ItemIdGetLength(itemid);
btitem = (BTItem) PageGetItem(page, itemid);
svitem = (BTItem) palloc(itemsz);
memmove((char *) svitem, (char *) btitem, itemsz);
if (_bt_step(scan, bufP, dir)) {
pfree(svitem);
return (true);
}
/* try to find our place again */
*bufP = _bt_getbuf(scan->relation, blkno, BT_READ);
page = BufferGetPage(*bufP);
maxoff = PageGetMaxOffsetNumber(page);
while (offnum <= maxoff) {
itemid = PageGetItemId(page, offnum);
btitem = (BTItem) PageGetItem(page, itemid);
if (btitem->bti_oid == svitem->bti_oid) {
pfree(svitem);
ItemPointerSet(current, blkno, offnum);
return (false);
}
}
/*
* XXX crash and burn -- can't find our place. We can be a little
* smarter -- walk to the next page to the right, for example, since
* that's the only direction that splits happen in. Deletions screw
* us up less often since they're only done by the vacuum daemon.
*/
elog(WARN, "btree synchronization error: concurrent update botched scan");
return (false);
}
/*
* _bt_endpoint() -- Find the first or last key in the index.
*/
static RetrieveIndexResult
_bt_endpoint(IndexScanDesc scan, ScanDirection dir)
{
Relation rel;
Buffer buf;
Page page;
BTPageOpaque opaque;
ItemPointer current;
ItemPointer iptr;
OffsetNumber offnum, maxoff;
OffsetNumber start = 0;
BlockNumber blkno;
BTItem btitem;
IndexTuple itup;
BTScanOpaque so;
RetrieveIndexResult res;
rel = scan->relation;
current = &(scan->currentItemData);
buf = _bt_getroot(rel, BT_READ);
blkno = BufferGetBlockNumber(buf);
page = BufferGetPage(buf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
for (;;) {
if (opaque->btpo_flags & BTP_LEAF)
break;
if (ScanDirectionIsForward(dir)) {
offnum = P_RIGHTMOST(opaque) ? P_HIKEY : P_FIRSTKEY;
} else {
offnum = PageGetMaxOffsetNumber(page);
}
btitem = (BTItem) PageGetItem(page, PageGetItemId(page, offnum));
itup = &(btitem->bti_itup);
blkno = ItemPointerGetBlockNumber(&(itup->t_tid));
_bt_relbuf(rel, buf, BT_READ);
buf = _bt_getbuf(rel, blkno, BT_READ);
page = BufferGetPage(buf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
/*
* Race condition: If the child page we just stepped onto is
* in the process of being split, we need to make sure we're
* all the way at the right edge of the tree. See the paper
* by Lehman and Yao.
*/
if (ScanDirectionIsBackward(dir) && ! P_RIGHTMOST(opaque)) {
do {
blkno = opaque->btpo_next;
_bt_relbuf(rel, buf, BT_READ);
buf = _bt_getbuf(rel, blkno, BT_READ);
page = BufferGetPage(buf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
} while (! P_RIGHTMOST(opaque));
}
}
/* okay, we've got the {left,right}-most page in the tree */
maxoff = PageGetMaxOffsetNumber(page);
if (ScanDirectionIsForward(dir)) {
if (PageIsEmpty(page)) {
maxoff = FirstOffsetNumber;
} else {
maxoff = PageGetMaxOffsetNumber(page);
}
start = P_RIGHTMOST(opaque) ? P_HIKEY : P_FIRSTKEY;
if (PageIsEmpty(page) || start > maxoff) {
ItemPointerSet(current, blkno, maxoff);
if (!_bt_step(scan, &buf, BackwardScanDirection))
return ((RetrieveIndexResult) NULL);
start = ItemPointerGetOffsetNumber(current);
page = BufferGetPage(buf);
} else {
ItemPointerSet(current, blkno, start);
}
} else if (ScanDirectionIsBackward(dir)) {
if (PageIsEmpty(page)) {
ItemPointerSet(current, blkno, FirstOffsetNumber);
if (!_bt_step(scan, &buf, ForwardScanDirection))
return ((RetrieveIndexResult) NULL);
start = ItemPointerGetOffsetNumber(current);
page = BufferGetPage(buf);
} else {
start = PageGetMaxOffsetNumber(page);
ItemPointerSet(current, blkno, start);
}
} else {
elog(WARN, "Illegal scan direction %d", dir);
}
btitem = (BTItem) PageGetItem(page, PageGetItemId(page, start));
itup = &(btitem->bti_itup);
/* see if we picked a winner */
if (_bt_checkqual(scan, itup)) {
iptr = (ItemPointer) palloc(sizeof(ItemPointerData));
memmove((char *) iptr, (char *) &(itup->t_tid),
sizeof(ItemPointerData));
res = FormRetrieveIndexResult(current, iptr);
/* remember which buffer we have pinned */
so = (BTScanOpaque) scan->opaque;
so->btso_curbuf = buf;
} else {
_bt_relbuf(rel, buf, BT_READ);
res = (RetrieveIndexResult) NULL;
}
return (res);
}