Move per-agg and per-trans duplicate finding to the planner.

This has the advantage that the cost estimates for aggregates can count
the number of calls to transition and final functions correctly.

Bump catalog version, because views can contain Aggrefs.

Reviewed-by: Andres Freund
Discussion: https://www.postgresql.org/message-id/b2e3536b-1dbc-8303-c97e-89cb0b4a9a48%40iki.fi
This commit is contained in:
Heikki Linnakangas 2020-11-24 10:45:00 +02:00
parent e522024bd8
commit 0a2bc5d61e
29 changed files with 955 additions and 747 deletions

View File

@ -32,6 +32,7 @@
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/planmain.h"
#include "optimizer/prep.h"
#include "optimizer/restrictinfo.h"
#include "optimizer/tlist.h"
#include "parser/parsetree.h"
@ -2944,16 +2945,7 @@ estimate_path_cost_size(PlannerInfo *root,
MemSet(&aggcosts, 0, sizeof(AggClauseCosts));
if (root->parse->hasAggs)
{
get_agg_clause_costs(root, (Node *) fpinfo->grouped_tlist,
AGGSPLIT_SIMPLE, &aggcosts);
/*
* The cost of aggregates in the HAVING qual will be the same
* for each child as it is for the parent, so there's no need
* to use a translated version of havingQual.
*/
get_agg_clause_costs(root, (Node *) root->parse->havingQual,
AGGSPLIT_SIMPLE, &aggcosts);
get_agg_clause_costs(root, AGGSPLIT_SIMPLE, &aggcosts);
}
/* Get number of grouping columns and possible number of groups */

View File

@ -99,8 +99,7 @@ static void ExecBuildAggTransCall(ExprState *state, AggState *aggstate,
* the same as the per-query context of the associated ExprContext.
*
* Any Aggref, WindowFunc, or SubPlan nodes found in the tree are added to
* the lists of such nodes held by the parent PlanState (or more accurately,
* the AggrefExprState etc. nodes created for them are added).
* the lists of such nodes held by the parent PlanState.
*
* Note: there is no ExecEndExpr function; we assume that any resource
* cleanup needed will be handled by just releasing the memory context
@ -779,18 +778,15 @@ ExecInitExprRec(Expr *node, ExprState *state,
case T_Aggref:
{
Aggref *aggref = (Aggref *) node;
AggrefExprState *astate = makeNode(AggrefExprState);
scratch.opcode = EEOP_AGGREF;
scratch.d.aggref.astate = astate;
astate->aggref = aggref;
scratch.d.aggref.aggno = aggref->aggno;
if (state->parent && IsA(state->parent, AggState))
{
AggState *aggstate = (AggState *) state->parent;
aggstate->aggs = lappend(aggstate->aggs, astate);
aggstate->numaggs++;
aggstate->aggs = lappend(aggstate->aggs, aggref);
}
else
{

View File

@ -1494,12 +1494,12 @@ ExecInterpExpr(ExprState *state, ExprContext *econtext, bool *isnull)
* Returns a Datum whose value is the precomputed aggregate value
* found in the given expression context.
*/
AggrefExprState *aggref = op->d.aggref.astate;
int aggno = op->d.aggref.aggno;
Assert(econtext->ecxt_aggvalues != NULL);
*op->resvalue = econtext->ecxt_aggvalues[aggref->aggno];
*op->resnull = econtext->ecxt_aggnulls[aggref->aggno];
*op->resvalue = econtext->ecxt_aggvalues[aggno];
*op->resnull = econtext->ecxt_aggnulls[aggno];
EEO_NEXT();
}

View File

@ -465,14 +465,6 @@ static void build_pertrans_for_aggref(AggStatePerTrans pertrans,
Oid aggserialfn, Oid aggdeserialfn,
Datum initValue, bool initValueIsNull,
Oid *inputTypes, int numArguments);
static int find_compatible_peragg(Aggref *newagg, AggState *aggstate,
int lastaggno, List **same_input_transnos);
static int find_compatible_pertrans(AggState *aggstate, Aggref *newagg,
bool shareable,
Oid aggtransfn, Oid aggtranstype,
Oid aggserialfn, Oid aggdeserialfn,
Datum initValue, bool initValueIsNull,
List *transnos);
/*
@ -3244,9 +3236,11 @@ ExecInitAgg(Agg *node, EState *estate, int eflags)
Plan *outerPlan;
ExprContext *econtext;
TupleDesc scanDesc;
int numaggs,
transno,
aggno;
int max_aggno;
int max_transno;
int numaggrefs;
int numaggs;
int numtrans;
int phase;
int phaseidx;
ListCell *l;
@ -3422,9 +3416,9 @@ ExecInitAgg(Agg *node, EState *estate, int eflags)
* semantics, and it's forbidden by the spec. Because it is true, we
* don't need to worry about evaluating the aggs in any particular order.
*
* Note: execExpr.c finds Aggrefs for us, and adds their AggrefExprState
* nodes to aggstate->aggs. Aggrefs in the qual are found here; Aggrefs
* in the targetlist are found during ExecAssignProjectionInfo, below.
* Note: execExpr.c finds Aggrefs for us, and adds them to aggstate->aggs.
* Aggrefs in the qual are found here; Aggrefs in the targetlist are found
* during ExecAssignProjectionInfo, above.
*/
aggstate->ss.ps.qual =
ExecInitQual(node->plan.qual, (PlanState *) aggstate);
@ -3432,8 +3426,18 @@ ExecInitAgg(Agg *node, EState *estate, int eflags)
/*
* We should now have found all Aggrefs in the targetlist and quals.
*/
numaggs = aggstate->numaggs;
Assert(numaggs == list_length(aggstate->aggs));
numaggrefs = list_length(aggstate->aggs);
max_aggno = -1;
max_transno = -1;
foreach(l, aggstate->aggs)
{
Aggref *aggref = (Aggref *) lfirst(l);
max_aggno = Max(max_aggno, aggref->aggno);
max_transno = Max(max_transno, aggref->aggtransno);
}
numaggs = max_aggno + 1;
numtrans = max_transno + 1;
/*
* For each phase, prepare grouping set data and fmgr lookup data for
@ -3604,7 +3608,7 @@ ExecInitAgg(Agg *node, EState *estate, int eflags)
econtext->ecxt_aggnulls = (bool *) palloc0(sizeof(bool) * numaggs);
peraggs = (AggStatePerAgg) palloc0(sizeof(AggStatePerAggData) * numaggs);
pertransstates = (AggStatePerTrans) palloc0(sizeof(AggStatePerTransData) * numaggs);
pertransstates = (AggStatePerTrans) palloc0(sizeof(AggStatePerTransData) * numtrans);
aggstate->peragg = peraggs;
aggstate->pertrans = pertransstates;
@ -3695,92 +3699,41 @@ ExecInitAgg(Agg *node, EState *estate, int eflags)
select_current_set(aggstate, 0, false);
}
/* -----------------
/*
* Perform lookups of aggregate function info, and initialize the
* unchanging fields of the per-agg and per-trans data.
*
* We try to optimize by detecting duplicate aggregate functions so that
* their state and final values are re-used, rather than needlessly being
* re-calculated independently. We also detect aggregates that are not
* the same, but which can share the same transition state.
*
* Scenarios:
*
* 1. Identical aggregate function calls appear in the query:
*
* SELECT SUM(x) FROM ... HAVING SUM(x) > 0
*
* Since these aggregates are identical, we only need to calculate
* the value once. Both aggregates will share the same 'aggno' value.
*
* 2. Two different aggregate functions appear in the query, but the
* aggregates have the same arguments, transition functions and
* initial values (and, presumably, different final functions):
*
* SELECT AVG(x), STDDEV(x) FROM ...
*
* In this case we must create a new peragg for the varying aggregate,
* and we need to call the final functions separately, but we need
* only run the transition function once. (This requires that the
* final functions be nondestructive of the transition state, but
* that's required anyway for other reasons.)
*
* For either of these optimizations to be valid, all aggregate properties
* used in the transition phase must be the same, including any modifiers
* such as ORDER BY, DISTINCT and FILTER, and the arguments mustn't
* contain any volatile functions.
* -----------------
*/
aggno = -1;
transno = -1;
foreach(l, aggstate->aggs)
{
AggrefExprState *aggrefstate = (AggrefExprState *) lfirst(l);
Aggref *aggref = aggrefstate->aggref;
Aggref *aggref = lfirst(l);
AggStatePerAgg peragg;
AggStatePerTrans pertrans;
int existing_aggno;
int existing_transno;
List *same_input_transnos;
Oid inputTypes[FUNC_MAX_ARGS];
int numArguments;
int numDirectArgs;
HeapTuple aggTuple;
Form_pg_aggregate aggform;
AclResult aclresult;
Oid transfn_oid,
finalfn_oid;
bool shareable;
Oid finalfn_oid;
Oid serialfn_oid,
deserialfn_oid;
Oid aggOwner;
Expr *finalfnexpr;
Oid aggtranstype;
Datum textInitVal;
Datum initValue;
bool initValueIsNull;
/* Planner should have assigned aggregate to correct level */
Assert(aggref->agglevelsup == 0);
/* ... and the split mode should match */
Assert(aggref->aggsplit == aggstate->aggsplit);
/* 1. Check for already processed aggs which can be re-used */
existing_aggno = find_compatible_peragg(aggref, aggstate, aggno,
&same_input_transnos);
if (existing_aggno != -1)
{
/*
* Existing compatible agg found. so just point the Aggref to the
* same per-agg struct.
*/
aggrefstate->aggno = existing_aggno;
continue;
}
peragg = &peraggs[aggref->aggno];
/* Check if we initialized the state for this aggregate already. */
if (peragg->aggref != NULL)
continue;
/* Mark Aggref state node with assigned index in the result array */
peragg = &peraggs[++aggno];
peragg->aggref = aggref;
aggrefstate->aggno = aggno;
peragg->transno = aggref->aggtransno;
/* Fetch the pg_aggregate row */
aggTuple = SearchSysCache1(AGGFNOID,
@ -3802,36 +3755,12 @@ ExecInitAgg(Agg *node, EState *estate, int eflags)
aggtranstype = aggref->aggtranstype;
Assert(OidIsValid(aggtranstype));
/*
* If this aggregation is performing state combines, then instead of
* using the transition function, we'll use the combine function
*/
if (DO_AGGSPLIT_COMBINE(aggstate->aggsplit))
{
transfn_oid = aggform->aggcombinefn;
/* If not set then the planner messed up */
if (!OidIsValid(transfn_oid))
elog(ERROR, "combinefn not set for aggregate function");
}
else
transfn_oid = aggform->aggtransfn;
/* Final function only required if we're finalizing the aggregates */
if (DO_AGGSPLIT_SKIPFINAL(aggstate->aggsplit))
peragg->finalfn_oid = finalfn_oid = InvalidOid;
else
peragg->finalfn_oid = finalfn_oid = aggform->aggfinalfn;
/*
* If finalfn is marked read-write, we can't share transition states;
* but it is okay to share states for AGGMODIFY_SHAREABLE aggs. Also,
* if we're not executing the finalfn here, we can share regardless.
*/
shareable = (aggform->aggfinalmodify != AGGMODIFY_READ_WRITE) ||
(finalfn_oid == InvalidOid);
peragg->shareable = shareable;
serialfn_oid = InvalidOid;
deserialfn_oid = InvalidOid;
@ -3871,7 +3800,6 @@ ExecInitAgg(Agg *node, EState *estate, int eflags)
/* Check that aggregate owner has permission to call component fns */
{
HeapTuple procTuple;
Oid aggOwner;
procTuple = SearchSysCache1(PROCOID,
ObjectIdGetDatum(aggref->aggfnoid));
@ -3881,12 +3809,6 @@ ExecInitAgg(Agg *node, EState *estate, int eflags)
aggOwner = ((Form_pg_proc) GETSTRUCT(procTuple))->proowner;
ReleaseSysCache(procTuple);
aclresult = pg_proc_aclcheck(transfn_oid, aggOwner,
ACL_EXECUTE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, OBJECT_FUNCTION,
get_func_name(transfn_oid));
InvokeFunctionExecuteHook(transfn_oid);
if (OidIsValid(finalfn_oid))
{
aclresult = pg_proc_aclcheck(finalfn_oid, aggOwner,
@ -3959,51 +3881,60 @@ ExecInitAgg(Agg *node, EState *estate, int eflags)
&peragg->resulttypeByVal);
/*
* initval is potentially null, so don't try to access it as a struct
* field. Must do it the hard way with SysCacheGetAttr.
* Build working state for invoking the transition function, if we
* haven't done it already.
*/
textInitVal = SysCacheGetAttr(AGGFNOID, aggTuple,
Anum_pg_aggregate_agginitval,
&initValueIsNull);
if (initValueIsNull)
initValue = (Datum) 0;
else
initValue = GetAggInitVal(textInitVal, aggtranstype);
pertrans = &pertransstates[aggref->aggtransno];
if (pertrans->aggref == NULL)
{
Datum textInitVal;
Datum initValue;
bool initValueIsNull;
Oid transfn_oid;
/*
* 2. Build working state for invoking the transition function, or
* look up previously initialized working state, if we can share it.
*
* find_compatible_peragg() already collected a list of shareable
* per-Trans's with the same inputs. Check if any of them have the
* same transition function and initial value.
*/
existing_transno = find_compatible_pertrans(aggstate, aggref,
shareable,
transfn_oid, aggtranstype,
serialfn_oid, deserialfn_oid,
initValue, initValueIsNull,
same_input_transnos);
if (existing_transno != -1)
{
/*
* Existing compatible trans found, so just point the 'peragg' to
* the same per-trans struct, and mark the trans state as shared.
* If this aggregation is performing state combines, then instead
* of using the transition function, we'll use the combine
* function
*/
pertrans = &pertransstates[existing_transno];
pertrans->aggshared = true;
peragg->transno = existing_transno;
}
else
{
pertrans = &pertransstates[++transno];
if (DO_AGGSPLIT_COMBINE(aggstate->aggsplit))
{
transfn_oid = aggform->aggcombinefn;
/* If not set then the planner messed up */
if (!OidIsValid(transfn_oid))
elog(ERROR, "combinefn not set for aggregate function");
}
else
transfn_oid = aggform->aggtransfn;
aclresult = pg_proc_aclcheck(transfn_oid, aggOwner,
ACL_EXECUTE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, OBJECT_FUNCTION,
get_func_name(transfn_oid));
InvokeFunctionExecuteHook(transfn_oid);
/*
* initval is potentially null, so don't try to access it as a
* struct field. Must do it the hard way with SysCacheGetAttr.
*/
textInitVal = SysCacheGetAttr(AGGFNOID, aggTuple,
Anum_pg_aggregate_agginitval,
&initValueIsNull);
if (initValueIsNull)
initValue = (Datum) 0;
else
initValue = GetAggInitVal(textInitVal, aggtranstype);
build_pertrans_for_aggref(pertrans, aggstate, estate,
aggref, transfn_oid, aggtranstype,
serialfn_oid, deserialfn_oid,
initValue, initValueIsNull,
inputTypes, numArguments);
peragg->transno = transno;
}
else
pertrans->aggshared = true;
ReleaseSysCache(aggTuple);
}
@ -4011,8 +3942,8 @@ ExecInitAgg(Agg *node, EState *estate, int eflags)
* Update aggstate->numaggs to be the number of unique aggregates found.
* Also set numstates to the number of unique transition states found.
*/
aggstate->numaggs = aggno + 1;
aggstate->numtrans = transno + 1;
aggstate->numaggs = numaggs;
aggstate->numtrans = numtrans;
/*
* Last, check whether any more aggregates got added onto the node while
@ -4024,7 +3955,7 @@ ExecInitAgg(Agg *node, EState *estate, int eflags)
* need to work hard on a helpful error message; but we defend against it
* here anyway, just to be sure.)
*/
if (numaggs != list_length(aggstate->aggs))
if (numaggrefs != list_length(aggstate->aggs))
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("aggregate function calls cannot be nested")));
@ -4420,147 +4351,6 @@ GetAggInitVal(Datum textInitVal, Oid transtype)
return initVal;
}
/*
* find_compatible_peragg - search for a previously initialized per-Agg struct
*
* Searches the previously looked at aggregates to find one which is compatible
* with this one, with the same input parameters. If no compatible aggregate
* can be found, returns -1.
*
* As a side-effect, this also collects a list of existing, shareable per-Trans
* structs with matching inputs. If no identical Aggref is found, the list is
* passed later to find_compatible_pertrans, to see if we can at least reuse
* the state value of another aggregate.
*/
static int
find_compatible_peragg(Aggref *newagg, AggState *aggstate,
int lastaggno, List **same_input_transnos)
{
int aggno;
AggStatePerAgg peraggs;
*same_input_transnos = NIL;
/* we mustn't reuse the aggref if it contains volatile function calls */
if (contain_volatile_functions((Node *) newagg))
return -1;
peraggs = aggstate->peragg;
/*
* Search through the list of already seen aggregates. If we find an
* existing identical aggregate call, then we can re-use that one. While
* searching, we'll also collect a list of Aggrefs with the same input
* parameters. If no matching Aggref is found, the caller can potentially
* still re-use the transition state of one of them. (At this stage we
* just compare the parsetrees; whether different aggregates share the
* same transition function will be checked later.)
*/
for (aggno = 0; aggno <= lastaggno; aggno++)
{
AggStatePerAgg peragg;
Aggref *existingRef;
peragg = &peraggs[aggno];
existingRef = peragg->aggref;
/* all of the following must be the same or it's no match */
if (newagg->inputcollid != existingRef->inputcollid ||
newagg->aggtranstype != existingRef->aggtranstype ||
newagg->aggstar != existingRef->aggstar ||
newagg->aggvariadic != existingRef->aggvariadic ||
newagg->aggkind != existingRef->aggkind ||
!equal(newagg->args, existingRef->args) ||
!equal(newagg->aggorder, existingRef->aggorder) ||
!equal(newagg->aggdistinct, existingRef->aggdistinct) ||
!equal(newagg->aggfilter, existingRef->aggfilter))
continue;
/* if it's the same aggregate function then report exact match */
if (newagg->aggfnoid == existingRef->aggfnoid &&
newagg->aggtype == existingRef->aggtype &&
newagg->aggcollid == existingRef->aggcollid &&
equal(newagg->aggdirectargs, existingRef->aggdirectargs))
{
list_free(*same_input_transnos);
*same_input_transnos = NIL;
return aggno;
}
/*
* Not identical, but it had the same inputs. If the final function
* permits sharing, return its transno to the caller, in case we can
* re-use its per-trans state. (If there's already sharing going on,
* we might report a transno more than once. find_compatible_pertrans
* is cheap enough that it's not worth spending cycles to avoid that.)
*/
if (peragg->shareable)
*same_input_transnos = lappend_int(*same_input_transnos,
peragg->transno);
}
return -1;
}
/*
* find_compatible_pertrans - search for a previously initialized per-Trans
* struct
*
* Searches the list of transnos for a per-Trans struct with the same
* transition function and initial condition. (The inputs have already been
* verified to match.)
*/
static int
find_compatible_pertrans(AggState *aggstate, Aggref *newagg, bool shareable,
Oid aggtransfn, Oid aggtranstype,
Oid aggserialfn, Oid aggdeserialfn,
Datum initValue, bool initValueIsNull,
List *transnos)
{
ListCell *lc;
/* If this aggregate can't share transition states, give up */
if (!shareable)
return -1;
foreach(lc, transnos)
{
int transno = lfirst_int(lc);
AggStatePerTrans pertrans = &aggstate->pertrans[transno];
/*
* if the transfns or transition state types are not the same then the
* state can't be shared.
*/
if (aggtransfn != pertrans->transfn_oid ||
aggtranstype != pertrans->aggtranstype)
continue;
/*
* The serialization and deserialization functions must match, if
* present, as we're unable to share the trans state for aggregates
* which will serialize or deserialize into different formats.
* Remember that these will be InvalidOid if they're not required for
* this agg node.
*/
if (aggserialfn != pertrans->serialfn_oid ||
aggdeserialfn != pertrans->deserialfn_oid)
continue;
/*
* Check that the initial condition matches, too.
*/
if (initValueIsNull && pertrans->initValueIsNull)
return transno;
if (!initValueIsNull && !pertrans->initValueIsNull &&
datumIsEqual(initValue, pertrans->initValue,
pertrans->transtypeByVal, pertrans->transtypeLen))
return transno;
}
return -1;
}
void
ExecEndAgg(AggState *node)
{

View File

@ -1849,20 +1849,11 @@ llvm_compile_expr(ExprState *state)
case EEOP_AGGREF:
{
AggrefExprState *aggref = op->d.aggref.astate;
LLVMValueRef v_aggnop;
LLVMValueRef v_aggno;
LLVMValueRef value,
isnull;
/*
* At this point aggref->aggno is not yet set (it's set up
* in ExecInitAgg() after initializing the expression). So
* load it from memory each time round.
*/
v_aggnop = l_ptr_const(&aggref->aggno,
l_ptr(LLVMInt32Type()));
v_aggno = LLVMBuildLoad(b, v_aggnop, "v_aggno");
v_aggno = l_int32_const(op->d.aggref.aggno);
/* load agg value / null */
value = l_load_gep1(b, v_aggvalues, v_aggno, "aggvalue");

View File

@ -1492,6 +1492,8 @@ _copyAggref(const Aggref *from)
COPY_SCALAR_FIELD(aggkind);
COPY_SCALAR_FIELD(agglevelsup);
COPY_SCALAR_FIELD(aggsplit);
COPY_SCALAR_FIELD(aggno);
COPY_SCALAR_FIELD(aggtransno);
COPY_LOCATION_FIELD(location);
return newnode;

View File

@ -232,6 +232,8 @@ _equalAggref(const Aggref *a, const Aggref *b)
COMPARE_SCALAR_FIELD(aggkind);
COMPARE_SCALAR_FIELD(agglevelsup);
COMPARE_SCALAR_FIELD(aggsplit);
COMPARE_SCALAR_FIELD(aggno);
COMPARE_SCALAR_FIELD(aggtransno);
COMPARE_LOCATION_FIELD(location);
return true;

View File

@ -1153,6 +1153,8 @@ _outAggref(StringInfo str, const Aggref *node)
WRITE_CHAR_FIELD(aggkind);
WRITE_UINT_FIELD(agglevelsup);
WRITE_ENUM_FIELD(aggsplit, AggSplit);
WRITE_INT_FIELD(aggno);
WRITE_INT_FIELD(aggtransno);
WRITE_LOCATION_FIELD(location);
}

View File

@ -615,6 +615,8 @@ _readAggref(void)
READ_CHAR_FIELD(aggkind);
READ_UINT_FIELD(agglevelsup);
READ_ENUM_FIELD(aggsplit, AggSplit);
READ_INT_FIELD(aggno);
READ_INT_FIELD(aggtransno);
READ_LOCATION_FIELD(location);
READ_DONE();

View File

@ -2439,7 +2439,8 @@ cost_agg(Path *path, PlannerInfo *root,
* than or equal to one, all groups are expected to fit in memory;
* otherwise we expect to spill.
*/
hashentrysize = hash_agg_entry_size(aggcosts->numAggs, input_width,
hashentrysize = hash_agg_entry_size(list_length(root->aggtransinfos),
input_width,
aggcosts->transitionSpace);
hash_agg_set_limits(hashentrysize, numGroups, 0, &mem_limit,
&ngroups_limit, &num_partitions);

View File

@ -47,7 +47,7 @@
#include "utils/lsyscache.h"
#include "utils/syscache.h"
static bool find_minmax_aggs_walker(Node *node, List **context);
static bool can_minmax_aggs(PlannerInfo *root, List **context);
static bool build_minmax_path(PlannerInfo *root, MinMaxAggInfo *mminfo,
Oid eqop, Oid sortop, bool nulls_first);
static void minmax_qp_callback(PlannerInfo *root, void *extra);
@ -66,7 +66,8 @@ static Oid fetch_agg_sort_op(Oid aggfnoid);
* query_planner(), because we generate indexscan paths by cloning the
* planner's state and invoking query_planner() on a modified version of
* the query parsetree. Thus, all preprocessing needed before query_planner()
* must already be done.
* must already be done. This relies on the list of aggregates in
* root->agginfos, so preprocess_aggrefs() must have been called already, too.
*/
void
preprocess_minmax_aggregates(PlannerInfo *root)
@ -140,9 +141,7 @@ preprocess_minmax_aggregates(PlannerInfo *root)
* all are MIN/MAX aggregates. Stop as soon as we find one that isn't.
*/
aggs_list = NIL;
if (find_minmax_aggs_walker((Node *) root->processed_tlist, &aggs_list))
return;
if (find_minmax_aggs_walker(parse->havingQual, &aggs_list))
if (!can_minmax_aggs(root, &aggs_list))
return;
/*
@ -227,38 +226,33 @@ preprocess_minmax_aggregates(PlannerInfo *root)
}
/*
* find_minmax_aggs_walker
* Recursively scan the Aggref nodes in an expression tree, and check
* that each one is a MIN/MAX aggregate. If so, build a list of the
* can_minmax_aggs
* Walk through all the aggregates in the query, and check
* if they are all MIN/MAX aggregates. If so, build a list of the
* distinct aggregate calls in the tree.
*
* Returns true if a non-MIN/MAX aggregate is found, false otherwise.
* (This seemingly-backward definition is used because expression_tree_walker
* aborts the scan on true return, which is what we want.)
*
* Found aggregates are added to the list at *context; it's up to the caller
* to initialize the list to NIL.
* Returns false if a non-MIN/MAX aggregate is found, true otherwise.
*
* This does not descend into subqueries, and so should be used only after
* reduction of sublinks to subplans. There mustn't be outer-aggregate
* references either.
*/
static bool
find_minmax_aggs_walker(Node *node, List **context)
can_minmax_aggs(PlannerInfo *root, List **context)
{
if (node == NULL)
return false;
if (IsA(node, Aggref))
ListCell *lc;
foreach(lc, root->agginfos)
{
Aggref *aggref = (Aggref *) node;
AggInfo *agginfo = (AggInfo *) lfirst(lc);
Aggref *aggref = agginfo->representative_aggref;
Oid aggsortop;
TargetEntry *curTarget;
MinMaxAggInfo *mminfo;
ListCell *l;
Assert(aggref->agglevelsup == 0);
if (list_length(aggref->args) != 1)
return true; /* it couldn't be MIN/MAX */
return false; /* it couldn't be MIN/MAX */
/*
* ORDER BY is usually irrelevant for MIN/MAX, but it can change the
@ -274,7 +268,7 @@ find_minmax_aggs_walker(Node *node, List **context)
* quickly.
*/
if (aggref->aggorder != NIL)
return true;
return false;
/* note: we do not care if DISTINCT is mentioned ... */
/*
@ -283,30 +277,19 @@ find_minmax_aggs_walker(Node *node, List **context)
* now, just punt.
*/
if (aggref->aggfilter != NULL)
return true;
return false;
aggsortop = fetch_agg_sort_op(aggref->aggfnoid);
if (!OidIsValid(aggsortop))
return true; /* not a MIN/MAX aggregate */
return false; /* not a MIN/MAX aggregate */
curTarget = (TargetEntry *) linitial(aggref->args);
if (contain_mutable_functions((Node *) curTarget->expr))
return true; /* not potentially indexable */
return false; /* not potentially indexable */
if (type_is_rowtype(exprType((Node *) curTarget->expr)))
return true; /* IS NOT NULL would have weird semantics */
/*
* Check whether it's already in the list, and add it if not.
*/
foreach(l, *context)
{
mminfo = (MinMaxAggInfo *) lfirst(l);
if (mminfo->aggfnoid == aggref->aggfnoid &&
equal(mminfo->target, curTarget->expr))
return false;
}
return false; /* IS NOT NULL would have weird semantics */
mminfo = makeNode(MinMaxAggInfo);
mminfo->aggfnoid = aggref->aggfnoid;
@ -318,16 +301,8 @@ find_minmax_aggs_walker(Node *node, List **context)
mminfo->param = NULL;
*context = lappend(*context, mminfo);
/*
* We need not recurse into the argument, since it can't contain any
* aggregates.
*/
return false;
}
Assert(!IsA(node, SubLink));
return expression_tree_walker(node, find_minmax_aggs_walker,
(void *) context);
return true;
}
/*
@ -368,6 +343,8 @@ build_minmax_path(PlannerInfo *root, MinMaxAggInfo *mminfo,
subroot->plan_params = NIL;
subroot->outer_params = NULL;
subroot->init_plans = NIL;
subroot->agginfos = NIL;
subroot->aggtransinfos = NIL;
subroot->parse = parse = copyObject(root->parse);
IncrementVarSublevelsUp((Node *) parse, 1, 1);

View File

@ -152,7 +152,6 @@ static RelOptInfo *create_grouping_paths(PlannerInfo *root,
RelOptInfo *input_rel,
PathTarget *target,
bool target_parallel_safe,
const AggClauseCosts *agg_costs,
grouping_sets_data *gd);
static bool is_degenerate_grouping(PlannerInfo *root);
static void create_degenerate_grouping_paths(PlannerInfo *root,
@ -228,8 +227,7 @@ static RelOptInfo *create_partial_grouping_paths(PlannerInfo *root,
GroupPathExtraData *extra,
bool force_rel_creation);
static void gather_grouping_paths(PlannerInfo *root, RelOptInfo *rel);
static bool can_partial_agg(PlannerInfo *root,
const AggClauseCosts *agg_costs);
static bool can_partial_agg(PlannerInfo *root);
static void apply_scanjoin_target_to_paths(PlannerInfo *root,
RelOptInfo *rel,
List *scanjoin_targets,
@ -1944,7 +1942,6 @@ grouping_planner(PlannerInfo *root, bool inheritance_update,
bool scanjoin_target_parallel_safe;
bool scanjoin_target_same_exprs;
bool have_grouping;
AggClauseCosts agg_costs;
WindowFuncLists *wflists = NULL;
List *activeWindows = NIL;
grouping_sets_data *gset_data = NULL;
@ -1975,25 +1972,16 @@ grouping_planner(PlannerInfo *root, bool inheritance_update,
root->processed_tlist = preprocess_targetlist(root);
/*
* Collect statistics about aggregates for estimating costs, and mark
* all the aggregates with resolved aggtranstypes. We must do this
* before slicing and dicing the tlist into various pathtargets, else
* some copies of the Aggref nodes might escape being marked with the
* correct transtypes.
*
* Note: currently, we do not detect duplicate aggregates here. This
* may result in somewhat-overestimated cost, which is fine for our
* purposes since all Paths will get charged the same. But at some
* point we might wish to do that detection in the planner, rather
* than during executor startup.
* Mark all the aggregates with resolved aggtranstypes, and detect
* aggregates that are duplicates or can share transition state. We
* must do this before slicing and dicing the tlist into various
* pathtargets, else some copies of the Aggref nodes might escape
* being marked.
*/
MemSet(&agg_costs, 0, sizeof(AggClauseCosts));
if (parse->hasAggs)
{
get_agg_clause_costs(root, (Node *) root->processed_tlist,
AGGSPLIT_SIMPLE, &agg_costs);
get_agg_clause_costs(root, parse->havingQual, AGGSPLIT_SIMPLE,
&agg_costs);
preprocess_aggrefs(root, (Node *) root->processed_tlist);
preprocess_aggrefs(root, (Node *) parse->havingQual);
}
/*
@ -2198,7 +2186,6 @@ grouping_planner(PlannerInfo *root, bool inheritance_update,
current_rel,
grouping_target,
grouping_target_parallel_safe,
&agg_costs,
gset_data);
/* Fix things up if grouping_target contains SRFs */
if (parse->hasTargetSRFs)
@ -3790,7 +3777,6 @@ get_number_of_groups(PlannerInfo *root,
*
* input_rel: contains the source-data Paths
* target: the pathtarget for the result Paths to compute
* agg_costs: cost info about all aggregates in query (in AGGSPLIT_SIMPLE mode)
* gd: grouping sets data including list of grouping sets and their clauses
*
* Note: all Paths in input_rel are expected to return the target computed
@ -3801,12 +3787,15 @@ create_grouping_paths(PlannerInfo *root,
RelOptInfo *input_rel,
PathTarget *target,
bool target_parallel_safe,
const AggClauseCosts *agg_costs,
grouping_sets_data *gd)
{
Query *parse = root->parse;
RelOptInfo *grouped_rel;
RelOptInfo *partially_grouped_rel;
AggClauseCosts agg_costs;
MemSet(&agg_costs, 0, sizeof(AggClauseCosts));
get_agg_clause_costs(root, AGGSPLIT_SIMPLE, &agg_costs);
/*
* Create grouping relation to hold fully aggregated grouping and/or
@ -3862,14 +3851,14 @@ create_grouping_paths(PlannerInfo *root,
* the other gating conditions, so we want to do it last.
*/
if ((parse->groupClause != NIL &&
agg_costs->numOrderedAggs == 0 &&
root->numOrderedAggs == 0 &&
(gd ? gd->any_hashable : grouping_is_hashable(parse->groupClause))))
flags |= GROUPING_CAN_USE_HASH;
/*
* Determine whether partial aggregation is possible.
*/
if (can_partial_agg(root, agg_costs))
if (can_partial_agg(root))
flags |= GROUPING_CAN_PARTIAL_AGG;
extra.flags = flags;
@ -3890,7 +3879,7 @@ create_grouping_paths(PlannerInfo *root,
extra.patype = PARTITIONWISE_AGGREGATE_NONE;
create_ordinary_grouping_paths(root, input_rel, grouped_rel,
agg_costs, gd, &extra,
&agg_costs, gd, &extra,
&partially_grouped_rel);
}
@ -4248,7 +4237,8 @@ consider_groupingsets_paths(PlannerInfo *root,
l_start = lnext(gd->rollups, l_start);
}
hashsize = estimate_hashagg_tablesize(path,
hashsize = estimate_hashagg_tablesize(root,
path,
agg_costs,
dNumGroups - exclude_groups);
@ -4382,7 +4372,8 @@ consider_groupingsets_paths(PlannerInfo *root,
/*
* Account first for space needed for groups we can't sort at all.
*/
availspace -= estimate_hashagg_tablesize(path,
availspace -= estimate_hashagg_tablesize(root,
path,
agg_costs,
gd->dNumHashGroups);
@ -4433,7 +4424,8 @@ consider_groupingsets_paths(PlannerInfo *root,
if (rollup->hashable)
{
double sz = estimate_hashagg_tablesize(path,
double sz = estimate_hashagg_tablesize(root,
path,
agg_costs,
rollup->numGroups);
@ -6926,20 +6918,12 @@ create_partial_grouping_paths(PlannerInfo *root,
MemSet(agg_final_costs, 0, sizeof(AggClauseCosts));
if (parse->hasAggs)
{
List *partial_target_exprs;
/* partial phase */
partial_target_exprs = partially_grouped_rel->reltarget->exprs;
get_agg_clause_costs(root, (Node *) partial_target_exprs,
AGGSPLIT_INITIAL_SERIAL,
get_agg_clause_costs(root, AGGSPLIT_INITIAL_SERIAL,
agg_partial_costs);
/* final phase */
get_agg_clause_costs(root, (Node *) grouped_rel->reltarget->exprs,
AGGSPLIT_FINAL_DESERIAL,
agg_final_costs);
get_agg_clause_costs(root, extra->havingQual,
AGGSPLIT_FINAL_DESERIAL,
get_agg_clause_costs(root, AGGSPLIT_FINAL_DESERIAL,
agg_final_costs);
}
@ -7324,7 +7308,7 @@ gather_grouping_paths(PlannerInfo *root, RelOptInfo *rel)
* Returns true when possible, false otherwise.
*/
static bool
can_partial_agg(PlannerInfo *root, const AggClauseCosts *agg_costs)
can_partial_agg(PlannerInfo *root)
{
Query *parse = root->parse;
@ -7341,7 +7325,7 @@ can_partial_agg(PlannerInfo *root, const AggClauseCosts *agg_costs)
/* We don't know how to do grouping sets in parallel. */
return false;
}
else if (agg_costs->hasNonPartial || agg_costs->hasNonSerial)
else if (root->hasNonPartialAggs || root->hasNonSerialAggs)
{
/* Insufficient support for partial mode. */
return false;

View File

@ -13,6 +13,7 @@ top_builddir = ../../../..
include $(top_builddir)/src/Makefile.global
OBJS = \
prepagg.o \
prepjointree.o \
prepqual.o \
preptlist.o \

View File

@ -0,0 +1,678 @@
/*-------------------------------------------------------------------------
*
* prepagg.c
* Routines to preprocess aggregate function calls
*
* If there are identical aggregate calls in the query, they only need to
* be computed once. Also, some aggregate functions can share the same
* transition state, so that we only need to call the final function for
* them separately. These optimizations are independent of how the
* aggregates are executed.
*
* preprocess_aggrefs() detects those cases, creates AggInfo and
* AggTransInfo structs for each aggregate and transition state that needs
* to be computed, and sets the 'aggno' and 'transno' fields in the Aggrefs
* accordingly. It also resolves polymorphic transition types, and sets
* the 'aggtranstype' fields accordingly.
*
* XXX: The AggInfo and AggTransInfo structs are thrown away after
* planning, so executor startup has to perform some of the same lookups
* of transition functions and initial values that we do here. One day, we
* might want to carry that information to the Agg nodes to save the effort
* at executor startup. The Agg nodes are constructed much later in the
* planning, however, so it's not trivial.
*
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/optimizer/prep/prepagg.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "catalog/pg_aggregate.h"
#include "catalog/pg_type.h"
#include "nodes/nodeFuncs.h"
#include "nodes/pathnodes.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/optimizer.h"
#include "optimizer/plancat.h"
#include "optimizer/prep.h"
#include "parser/parse_agg.h"
#include "utils/builtins.h"
#include "utils/datum.h"
#include "utils/fmgroids.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/syscache.h"
static bool preprocess_aggrefs_walker(Node *node, PlannerInfo *root);
static int find_compatible_agg(PlannerInfo *root, Aggref *newagg,
List **same_input_transnos);
static int find_compatible_trans(PlannerInfo *root, Aggref *newagg,
bool shareable,
Oid aggtransfn, Oid aggtranstype,
int transtypeLen, bool transtypeByVal,
Oid aggcombinefn,
Oid aggserialfn, Oid aggdeserialfn,
Datum initValue, bool initValueIsNull,
List *transnos);
static Datum GetAggInitVal(Datum textInitVal, Oid transtype);
/* -----------------
* Resolve the transition type of all Aggrefs, and determine which Aggrefs
* can share aggregate or transition state.
*
* Information about the aggregates and transition functions are collected
* in the root->agginfos and root->aggtransinfos lists. The 'aggtranstype',
* 'aggno', and 'aggtransno' fields in are filled in in each Aggref.
*
* NOTE: This modifies the Aggrefs in the input expression in-place!
*
* We try to optimize by detecting duplicate aggregate functions so that
* their state and final values are re-used, rather than needlessly being
* re-calculated independently. We also detect aggregates that are not
* the same, but which can share the same transition state.
*
* Scenarios:
*
* 1. Identical aggregate function calls appear in the query:
*
* SELECT SUM(x) FROM ... HAVING SUM(x) > 0
*
* Since these aggregates are identical, we only need to calculate
* the value once. Both aggregates will share the same 'aggno' value.
*
* 2. Two different aggregate functions appear in the query, but the
* aggregates have the same arguments, transition functions and
* initial values (and, presumably, different final functions):
*
* SELECT AVG(x), STDDEV(x) FROM ...
*
* In this case we must create a new AggInfo for the varying aggregate,
* and we need to call the final functions separately, but we need
* only run the transition function once. (This requires that the
* final functions be nondestructive of the transition state, but
* that's required anyway for other reasons.)
*
* For either of these optimizations to be valid, all aggregate properties
* used in the transition phase must be the same, including any modifiers
* such as ORDER BY, DISTINCT and FILTER, and the arguments mustn't
* contain any volatile functions.
* -----------------
*/
void
preprocess_aggrefs(PlannerInfo *root, Node *clause)
{
(void) preprocess_aggrefs_walker(clause, root);
}
static void
preprocess_aggref(Aggref *aggref, PlannerInfo *root)
{
HeapTuple aggTuple;
Form_pg_aggregate aggform;
Oid aggtransfn;
Oid aggfinalfn;
Oid aggcombinefn;
Oid aggserialfn;
Oid aggdeserialfn;
Oid aggtranstype;
int32 aggtranstypmod;
int32 aggtransspace;
bool shareable;
int aggno;
int transno;
List *same_input_transnos;
int16 resulttypeLen;
bool resulttypeByVal;
Datum textInitVal;
Datum initValue;
bool initValueIsNull;
bool transtypeByVal;
int16 transtypeLen;
Oid inputTypes[FUNC_MAX_ARGS];
int numArguments;
Assert(aggref->agglevelsup == 0);
/*
* Fetch info about the aggregate from pg_aggregate. Note it's correct to
* ignore the moving-aggregate variant, since what we're concerned with
* here is aggregates not window functions.
*/
aggTuple = SearchSysCache1(AGGFNOID,
ObjectIdGetDatum(aggref->aggfnoid));
if (!HeapTupleIsValid(aggTuple))
elog(ERROR, "cache lookup failed for aggregate %u",
aggref->aggfnoid);
aggform = (Form_pg_aggregate) GETSTRUCT(aggTuple);
aggtransfn = aggform->aggtransfn;
aggfinalfn = aggform->aggfinalfn;
aggcombinefn = aggform->aggcombinefn;
aggserialfn = aggform->aggserialfn;
aggdeserialfn = aggform->aggdeserialfn;
aggtranstype = aggform->aggtranstype;
aggtransspace = aggform->aggtransspace;
/*
* Resolve the possibly-polymorphic aggregate transition type.
*/
/* extract argument types (ignoring any ORDER BY expressions) */
numArguments = get_aggregate_argtypes(aggref, inputTypes);
/* resolve actual type of transition state, if polymorphic */
aggtranstype = resolve_aggregate_transtype(aggref->aggfnoid,
aggtranstype,
inputTypes,
numArguments);
aggref->aggtranstype = aggtranstype;
/*
* If transition state is of same type as first aggregated input, assume
* it's the same typmod (same width) as well. This works for cases like
* MAX/MIN and is probably somewhat reasonable otherwise.
*/
aggtranstypmod = -1;
if (aggref->args)
{
TargetEntry *tle = (TargetEntry *) linitial(aggref->args);
if (aggtranstype == exprType((Node *) tle->expr))
aggtranstypmod = exprTypmod((Node *) tle->expr);
}
/*
* If finalfn is marked read-write, we can't share transition states; but
* it is okay to share states for AGGMODIFY_SHAREABLE aggs.
*
* In principle, in a partial aggregate, we could share the transition
* state even if the final function is marked as read-write, because the
* partial aggregate doesn't execute the final function. But it's too
* early to know whether we're going perform a partial aggregate.
*/
shareable = (aggform->aggfinalmodify != AGGMODIFY_READ_WRITE);
/* get info about the output value's datatype */
get_typlenbyval(aggref->aggtype,
&resulttypeLen,
&resulttypeByVal);
/* get initial value */
textInitVal = SysCacheGetAttr(AGGFNOID, aggTuple,
Anum_pg_aggregate_agginitval,
&initValueIsNull);
if (initValueIsNull)
initValue = (Datum) 0;
else
initValue = GetAggInitVal(textInitVal, aggtranstype);
ReleaseSysCache(aggTuple);
/*
* 1. See if this is identical to another aggregate function call that
* we've seen already.
*/
aggno = find_compatible_agg(root, aggref, &same_input_transnos);
if (aggno != -1)
{
AggInfo *agginfo = list_nth(root->agginfos, aggno);
transno = agginfo->transno;
}
else
{
AggInfo *agginfo = palloc(sizeof(AggInfo));
agginfo->finalfn_oid = aggfinalfn;
agginfo->representative_aggref = aggref;
agginfo->shareable = shareable;
aggno = list_length(root->agginfos);
root->agginfos = lappend(root->agginfos, agginfo);
/*
* Count it, and check for cases requiring ordered input. Note that
* ordered-set aggs always have nonempty aggorder. Any ordered-input
* case also defeats partial aggregation.
*/
if (aggref->aggorder != NIL || aggref->aggdistinct != NIL)
{
root->numOrderedAggs++;
root->hasNonPartialAggs = true;
}
get_typlenbyval(aggtranstype,
&transtypeLen,
&transtypeByVal);
/*
* 2. See if this aggregate can share transition state with another
* aggregate that we've initialized already.
*/
transno = find_compatible_trans(root, aggref, shareable,
aggtransfn, aggtranstype,
transtypeLen, transtypeByVal,
aggcombinefn,
aggserialfn, aggdeserialfn,
initValue, initValueIsNull,
same_input_transnos);
if (transno == -1)
{
AggTransInfo *transinfo = palloc(sizeof(AggTransInfo));
transinfo->args = aggref->args;
transinfo->aggfilter = aggref->aggfilter;
transinfo->transfn_oid = aggtransfn;
transinfo->combinefn_oid = aggcombinefn;
transinfo->serialfn_oid = aggserialfn;
transinfo->deserialfn_oid = aggdeserialfn;
transinfo->aggtranstype = aggtranstype;
transinfo->aggtranstypmod = aggtranstypmod;
transinfo->transtypeLen = transtypeLen;
transinfo->transtypeByVal = transtypeByVal;
transinfo->aggtransspace = aggtransspace;
transinfo->initValue = initValue;
transinfo->initValueIsNull = initValueIsNull;
transno = list_length(root->aggtransinfos);
root->aggtransinfos = lappend(root->aggtransinfos, transinfo);
/*
* Check whether partial aggregation is feasible, unless we
* already found out that we can't do it.
*/
if (!root->hasNonPartialAggs)
{
/*
* If there is no combine function, then partial aggregation
* is not possible.
*/
if (!OidIsValid(transinfo->combinefn_oid))
root->hasNonPartialAggs = true;
/*
* If we have any aggs with transtype INTERNAL then we must
* check whether they have serialization/deserialization
* functions; if not, we can't serialize partial-aggregation
* results.
*/
else if (transinfo->aggtranstype == INTERNALOID &&
(!OidIsValid(transinfo->serialfn_oid) ||
!OidIsValid(transinfo->deserialfn_oid)))
root->hasNonSerialAggs = true;
}
}
agginfo->transno = transno;
}
/*
* Fill in the fields in the Aggref (aggtranstype was set above already)
*/
aggref->aggno = aggno;
aggref->aggtransno = transno;
}
static bool
preprocess_aggrefs_walker(Node *node, PlannerInfo *root)
{
if (node == NULL)
return false;
if (IsA(node, Aggref))
{
Aggref *aggref = (Aggref *) node;
preprocess_aggref(aggref, root);
/*
* We assume that the parser checked that there are no aggregates (of
* this level anyway) in the aggregated arguments, direct arguments,
* or filter clause. Hence, we need not recurse into any of them.
*/
return false;
}
Assert(!IsA(node, SubLink));
return expression_tree_walker(node, preprocess_aggrefs_walker,
(void *) root);
}
/*
* find_compatible_agg - search for a previously initialized per-Agg struct
*
* Searches the previously looked at aggregates to find one which is compatible
* with this one, with the same input parameters. If no compatible aggregate
* can be found, returns -1.
*
* As a side-effect, this also collects a list of existing, shareable per-Trans
* structs with matching inputs. If no identical Aggref is found, the list is
* passed later to find_compatible_trans, to see if we can at least reuse
* the state value of another aggregate.
*/
static int
find_compatible_agg(PlannerInfo *root, Aggref *newagg,
List **same_input_transnos)
{
ListCell *lc;
int aggno;
*same_input_transnos = NIL;
/* we mustn't reuse the aggref if it contains volatile function calls */
if (contain_volatile_functions((Node *) newagg))
return -1;
/*
* Search through the list of already seen aggregates. If we find an
* existing identical aggregate call, then we can re-use that one. While
* searching, we'll also collect a list of Aggrefs with the same input
* parameters. If no matching Aggref is found, the caller can potentially
* still re-use the transition state of one of them. (At this stage we
* just compare the parsetrees; whether different aggregates share the
* same transition function will be checked later.)
*/
aggno = -1;
foreach(lc, root->agginfos)
{
AggInfo *agginfo = (AggInfo *) lfirst(lc);
Aggref *existingRef;
aggno++;
existingRef = agginfo->representative_aggref;
/* all of the following must be the same or it's no match */
if (newagg->inputcollid != existingRef->inputcollid ||
newagg->aggtranstype != existingRef->aggtranstype ||
newagg->aggstar != existingRef->aggstar ||
newagg->aggvariadic != existingRef->aggvariadic ||
newagg->aggkind != existingRef->aggkind ||
!equal(newagg->args, existingRef->args) ||
!equal(newagg->aggorder, existingRef->aggorder) ||
!equal(newagg->aggdistinct, existingRef->aggdistinct) ||
!equal(newagg->aggfilter, existingRef->aggfilter))
continue;
/* if it's the same aggregate function then report exact match */
if (newagg->aggfnoid == existingRef->aggfnoid &&
newagg->aggtype == existingRef->aggtype &&
newagg->aggcollid == existingRef->aggcollid &&
equal(newagg->aggdirectargs, existingRef->aggdirectargs))
{
list_free(*same_input_transnos);
*same_input_transnos = NIL;
return aggno;
}
/*
* Not identical, but it had the same inputs. If the final function
* permits sharing, return its transno to the caller, in case we can
* re-use its per-trans state. (If there's already sharing going on,
* we might report a transno more than once. find_compatible_trans is
* cheap enough that it's not worth spending cycles to avoid that.)
*/
if (agginfo->shareable)
*same_input_transnos = lappend_int(*same_input_transnos,
agginfo->transno);
}
return -1;
}
/*
* find_compatible_trans - search for a previously initialized per-Trans
* struct
*
* Searches the list of transnos for a per-Trans struct with the same
* transition function and initial condition. (The inputs have already been
* verified to match.)
*/
static int
find_compatible_trans(PlannerInfo *root, Aggref *newagg, bool shareable,
Oid aggtransfn, Oid aggtranstype,
int transtypeLen, bool transtypeByVal,
Oid aggcombinefn,
Oid aggserialfn, Oid aggdeserialfn,
Datum initValue, bool initValueIsNull,
List *transnos)
{
ListCell *lc;
/* If this aggregate can't share transition states, give up */
if (!shareable)
return -1;
foreach(lc, transnos)
{
int transno = lfirst_int(lc);
AggTransInfo *pertrans = (AggTransInfo *) list_nth(root->aggtransinfos, transno);
/*
* if the transfns or transition state types are not the same then the
* state can't be shared.
*/
if (aggtransfn != pertrans->transfn_oid ||
aggtranstype != pertrans->aggtranstype)
continue;
/*
* The serialization and deserialization functions must match, if
* present, as we're unable to share the trans state for aggregates
* which will serialize or deserialize into different formats.
* Remember that these will be InvalidOid if they're not required for
* this agg node.
*/
if (aggserialfn != pertrans->serialfn_oid ||
aggdeserialfn != pertrans->deserialfn_oid)
continue;
/*
* Combine function must also match. We only care about the combine
* function with partial aggregates, but it's too early in the
* planning to know if we will do partial aggregation, so be
* conservative.
*/
if (aggcombinefn != pertrans->combinefn_oid)
continue;
/*
* Check that the initial condition matches, too.
*/
if (initValueIsNull && pertrans->initValueIsNull)
return transno;
if (!initValueIsNull && !pertrans->initValueIsNull &&
datumIsEqual(initValue, pertrans->initValue,
transtypeByVal, transtypeLen))
return transno;
}
return -1;
}
static Datum
GetAggInitVal(Datum textInitVal, Oid transtype)
{
Oid typinput,
typioparam;
char *strInitVal;
Datum initVal;
getTypeInputInfo(transtype, &typinput, &typioparam);
strInitVal = TextDatumGetCString(textInitVal);
initVal = OidInputFunctionCall(typinput, strInitVal,
typioparam, -1);
pfree(strInitVal);
return initVal;
}
/*
* get_agg_clause_costs
* Recursively find the Aggref nodes in an expression tree, and
* accumulate cost information about them.
*
* 'aggsplit' tells us the expected partial-aggregation mode, which affects
* the cost estimates.
*
* NOTE that the counts/costs are ADDED to those already in *costs ... so
* the caller is responsible for zeroing the struct initially.
*
* We count the nodes, estimate their execution costs, and estimate the total
* space needed for their transition state values if all are evaluated in
* parallel (as would be done in a HashAgg plan). Also, we check whether
* partial aggregation is feasible. See AggClauseCosts for the exact set
* of statistics collected.
*
* In addition, we mark Aggref nodes with the correct aggtranstype, so
* that that doesn't need to be done repeatedly. (That makes this function's
* name a bit of a misnomer.)
*
* This does not descend into subqueries, and so should be used only after
* reduction of sublinks to subplans, or in contexts where it's known there
* are no subqueries. There mustn't be outer-aggregate references either.
*/
void
get_agg_clause_costs(PlannerInfo *root, AggSplit aggsplit, AggClauseCosts *costs)
{
ListCell *lc;
foreach(lc, root->aggtransinfos)
{
AggTransInfo *transinfo = (AggTransInfo *) lfirst(lc);
/*
* Add the appropriate component function execution costs to
* appropriate totals.
*/
if (DO_AGGSPLIT_COMBINE(aggsplit))
{
/* charge for combining previously aggregated states */
add_function_cost(root, transinfo->combinefn_oid, NULL,
&costs->transCost);
}
else
add_function_cost(root, transinfo->transfn_oid, NULL,
&costs->transCost);
if (DO_AGGSPLIT_DESERIALIZE(aggsplit) &&
OidIsValid(transinfo->deserialfn_oid))
add_function_cost(root, transinfo->deserialfn_oid, NULL,
&costs->transCost);
if (DO_AGGSPLIT_SERIALIZE(aggsplit) &&
OidIsValid(transinfo->serialfn_oid))
add_function_cost(root, transinfo->serialfn_oid, NULL,
&costs->finalCost);
/*
* These costs are incurred only by the initial aggregate node, so we
* mustn't include them again at upper levels.
*/
if (!DO_AGGSPLIT_COMBINE(aggsplit))
{
/* add the input expressions' cost to per-input-row costs */
QualCost argcosts;
cost_qual_eval_node(&argcosts, (Node *) transinfo->args, root);
costs->transCost.startup += argcosts.startup;
costs->transCost.per_tuple += argcosts.per_tuple;
/*
* Add any filter's cost to per-input-row costs.
*
* XXX Ideally we should reduce input expression costs according
* to filter selectivity, but it's not clear it's worth the
* trouble.
*/
if (transinfo->aggfilter)
{
cost_qual_eval_node(&argcosts, (Node *) transinfo->aggfilter,
root);
costs->transCost.startup += argcosts.startup;
costs->transCost.per_tuple += argcosts.per_tuple;
}
}
/*
* If the transition type is pass-by-value then it doesn't add
* anything to the required size of the hashtable. If it is
* pass-by-reference then we have to add the estimated size of the
* value itself, plus palloc overhead.
*/
if (!transinfo->transtypeByVal)
{
int32 avgwidth;
/* Use average width if aggregate definition gave one */
if (transinfo->aggtransspace > 0)
avgwidth = transinfo->aggtransspace;
else if (transinfo->transfn_oid == F_ARRAY_APPEND)
{
/*
* If the transition function is array_append(), it'll use an
* expanded array as transvalue, which will occupy at least
* ALLOCSET_SMALL_INITSIZE and possibly more. Use that as the
* estimate for lack of a better idea.
*/
avgwidth = ALLOCSET_SMALL_INITSIZE;
}
else
{
avgwidth = get_typavgwidth(transinfo->aggtranstype, transinfo->aggtranstypmod);
}
avgwidth = MAXALIGN(avgwidth);
costs->transitionSpace += avgwidth + 2 * sizeof(void *);
}
else if (transinfo->aggtranstype == INTERNALOID)
{
/*
* INTERNAL transition type is a special case: although INTERNAL
* is pass-by-value, it's almost certainly being used as a pointer
* to some large data structure. The aggregate definition can
* provide an estimate of the size. If it doesn't, then we assume
* ALLOCSET_DEFAULT_INITSIZE, which is a good guess if the data is
* being kept in a private memory context, as is done by
* array_agg() for instance.
*/
if (transinfo->aggtransspace > 0)
costs->transitionSpace += transinfo->aggtransspace;
else
costs->transitionSpace += ALLOCSET_DEFAULT_INITSIZE;
}
}
foreach(lc, root->agginfos)
{
AggInfo *agginfo = (AggInfo *) lfirst(lc);
Aggref *aggref = agginfo->representative_aggref;
/*
* Add the appropriate component function execution costs to
* appropriate totals.
*/
if (!DO_AGGSPLIT_SKIPFINAL(aggsplit) &&
OidIsValid(agginfo->finalfn_oid))
add_function_cost(root, agginfo->finalfn_oid, NULL,
&costs->finalCost);
/*
* If there are direct arguments, treat their evaluation cost like the
* cost of the finalfn.
*/
if (aggref->aggdirectargs)
{
QualCost argcosts;
cost_qual_eval_node(&argcosts, (Node *) aggref->aggdirectargs,
root);
costs->finalCost.startup += argcosts.startup;
costs->finalCost.per_tuple += argcosts.per_tuple;
}
}
}

View File

@ -53,14 +53,6 @@
#include "utils/syscache.h"
#include "utils/typcache.h"
typedef struct
{
PlannerInfo *root;
AggSplit aggsplit;
AggClauseCosts *costs;
} get_agg_clause_costs_context;
typedef struct
{
ParamListInfo boundParams;
@ -98,8 +90,6 @@ typedef struct
} max_parallel_hazard_context;
static bool contain_agg_clause_walker(Node *node, void *context);
static bool get_agg_clause_costs_walker(Node *node,
get_agg_clause_costs_context *context);
static bool find_window_functions_walker(Node *node, WindowFuncLists *lists);
static bool contain_subplans_walker(Node *node, void *context);
static bool contain_mutable_functions_walker(Node *node, void *context);
@ -200,284 +190,6 @@ contain_agg_clause_walker(Node *node, void *context)
return expression_tree_walker(node, contain_agg_clause_walker, context);
}
/*
* get_agg_clause_costs
* Recursively find the Aggref nodes in an expression tree, and
* accumulate cost information about them.
*
* 'aggsplit' tells us the expected partial-aggregation mode, which affects
* the cost estimates.
*
* NOTE that the counts/costs are ADDED to those already in *costs ... so
* the caller is responsible for zeroing the struct initially.
*
* We count the nodes, estimate their execution costs, and estimate the total
* space needed for their transition state values if all are evaluated in
* parallel (as would be done in a HashAgg plan). Also, we check whether
* partial aggregation is feasible. See AggClauseCosts for the exact set
* of statistics collected.
*
* In addition, we mark Aggref nodes with the correct aggtranstype, so
* that that doesn't need to be done repeatedly. (That makes this function's
* name a bit of a misnomer.)
*
* This does not descend into subqueries, and so should be used only after
* reduction of sublinks to subplans, or in contexts where it's known there
* are no subqueries. There mustn't be outer-aggregate references either.
*/
void
get_agg_clause_costs(PlannerInfo *root, Node *clause, AggSplit aggsplit,
AggClauseCosts *costs)
{
get_agg_clause_costs_context context;
context.root = root;
context.aggsplit = aggsplit;
context.costs = costs;
(void) get_agg_clause_costs_walker(clause, &context);
}
static bool
get_agg_clause_costs_walker(Node *node, get_agg_clause_costs_context *context)
{
if (node == NULL)
return false;
if (IsA(node, Aggref))
{
Aggref *aggref = (Aggref *) node;
AggClauseCosts *costs = context->costs;
HeapTuple aggTuple;
Form_pg_aggregate aggform;
Oid aggtransfn;
Oid aggfinalfn;
Oid aggcombinefn;
Oid aggserialfn;
Oid aggdeserialfn;
Oid aggtranstype;
int32 aggtransspace;
QualCost argcosts;
Assert(aggref->agglevelsup == 0);
/*
* Fetch info about aggregate from pg_aggregate. Note it's correct to
* ignore the moving-aggregate variant, since what we're concerned
* with here is aggregates not window functions.
*/
aggTuple = SearchSysCache1(AGGFNOID,
ObjectIdGetDatum(aggref->aggfnoid));
if (!HeapTupleIsValid(aggTuple))
elog(ERROR, "cache lookup failed for aggregate %u",
aggref->aggfnoid);
aggform = (Form_pg_aggregate) GETSTRUCT(aggTuple);
aggtransfn = aggform->aggtransfn;
aggfinalfn = aggform->aggfinalfn;
aggcombinefn = aggform->aggcombinefn;
aggserialfn = aggform->aggserialfn;
aggdeserialfn = aggform->aggdeserialfn;
aggtranstype = aggform->aggtranstype;
aggtransspace = aggform->aggtransspace;
ReleaseSysCache(aggTuple);
/*
* Resolve the possibly-polymorphic aggregate transition type, unless
* already done in a previous pass over the expression.
*/
if (OidIsValid(aggref->aggtranstype))
aggtranstype = aggref->aggtranstype;
else
{
Oid inputTypes[FUNC_MAX_ARGS];
int numArguments;
/* extract argument types (ignoring any ORDER BY expressions) */
numArguments = get_aggregate_argtypes(aggref, inputTypes);
/* resolve actual type of transition state, if polymorphic */
aggtranstype = resolve_aggregate_transtype(aggref->aggfnoid,
aggtranstype,
inputTypes,
numArguments);
aggref->aggtranstype = aggtranstype;
}
/*
* Count it, and check for cases requiring ordered input. Note that
* ordered-set aggs always have nonempty aggorder. Any ordered-input
* case also defeats partial aggregation.
*/
costs->numAggs++;
if (aggref->aggorder != NIL || aggref->aggdistinct != NIL)
{
costs->numOrderedAggs++;
costs->hasNonPartial = true;
}
/*
* Check whether partial aggregation is feasible, unless we already
* found out that we can't do it.
*/
if (!costs->hasNonPartial)
{
/*
* If there is no combine function, then partial aggregation is
* not possible.
*/
if (!OidIsValid(aggcombinefn))
costs->hasNonPartial = true;
/*
* If we have any aggs with transtype INTERNAL then we must check
* whether they have serialization/deserialization functions; if
* not, we can't serialize partial-aggregation results.
*/
else if (aggtranstype == INTERNALOID &&
(!OidIsValid(aggserialfn) || !OidIsValid(aggdeserialfn)))
costs->hasNonSerial = true;
}
/*
* Add the appropriate component function execution costs to
* appropriate totals.
*/
if (DO_AGGSPLIT_COMBINE(context->aggsplit))
{
/* charge for combining previously aggregated states */
add_function_cost(context->root, aggcombinefn, NULL,
&costs->transCost);
}
else
add_function_cost(context->root, aggtransfn, NULL,
&costs->transCost);
if (DO_AGGSPLIT_DESERIALIZE(context->aggsplit) &&
OidIsValid(aggdeserialfn))
add_function_cost(context->root, aggdeserialfn, NULL,
&costs->transCost);
if (DO_AGGSPLIT_SERIALIZE(context->aggsplit) &&
OidIsValid(aggserialfn))
add_function_cost(context->root, aggserialfn, NULL,
&costs->finalCost);
if (!DO_AGGSPLIT_SKIPFINAL(context->aggsplit) &&
OidIsValid(aggfinalfn))
add_function_cost(context->root, aggfinalfn, NULL,
&costs->finalCost);
/*
* These costs are incurred only by the initial aggregate node, so we
* mustn't include them again at upper levels.
*/
if (!DO_AGGSPLIT_COMBINE(context->aggsplit))
{
/* add the input expressions' cost to per-input-row costs */
cost_qual_eval_node(&argcosts, (Node *) aggref->args, context->root);
costs->transCost.startup += argcosts.startup;
costs->transCost.per_tuple += argcosts.per_tuple;
/*
* Add any filter's cost to per-input-row costs.
*
* XXX Ideally we should reduce input expression costs according
* to filter selectivity, but it's not clear it's worth the
* trouble.
*/
if (aggref->aggfilter)
{
cost_qual_eval_node(&argcosts, (Node *) aggref->aggfilter,
context->root);
costs->transCost.startup += argcosts.startup;
costs->transCost.per_tuple += argcosts.per_tuple;
}
}
/*
* If there are direct arguments, treat their evaluation cost like the
* cost of the finalfn.
*/
if (aggref->aggdirectargs)
{
cost_qual_eval_node(&argcosts, (Node *) aggref->aggdirectargs,
context->root);
costs->finalCost.startup += argcosts.startup;
costs->finalCost.per_tuple += argcosts.per_tuple;
}
/*
* If the transition type is pass-by-value then it doesn't add
* anything to the required size of the hashtable. If it is
* pass-by-reference then we have to add the estimated size of the
* value itself, plus palloc overhead.
*/
if (!get_typbyval(aggtranstype))
{
int32 avgwidth;
/* Use average width if aggregate definition gave one */
if (aggtransspace > 0)
avgwidth = aggtransspace;
else if (aggtransfn == F_ARRAY_APPEND)
{
/*
* If the transition function is array_append(), it'll use an
* expanded array as transvalue, which will occupy at least
* ALLOCSET_SMALL_INITSIZE and possibly more. Use that as the
* estimate for lack of a better idea.
*/
avgwidth = ALLOCSET_SMALL_INITSIZE;
}
else
{
/*
* If transition state is of same type as first aggregated
* input, assume it's the same typmod (same width) as well.
* This works for cases like MAX/MIN and is probably somewhat
* reasonable otherwise.
*/
int32 aggtranstypmod = -1;
if (aggref->args)
{
TargetEntry *tle = (TargetEntry *) linitial(aggref->args);
if (aggtranstype == exprType((Node *) tle->expr))
aggtranstypmod = exprTypmod((Node *) tle->expr);
}
avgwidth = get_typavgwidth(aggtranstype, aggtranstypmod);
}
avgwidth = MAXALIGN(avgwidth);
costs->transitionSpace += avgwidth + 2 * sizeof(void *);
}
else if (aggtranstype == INTERNALOID)
{
/*
* INTERNAL transition type is a special case: although INTERNAL
* is pass-by-value, it's almost certainly being used as a pointer
* to some large data structure. The aggregate definition can
* provide an estimate of the size. If it doesn't, then we assume
* ALLOCSET_DEFAULT_INITSIZE, which is a good guess if the data is
* being kept in a private memory context, as is done by
* array_agg() for instance.
*/
if (aggtransspace > 0)
costs->transitionSpace += aggtransspace;
else
costs->transitionSpace += ALLOCSET_DEFAULT_INITSIZE;
}
/*
* We assume that the parser checked that there are no aggregates (of
* this level anyway) in the aggregated arguments, direct arguments,
* or filter clause. Hence, we need not recurse into any of them.
*/
return false;
}
Assert(!IsA(node, SubLink));
return expression_tree_walker(node, get_agg_clause_costs_walker,
(void *) context);
}
/*****************************************************************************
* Window-function clause manipulation
*****************************************************************************/

View File

@ -769,6 +769,8 @@ ParseFuncOrColumn(ParseState *pstate, List *funcname, List *fargs,
aggref->aggkind = aggkind;
/* agglevelsup will be set by transformAggregateCall */
aggref->aggsplit = AGGSPLIT_SIMPLE; /* planner might change this */
aggref->aggno = -1; /* planner will set aggno and aggtransno */
aggref->aggtransno = -1;
aggref->location = location;
/*

View File

@ -3839,12 +3839,14 @@ estimate_hash_bucket_stats(PlannerInfo *root, Node *hashkey, double nbuckets,
* won't store them. Is this a problem?
*/
double
estimate_hashagg_tablesize(Path *path, const AggClauseCosts *agg_costs,
double dNumGroups)
estimate_hashagg_tablesize(PlannerInfo *root, Path *path,
const AggClauseCosts *agg_costs, double dNumGroups)
{
Size hashentrysize = hash_agg_entry_size(agg_costs->numAggs,
path->pathtarget->width,
agg_costs->transitionSpace);
Size hashentrysize;
hashentrysize = hash_agg_entry_size(list_length(root->aggtransinfos),
path->pathtarget->width,
agg_costs->transitionSpace);
/*
* Note that this disregards the effect of fill-factor and growth policy

View File

@ -53,6 +53,6 @@
*/
/* yyyymmddN */
#define CATALOG_VERSION_NO 202011231
#define CATALOG_VERSION_NO 202011241
#endif

View File

@ -564,8 +564,7 @@ typedef struct ExprEvalStep
/* for EEOP_AGGREF */
struct
{
/* out-of-line state, modified by nodeAgg.c */
AggrefExprState *astate;
int aggno;
} aggref;
/* for EEOP_GROUPING_FUNC */

View File

@ -746,17 +746,6 @@ typedef tuplehash_iterator TupleHashIterator;
* ----------------------------------------------------------------
*/
/* ----------------
* AggrefExprState node
* ----------------
*/
typedef struct AggrefExprState
{
NodeTag type;
Aggref *aggref; /* expression plan node */
int aggno; /* ID number for agg within its plan node */
} AggrefExprState;
/* ----------------
* WindowFuncExprState node
* ----------------

View File

@ -206,10 +206,9 @@ typedef enum NodeTag
* Most Expr-based plan nodes do not have a corresponding expression state
* node, they're fully handled within execExpr* - but sometimes the state
* needs to be shared with other parts of the executor, as for example
* with AggrefExprState, which nodeAgg.c has to modify.
* with SubPlanState, which nodeSubplan.c has to modify.
*/
T_ExprState,
T_AggrefExprState,
T_WindowFuncExprState,
T_SetExprState,
T_SubPlanState,

View File

@ -55,10 +55,6 @@ typedef struct QualCost
*/
typedef struct AggClauseCosts
{
int numAggs; /* total number of aggregate functions */
int numOrderedAggs; /* number w/ DISTINCT/ORDER BY/WITHIN GROUP */
bool hasNonPartial; /* does any agg not support partial mode? */
bool hasNonSerial; /* is any partial agg non-serializable? */
QualCost transCost; /* total per-input-row execution costs */
QualCost finalCost; /* total per-aggregated-row costs */
Size transitionSpace; /* space for pass-by-ref transition data */
@ -348,6 +344,15 @@ struct PlannerInfo
bool hasAlternativeSubPlans; /* true if we've made any of those */
bool hasRecursion; /* true if planning a recursive WITH item */
/*
* Information about aggregates. Filled by preprocess_aggrefs().
*/
List *agginfos; /* AggInfo structs */
List *aggtransinfos; /* AggTransInfo structs */
int numOrderedAggs; /* number w/ DISTINCT/ORDER BY/WITHIN GROUP */
bool hasNonPartialAggs; /* does any agg not support partial mode? */
bool hasNonSerialAggs; /* is any partial agg non-serializable? */
/* These fields are used only when hasRecursion is true: */
int wt_param_id; /* PARAM_EXEC ID for the work table */
struct Path *non_recursive_path; /* a path for non-recursive term */
@ -2549,4 +2554,71 @@ typedef struct JoinCostWorkspace
double inner_rows_total;
} JoinCostWorkspace;
/*
* AggInfo holds information about an aggregate that needs to be computed.
* Multiple Aggrefs in a query can refer to the same AggInfo by having the
* same 'aggno' value, so that the aggregate is computed only once.
*/
typedef struct AggInfo
{
/*
* Link to an Aggref expr this state value is for.
*
* There can be multiple identical Aggref's sharing the same per-agg. This
* points to the first one of them.
*/
Aggref *representative_aggref;
int transno;
/*
* "shareable" is false if this agg cannot share state values with other
* aggregates because the final function is read-write.
*/
bool shareable;
/* Oid of the final function or InvalidOid */
Oid finalfn_oid;
} AggInfo;
/*
* AggTransInfo holds information about transition state that is used by one
* or more aggregates in the query. Multiple aggregates can share the same
* transition state, if they have the same inputs and the same transition
* function. Aggrefs that share the same transition info have the same
* 'aggtransno' value.
*/
typedef struct AggTransInfo
{
List *args;
Expr *aggfilter;
/* Oid of the state transition function */
Oid transfn_oid;
/* Oid of the serialization function or InvalidOid */
Oid serialfn_oid;
/* Oid of the deserialization function or InvalidOid */
Oid deserialfn_oid;
/* Oid of the combine function or InvalidOid */
Oid combinefn_oid;
/* Oid of state value's datatype */
Oid aggtranstype;
int32 aggtranstypmod;
int transtypeLen;
bool transtypeByVal;
int32 aggtransspace;
/*
* initial value from pg_aggregate entry
*/
Datum initValue;
bool initValueIsNull;
} AggTransInfo;
#endif /* PATHNODES_H */

View File

@ -305,6 +305,12 @@ typedef struct Param
* a crosscheck that the Aggrefs match the plan; but note that when aggsplit
* indicates a non-final mode, aggtype reflects the transition data type
* not the SQL-level output type of the aggregate.
*
* aggno and aggtransno are -1 in the parse stage, and are set in planning.
* Aggregates with the same 'aggno' represent the same aggregate expression,
* and can share the result. Aggregates with same 'transno' but different
* 'aggno' can share the same transition state, only the final function needs
* to be called separately.
*/
typedef struct Aggref
{
@ -326,6 +332,8 @@ typedef struct Aggref
char aggkind; /* aggregate kind (see pg_aggregate.h) */
Index agglevelsup; /* > 0 if agg belongs to outer query */
AggSplit aggsplit; /* expected agg-splitting mode of parent Agg */
int aggno; /* unique ID within the Agg node */
int aggtransno; /* unique ID of transition state in the Agg */
int location; /* token location, or -1 if unknown */
} Aggref;

View File

@ -24,8 +24,6 @@ typedef struct
} WindowFuncLists;
extern bool contain_agg_clause(Node *clause);
extern void get_agg_clause_costs(PlannerInfo *root, Node *clause,
AggSplit aggsplit, AggClauseCosts *costs);
extern bool contain_window_function(Node *clause);
extern WindowFuncLists *find_window_functions(Node *clause, Index maxWinRef);

View File

@ -38,9 +38,17 @@ extern List *preprocess_targetlist(PlannerInfo *root);
extern PlanRowMark *get_plan_rowmark(List *rowmarks, Index rtindex);
/*
* prototypes for prepagg.c
*/
extern void get_agg_clause_costs(PlannerInfo *root, AggSplit aggsplit,
AggClauseCosts *agg_costs);
extern void preprocess_aggrefs(PlannerInfo *root, Node *clause);
/*
* prototypes for prepunion.c
*/
extern RelOptInfo *plan_set_operations(PlannerInfo *root);
#endif /* PREP_H */

View File

@ -200,7 +200,7 @@ extern void estimate_hash_bucket_stats(PlannerInfo *root,
Node *hashkey, double nbuckets,
Selectivity *mcv_freq,
Selectivity *bucketsize_frac);
extern double estimate_hashagg_tablesize(Path *path,
extern double estimate_hashagg_tablesize(PlannerInfo *root, Path *path,
const AggClauseCosts *agg_costs,
double dNumGroups);

View File

@ -1412,11 +1412,12 @@ SELECT y, sum(x), avg(x), count(*) FROM pagg_tab_para GROUP BY y HAVING avg(x) <
(4 rows)
-- Test when parent can produce parallel paths but not any (or some) of its children
-- (Use one more aggregate to tilt the cost estimates for the plan we want)
ALTER TABLE pagg_tab_para_p1 SET (parallel_workers = 0);
ALTER TABLE pagg_tab_para_p3 SET (parallel_workers = 0);
ANALYZE pagg_tab_para;
EXPLAIN (COSTS OFF)
SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
SELECT x, sum(y), avg(y), sum(x+y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
QUERY PLAN
-------------------------------------------------------------------------------------------
Sort
@ -1436,21 +1437,21 @@ SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) <
-> Parallel Seq Scan on pagg_tab_para_p2 pagg_tab_para_2
(15 rows)
SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
x | sum | avg | count
----+------+--------------------+-------
0 | 5000 | 5.0000000000000000 | 1000
1 | 6000 | 6.0000000000000000 | 1000
10 | 5000 | 5.0000000000000000 | 1000
11 | 6000 | 6.0000000000000000 | 1000
20 | 5000 | 5.0000000000000000 | 1000
21 | 6000 | 6.0000000000000000 | 1000
SELECT x, sum(y), avg(y), sum(x+y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
x | sum | avg | sum | count
----+------+--------------------+-------+-------
0 | 5000 | 5.0000000000000000 | 5000 | 1000
1 | 6000 | 6.0000000000000000 | 7000 | 1000
10 | 5000 | 5.0000000000000000 | 15000 | 1000
11 | 6000 | 6.0000000000000000 | 17000 | 1000
20 | 5000 | 5.0000000000000000 | 25000 | 1000
21 | 6000 | 6.0000000000000000 | 27000 | 1000
(6 rows)
ALTER TABLE pagg_tab_para_p2 SET (parallel_workers = 0);
ANALYZE pagg_tab_para;
EXPLAIN (COSTS OFF)
SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
SELECT x, sum(y), avg(y), sum(x+y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
QUERY PLAN
----------------------------------------------------------------------------------
Sort
@ -1470,15 +1471,15 @@ SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) <
-> Seq Scan on pagg_tab_para_p3 pagg_tab_para_3
(15 rows)
SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
x | sum | avg | count
----+------+--------------------+-------
0 | 5000 | 5.0000000000000000 | 1000
1 | 6000 | 6.0000000000000000 | 1000
10 | 5000 | 5.0000000000000000 | 1000
11 | 6000 | 6.0000000000000000 | 1000
20 | 5000 | 5.0000000000000000 | 1000
21 | 6000 | 6.0000000000000000 | 1000
SELECT x, sum(y), avg(y), sum(x+y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
x | sum | avg | sum | count
----+------+--------------------+-------+-------
0 | 5000 | 5.0000000000000000 | 5000 | 1000
1 | 6000 | 6.0000000000000000 | 7000 | 1000
10 | 5000 | 5.0000000000000000 | 15000 | 1000
11 | 6000 | 6.0000000000000000 | 17000 | 1000
20 | 5000 | 5.0000000000000000 | 25000 | 1000
21 | 6000 | 6.0000000000000000 | 27000 | 1000
(6 rows)
-- Reset parallelism parameters to get partitionwise aggregation plan.

View File

@ -308,20 +308,21 @@ SELECT y, sum(x), avg(x), count(*) FROM pagg_tab_para GROUP BY y HAVING avg(x) <
SELECT y, sum(x), avg(x), count(*) FROM pagg_tab_para GROUP BY y HAVING avg(x) < 12 ORDER BY 1, 2, 3;
-- Test when parent can produce parallel paths but not any (or some) of its children
-- (Use one more aggregate to tilt the cost estimates for the plan we want)
ALTER TABLE pagg_tab_para_p1 SET (parallel_workers = 0);
ALTER TABLE pagg_tab_para_p3 SET (parallel_workers = 0);
ANALYZE pagg_tab_para;
EXPLAIN (COSTS OFF)
SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
SELECT x, sum(y), avg(y), sum(x+y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
SELECT x, sum(y), avg(y), sum(x+y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
ALTER TABLE pagg_tab_para_p2 SET (parallel_workers = 0);
ANALYZE pagg_tab_para;
EXPLAIN (COSTS OFF)
SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
SELECT x, sum(y), avg(y), sum(x+y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
SELECT x, sum(y), avg(y), sum(x+y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
-- Reset parallelism parameters to get partitionwise aggregation plan.
RESET min_parallel_table_scan_size;

View File

@ -50,7 +50,6 @@ AggStatePerPhase
AggStatePerTrans
AggStrategy
Aggref
AggrefExprState
AlenState
Alias
AllocBlock