Invent "join domains" to replace the below_outer_join hack.

EquivalenceClasses are now understood as applying within a "join
domain", which is a set of inner-joined relations (possibly underneath
an outer join).  We no longer need to treat an EC from below an outer
join as a second-class citizen.

I have hopes of eventually being able to treat outer-join clauses via
EquivalenceClasses, by means of only applying deductions within the
EC's join domain.  There are still problems in the way of that, though,
so for now the reconsider_outer_join_clause logic is still here.

I haven't been able to get rid of RestrictInfo.is_pushed_down either,
but I wonder if that could be recast using JoinDomains.

I had to hack one test case in postgres_fdw.sql to make it still test
what it was meant to, because postgres_fdw is inconsistent about
how it deals with quals containing non-shippable expressions; see
https://postgr.es/m/1691374.1671659838@sss.pgh.pa.us.  That should
be improved, but I don't think it's within the scope of this patch
series.

Patch by me; thanks to Richard Guo for review.

Discussion: https://postgr.es/m/830269.1656693747@sss.pgh.pa.us
This commit is contained in:
Tom Lane 2023-01-30 13:50:25 -05:00
parent b448f1c8d8
commit 3bef56e116
12 changed files with 269 additions and 193 deletions

View File

@ -2513,7 +2513,7 @@ SELECT * FROM local_tbl LEFT JOIN (SELECT ft1.*, COALESCE(ft1.c3 || ft2.c3, 'foo
ALTER SERVER loopback OPTIONS (DROP extensions);
ALTER SERVER loopback OPTIONS (ADD fdw_startup_cost '10000.0');
EXPLAIN (VERBOSE, COSTS OFF)
SELECT * FROM local_tbl LEFT JOIN (SELECT ft1.* FROM ft1 INNER JOIN ft2 ON (ft1.c1 = ft2.c1 AND ft1.c1 < 100 AND ft1.c1 = postgres_fdw_abs(ft2.c2))) ss ON (local_tbl.c3 = ss.c3) ORDER BY local_tbl.c1 FOR UPDATE OF local_tbl;
SELECT * FROM local_tbl LEFT JOIN (SELECT ft1.* FROM ft1 INNER JOIN ft2 ON (ft1.c1 = ft2.c1 AND ft1.c1 < 100 AND (ft1.c1 - postgres_fdw_abs(ft2.c2)) = 0)) ss ON (local_tbl.c3 = ss.c3) ORDER BY local_tbl.c1 FOR UPDATE OF local_tbl;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
LockRows
@ -2527,7 +2527,7 @@ SELECT * FROM local_tbl LEFT JOIN (SELECT ft1.* FROM ft1 INNER JOIN ft2 ON (ft1.
Output: ft1.c1, ft1.c2, ft1.c3, ft1.c4, ft1.c5, ft1.c6, ft1.c7, ft1.c8, ft1.*, ft2.*
-> Foreign Scan
Output: ft1.c1, ft1.c2, ft1.c3, ft1.c4, ft1.c5, ft1.c6, ft1.c7, ft1.c8, ft1.*, ft2.*
Filter: (ft1.c1 = postgres_fdw_abs(ft2.c2))
Filter: ((ft1.c1 - postgres_fdw_abs(ft2.c2)) = 0)
Relations: (public.ft1) INNER JOIN (public.ft2)
Remote SQL: SELECT r4."C 1", r4.c2, r4.c3, r4.c4, r4.c5, r4.c6, r4.c7, r4.c8, CASE WHEN (r4.*)::text IS NOT NULL THEN ROW(r4."C 1", r4.c2, r4.c3, r4.c4, r4.c5, r4.c6, r4.c7, r4.c8) END, CASE WHEN (r5.*)::text IS NOT NULL THEN ROW(r5."C 1", r5.c2, r5.c3, r5.c4, r5.c5, r5.c6, r5.c7, r5.c8) END, r5.c2 FROM ("S 1"."T 1" r4 INNER JOIN "S 1"."T 1" r5 ON (((r5."C 1" = r4."C 1")) AND ((r4."C 1" < 100)))) ORDER BY r4.c3 ASC NULLS LAST
-> Sort
@ -2535,18 +2535,18 @@ SELECT * FROM local_tbl LEFT JOIN (SELECT ft1.* FROM ft1 INNER JOIN ft2 ON (ft1.
Sort Key: ft1.c3
-> Merge Join
Output: ft1.c1, ft1.c2, ft1.c3, ft1.c4, ft1.c5, ft1.c6, ft1.c7, ft1.c8, ft1.*, ft2.*, ft2.c2
Merge Cond: ((ft1.c1 = (postgres_fdw_abs(ft2.c2))) AND (ft1.c1 = ft2.c1))
Merge Cond: (ft1.c1 = ft2.c1)
Join Filter: ((ft1.c1 - postgres_fdw_abs(ft2.c2)) = 0)
-> Sort
Output: ft1.c1, ft1.c2, ft1.c3, ft1.c4, ft1.c5, ft1.c6, ft1.c7, ft1.c8, ft1.*
Sort Key: ft1.c1
-> Foreign Scan on public.ft1
Output: ft1.c1, ft1.c2, ft1.c3, ft1.c4, ft1.c5, ft1.c6, ft1.c7, ft1.c8, ft1.*
Remote SQL: SELECT "C 1", c2, c3, c4, c5, c6, c7, c8 FROM "S 1"."T 1" WHERE (("C 1" < 100))
-> Sort
Output: ft2.*, ft2.c1, ft2.c2, (postgres_fdw_abs(ft2.c2))
Sort Key: (postgres_fdw_abs(ft2.c2)), ft2.c1
-> Materialize
Output: ft2.*, ft2.c1, ft2.c2
-> Foreign Scan on public.ft2
Output: ft2.*, ft2.c1, ft2.c2, postgres_fdw_abs(ft2.c2)
Output: ft2.*, ft2.c1, ft2.c2
Remote SQL: SELECT "C 1", c2, c3, c4, c5, c6, c7, c8 FROM "S 1"."T 1" ORDER BY "C 1" ASC NULLS LAST
(32 rows)

View File

@ -681,7 +681,7 @@ SELECT * FROM local_tbl LEFT JOIN (SELECT ft1.*, COALESCE(ft1.c3 || ft2.c3, 'foo
ALTER SERVER loopback OPTIONS (DROP extensions);
ALTER SERVER loopback OPTIONS (ADD fdw_startup_cost '10000.0');
EXPLAIN (VERBOSE, COSTS OFF)
SELECT * FROM local_tbl LEFT JOIN (SELECT ft1.* FROM ft1 INNER JOIN ft2 ON (ft1.c1 = ft2.c1 AND ft1.c1 < 100 AND ft1.c1 = postgres_fdw_abs(ft2.c2))) ss ON (local_tbl.c3 = ss.c3) ORDER BY local_tbl.c1 FOR UPDATE OF local_tbl;
SELECT * FROM local_tbl LEFT JOIN (SELECT ft1.* FROM ft1 INNER JOIN ft2 ON (ft1.c1 = ft2.c1 AND ft1.c1 < 100 AND (ft1.c1 - postgres_fdw_abs(ft2.c2)) = 0)) ss ON (local_tbl.c3 = ss.c3) ORDER BY local_tbl.c1 FOR UPDATE OF local_tbl;
ALTER SERVER loopback OPTIONS (DROP fdw_startup_cost);
ALTER SERVER loopback OPTIONS (ADD extensions 'postgres_fdw');

View File

@ -468,7 +468,6 @@ _outEquivalenceClass(StringInfo str, const EquivalenceClass *node)
WRITE_BITMAPSET_FIELD(ec_relids);
WRITE_BOOL_FIELD(ec_has_const);
WRITE_BOOL_FIELD(ec_has_volatile);
WRITE_BOOL_FIELD(ec_below_outer_join);
WRITE_BOOL_FIELD(ec_broken);
WRITE_UINT_FIELD(ec_sortref);
WRITE_UINT_FIELD(ec_min_security);

View File

@ -35,6 +35,7 @@
static EquivalenceMember *add_eq_member(EquivalenceClass *ec,
Expr *expr, Relids relids,
JoinDomain *jdomain,
EquivalenceMember *parent,
Oid datatype);
static bool is_exprlist_member(Expr *node, List *exprs);
@ -67,6 +68,7 @@ static bool reconsider_outer_join_clause(PlannerInfo *root,
bool outer_on_left);
static bool reconsider_full_join_clause(PlannerInfo *root,
OuterJoinClauseInfo *ojcinfo);
static JoinDomain *find_join_domain(PlannerInfo *root, Relids relids);
static Bitmapset *get_eclass_indexes_for_relids(PlannerInfo *root,
Relids relids);
static Bitmapset *get_common_eclass_indexes(PlannerInfo *root, Relids relids1,
@ -75,8 +77,8 @@ static Bitmapset *get_common_eclass_indexes(PlannerInfo *root, Relids relids1,
/*
* process_equivalence
* The given clause has a mergejoinable operator and can be applied without
* any delay by an outer join, so its two sides can be considered equal
* The given clause has a mergejoinable operator and is not an outer-join
* qualification, so its two sides can be considered equal
* anywhere they are both computable; moreover that equality can be
* extended transitively. Record this knowledge in the EquivalenceClass
* data structure, if applicable. Returns true if successful, false if not
@ -88,16 +90,11 @@ static Bitmapset *get_common_eclass_indexes(PlannerInfo *root, Relids relids1,
* Then, *p_restrictinfo will be replaced by a new RestrictInfo, which is what
* the caller should use for further processing.
*
* If below_outer_join is true, then the clause was found below the nullable
* side of an outer join, so its sides might validly be both NULL rather than
* strictly equal. We can still deduce equalities in such cases, but we take
* care to mark an EquivalenceClass if it came from any such clauses. Also,
* we have to check that both sides are either pseudo-constants or strict
* functions of Vars, else they might not both go to NULL above the outer
* join. (This is the main reason why we need a failure return. It's more
* convenient to check this case here than at the call sites...)
* jdomain is the join domain within which the given clause was found.
* This limits the applicability of deductions from the EquivalenceClass,
* as described in optimizer/README.
*
* We also reject proposed equivalence clauses if they contain leaky functions
* We reject proposed equivalence clauses if they contain leaky functions
* and have security_level above zero. The EC evaluation rules require us to
* apply certain tests at certain joining levels, and we can't tolerate
* delaying any test on security_level grounds. By rejecting candidate clauses
@ -120,7 +117,7 @@ static Bitmapset *get_common_eclass_indexes(PlannerInfo *root, Relids relids1,
bool
process_equivalence(PlannerInfo *root,
RestrictInfo **p_restrictinfo,
bool below_outer_join)
JoinDomain *jdomain)
{
RestrictInfo *restrictinfo = *p_restrictinfo;
Expr *clause = restrictinfo->clause;
@ -208,19 +205,6 @@ process_equivalence(PlannerInfo *root,
return false;
}
/*
* If below outer join, check for strictness, else reject.
*/
if (below_outer_join)
{
if (!bms_is_empty(item1_relids) &&
contain_nonstrict_functions((Node *) item1))
return false; /* LHS is non-strict but not constant */
if (!bms_is_empty(item2_relids) &&
contain_nonstrict_functions((Node *) item2))
return false; /* RHS is non-strict but not constant */
}
/*
* We use the declared input types of the operator, not exprType() of the
* inputs, as the nominal datatypes for opfamily lookup. This presumes
@ -285,11 +269,10 @@ process_equivalence(PlannerInfo *root,
Assert(!cur_em->em_is_child); /* no children yet */
/*
* If below an outer join, don't match constants: they're not as
* constant as they look.
* Match constants only within the same JoinDomain (see
* optimizer/README).
*/
if ((below_outer_join || cur_ec->ec_below_outer_join) &&
cur_em->em_is_const)
if (cur_em->em_is_const && cur_em->em_jdomain != jdomain)
continue;
if (!ec1 &&
@ -326,7 +309,6 @@ process_equivalence(PlannerInfo *root,
if (ec1 == ec2)
{
ec1->ec_sources = lappend(ec1->ec_sources, restrictinfo);
ec1->ec_below_outer_join |= below_outer_join;
ec1->ec_min_security = Min(ec1->ec_min_security,
restrictinfo->security_level);
ec1->ec_max_security = Max(ec1->ec_max_security,
@ -362,7 +344,6 @@ process_equivalence(PlannerInfo *root,
ec1->ec_relids = bms_join(ec1->ec_relids, ec2->ec_relids);
ec1->ec_has_const |= ec2->ec_has_const;
/* can't need to set has_volatile */
ec1->ec_below_outer_join |= ec2->ec_below_outer_join;
ec1->ec_min_security = Min(ec1->ec_min_security,
ec2->ec_min_security);
ec1->ec_max_security = Max(ec1->ec_max_security,
@ -375,7 +356,6 @@ process_equivalence(PlannerInfo *root,
ec2->ec_derives = NIL;
ec2->ec_relids = NULL;
ec1->ec_sources = lappend(ec1->ec_sources, restrictinfo);
ec1->ec_below_outer_join |= below_outer_join;
ec1->ec_min_security = Min(ec1->ec_min_security,
restrictinfo->security_level);
ec1->ec_max_security = Max(ec1->ec_max_security,
@ -391,9 +371,8 @@ process_equivalence(PlannerInfo *root,
{
/* Case 3: add item2 to ec1 */
em2 = add_eq_member(ec1, item2, item2_relids,
NULL, item2_type);
jdomain, NULL, item2_type);
ec1->ec_sources = lappend(ec1->ec_sources, restrictinfo);
ec1->ec_below_outer_join |= below_outer_join;
ec1->ec_min_security = Min(ec1->ec_min_security,
restrictinfo->security_level);
ec1->ec_max_security = Max(ec1->ec_max_security,
@ -409,9 +388,8 @@ process_equivalence(PlannerInfo *root,
{
/* Case 3: add item1 to ec2 */
em1 = add_eq_member(ec2, item1, item1_relids,
NULL, item1_type);
jdomain, NULL, item1_type);
ec2->ec_sources = lappend(ec2->ec_sources, restrictinfo);
ec2->ec_below_outer_join |= below_outer_join;
ec2->ec_min_security = Min(ec2->ec_min_security,
restrictinfo->security_level);
ec2->ec_max_security = Max(ec2->ec_max_security,
@ -436,16 +414,15 @@ process_equivalence(PlannerInfo *root,
ec->ec_relids = NULL;
ec->ec_has_const = false;
ec->ec_has_volatile = false;
ec->ec_below_outer_join = below_outer_join;
ec->ec_broken = false;
ec->ec_sortref = 0;
ec->ec_min_security = restrictinfo->security_level;
ec->ec_max_security = restrictinfo->security_level;
ec->ec_merged = NULL;
em1 = add_eq_member(ec, item1, item1_relids,
NULL, item1_type);
jdomain, NULL, item1_type);
em2 = add_eq_member(ec, item2, item2_relids,
NULL, item2_type);
jdomain, NULL, item2_type);
root->eq_classes = lappend(root->eq_classes, ec);
@ -535,7 +512,7 @@ canonicalize_ec_expression(Expr *expr, Oid req_type, Oid req_collation)
*/
static EquivalenceMember *
add_eq_member(EquivalenceClass *ec, Expr *expr, Relids relids,
EquivalenceMember *parent, Oid datatype)
JoinDomain *jdomain, EquivalenceMember *parent, Oid datatype)
{
EquivalenceMember *em = makeNode(EquivalenceMember);
@ -544,6 +521,7 @@ add_eq_member(EquivalenceClass *ec, Expr *expr, Relids relids,
em->em_is_const = false;
em->em_is_child = (parent != NULL);
em->em_datatype = datatype;
em->em_jdomain = jdomain;
em->em_parent = parent;
if (bms_is_empty(relids))
@ -612,6 +590,7 @@ get_eclass_for_sort_expr(PlannerInfo *root,
Relids rel,
bool create_it)
{
JoinDomain *jdomain;
Relids expr_relids;
EquivalenceClass *newec;
EquivalenceMember *newem;
@ -623,6 +602,12 @@ get_eclass_for_sort_expr(PlannerInfo *root,
*/
expr = canonicalize_ec_expression(expr, opcintype, collation);
/*
* Since SortGroupClause nodes are top-level expressions (GROUP BY, ORDER
* BY, etc), they can be presumed to belong to the top JoinDomain.
*/
jdomain = linitial_node(JoinDomain, root->join_domains);
/*
* Scan through the existing EquivalenceClasses for a match
*/
@ -656,11 +641,10 @@ get_eclass_for_sort_expr(PlannerInfo *root,
continue;
/*
* If below an outer join, don't match constants: they're not as
* constant as they look.
* Match constants only within the same JoinDomain (see
* optimizer/README).
*/
if (cur_ec->ec_below_outer_join &&
cur_em->em_is_const)
if (cur_em->em_is_const && cur_em->em_jdomain != jdomain)
continue;
if (opcintype == cur_em->em_datatype &&
@ -689,7 +673,6 @@ get_eclass_for_sort_expr(PlannerInfo *root,
newec->ec_relids = NULL;
newec->ec_has_const = false;
newec->ec_has_volatile = contain_volatile_functions((Node *) expr);
newec->ec_below_outer_join = false;
newec->ec_broken = false;
newec->ec_sortref = sortref;
newec->ec_min_security = UINT_MAX;
@ -705,7 +688,7 @@ get_eclass_for_sort_expr(PlannerInfo *root,
expr_relids = pull_varnos(root, (Node *) expr);
newem = add_eq_member(newec, copyObject(expr), expr_relids,
NULL, opcintype);
jdomain, NULL, opcintype);
/*
* add_eq_member doesn't check for volatile functions, set-returning
@ -1185,11 +1168,16 @@ generate_base_implied_equalities_const(PlannerInfo *root,
ec->ec_broken = true;
break;
}
/*
* We use the constant's em_jdomain as qualscope, so that if the
* generated clause is variable-free (i.e, both EMs are consts) it
* will be enforced at the join domain level.
*/
rinfo = process_implied_equality(root, eq_op, ec->ec_collation,
cur_em->em_expr, const_em->em_expr,
bms_copy(ec->ec_relids),
const_em->em_jdomain->jd_relids,
ec->ec_min_security,
ec->ec_below_outer_join,
cur_em->em_is_const);
/*
@ -1257,11 +1245,16 @@ generate_base_implied_equalities_no_const(PlannerInfo *root,
ec->ec_broken = true;
break;
}
/*
* The expressions aren't constants, so the passed qualscope will
* never be used to place the generated clause. We just need to
* be sure it covers both expressions, so ec_relids will serve.
*/
rinfo = process_implied_equality(root, eq_op, ec->ec_collation,
prev_em->em_expr, cur_em->em_expr,
bms_copy(ec->ec_relids),
ec->ec_relids,
ec->ec_min_security,
ec->ec_below_outer_join,
false);
/*
@ -2074,6 +2067,7 @@ reconsider_outer_join_clause(PlannerInfo *root, OuterJoinClauseInfo *ojcinfo,
bool outer_on_left)
{
RestrictInfo *rinfo = ojcinfo->rinfo;
SpecialJoinInfo *sjinfo = ojcinfo->sjinfo;
Expr *outervar,
*innervar;
Oid opno,
@ -2150,6 +2144,7 @@ reconsider_outer_join_clause(PlannerInfo *root, OuterJoinClauseInfo *ojcinfo,
EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc2);
Oid eq_op;
RestrictInfo *newrinfo;
JoinDomain *jdomain;
if (!cur_em->em_is_const)
continue; /* ignore non-const members */
@ -2165,7 +2160,9 @@ reconsider_outer_join_clause(PlannerInfo *root, OuterJoinClauseInfo *ojcinfo,
cur_em->em_expr,
bms_copy(inner_relids),
cur_ec->ec_min_security);
if (process_equivalence(root, &newrinfo, true))
/* This equality holds within the OJ's child JoinDomain */
jdomain = find_join_domain(root, sjinfo->syn_righthand);
if (process_equivalence(root, &newrinfo, jdomain))
match = true;
}
@ -2300,6 +2297,7 @@ reconsider_full_join_clause(PlannerInfo *root, OuterJoinClauseInfo *ojcinfo)
EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc2);
Oid eq_op;
RestrictInfo *newrinfo;
JoinDomain *jdomain;
if (!cur_em->em_is_const)
continue; /* ignore non-const members */
@ -2315,7 +2313,9 @@ reconsider_full_join_clause(PlannerInfo *root, OuterJoinClauseInfo *ojcinfo)
cur_em->em_expr,
bms_copy(left_relids),
cur_ec->ec_min_security);
if (process_equivalence(root, &newrinfo, true))
/* This equality holds within the lefthand child JoinDomain */
jdomain = find_join_domain(root, sjinfo->syn_lefthand);
if (process_equivalence(root, &newrinfo, jdomain))
matchleft = true;
}
eq_op = select_equality_operator(cur_ec,
@ -2330,7 +2330,9 @@ reconsider_full_join_clause(PlannerInfo *root, OuterJoinClauseInfo *ojcinfo)
cur_em->em_expr,
bms_copy(right_relids),
cur_ec->ec_min_security);
if (process_equivalence(root, &newrinfo, true))
/* This equality holds within the righthand child JoinDomain */
jdomain = find_join_domain(root, sjinfo->syn_righthand);
if (process_equivalence(root, &newrinfo, jdomain))
matchright = true;
}
}
@ -2359,6 +2361,29 @@ reconsider_full_join_clause(PlannerInfo *root, OuterJoinClauseInfo *ojcinfo)
return false; /* failed to make any deduction */
}
/*
* find_join_domain
* Find the highest JoinDomain enclosed within the given relid set.
*
* (We could avoid this search at the cost of complicating APIs elsewhere,
* which doesn't seem worth it.)
*/
static JoinDomain *
find_join_domain(PlannerInfo *root, Relids relids)
{
ListCell *lc;
foreach(lc, root->join_domains)
{
JoinDomain *jdomain = (JoinDomain *) lfirst(lc);
if (bms_is_subset(jdomain->jd_relids, relids))
return jdomain;
}
elog(ERROR, "failed to find appropriate JoinDomain");
return NULL; /* keep compiler quiet */
}
/*
* exprs_known_equal
@ -2656,6 +2681,7 @@ add_child_rel_equivalences(PlannerInfo *root,
new_relids = bms_add_members(new_relids, child_relids);
(void) add_eq_member(cur_ec, child_expr, new_relids,
cur_em->em_jdomain,
cur_em, cur_em->em_datatype);
/* Record this EC index for the child rel */
@ -2783,6 +2809,7 @@ add_child_join_rel_equivalences(PlannerInfo *root,
new_relids = bms_add_members(new_relids, child_relids);
(void) add_eq_member(cur_ec, child_expr, new_relids,
cur_em->em_jdomain,
cur_em, cur_em->em_datatype);
}
}

View File

@ -2334,18 +2334,6 @@ select_mergejoin_clauses(PlannerInfo *root,
* canonical pathkey list, but redundant eclasses can't appear in
* canonical sort orderings. (XXX it might be worth relaxing this,
* but not enough time to address it for 8.3.)
*
* Note: it would be bad if this condition failed for an otherwise
* mergejoinable FULL JOIN clause, since that would result in
* undesirable planner failure. I believe that is not possible
* however; a variable involved in a full join could only appear in
* below_outer_join eclasses, which aren't considered redundant.
*
* This case *can* happen for left/right join clauses: the outer-side
* variable could be equated to a constant. Because we will propagate
* that constant across the join clause, the loss of ability to do a
* mergejoin is not really all that big a deal, and so it's not clear
* that improving this is important.
*/
update_mergeclause_eclasses(root, restrictinfo);

View File

@ -6210,10 +6210,7 @@ prepare_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
* the pathkey's EquivalenceClass. For now, we take the first
* tlist item found in the EC. If there's no match, we'll generate
* a resjunk entry using the first EC member that is an expression
* in the input's vars. (The non-const restriction only matters
* if the EC is below_outer_join; but if it isn't, it won't
* contain consts anyway, else we'd have discarded the pathkey as
* redundant.)
* in the input's vars.
*
* XXX if we have a choice, is there any way of figuring out which
* might be cheapest to execute? (For example, int4lt is likely

View File

@ -61,7 +61,7 @@ typedef struct JoinTreeItem
{
/* Fields filled during deconstruct_recurse: */
Node *jtnode; /* jointree node to examine */
bool below_outer_join; /* is it below an outer join? */
JoinDomain *jdomain; /* join domain for its ON/WHERE clauses */
Relids qualscope; /* base+OJ Relids syntactically included in
* this jointree node */
Relids inner_join_rels; /* base+OJ Relids syntactically included
@ -87,13 +87,13 @@ typedef struct PostponedQual
static void extract_lateral_references(PlannerInfo *root, RelOptInfo *brel,
Index rtindex);
static List *deconstruct_recurse(PlannerInfo *root, Node *jtnode,
bool below_outer_join,
JoinDomain *parent_domain,
List **item_list);
static void deconstruct_distribute(PlannerInfo *root, JoinTreeItem *jtitem,
List **postponed_qual_list);
static void process_security_barrier_quals(PlannerInfo *root,
int rti, Relids qualscope,
bool below_outer_join);
JoinDomain *jdomain);
static void mark_rels_nulled_by_join(PlannerInfo *root, Index ojrelid,
Relids lower_rels);
static SpecialJoinInfo *make_outerjoininfo(PlannerInfo *root,
@ -107,7 +107,7 @@ static void deconstruct_distribute_oj_quals(PlannerInfo *root,
List *jtitems,
JoinTreeItem *jtitem);
static void distribute_quals_to_rels(PlannerInfo *root, List *clauses,
bool below_outer_join,
JoinDomain *jdomain,
SpecialJoinInfo *sjinfo,
Index security_level,
Relids qualscope,
@ -119,7 +119,7 @@ static void distribute_quals_to_rels(PlannerInfo *root, List *clauses,
List **postponed_qual_list,
List **postponed_oj_qual_list);
static void distribute_qual_to_rels(PlannerInfo *root, Node *clause,
bool below_outer_join,
JoinDomain *jdomain,
SpecialJoinInfo *sjinfo,
Index security_level,
Relids qualscope,
@ -740,6 +740,7 @@ List *
deconstruct_jointree(PlannerInfo *root)
{
List *result;
JoinDomain *top_jdomain;
List *item_list = NIL;
List *postponed_qual_list = NIL;
ListCell *lc;
@ -751,6 +752,10 @@ deconstruct_jointree(PlannerInfo *root)
*/
root->placeholdersFrozen = true;
/* Fetch the already-created top-level join domain for the query */
top_jdomain = linitial_node(JoinDomain, root->join_domains);
top_jdomain->jd_relids = NULL; /* filled during deconstruct_recurse */
/* Start recursion at top of jointree */
Assert(root->parse->jointree != NULL &&
IsA(root->parse->jointree, FromExpr));
@ -761,12 +766,15 @@ deconstruct_jointree(PlannerInfo *root)
/* Perform the initial scan of the jointree */
result = deconstruct_recurse(root, (Node *) root->parse->jointree,
false,
top_jdomain,
&item_list);
/* Now we can form the value of all_query_rels, too */
root->all_query_rels = bms_union(root->all_baserels, root->outer_join_rels);
/* ... which should match what we computed for the top join domain */
Assert(bms_equal(root->all_query_rels, top_jdomain->jd_relids));
/* Now scan all the jointree nodes again, and distribute quals */
foreach(lc, item_list)
{
@ -804,10 +812,9 @@ deconstruct_jointree(PlannerInfo *root)
* deconstruct_recurse
* One recursion level of deconstruct_jointree's initial jointree scan.
*
* Inputs:
* jtnode is the jointree node to examine
* below_outer_join is true if this node is within the nullable side of a
* higher-level outer join
* jtnode is the jointree node to examine, and parent_domain is the
* enclosing join domain. (We must add all base+OJ relids appearing
* here or below to parent_domain.)
*
* item_list is an in/out parameter: we add a JoinTreeItem struct to
* that list for each jointree node, in depth-first traversal order.
@ -817,7 +824,7 @@ deconstruct_jointree(PlannerInfo *root)
*/
static List *
deconstruct_recurse(PlannerInfo *root, Node *jtnode,
bool below_outer_join,
JoinDomain *parent_domain,
List **item_list)
{
List *joinlist;
@ -828,7 +835,6 @@ deconstruct_recurse(PlannerInfo *root, Node *jtnode,
/* Make the new JoinTreeItem, but don't add it to item_list yet */
jtitem = palloc0_object(JoinTreeItem);
jtitem->jtnode = jtnode;
jtitem->below_outer_join = below_outer_join;
if (IsA(jtnode, RangeTblRef))
{
@ -836,6 +842,10 @@ deconstruct_recurse(PlannerInfo *root, Node *jtnode,
/* Fill all_baserels as we encounter baserel jointree nodes */
root->all_baserels = bms_add_member(root->all_baserels, varno);
/* This node belongs to parent_domain */
jtitem->jdomain = parent_domain;
parent_domain->jd_relids = bms_add_member(parent_domain->jd_relids,
varno);
/* qualscope is just the one RTE */
jtitem->qualscope = bms_make_singleton(varno);
/* A single baserel does not create an inner join */
@ -848,6 +858,9 @@ deconstruct_recurse(PlannerInfo *root, Node *jtnode,
int remaining;
ListCell *l;
/* This node belongs to parent_domain, as do its children */
jtitem->jdomain = parent_domain;
/*
* Recurse to handle child nodes, and compute output joinlist. We
* collapse subproblems into a single joinlist whenever the resulting
@ -866,7 +879,7 @@ deconstruct_recurse(PlannerInfo *root, Node *jtnode,
int sub_members;
sub_joinlist = deconstruct_recurse(root, lfirst(l),
below_outer_join,
parent_domain,
item_list);
sub_item = (JoinTreeItem *) llast(*item_list);
jtitem->qualscope = bms_add_members(jtitem->qualscope,
@ -894,6 +907,8 @@ deconstruct_recurse(PlannerInfo *root, Node *jtnode,
else if (IsA(jtnode, JoinExpr))
{
JoinExpr *j = (JoinExpr *) jtnode;
JoinDomain *child_domain,
*fj_domain;
JoinTreeItem *left_item,
*right_item;
List *leftjoinlist,
@ -902,13 +917,15 @@ deconstruct_recurse(PlannerInfo *root, Node *jtnode,
switch (j->jointype)
{
case JOIN_INNER:
/* This node belongs to parent_domain, as do its children */
jtitem->jdomain = parent_domain;
/* Recurse */
leftjoinlist = deconstruct_recurse(root, j->larg,
below_outer_join,
parent_domain,
item_list);
left_item = (JoinTreeItem *) llast(*item_list);
rightjoinlist = deconstruct_recurse(root, j->rarg,
below_outer_join,
parent_domain,
item_list);
right_item = (JoinTreeItem *) llast(*item_list);
/* Compute qualscope etc */
@ -922,21 +939,32 @@ deconstruct_recurse(PlannerInfo *root, Node *jtnode,
break;
case JOIN_LEFT:
case JOIN_ANTI:
/* Make new join domain for my quals and the RHS */
child_domain = makeNode(JoinDomain);
child_domain->jd_relids = NULL; /* filled by recursion */
root->join_domains = lappend(root->join_domains, child_domain);
jtitem->jdomain = child_domain;
/* Recurse */
leftjoinlist = deconstruct_recurse(root, j->larg,
below_outer_join,
parent_domain,
item_list);
left_item = (JoinTreeItem *) llast(*item_list);
rightjoinlist = deconstruct_recurse(root, j->rarg,
true,
child_domain,
item_list);
right_item = (JoinTreeItem *) llast(*item_list);
/* Compute qualscope etc */
/* Compute join domain contents, qualscope etc */
parent_domain->jd_relids =
bms_add_members(parent_domain->jd_relids,
child_domain->jd_relids);
jtitem->qualscope = bms_union(left_item->qualscope,
right_item->qualscope);
/* caution: ANTI join derived from SEMI will lack rtindex */
if (j->rtindex != 0)
{
parent_domain->jd_relids =
bms_add_member(parent_domain->jd_relids,
j->rtindex);
jtitem->qualscope = bms_add_member(jtitem->qualscope,
j->rtindex);
root->outer_join_rels = bms_add_member(root->outer_join_rels,
@ -951,13 +979,15 @@ deconstruct_recurse(PlannerInfo *root, Node *jtnode,
jtitem->nonnullable_rels = left_item->qualscope;
break;
case JOIN_SEMI:
/* This node belongs to parent_domain, as do its children */
jtitem->jdomain = parent_domain;
/* Recurse */
leftjoinlist = deconstruct_recurse(root, j->larg,
below_outer_join,
parent_domain,
item_list);
left_item = (JoinTreeItem *) llast(*item_list);
rightjoinlist = deconstruct_recurse(root, j->rarg,
below_outer_join,
parent_domain,
item_list);
right_item = (JoinTreeItem *) llast(*item_list);
/* Compute qualscope etc */
@ -973,19 +1003,36 @@ deconstruct_recurse(PlannerInfo *root, Node *jtnode,
jtitem->nonnullable_rels = NULL;
break;
case JOIN_FULL:
/* Recurse */
/* The FULL JOIN's quals need their very own domain */
fj_domain = makeNode(JoinDomain);
root->join_domains = lappend(root->join_domains, fj_domain);
jtitem->jdomain = fj_domain;
/* Recurse, giving each side its own join domain */
child_domain = makeNode(JoinDomain);
child_domain->jd_relids = NULL; /* filled by recursion */
root->join_domains = lappend(root->join_domains, child_domain);
leftjoinlist = deconstruct_recurse(root, j->larg,
true,
child_domain,
item_list);
left_item = (JoinTreeItem *) llast(*item_list);
fj_domain->jd_relids = bms_copy(child_domain->jd_relids);
child_domain = makeNode(JoinDomain);
child_domain->jd_relids = NULL; /* filled by recursion */
root->join_domains = lappend(root->join_domains, child_domain);
rightjoinlist = deconstruct_recurse(root, j->rarg,
true,
child_domain,
item_list);
right_item = (JoinTreeItem *) llast(*item_list);
/* Compute qualscope etc */
fj_domain->jd_relids = bms_add_members(fj_domain->jd_relids,
child_domain->jd_relids);
parent_domain->jd_relids = bms_add_members(parent_domain->jd_relids,
fj_domain->jd_relids);
jtitem->qualscope = bms_union(left_item->qualscope,
right_item->qualscope);
Assert(j->rtindex != 0);
parent_domain->jd_relids = bms_add_member(parent_domain->jd_relids,
j->rtindex);
jtitem->qualscope = bms_add_member(jtitem->qualscope,
j->rtindex);
root->outer_join_rels = bms_add_member(root->outer_join_rels,
@ -1087,7 +1134,7 @@ deconstruct_distribute(PlannerInfo *root, JoinTreeItem *jtitem,
process_security_barrier_quals(root,
varno,
jtitem->qualscope,
jtitem->below_outer_join);
jtitem->jdomain);
}
else if (IsA(jtnode, FromExpr))
{
@ -1105,7 +1152,7 @@ deconstruct_distribute(PlannerInfo *root, JoinTreeItem *jtitem,
if (bms_is_subset(pq->relids, jtitem->qualscope))
distribute_qual_to_rels(root, pq->qual,
jtitem->below_outer_join,
jtitem->jdomain,
NULL,
root->qual_security_level,
jtitem->qualscope, NULL, NULL,
@ -1120,7 +1167,7 @@ deconstruct_distribute(PlannerInfo *root, JoinTreeItem *jtitem,
* Now process the top-level quals.
*/
distribute_quals_to_rels(root, (List *) f->quals,
jtitem->below_outer_join,
jtitem->jdomain,
NULL,
root->qual_security_level,
jtitem->qualscope, NULL, NULL,
@ -1221,7 +1268,7 @@ deconstruct_distribute(PlannerInfo *root, JoinTreeItem *jtitem,
/* Process the JOIN's qual clauses */
distribute_quals_to_rels(root, my_quals,
jtitem->below_outer_join,
jtitem->jdomain,
sjinfo,
root->qual_security_level,
jtitem->qualscope,
@ -1258,7 +1305,7 @@ deconstruct_distribute(PlannerInfo *root, JoinTreeItem *jtitem,
static void
process_security_barrier_quals(PlannerInfo *root,
int rti, Relids qualscope,
bool below_outer_join)
JoinDomain *jdomain)
{
RangeTblEntry *rte = root->simple_rte_array[rti];
Index security_level = 0;
@ -1281,7 +1328,7 @@ process_security_barrier_quals(PlannerInfo *root,
* pushed up to top of tree, which we don't want.
*/
distribute_quals_to_rels(root, qualset,
below_outer_join,
jdomain,
NULL,
security_level,
qualscope,
@ -1991,7 +2038,7 @@ deconstruct_distribute_oj_quals(PlannerInfo *root,
is_clone = !has_clone;
distribute_quals_to_rels(root, quals,
true,
otherjtitem->jdomain,
sjinfo,
root->qual_security_level,
this_qualscope,
@ -2020,7 +2067,7 @@ deconstruct_distribute_oj_quals(PlannerInfo *root,
{
/* No commutation possible, just process the postponed clauses */
distribute_quals_to_rels(root, jtitem->oj_joinclauses,
true,
jtitem->jdomain,
sjinfo,
root->qual_security_level,
qualscope,
@ -2045,7 +2092,7 @@ deconstruct_distribute_oj_quals(PlannerInfo *root,
*/
static void
distribute_quals_to_rels(PlannerInfo *root, List *clauses,
bool below_outer_join,
JoinDomain *jdomain,
SpecialJoinInfo *sjinfo,
Index security_level,
Relids qualscope,
@ -2064,7 +2111,7 @@ distribute_quals_to_rels(PlannerInfo *root, List *clauses,
Node *clause = (Node *) lfirst(lc);
distribute_qual_to_rels(root, clause,
below_outer_join,
jdomain,
sjinfo,
security_level,
qualscope,
@ -2092,8 +2139,7 @@ distribute_quals_to_rels(PlannerInfo *root, List *clauses,
* These will be dealt with in later steps of deconstruct_jointree.
*
* 'clause': the qual clause to be distributed
* 'below_outer_join': true if the qual is from a JOIN/ON that is below the
* nullable side of a higher-level outer join
* 'jdomain': the join domain containing the clause
* 'sjinfo': join's SpecialJoinInfo (NULL for an inner join or WHERE clause)
* 'security_level': security_level to assign to the qual
* 'qualscope': set of base+OJ rels the qual's syntactic scope covers
@ -2124,7 +2170,7 @@ distribute_quals_to_rels(PlannerInfo *root, List *clauses,
*/
static void
distribute_qual_to_rels(PlannerInfo *root, Node *clause,
bool below_outer_join,
JoinDomain *jdomain,
SpecialJoinInfo *sjinfo,
Index security_level,
Relids qualscope,
@ -2196,12 +2242,8 @@ distribute_qual_to_rels(PlannerInfo *root, Node *clause,
* RestrictInfo lists for the moment, but eventually createplan.c will
* pull it out and make a gating Result node immediately above whatever
* plan node the pseudoconstant clause is assigned to. It's usually best
* to put a gating node as high in the plan tree as possible. If we are
* not below an outer join, we can actually push the pseudoconstant qual
* all the way to the top of the tree. If we are below an outer join, we
* leave the qual at its original syntactic level (we could push it up to
* just below the outer join, but that seems more complex than it's
* worth).
* to put a gating node as high in the plan tree as possible, which we can
* do by assigning it the full relid set of the current JoinDomain.
*/
if (bms_is_empty(relids))
{
@ -2211,25 +2253,20 @@ distribute_qual_to_rels(PlannerInfo *root, Node *clause,
relids = bms_copy(ojscope);
/* mustn't use as gating qual, so don't mark pseudoconstant */
}
else
else if (contain_volatile_functions(clause))
{
/* eval at original syntactic level */
relids = bms_copy(qualscope);
if (!contain_volatile_functions(clause))
{
/* mark as gating qual */
pseudoconstant = true;
/* tell createplan.c to check for gating quals */
root->hasPseudoConstantQuals = true;
/* if not below outer join, push it to top of tree */
if (!below_outer_join)
{
relids =
get_relids_in_jointree((Node *) root->parse->jointree,
true, false);
qualscope = bms_copy(relids);
}
}
/* again, can't mark pseudoconstant */
}
else
{
/* eval at join domain level */
relids = bms_copy(jdomain->jd_relids);
/* mark as gating qual */
pseudoconstant = true;
/* tell createplan.c to check for gating quals */
root->hasPseudoConstantQuals = true;
}
}
@ -2319,23 +2356,8 @@ distribute_qual_to_rels(PlannerInfo *root, Node *clause,
if (check_redundant_nullability_qual(root, clause))
return;
if (!allow_equivalence)
{
/* Caller says it mustn't become an equivalence class */
maybe_equivalence = false;
}
else
{
/*
* Consider feeding qual to the equivalence machinery. However,
* if it's itself within an outer-join clause, treat it as though
* it appeared below that outer join (note that we can only get
* here when the clause references only nullable-side rels).
*/
maybe_equivalence = true;
if (outerjoin_nonnullable != NULL)
below_outer_join = true;
}
/* Feed qual to the equivalence machinery, if allowed by caller */
maybe_equivalence = allow_equivalence;
/*
* Since it doesn't mention the LHS, it's certainly not useful as a
@ -2401,16 +2423,14 @@ distribute_qual_to_rels(PlannerInfo *root, Node *clause,
check_mergejoinable(restrictinfo);
/*
* XXX rewrite:
*
* If it is a true equivalence clause, send it to the EquivalenceClass
* machinery. We do *not* attach it directly to any restriction or join
* lists. The EC code will propagate it to the appropriate places later.
*
* If the clause has a mergejoinable operator and is not
* outerjoin-delayed, yet isn't an equivalence because it is an outer-join
* clause, the EC code may yet be able to do something with it. We add it
* to appropriate lists for further consideration later. Specifically:
* If the clause has a mergejoinable operator, yet isn't an equivalence
* because it is an outer-join clause, the EC code may still be able to do
* something with it. We add it to appropriate lists for further
* consideration later. Specifically:
*
* If it is a left or right outer-join qualification that relates the two
* sides of the outer join (no funny business like leftvar1 = leftvar2 +
@ -2438,7 +2458,7 @@ distribute_qual_to_rels(PlannerInfo *root, Node *clause,
{
if (maybe_equivalence)
{
if (process_equivalence(root, &restrictinfo, below_outer_join))
if (process_equivalence(root, &restrictinfo, jdomain))
return;
/* EC rejected it, so set left_ec/right_ec the hard way ... */
if (restrictinfo->mergeopfamilies) /* EC might have changed this */
@ -2628,8 +2648,9 @@ distribute_restrictinfo_to_rels(PlannerInfo *root,
* "qualscope" is the nominal syntactic level to impute to the restrictinfo.
* This must contain at least all the rels used in the expressions, but it
* is used only to set the qual application level when both exprs are
* variable-free. Otherwise the qual is applied at the lowest join level
* that provides all its variables.
* variable-free. (Hence, it should usually match the join domain in which
* the clause applies.) Otherwise the qual is applied at the lowest join
* level that provides all its variables.
*
* "security_level" is the security level to assign to the new restrictinfo.
*
@ -2657,7 +2678,6 @@ process_implied_equality(PlannerInfo *root,
Expr *item2,
Relids qualscope,
Index security_level,
bool below_outer_join,
bool both_const)
{
RestrictInfo *restrictinfo;
@ -2706,27 +2726,16 @@ process_implied_equality(PlannerInfo *root,
/*
* If the clause is variable-free, our normal heuristic for pushing it
* down to just the mentioned rels doesn't work, because there are none.
* Apply at the given qualscope, or at the top of tree if it's nonvolatile
* (which it very likely is, but we'll check, just to be sure).
* Apply it as a gating qual at the given qualscope.
*/
if (bms_is_empty(relids))
{
/* eval at original syntactic level */
/* eval at join domain level */
relids = bms_copy(qualscope);
if (!contain_volatile_functions(clause))
{
/* mark as gating qual */
pseudoconstant = true;
/* tell createplan.c to check for gating quals */
root->hasPseudoConstantQuals = true;
/* if not below outer join, push it to top of tree */
if (!below_outer_join)
{
relids =
get_relids_in_jointree((Node *) root->parse->jointree,
true, false);
}
}
/* mark as gating qual */
pseudoconstant = true;
/* tell createplan.c to check for gating quals */
root->hasPseudoConstantQuals = true;
}
/*

View File

@ -625,6 +625,7 @@ subquery_planner(PlannerGlobal *glob, Query *parse,
root->init_plans = NIL;
root->cte_plan_ids = NIL;
root->multiexpr_params = NIL;
root->join_domains = NIL;
root->eq_classes = NIL;
root->ec_merging_done = false;
root->last_rinfo_serial = 0;
@ -654,6 +655,13 @@ subquery_planner(PlannerGlobal *glob, Query *parse,
root->non_recursive_path = NULL;
root->partColsUpdated = false;
/*
* Create the top-level join domain. This won't have valid contents until
* deconstruct_jointree fills it in, but the node needs to exist before
* that so we can build EquivalenceClasses referencing it.
*/
root->join_domains = list_make1(makeNode(JoinDomain));
/*
* If there is a WITH list, process each WITH query and either convert it
* to RTE_SUBQUERY RTE(s) or build an initplan SubPlan structure for it.
@ -6534,6 +6542,7 @@ plan_cluster_use_sort(Oid tableOid, Oid indexOid)
root->query_level = 1;
root->planner_cxt = CurrentMemoryContext;
root->wt_param_id = -1;
root->join_domains = list_make1(makeNode(JoinDomain));
/* Build a minimal RTE for the rel */
rte = makeNode(RangeTblEntry);
@ -6655,6 +6664,7 @@ plan_create_index_workers(Oid tableOid, Oid indexOid)
root->query_level = 1;
root->planner_cxt = CurrentMemoryContext;
root->wt_param_id = -1;
root->join_domains = list_make1(makeNode(JoinDomain));
/*
* Build a minimal RTE.

View File

@ -991,6 +991,7 @@ pull_up_simple_subquery(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte,
subroot->init_plans = NIL;
subroot->cte_plan_ids = NIL;
subroot->multiexpr_params = NIL;
subroot->join_domains = NIL;
subroot->eq_classes = NIL;
subroot->ec_merging_done = false;
subroot->last_rinfo_serial = 0;
@ -1012,6 +1013,7 @@ pull_up_simple_subquery(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte,
subroot->hasRecursion = false;
subroot->wt_param_id = -1;
subroot->non_recursive_path = NULL;
/* We don't currently need a top JoinDomain for the subroot */
/* No CTEs to worry about */
Assert(subquery->cteList == NIL);

View File

@ -307,6 +307,9 @@ struct PlannerInfo
/* List of Lists of Params for MULTIEXPR subquery outputs */
List *multiexpr_params;
/* list of JoinDomains used in the query (higher ones first) */
List *join_domains;
/* list of active EquivalenceClasses */
List *eq_classes;
@ -1278,11 +1281,46 @@ typedef struct StatisticExtInfo
List *exprs;
} StatisticExtInfo;
/*
* JoinDomains
*
* A "join domain" defines the scope of applicability of deductions made via
* the EquivalenceClass mechanism. Roughly speaking, a join domain is a set
* of base+OJ relations that are inner-joined together. More precisely, it is
* the set of relations at which equalities deduced from an EquivalenceClass
* can be enforced or should be expected to hold. The topmost JoinDomain
* covers the whole query (so its jd_relids should equal all_query_rels).
* An outer join creates a new JoinDomain that includes all base+OJ relids
* within its nullable side, but (by convention) not the OJ's own relid.
* A FULL join creates two new JoinDomains, one for each side.
*
* Notice that a rel that is below outer join(s) will thus appear to belong
* to multiple join domains. However, any of its Vars that appear in
* EquivalenceClasses belonging to higher join domains will have nullingrel
* bits preventing them from being evaluated at the rel's scan level, so that
* we will not be able to derive enforceable-at-the-rel-scan-level clauses
* from such ECs. We define the join domain relid sets this way so that
* domains can be said to be "higher" or "lower" when one domain relid set
* includes another.
*
* The JoinDomains for a query are computed in deconstruct_jointree.
* We do not copy JoinDomain structs once made, so they can be compared
* for equality by simple pointer equality.
*/
typedef struct JoinDomain
{
pg_node_attr(no_copy_equal, no_read)
NodeTag type;
Relids jd_relids; /* all relids contained within the domain */
} JoinDomain;
/*
* EquivalenceClasses
*
* Whenever we can determine that a mergejoinable equality clause A = B is
* not delayed by any outer join, we create an EquivalenceClass containing
* Whenever we identify a mergejoinable equality clause A = B that is
* not an outer-join clause, we create an EquivalenceClass containing
* the expressions A and B to record this knowledge. If we later find another
* equivalence B = C, we add C to the existing EquivalenceClass; this may
* require merging two existing EquivalenceClasses. At the end of the qual
@ -1296,6 +1334,18 @@ typedef struct StatisticExtInfo
* that all or none of the input datatypes are collatable, so that a single
* collation value is sufficient.)
*
* Strictly speaking, deductions from an EquivalenceClass hold only within
* a "join domain", that is a set of relations that are innerjoined together
* (see JoinDomain above). For the most part we don't need to account for
* this explicitly, because equality clauses from different join domains
* will contain Vars that are not equal() because they have different
* nullingrel sets, and thus we will never falsely merge ECs from different
* join domains. But Var-free (pseudoconstant) expressions lack that safety
* feature. We handle that by marking "const" EC members with the JoinDomain
* of the clause they came from; two nominally-equal const members will be
* considered different if they came from different JoinDomains. This ensures
* no false EquivalenceClass merges will occur.
*
* We also use EquivalenceClasses as the base structure for PathKeys, letting
* us represent knowledge about different sort orderings being equivalent.
* Since every PathKey must reference an EquivalenceClass, we will end up
@ -1310,11 +1360,6 @@ typedef struct StatisticExtInfo
* entry: consider SELECT random() AS a, random() AS b ... ORDER BY b,a.
* So we record the SortGroupRef of the originating sort clause.
*
* We allow equality clauses appearing below the nullable side of an outer join
* to form EquivalenceClasses, but these have a slightly different meaning:
* the included values might be all NULL rather than all the same non-null
* values. See src/backend/optimizer/README for more on that point.
*
* NB: if ec_merged isn't NULL, this class has been merged into another, and
* should be ignored in favor of using the pointed-to class.
*
@ -1339,7 +1384,6 @@ typedef struct EquivalenceClass
* for child members (see below) */
bool ec_has_const; /* any pseudoconstants in ec_members? */
bool ec_has_volatile; /* the (sole) member is a volatile expr */
bool ec_below_outer_join; /* equivalence applies below an OJ */
bool ec_broken; /* failed to generate needed clauses? */
Index ec_sortref; /* originating sortclause label, or 0 */
Index ec_min_security; /* minimum security_level in ec_sources */
@ -1348,11 +1392,11 @@ typedef struct EquivalenceClass
} EquivalenceClass;
/*
* If an EC contains a const and isn't below-outer-join, any PathKey depending
* on it must be redundant, since there's only one possible value of the key.
* If an EC contains a constant, any PathKey depending on it must be
* redundant, since there's only one possible value of the key.
*/
#define EC_MUST_BE_REDUNDANT(eclass) \
((eclass)->ec_has_const && !(eclass)->ec_below_outer_join)
((eclass)->ec_has_const)
/*
* EquivalenceMember - one member expression of an EquivalenceClass
@ -1387,6 +1431,7 @@ typedef struct EquivalenceMember
bool em_is_const; /* expression is pseudoconstant? */
bool em_is_child; /* derived version for a child relation? */
Oid em_datatype; /* the "nominal type" used by the opfamily */
JoinDomain *em_jdomain; /* join domain containing the source clause */
/* if em_is_child is true, this links to corresponding EM for top parent */
struct EquivalenceMember *em_parent pg_node_attr(read_write_ignore);
} EquivalenceMember;

View File

@ -122,7 +122,7 @@ typedef bool (*ec_matches_callback_type) (PlannerInfo *root,
extern bool process_equivalence(PlannerInfo *root,
RestrictInfo **p_restrictinfo,
bool below_outer_join);
JoinDomain *jdomain);
extern Expr *canonicalize_ec_expression(Expr *expr,
Oid req_type, Oid req_collation);
extern void reconsider_outer_join_clauses(PlannerInfo *root);

View File

@ -84,7 +84,6 @@ extern RestrictInfo *process_implied_equality(PlannerInfo *root,
Expr *item2,
Relids qualscope,
Index security_level,
bool below_outer_join,
bool both_const);
extern RestrictInfo *build_implied_join_equality(PlannerInfo *root,
Oid opno,