diff --git a/src/backend/utils/adt/numeric.c b/src/backend/utils/adt/numeric.c index 10229eb37e..9986132b45 100644 --- a/src/backend/utils/adt/numeric.c +++ b/src/backend/utils/adt/numeric.c @@ -392,16 +392,6 @@ static const NumericVar const_ten = {1, 1, NUMERIC_POS, 0, NULL, (NumericDigit *) const_ten_data}; #endif -#if DEC_DIGITS == 4 -static const NumericDigit const_zero_point_five_data[1] = {5000}; -#elif DEC_DIGITS == 2 -static const NumericDigit const_zero_point_five_data[1] = {50}; -#elif DEC_DIGITS == 1 -static const NumericDigit const_zero_point_five_data[1] = {5}; -#endif -static const NumericVar const_zero_point_five = -{1, -1, NUMERIC_POS, 1, NULL, (NumericDigit *) const_zero_point_five_data}; - #if DEC_DIGITS == 4 static const NumericDigit const_zero_point_nine_data[1] = {9000}; #elif DEC_DIGITS == 2 @@ -518,6 +508,8 @@ static void div_var_fast(const NumericVar *var1, const NumericVar *var2, static int select_div_scale(const NumericVar *var1, const NumericVar *var2); static void mod_var(const NumericVar *var1, const NumericVar *var2, NumericVar *result); +static void div_mod_var(const NumericVar *var1, const NumericVar *var2, + NumericVar *quot, NumericVar *rem); static void ceil_var(const NumericVar *var, NumericVar *result); static void floor_var(const NumericVar *var, NumericVar *result); @@ -7712,6 +7704,7 @@ div_var_fast(const NumericVar *var1, const NumericVar *var2, NumericVar *result, int rscale, bool round) { int div_ndigits; + int load_ndigits; int res_sign; int res_weight; int *div; @@ -7766,9 +7759,6 @@ div_var_fast(const NumericVar *var1, const NumericVar *var2, div_ndigits += DIV_GUARD_DIGITS; if (div_ndigits < DIV_GUARD_DIGITS) div_ndigits = DIV_GUARD_DIGITS; - /* Must be at least var1ndigits, too, to simplify data-loading loop */ - if (div_ndigits < var1ndigits) - div_ndigits = var1ndigits; /* * We do the arithmetic in an array "div[]" of signed int's. Since @@ -7781,9 +7771,16 @@ div_var_fast(const NumericVar *var1, const NumericVar *var2, * (approximate) quotient digit and stores it into div[], removing one * position of dividend space. A final pass of carry propagation takes * care of any mistaken quotient digits. + * + * Note that div[] doesn't necessarily contain all of the digits from the + * dividend --- the desired precision plus guard digits might be less than + * the dividend's precision. This happens, for example, in the square + * root algorithm, where we typically divide a 2N-digit number by an + * N-digit number, and only require a result with N digits of precision. */ div = (int *) palloc0((div_ndigits + 1) * sizeof(int)); - for (i = 0; i < var1ndigits; i++) + load_ndigits = Min(div_ndigits, var1ndigits); + for (i = 0; i < load_ndigits; i++) div[i + 1] = var1digits[i]; /* @@ -7844,9 +7841,15 @@ div_var_fast(const NumericVar *var1, const NumericVar *var2, maxdiv += Abs(qdigit); if (maxdiv > (INT_MAX - INT_MAX / NBASE - 1) / (NBASE - 1)) { - /* Yes, do it */ + /* + * Yes, do it. Note that if var2ndigits is much smaller than + * div_ndigits, we can save a significant amount of effort + * here by noting that we only need to normalise those div[] + * entries touched where prior iterations subtracted multiples + * of the divisor. + */ carry = 0; - for (i = div_ndigits; i > qi; i--) + for (i = Min(qi + var2ndigits - 2, div_ndigits); i > qi; i--) { newdig = div[i] + carry; if (newdig < 0) @@ -8094,6 +8097,76 @@ mod_var(const NumericVar *var1, const NumericVar *var2, NumericVar *result) } +/* + * div_mod_var() - + * + * Calculate the truncated integer quotient and numeric remainder of two + * numeric variables. The remainder is precise to var2's dscale. + */ +static void +div_mod_var(const NumericVar *var1, const NumericVar *var2, + NumericVar *quot, NumericVar *rem) +{ + NumericVar q; + NumericVar r; + + init_var(&q); + init_var(&r); + + /* + * Use div_var_fast() to get an initial estimate for the integer quotient. + * This might be inaccurate (per the warning in div_var_fast's comments), + * but we can correct it below. + */ + div_var_fast(var1, var2, &q, 0, false); + + /* Compute initial estimate of remainder using the quotient estimate. */ + mul_var(var2, &q, &r, var2->dscale); + sub_var(var1, &r, &r); + + /* + * Adjust the results if necessary --- the remainder should have the same + * sign as var1, and its absolute value should be less than the absolute + * value of var2. + */ + while (r.ndigits != 0 && r.sign != var1->sign) + { + /* The absolute value of the quotient is too large */ + if (var1->sign == var2->sign) + { + sub_var(&q, &const_one, &q); + add_var(&r, var2, &r); + } + else + { + add_var(&q, &const_one, &q); + sub_var(&r, var2, &r); + } + } + + while (cmp_abs(&r, var2) >= 0) + { + /* The absolute value of the quotient is too small */ + if (var1->sign == var2->sign) + { + add_var(&q, &const_one, &q); + sub_var(&r, var2, &r); + } + else + { + sub_var(&q, &const_one, &q); + add_var(&r, var2, &r); + } + } + + set_var_from_var(&q, quot); + set_var_from_var(&r, rem); + + free_var(&q); + free_var(&r); +} + + /* * ceil_var() - * @@ -8213,18 +8286,30 @@ gcd_var(const NumericVar *var1, const NumericVar *var2, NumericVar *result) /* * sqrt_var() - * - * Compute the square root of x using Newton's algorithm + * Compute the square root of x using the Karatsuba Square Root algorithm. + * NOTE: we allow rscale < 0 here, implying rounding before the decimal + * point. */ static void sqrt_var(const NumericVar *arg, NumericVar *result, int rscale) { - NumericVar tmp_arg; - NumericVar tmp_val; - NumericVar last_val; - int local_rscale; int stat; - - local_rscale = rscale + 8; + int res_weight; + int res_ndigits; + int src_ndigits; + int step; + int ndigits[32]; + int blen; + int64 arg_int64; + int src_idx; + int64 s_int64; + int64 r_int64; + NumericVar s_var; + NumericVar r_var; + NumericVar a0_var; + NumericVar a1_var; + NumericVar q_var; + NumericVar u_var; stat = cmp_var(arg, &const_zero); if (stat == 0) @@ -8243,43 +8328,440 @@ sqrt_var(const NumericVar *arg, NumericVar *result, int rscale) (errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION), errmsg("cannot take square root of a negative number"))); - init_var(&tmp_arg); - init_var(&tmp_val); - init_var(&last_val); - - /* Copy arg in case it is the same var as result */ - set_var_from_var(arg, &tmp_arg); + init_var(&s_var); + init_var(&r_var); + init_var(&a0_var); + init_var(&a1_var); + init_var(&q_var); + init_var(&u_var); /* - * Initialize the result to the first guess + * The result weight is half the input weight, rounded towards minus + * infinity --- res_weight = floor(arg->weight / 2). */ - alloc_var(result, 1); - result->digits[0] = tmp_arg.digits[0] / 2; - if (result->digits[0] == 0) - result->digits[0] = 1; - result->weight = tmp_arg.weight / 2; - result->sign = NUMERIC_POS; + if (arg->weight >= 0) + res_weight = arg->weight / 2; + else + res_weight = -((-arg->weight - 1) / 2 + 1); - set_var_from_var(result, &last_val); + /* + * Number of NBASE digits to compute. To ensure correct rounding, compute + * at least 1 extra decimal digit. We explicitly allow rscale to be + * negative here, but must always compute at least 1 NBASE digit. Thus + * res_ndigits = res_weight + 1 + ceil((rscale + 1) / DEC_DIGITS) or 1. + */ + if (rscale + 1 >= 0) + res_ndigits = res_weight + 1 + (rscale + DEC_DIGITS) / DEC_DIGITS; + else + res_ndigits = res_weight + 1 - (-rscale - 1) / DEC_DIGITS; + res_ndigits = Max(res_ndigits, 1); - for (;;) + /* + * Number of source NBASE digits logically required to produce a result + * with this precision --- every digit before the decimal point, plus 2 + * for each result digit after the decimal point (or minus 2 for each + * result digit we round before the decimal point). + */ + src_ndigits = arg->weight + 1 + (res_ndigits - res_weight - 1) * 2; + src_ndigits = Max(src_ndigits, 1); + + /* ---------- + * From this point on, we treat the input and the result as integers and + * compute the integer square root and remainder using the Karatsuba + * Square Root algorithm, which may be written recursively as follows: + * + * SqrtRem(n = a3*b^3 + a2*b^2 + a1*b + a0): + * [ for some base b, and coefficients a0,a1,a2,a3 chosen so that + * 0 <= a0,a1,a2 < b and a3 >= b/4 ] + * Let (s,r) = SqrtRem(a3*b + a2) + * Let (q,u) = DivRem(r*b + a1, 2*s) + * Let s = s*b + q + * Let r = u*b + a0 - q^2 + * If r < 0 Then + * Let r = r + s + * Let s = s - 1 + * Let r = r + s + * Return (s,r) + * + * See "Karatsuba Square Root", Paul Zimmermann, INRIA Research Report + * RR-3805, November 1999. At the time of writing this was available + * on the net at . + * + * The way to read the assumption "n = a3*b^3 + a2*b^2 + a1*b + a0" is + * "choose a base b such that n requires at least four base-b digits to + * express; then those digits are a3,a2,a1,a0, with a3 possibly larger + * than b". For optimal performance, b should have approximately a + * quarter the number of digits in the input, so that the outer square + * root computes roughly twice as many digits as the inner one. For + * simplicity, we choose b = NBASE^blen, an integer power of NBASE. + * + * We implement the algorithm iteratively rather than recursively, to + * allow the working variables to be reused. With this approach, each + * digit of the input is read precisely once --- src_idx tracks the number + * of input digits used so far. + * + * The array ndigits[] holds the number of NBASE digits of the input that + * will have been used at the end of each iteration, which roughly doubles + * each time. Note that the array elements are stored in reverse order, + * so if the final iteration requires src_ndigits = 37 input digits, the + * array will contain [37,19,11,7,5,3], and we would start by computing + * the square root of the 3 most significant NBASE digits. + * + * In each iteration, we choose blen to be the largest integer for which + * the input number has a3 >= b/4, when written in the form above. In + * general, this means blen = src_ndigits / 4 (truncated), but if + * src_ndigits is a multiple of 4, that might lead to the coefficient a3 + * being less than b/4 (if the first input digit is less than NBASE/4), in + * which case we choose blen = src_ndigits / 4 - 1. The number of digits + * in the inner square root is then src_ndigits - 2*blen. So, for + * example, if we have src_ndigits = 26 initially, the array ndigits[] + * will be either [26,14,8,4] or [26,14,8,6,4], depending on the size of + * the first input digit. + * + * Additionally, we can put an upper bound on the number of steps required + * as follows --- suppose that the number of source digits is an n-bit + * number in the range [2^(n-1), 2^n-1], then blen will be in the range + * [2^(n-3)-1, 2^(n-2)-1] and the number of digits in the inner square + * root will be in the range [2^(n-2), 2^(n-1)+1]. In the next step, blen + * will be in the range [2^(n-4)-1, 2^(n-3)] and the number of digits in + * the next inner square root will be in the range [2^(n-3), 2^(n-2)+1]. + * This pattern repeats, and in the worst case the array ndigits[] will + * contain [2^n-1, 2^(n-1)+1, 2^(n-2)+1, ... 9, 5, 3], and the computation + * will require n steps. Therefore, since all digit array sizes are + * signed 32-bit integers, the number of steps required is guaranteed to + * be less than 32. + * ---------- + */ + step = 0; + while ((ndigits[step] = src_ndigits) > 4) { - div_var_fast(&tmp_arg, result, &tmp_val, local_rscale, true); + /* Choose b so that a3 >= b/4, as described above */ + blen = src_ndigits / 4; + if (blen * 4 == src_ndigits && arg->digits[0] < NBASE / 4) + blen--; - add_var(result, &tmp_val, result); - mul_var(result, &const_zero_point_five, result, local_rscale); - - if (cmp_var(&last_val, result) == 0) - break; - set_var_from_var(result, &last_val); + /* Number of digits in the next step (inner square root) */ + src_ndigits -= 2 * blen; + step++; } - free_var(&last_val); - free_var(&tmp_val); - free_var(&tmp_arg); + /* + * First iteration (innermost square root and remainder): + * + * Here src_ndigits <= 4, and the input fits in an int64. Its square root + * has at most 9 decimal digits, so estimate it using double precision + * arithmetic, which will in fact almost certainly return the correct + * result with no further correction required. + */ + arg_int64 = arg->digits[0]; + for (src_idx = 1; src_idx < src_ndigits; src_idx++) + { + arg_int64 *= NBASE; + if (src_idx < arg->ndigits) + arg_int64 += arg->digits[src_idx]; + } - /* Round to requested precision */ + s_int64 = (int64) sqrt((double) arg_int64); + r_int64 = arg_int64 - s_int64 * s_int64; + + /* + * Use Newton's method to correct the result, if necessary. + * + * This uses integer division with truncation to compute the truncated + * integer square root by iterating using the formula x -> (x + n/x) / 2. + * This is known to converge to isqrt(n), unless n+1 is a perfect square. + * If n+1 is a perfect square, the sequence will oscillate between the two + * values isqrt(n) and isqrt(n)+1, so we can be assured of convergence by + * checking the remainder. + */ + while (r_int64 < 0 || r_int64 > 2 * s_int64) + { + s_int64 = (s_int64 + arg_int64 / s_int64) / 2; + r_int64 = arg_int64 - s_int64 * s_int64; + } + + /* + * Iterations with src_ndigits <= 8: + * + * The next 1 or 2 iterations compute larger (outer) square roots with + * src_ndigits <= 8, so the result still fits in an int64 (even though the + * input no longer does) and we can continue to compute using int64 + * variables to avoid more expensive numeric computations. + * + * It is fairly easy to see that there is no risk of the intermediate + * values below overflowing 64-bit integers. In the worst case, the + * previous iteration will have computed a 3-digit square root (of a + * 6-digit input less than NBASE^6 / 4), so at the start of this + * iteration, s will be less than NBASE^3 / 2 = 10^12 / 2, and r will be + * less than 10^12. In this case, blen will be 1, so numer will be less + * than 10^17, and denom will be less than 10^12 (and hence u will also be + * less than 10^12). Finally, since q^2 = u*b + a0 - r, we can also be + * sure that q^2 < 10^17. Therefore all these quantities fit comfortably + * in 64-bit integers. + */ + step--; + while (step >= 0 && (src_ndigits = ndigits[step]) <= 8) + { + int b; + int a0; + int a1; + int i; + int64 numer; + int64 denom; + int64 q; + int64 u; + + blen = (src_ndigits - src_idx) / 2; + + /* Extract a1 and a0, and compute b */ + a0 = 0; + a1 = 0; + b = 1; + + for (i = 0; i < blen; i++, src_idx++) + { + b *= NBASE; + a1 *= NBASE; + if (src_idx < arg->ndigits) + a1 += arg->digits[src_idx]; + } + + for (i = 0; i < blen; i++, src_idx++) + { + a0 *= NBASE; + if (src_idx < arg->ndigits) + a0 += arg->digits[src_idx]; + } + + /* Compute (q,u) = DivRem(r*b + a1, 2*s) */ + numer = r_int64 * b + a1; + denom = 2 * s_int64; + q = numer / denom; + u = numer - q * denom; + + /* Compute s = s*b + q and r = u*b + a0 - q^2 */ + s_int64 = s_int64 * b + q; + r_int64 = u * b + a0 - q * q; + + if (r_int64 < 0) + { + /* s is too large by 1; set r += s, s--, r += s */ + r_int64 += s_int64; + s_int64--; + r_int64 += s_int64; + } + + Assert(src_idx == src_ndigits); /* All input digits consumed */ + step--; + } + + /* + * On platforms with 128-bit integer support, we can further delay the + * need to use numeric variables. + */ +#ifdef HAVE_INT128 + if (step >= 0) + { + int128 s_int128; + int128 r_int128; + + s_int128 = s_int64; + r_int128 = r_int64; + + /* + * Iterations with src_ndigits <= 16: + * + * The result fits in an int128 (even though the input doesn't) so we + * use int128 variables to avoid more expensive numeric computations. + */ + while (step >= 0 && (src_ndigits = ndigits[step]) <= 16) + { + int64 b; + int64 a0; + int64 a1; + int64 i; + int128 numer; + int128 denom; + int128 q; + int128 u; + + blen = (src_ndigits - src_idx) / 2; + + /* Extract a1 and a0, and compute b */ + a0 = 0; + a1 = 0; + b = 1; + + for (i = 0; i < blen; i++, src_idx++) + { + b *= NBASE; + a1 *= NBASE; + if (src_idx < arg->ndigits) + a1 += arg->digits[src_idx]; + } + + for (i = 0; i < blen; i++, src_idx++) + { + a0 *= NBASE; + if (src_idx < arg->ndigits) + a0 += arg->digits[src_idx]; + } + + /* Compute (q,u) = DivRem(r*b + a1, 2*s) */ + numer = r_int128 * b + a1; + denom = 2 * s_int128; + q = numer / denom; + u = numer - q * denom; + + /* Compute s = s*b + q and r = u*b + a0 - q^2 */ + s_int128 = s_int128 * b + q; + r_int128 = u * b + a0 - q * q; + + if (r_int128 < 0) + { + /* s is too large by 1; set r += s, s--, r += s */ + r_int128 += s_int128; + s_int128--; + r_int128 += s_int128; + } + + Assert(src_idx == src_ndigits); /* All input digits consumed */ + step--; + } + + /* + * All remaining iterations require numeric variables. Convert the + * integer values to NumericVar and continue. Note that in the final + * iteration we don't need the remainder, so we can save a few cycles + * there by not fully computing it. + */ + int128_to_numericvar(s_int128, &s_var); + if (step >= 0) + int128_to_numericvar(r_int128, &r_var); + } + else + { + int64_to_numericvar(s_int64, &s_var); + /* step < 0, so we certainly don't need r */ + } +#else /* !HAVE_INT128 */ + int64_to_numericvar(s_int64, &s_var); + if (step >= 0) + int64_to_numericvar(r_int64, &r_var); +#endif /* HAVE_INT128 */ + + /* + * The remaining iterations with src_ndigits > 8 (or 16, if have int128) + * use numeric variables. + */ + while (step >= 0) + { + int tmp_len; + + src_ndigits = ndigits[step]; + blen = (src_ndigits - src_idx) / 2; + + /* Extract a1 and a0 */ + if (src_idx < arg->ndigits) + { + tmp_len = Min(blen, arg->ndigits - src_idx); + alloc_var(&a1_var, tmp_len); + memcpy(a1_var.digits, arg->digits + src_idx, + tmp_len * sizeof(NumericDigit)); + a1_var.weight = blen - 1; + a1_var.sign = NUMERIC_POS; + a1_var.dscale = 0; + strip_var(&a1_var); + } + else + { + zero_var(&a1_var); + a1_var.dscale = 0; + } + src_idx += blen; + + if (src_idx < arg->ndigits) + { + tmp_len = Min(blen, arg->ndigits - src_idx); + alloc_var(&a0_var, tmp_len); + memcpy(a0_var.digits, arg->digits + src_idx, + tmp_len * sizeof(NumericDigit)); + a0_var.weight = blen - 1; + a0_var.sign = NUMERIC_POS; + a0_var.dscale = 0; + strip_var(&a0_var); + } + else + { + zero_var(&a0_var); + a0_var.dscale = 0; + } + src_idx += blen; + + /* Compute (q,u) = DivRem(r*b + a1, 2*s) */ + set_var_from_var(&r_var, &q_var); + q_var.weight += blen; + add_var(&q_var, &a1_var, &q_var); + add_var(&s_var, &s_var, &u_var); + div_mod_var(&q_var, &u_var, &q_var, &u_var); + + /* Compute s = s*b + q */ + s_var.weight += blen; + add_var(&s_var, &q_var, &s_var); + + /* + * Compute r = u*b + a0 - q^2. + * + * In the final iteration, we don't actually need r; we just need to + * know whether it is negative, so that we know whether to adjust s. + * So instead of the final subtraction we can just compare. + */ + u_var.weight += blen; + add_var(&u_var, &a0_var, &u_var); + mul_var(&q_var, &q_var, &q_var, 0); + + if (step > 0) + { + /* Need r for later iterations */ + sub_var(&u_var, &q_var, &r_var); + if (r_var.sign == NUMERIC_NEG) + { + /* s is too large by 1; set r += s, s--, r += s */ + add_var(&r_var, &s_var, &r_var); + sub_var(&s_var, &const_one, &s_var); + add_var(&r_var, &s_var, &r_var); + } + } + else + { + /* Don't need r anymore, except to test if s is too large by 1 */ + if (cmp_var(&u_var, &q_var) < 0) + sub_var(&s_var, &const_one, &s_var); + } + + Assert(src_idx == src_ndigits); /* All input digits consumed */ + step--; + } + + /* + * Construct the final result, rounding it to the requested precision. + */ + set_var_from_var(&s_var, result); + result->weight = res_weight; + result->sign = NUMERIC_POS; + + /* Round to target rscale (and set result->dscale) */ round_var(result, rscale); + + /* Strip leading and trailing zeroes */ + strip_var(result); + + free_var(&s_var); + free_var(&r_var); + free_var(&a0_var); + free_var(&a1_var); + free_var(&q_var); + free_var(&u_var); } @@ -8530,12 +9012,18 @@ ln_var(const NumericVar *arg, NumericVar *result, int rscale) * Each sqrt() will roughly halve the weight of x, so adjust the local * rscale as we work so that we keep this many significant digits at each * step (plus a few more for good measure). + * + * Note that we allow local_rscale < 0 during this input reduction + * process, which implies rounding before the decimal point. sqrt_var() + * explicitly supports this, and it significantly reduces the work + * required to reduce very large inputs to the required range. Once the + * input reduction is complete, x.weight will be 0 and its display scale + * will be non-negative again. */ nsqrt = 0; while (cmp_var(&x, &const_zero_point_nine) <= 0) { local_rscale = rscale - x.weight * DEC_DIGITS / 2 + 8; - local_rscale = Max(local_rscale, NUMERIC_MIN_DISPLAY_SCALE); sqrt_var(&x, &x, local_rscale); mul_var(&fact, &const_two, &fact, 0); nsqrt++; @@ -8543,7 +9031,6 @@ ln_var(const NumericVar *arg, NumericVar *result, int rscale) while (cmp_var(&x, &const_one_point_one) >= 0) { local_rscale = rscale - x.weight * DEC_DIGITS / 2 + 8; - local_rscale = Max(local_rscale, NUMERIC_MIN_DISPLAY_SCALE); sqrt_var(&x, &x, local_rscale); mul_var(&fact, &const_two, &fact, 0); nsqrt++; diff --git a/src/test/regress/expected/numeric.out b/src/test/regress/expected/numeric.out index 23a4c6dcc3..c7fe63d037 100644 --- a/src/test/regress/expected/numeric.out +++ b/src/test/regress/expected/numeric.out @@ -1579,6 +1579,57 @@ select div(12345678901234567890, 123) * 123 + 12345678901234567890 % 123; 12345678901234567890 (1 row) +-- +-- Test some corner cases for square root +-- +select sqrt(1.000000000000003::numeric); + sqrt +------------------- + 1.000000000000001 +(1 row) + +select sqrt(1.000000000000004::numeric); + sqrt +------------------- + 1.000000000000002 +(1 row) + +select sqrt(96627521408608.56340355805::numeric); + sqrt +--------------------- + 9829929.87811248648 +(1 row) + +select sqrt(96627521408608.56340355806::numeric); + sqrt +--------------------- + 9829929.87811248649 +(1 row) + +select sqrt(515549506212297735.073688290367::numeric); + sqrt +------------------------ + 718017761.766585921184 +(1 row) + +select sqrt(515549506212297735.073688290368::numeric); + sqrt +------------------------ + 718017761.766585921185 +(1 row) + +select sqrt(8015491789940783531003294973900306::numeric); + sqrt +------------------- + 89529278953540017 +(1 row) + +select sqrt(8015491789940783531003294973900307::numeric); + sqrt +------------------- + 89529278953540018 +(1 row) + -- -- Test code path for raising to integer powers -- diff --git a/src/test/regress/sql/numeric.sql b/src/test/regress/sql/numeric.sql index c5c8d76727..41475a9a24 100644 --- a/src/test/regress/sql/numeric.sql +++ b/src/test/regress/sql/numeric.sql @@ -882,6 +882,19 @@ select 12345678901234567890 / 123; select div(12345678901234567890, 123); select div(12345678901234567890, 123) * 123 + 12345678901234567890 % 123; +-- +-- Test some corner cases for square root +-- + +select sqrt(1.000000000000003::numeric); +select sqrt(1.000000000000004::numeric); +select sqrt(96627521408608.56340355805::numeric); +select sqrt(96627521408608.56340355806::numeric); +select sqrt(515549506212297735.073688290367::numeric); +select sqrt(515549506212297735.073688290368::numeric); +select sqrt(8015491789940783531003294973900306::numeric); +select sqrt(8015491789940783531003294973900307::numeric); + -- -- Test code path for raising to integer powers --