Centralize executor-related partitioning code.

Some code is moved from partition.c, which has grown very quickly lately;
splitting the executor parts out might help to keep it from getting
totally out of control.  Other code is moved from execMain.c.  All is
moved to a new file execPartition.c.  get_partition_for_tuple now has
a new interface that more clearly separates executor concerns from
generic concerns.

Amit Langote.  A slight comment tweak by me.

Discussion: http://postgr.es/m/1f0985f8-3b61-8bc4-4350-baa6d804cb6d@lab.ntt.co.jp
This commit is contained in:
Robert Haas 2017-11-15 10:23:28 -05:00
parent cd8ce3a22c
commit 4e5fe9ad19
9 changed files with 717 additions and 695 deletions

View File

@ -170,8 +170,6 @@ static int32 partition_bound_cmp(PartitionKey key,
static int partition_bound_bsearch(PartitionKey key,
PartitionBoundInfo boundinfo,
void *probe, bool probe_is_bound, bool *is_equal);
static void get_partition_dispatch_recurse(Relation rel, Relation parent,
List **pds, List **leaf_part_oids);
static int get_partition_bound_num_indexes(PartitionBoundInfo b);
static int get_greatest_modulus(PartitionBoundInfo b);
static uint64 compute_hash_value(PartitionKey key, Datum *values, bool *isnull);
@ -1530,148 +1528,6 @@ get_partition_qual_relid(Oid relid)
return result;
}
/*
* RelationGetPartitionDispatchInfo
* Returns information necessary to route tuples down a partition tree
*
* The number of elements in the returned array (that is, the number of
* PartitionDispatch objects for the partitioned tables in the partition tree)
* is returned in *num_parted and a list of the OIDs of all the leaf
* partitions of rel is returned in *leaf_part_oids.
*
* All the relations in the partition tree (including 'rel') must have been
* locked (using at least the AccessShareLock) by the caller.
*/
PartitionDispatch *
RelationGetPartitionDispatchInfo(Relation rel,
int *num_parted, List **leaf_part_oids)
{
List *pdlist = NIL;
PartitionDispatchData **pd;
ListCell *lc;
int i;
Assert(rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE);
*num_parted = 0;
*leaf_part_oids = NIL;
get_partition_dispatch_recurse(rel, NULL, &pdlist, leaf_part_oids);
*num_parted = list_length(pdlist);
pd = (PartitionDispatchData **) palloc(*num_parted *
sizeof(PartitionDispatchData *));
i = 0;
foreach(lc, pdlist)
{
pd[i++] = lfirst(lc);
}
return pd;
}
/*
* get_partition_dispatch_recurse
* Recursively expand partition tree rooted at rel
*
* As the partition tree is expanded in a depth-first manner, we maintain two
* global lists: of PartitionDispatch objects corresponding to partitioned
* tables in *pds and of the leaf partition OIDs in *leaf_part_oids.
*
* Note that the order of OIDs of leaf partitions in leaf_part_oids matches
* the order in which the planner's expand_partitioned_rtentry() processes
* them. It's not necessarily the case that the offsets match up exactly,
* because constraint exclusion might prune away some partitions on the
* planner side, whereas we'll always have the complete list; but unpruned
* partitions will appear in the same order in the plan as they are returned
* here.
*/
static void
get_partition_dispatch_recurse(Relation rel, Relation parent,
List **pds, List **leaf_part_oids)
{
TupleDesc tupdesc = RelationGetDescr(rel);
PartitionDesc partdesc = RelationGetPartitionDesc(rel);
PartitionKey partkey = RelationGetPartitionKey(rel);
PartitionDispatch pd;
int i;
check_stack_depth();
/* Build a PartitionDispatch for this table and add it to *pds. */
pd = (PartitionDispatch) palloc(sizeof(PartitionDispatchData));
*pds = lappend(*pds, pd);
pd->reldesc = rel;
pd->key = partkey;
pd->keystate = NIL;
pd->partdesc = partdesc;
if (parent != NULL)
{
/*
* For every partitioned table other than the root, we must store a
* tuple table slot initialized with its tuple descriptor and a tuple
* conversion map to convert a tuple from its parent's rowtype to its
* own. That is to make sure that we are looking at the correct row
* using the correct tuple descriptor when computing its partition key
* for tuple routing.
*/
pd->tupslot = MakeSingleTupleTableSlot(tupdesc);
pd->tupmap = convert_tuples_by_name(RelationGetDescr(parent),
tupdesc,
gettext_noop("could not convert row type"));
}
else
{
/* Not required for the root partitioned table */
pd->tupslot = NULL;
pd->tupmap = NULL;
}
/*
* Go look at each partition of this table. If it's a leaf partition,
* simply add its OID to *leaf_part_oids. If it's a partitioned table,
* recursively call get_partition_dispatch_recurse(), so that its
* partitions are processed as well and a corresponding PartitionDispatch
* object gets added to *pds.
*
* About the values in pd->indexes: for a leaf partition, it contains the
* leaf partition's position in the global list *leaf_part_oids minus 1,
* whereas for a partitioned table partition, it contains the partition's
* position in the global list *pds multiplied by -1. The latter is
* multiplied by -1 to distinguish partitioned tables from leaf partitions
* when going through the values in pd->indexes. So, for example, when
* using it during tuple-routing, encountering a value >= 0 means we found
* a leaf partition. It is immediately returned as the index in the array
* of ResultRelInfos of all the leaf partitions, using which we insert the
* tuple into that leaf partition. A negative value means we found a
* partitioned table. The value multiplied by -1 is returned as the index
* in the array of PartitionDispatch objects of all partitioned tables in
* the tree. This value is used to continue the search in the next level
* of the partition tree.
*/
pd->indexes = (int *) palloc(partdesc->nparts * sizeof(int));
for (i = 0; i < partdesc->nparts; i++)
{
Oid partrelid = partdesc->oids[i];
if (get_rel_relkind(partrelid) != RELKIND_PARTITIONED_TABLE)
{
*leaf_part_oids = lappend_oid(*leaf_part_oids, partrelid);
pd->indexes[i] = list_length(*leaf_part_oids) - 1;
}
else
{
/*
* We assume all tables in the partition tree were already locked
* by the caller.
*/
Relation partrel = heap_open(partrelid, NoLock);
pd->indexes[i] = -list_length(*pds);
get_partition_dispatch_recurse(partrel, rel, pds, leaf_part_oids);
}
}
}
/* Module-local functions */
/*
@ -2617,259 +2473,108 @@ generate_partition_qual(Relation rel)
return result;
}
/* ----------------
* FormPartitionKeyDatum
* Construct values[] and isnull[] arrays for the partition key
* of a tuple.
*
* pd Partition dispatch object of the partitioned table
* slot Heap tuple from which to extract partition key
* estate executor state for evaluating any partition key
* expressions (must be non-NULL)
* values Array of partition key Datums (output area)
* isnull Array of is-null indicators (output area)
*
* the ecxt_scantuple slot of estate's per-tuple expr context must point to
* the heap tuple passed in.
* ----------------
*/
void
FormPartitionKeyDatum(PartitionDispatch pd,
TupleTableSlot *slot,
EState *estate,
Datum *values,
bool *isnull)
{
ListCell *partexpr_item;
int i;
if (pd->key->partexprs != NIL && pd->keystate == NIL)
{
/* Check caller has set up context correctly */
Assert(estate != NULL &&
GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
/* First time through, set up expression evaluation state */
pd->keystate = ExecPrepareExprList(pd->key->partexprs, estate);
}
partexpr_item = list_head(pd->keystate);
for (i = 0; i < pd->key->partnatts; i++)
{
AttrNumber keycol = pd->key->partattrs[i];
Datum datum;
bool isNull;
if (keycol != 0)
{
/* Plain column; get the value directly from the heap tuple */
datum = slot_getattr(slot, keycol, &isNull);
}
else
{
/* Expression; need to evaluate it */
if (partexpr_item == NULL)
elog(ERROR, "wrong number of partition key expressions");
datum = ExecEvalExprSwitchContext((ExprState *) lfirst(partexpr_item),
GetPerTupleExprContext(estate),
&isNull);
partexpr_item = lnext(partexpr_item);
}
values[i] = datum;
isnull[i] = isNull;
}
if (partexpr_item != NULL)
elog(ERROR, "wrong number of partition key expressions");
}
/*
* get_partition_for_tuple
* Finds a leaf partition for tuple contained in *slot
* Finds partition of relation which accepts the partition key specified
* in values and isnull
*
* Returned value is the sequence number of the leaf partition thus found,
* or -1 if no leaf partition is found for the tuple. *failed_at is set
* to the OID of the partitioned table whose partition was not found in
* the latter case.
* Return value is index of the partition (>= 0 and < partdesc->nparts) if one
* found or -1 if none found.
*/
int
get_partition_for_tuple(PartitionDispatch *pd,
TupleTableSlot *slot,
EState *estate,
PartitionDispatchData **failed_at,
TupleTableSlot **failed_slot)
get_partition_for_tuple(Relation relation, Datum *values, bool *isnull)
{
PartitionDispatch parent;
Datum values[PARTITION_MAX_KEYS];
bool isnull[PARTITION_MAX_KEYS];
int result;
ExprContext *ecxt = GetPerTupleExprContext(estate);
TupleTableSlot *ecxt_scantuple_old = ecxt->ecxt_scantuple;
int bound_offset;
int part_index = -1;
PartitionKey key = RelationGetPartitionKey(relation);
PartitionDesc partdesc = RelationGetPartitionDesc(relation);
/* start with the root partitioned table */
parent = pd[0];
while (true)
/* Route as appropriate based on partitioning strategy. */
switch (key->strategy)
{
PartitionKey key = parent->key;
PartitionDesc partdesc = parent->partdesc;
TupleTableSlot *myslot = parent->tupslot;
TupleConversionMap *map = parent->tupmap;
int cur_index = -1;
case PARTITION_STRATEGY_HASH:
{
PartitionBoundInfo boundinfo = partdesc->boundinfo;
int greatest_modulus = get_greatest_modulus(boundinfo);
uint64 rowHash = compute_hash_value(key, values, isnull);
if (myslot != NULL && map != NULL)
{
HeapTuple tuple = ExecFetchSlotTuple(slot);
part_index = boundinfo->indexes[rowHash % greatest_modulus];
}
break;
ExecClearTuple(myslot);
tuple = do_convert_tuple(tuple, map);
ExecStoreTuple(tuple, myslot, InvalidBuffer, true);
slot = myslot;
}
case PARTITION_STRATEGY_LIST:
if (isnull[0])
{
if (partition_bound_accepts_nulls(partdesc->boundinfo))
part_index = partdesc->boundinfo->null_index;
}
else
{
bool equal = false;
/* Quick exit */
if (partdesc->nparts == 0)
{
*failed_at = parent;
*failed_slot = slot;
result = -1;
goto error_exit;
}
bound_offset = partition_bound_bsearch(key,
partdesc->boundinfo,
values,
false,
&equal);
if (bound_offset >= 0 && equal)
part_index = partdesc->boundinfo->indexes[bound_offset];
}
break;
/*
* Extract partition key from tuple. Expression evaluation machinery
* that FormPartitionKeyDatum() invokes expects ecxt_scantuple to
* point to the correct tuple slot. The slot might have changed from
* what was used for the parent table if the table of the current
* partitioning level has different tuple descriptor from the parent.
* So update ecxt_scantuple accordingly.
*/
ecxt->ecxt_scantuple = slot;
FormPartitionKeyDatum(parent, slot, estate, values, isnull);
case PARTITION_STRATEGY_RANGE:
{
bool equal = false,
range_partkey_has_null = false;
int i;
/* Route as appropriate based on partitioning strategy. */
switch (key->strategy)
{
case PARTITION_STRATEGY_HASH:
/*
* No range includes NULL, so this will be accepted by the
* default partition if there is one, and otherwise
* rejected.
*/
for (i = 0; i < key->partnatts; i++)
{
PartitionBoundInfo boundinfo = partdesc->boundinfo;
int greatest_modulus = get_greatest_modulus(boundinfo);
uint64 rowHash = compute_hash_value(key, values,
isnull);
cur_index = boundinfo->indexes[rowHash % greatest_modulus];
}
break;
case PARTITION_STRATEGY_LIST:
if (isnull[0])
{
if (partition_bound_accepts_nulls(partdesc->boundinfo))
cur_index = partdesc->boundinfo->null_index;
}
else
{
bool equal = false;
int cur_offset;
cur_offset = partition_bound_bsearch(key,
partdesc->boundinfo,
values,
false,
&equal);
if (cur_offset >= 0 && equal)
cur_index = partdesc->boundinfo->indexes[cur_offset];
}
break;
case PARTITION_STRATEGY_RANGE:
{
bool equal = false,
range_partkey_has_null = false;
int cur_offset;
int i;
/*
* No range includes NULL, so this will be accepted by the
* default partition if there is one, and otherwise
* rejected.
*/
for (i = 0; i < key->partnatts; i++)
if (isnull[i] &&
partition_bound_has_default(partdesc->boundinfo))
{
if (isnull[i] &&
partition_bound_has_default(partdesc->boundinfo))
{
range_partkey_has_null = true;
break;
}
else if (isnull[i])
{
*failed_at = parent;
*failed_slot = slot;
result = -1;
goto error_exit;
}
range_partkey_has_null = true;
part_index = partdesc->boundinfo->default_index;
}
/*
* No need to search for partition, as the null key will
* be routed to the default partition.
*/
if (range_partkey_has_null)
break;
cur_offset = partition_bound_bsearch(key,
partdesc->boundinfo,
values,
false,
&equal);
/*
* The offset returned is such that the bound at
* cur_offset is less than or equal to the tuple value, so
* the bound at offset+1 is the upper bound.
*/
cur_index = partdesc->boundinfo->indexes[cur_offset + 1];
}
break;
default:
elog(ERROR, "unexpected partition strategy: %d",
(int) key->strategy);
}
if (!range_partkey_has_null)
{
bound_offset = partition_bound_bsearch(key,
partdesc->boundinfo,
values,
false,
&equal);
/*
* cur_index < 0 means we failed to find a partition of this parent.
* Use the default partition, if there is one.
*/
if (cur_index < 0)
cur_index = partdesc->boundinfo->default_index;
/*
* If cur_index is still less than 0 at this point, there's no
* partition for this tuple. Otherwise, we either found the leaf
* partition, or a child partitioned table through which we have to
* route the tuple.
*/
if (cur_index < 0)
{
result = -1;
*failed_at = parent;
*failed_slot = slot;
/*
* The bound at bound_offset is less than or equal to the
* tuple value, so the bound at offset+1 is the upper
* bound of the partition we're looking for, if there
* actually exists one.
*/
part_index = partdesc->boundinfo->indexes[bound_offset + 1];
}
}
break;
}
else if (parent->indexes[cur_index] >= 0)
{
result = parent->indexes[cur_index];
break;
}
else
parent = pd[-parent->indexes[cur_index]];
default:
elog(ERROR, "unexpected partition strategy: %d",
(int) key->strategy);
}
error_exit:
ecxt->ecxt_scantuple = ecxt_scantuple_old;
return result;
/*
* part_index < 0 means we failed to find a partition of this parent.
* Use the default partition, if there is one.
*/
if (part_index < 0)
part_index = partdesc->boundinfo->default_index;
return part_index;
}
/*

View File

@ -27,6 +27,7 @@
#include "commands/copy.h"
#include "commands/defrem.h"
#include "commands/trigger.h"
#include "executor/execPartition.h"
#include "executor/executor.h"
#include "libpq/libpq.h"
#include "libpq/pqformat.h"

View File

@ -14,7 +14,7 @@ include $(top_builddir)/src/Makefile.global
OBJS = execAmi.o execCurrent.o execExpr.o execExprInterp.o \
execGrouping.o execIndexing.o execJunk.o \
execMain.o execParallel.o execProcnode.o \
execMain.o execParallel.o execPartition.o execProcnode.o \
execReplication.o execScan.o execSRF.o execTuples.o \
execUtils.o functions.o instrument.o nodeAppend.o nodeAgg.o \
nodeBitmapAnd.o nodeBitmapOr.o \

View File

@ -43,7 +43,6 @@
#include "access/xact.h"
#include "catalog/namespace.h"
#include "catalog/partition.h"
#include "catalog/pg_inherits_fn.h"
#include "catalog/pg_publication.h"
#include "commands/matview.h"
#include "commands/trigger.h"
@ -98,14 +97,8 @@ static char *ExecBuildSlotValueDescription(Oid reloid,
TupleDesc tupdesc,
Bitmapset *modifiedCols,
int maxfieldlen);
static char *ExecBuildSlotPartitionKeyDescription(Relation rel,
Datum *values,
bool *isnull,
int maxfieldlen);
static void EvalPlanQualStart(EPQState *epqstate, EState *parentestate,
Plan *planTree);
static void ExecPartitionCheck(ResultRelInfo *resultRelInfo,
TupleTableSlot *slot, EState *estate);
/*
* Note that GetUpdatedColumns() also exists in commands/trigger.c. There does
@ -1854,8 +1847,10 @@ ExecRelCheck(ResultRelInfo *resultRelInfo,
/*
* ExecPartitionCheck --- check that tuple meets the partition constraint.
*
* Exported in executor.h for outside use.
*/
static void
void
ExecPartitionCheck(ResultRelInfo *resultRelInfo, TupleTableSlot *slot,
EState *estate)
{
@ -3245,258 +3240,3 @@ EvalPlanQualEnd(EPQState *epqstate)
epqstate->planstate = NULL;
epqstate->origslot = NULL;
}
/*
* ExecSetupPartitionTupleRouting - set up information needed during
* tuple routing for partitioned tables
*
* Output arguments:
* 'pd' receives an array of PartitionDispatch objects with one entry for
* every partitioned table in the partition tree
* 'partitions' receives an array of ResultRelInfo* objects with one entry for
* every leaf partition in the partition tree
* 'tup_conv_maps' receives an array of TupleConversionMap objects with one
* entry for every leaf partition (required to convert input tuple based
* on the root table's rowtype to a leaf partition's rowtype after tuple
* routing is done)
* 'partition_tuple_slot' receives a standalone TupleTableSlot to be used
* to manipulate any given leaf partition's rowtype after that partition
* is chosen by tuple-routing.
* 'num_parted' receives the number of partitioned tables in the partition
* tree (= the number of entries in the 'pd' output array)
* 'num_partitions' receives the number of leaf partitions in the partition
* tree (= the number of entries in the 'partitions' and 'tup_conv_maps'
* output arrays
*
* Note that all the relations in the partition tree are locked using the
* RowExclusiveLock mode upon return from this function.
*/
void
ExecSetupPartitionTupleRouting(Relation rel,
Index resultRTindex,
EState *estate,
PartitionDispatch **pd,
ResultRelInfo ***partitions,
TupleConversionMap ***tup_conv_maps,
TupleTableSlot **partition_tuple_slot,
int *num_parted, int *num_partitions)
{
TupleDesc tupDesc = RelationGetDescr(rel);
List *leaf_parts;
ListCell *cell;
int i;
ResultRelInfo *leaf_part_rri;
/*
* Get the information about the partition tree after locking all the
* partitions.
*/
(void) find_all_inheritors(RelationGetRelid(rel), RowExclusiveLock, NULL);
*pd = RelationGetPartitionDispatchInfo(rel, num_parted, &leaf_parts);
*num_partitions = list_length(leaf_parts);
*partitions = (ResultRelInfo **) palloc(*num_partitions *
sizeof(ResultRelInfo *));
*tup_conv_maps = (TupleConversionMap **) palloc0(*num_partitions *
sizeof(TupleConversionMap *));
/*
* Initialize an empty slot that will be used to manipulate tuples of any
* given partition's rowtype. It is attached to the caller-specified node
* (such as ModifyTableState) and released when the node finishes
* processing.
*/
*partition_tuple_slot = MakeTupleTableSlot();
leaf_part_rri = (ResultRelInfo *) palloc0(*num_partitions *
sizeof(ResultRelInfo));
i = 0;
foreach(cell, leaf_parts)
{
Relation partrel;
TupleDesc part_tupdesc;
/*
* We locked all the partitions above including the leaf partitions.
* Note that each of the relations in *partitions are eventually
* closed by the caller.
*/
partrel = heap_open(lfirst_oid(cell), NoLock);
part_tupdesc = RelationGetDescr(partrel);
/*
* Save a tuple conversion map to convert a tuple routed to this
* partition from the parent's type to the partition's.
*/
(*tup_conv_maps)[i] = convert_tuples_by_name(tupDesc, part_tupdesc,
gettext_noop("could not convert row type"));
InitResultRelInfo(leaf_part_rri,
partrel,
resultRTindex,
rel,
estate->es_instrument);
/*
* Verify result relation is a valid target for INSERT.
*/
CheckValidResultRel(leaf_part_rri, CMD_INSERT);
/*
* Open partition indices (remember we do not support ON CONFLICT in
* case of partitioned tables, so we do not need support information
* for speculative insertion)
*/
if (leaf_part_rri->ri_RelationDesc->rd_rel->relhasindex &&
leaf_part_rri->ri_IndexRelationDescs == NULL)
ExecOpenIndices(leaf_part_rri, false);
estate->es_leaf_result_relations =
lappend(estate->es_leaf_result_relations, leaf_part_rri);
(*partitions)[i] = leaf_part_rri++;
i++;
}
}
/*
* ExecFindPartition -- Find a leaf partition in the partition tree rooted
* at parent, for the heap tuple contained in *slot
*
* estate must be non-NULL; we'll need it to compute any expressions in the
* partition key(s)
*
* If no leaf partition is found, this routine errors out with the appropriate
* error message, else it returns the leaf partition sequence number returned
* by get_partition_for_tuple() unchanged.
*/
int
ExecFindPartition(ResultRelInfo *resultRelInfo, PartitionDispatch *pd,
TupleTableSlot *slot, EState *estate)
{
int result;
PartitionDispatchData *failed_at;
TupleTableSlot *failed_slot;
/*
* First check the root table's partition constraint, if any. No point in
* routing the tuple if it doesn't belong in the root table itself.
*/
if (resultRelInfo->ri_PartitionCheck)
ExecPartitionCheck(resultRelInfo, slot, estate);
result = get_partition_for_tuple(pd, slot, estate,
&failed_at, &failed_slot);
if (result < 0)
{
Relation failed_rel;
Datum key_values[PARTITION_MAX_KEYS];
bool key_isnull[PARTITION_MAX_KEYS];
char *val_desc;
ExprContext *ecxt = GetPerTupleExprContext(estate);
failed_rel = failed_at->reldesc;
ecxt->ecxt_scantuple = failed_slot;
FormPartitionKeyDatum(failed_at, failed_slot, estate,
key_values, key_isnull);
val_desc = ExecBuildSlotPartitionKeyDescription(failed_rel,
key_values,
key_isnull,
64);
Assert(OidIsValid(RelationGetRelid(failed_rel)));
ereport(ERROR,
(errcode(ERRCODE_CHECK_VIOLATION),
errmsg("no partition of relation \"%s\" found for row",
RelationGetRelationName(failed_rel)),
val_desc ? errdetail("Partition key of the failing row contains %s.", val_desc) : 0));
}
return result;
}
/*
* BuildSlotPartitionKeyDescription
*
* This works very much like BuildIndexValueDescription() and is currently
* used for building error messages when ExecFindPartition() fails to find
* partition for a row.
*/
static char *
ExecBuildSlotPartitionKeyDescription(Relation rel,
Datum *values,
bool *isnull,
int maxfieldlen)
{
StringInfoData buf;
PartitionKey key = RelationGetPartitionKey(rel);
int partnatts = get_partition_natts(key);
int i;
Oid relid = RelationGetRelid(rel);
AclResult aclresult;
if (check_enable_rls(relid, InvalidOid, true) == RLS_ENABLED)
return NULL;
/* If the user has table-level access, just go build the description. */
aclresult = pg_class_aclcheck(relid, GetUserId(), ACL_SELECT);
if (aclresult != ACLCHECK_OK)
{
/*
* Step through the columns of the partition key and make sure the
* user has SELECT rights on all of them.
*/
for (i = 0; i < partnatts; i++)
{
AttrNumber attnum = get_partition_col_attnum(key, i);
/*
* If this partition key column is an expression, we return no
* detail rather than try to figure out what column(s) the
* expression includes and if the user has SELECT rights on them.
*/
if (attnum == InvalidAttrNumber ||
pg_attribute_aclcheck(relid, attnum, GetUserId(),
ACL_SELECT) != ACLCHECK_OK)
return NULL;
}
}
initStringInfo(&buf);
appendStringInfo(&buf, "(%s) = (",
pg_get_partkeydef_columns(relid, true));
for (i = 0; i < partnatts; i++)
{
char *val;
int vallen;
if (isnull[i])
val = "null";
else
{
Oid foutoid;
bool typisvarlena;
getTypeOutputInfo(get_partition_col_typid(key, i),
&foutoid, &typisvarlena);
val = OidOutputFunctionCall(foutoid, values[i]);
}
if (i > 0)
appendStringInfoString(&buf, ", ");
/* truncate if needed */
vallen = strlen(val);
if (vallen <= maxfieldlen)
appendStringInfoString(&buf, val);
else
{
vallen = pg_mbcliplen(val, vallen, maxfieldlen);
appendBinaryStringInfo(&buf, val, vallen);
appendStringInfoString(&buf, "...");
}
}
appendStringInfoChar(&buf, ')');
return buf.data;
}

View File

@ -0,0 +1,560 @@
/*-------------------------------------------------------------------------
*
* execPartition.c
* Support routines for partitioning.
*
* Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/executor/execPartition.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "catalog/pg_inherits_fn.h"
#include "executor/execPartition.h"
#include "executor/executor.h"
#include "mb/pg_wchar.h"
#include "miscadmin.h"
#include "utils/lsyscache.h"
#include "utils/rls.h"
#include "utils/ruleutils.h"
static PartitionDispatch *RelationGetPartitionDispatchInfo(Relation rel,
int *num_parted, List **leaf_part_oids);
static void get_partition_dispatch_recurse(Relation rel, Relation parent,
List **pds, List **leaf_part_oids);
static void FormPartitionKeyDatum(PartitionDispatch pd,
TupleTableSlot *slot,
EState *estate,
Datum *values,
bool *isnull);
static char *ExecBuildSlotPartitionKeyDescription(Relation rel,
Datum *values,
bool *isnull,
int maxfieldlen);
/*
* ExecSetupPartitionTupleRouting - set up information needed during
* tuple routing for partitioned tables
*
* Output arguments:
* 'pd' receives an array of PartitionDispatch objects with one entry for
* every partitioned table in the partition tree
* 'partitions' receives an array of ResultRelInfo* objects with one entry for
* every leaf partition in the partition tree
* 'tup_conv_maps' receives an array of TupleConversionMap objects with one
* entry for every leaf partition (required to convert input tuple based
* on the root table's rowtype to a leaf partition's rowtype after tuple
* routing is done)
* 'partition_tuple_slot' receives a standalone TupleTableSlot to be used
* to manipulate any given leaf partition's rowtype after that partition
* is chosen by tuple-routing.
* 'num_parted' receives the number of partitioned tables in the partition
* tree (= the number of entries in the 'pd' output array)
* 'num_partitions' receives the number of leaf partitions in the partition
* tree (= the number of entries in the 'partitions' and 'tup_conv_maps'
* output arrays
*
* Note that all the relations in the partition tree are locked using the
* RowExclusiveLock mode upon return from this function.
*/
void
ExecSetupPartitionTupleRouting(Relation rel,
Index resultRTindex,
EState *estate,
PartitionDispatch **pd,
ResultRelInfo ***partitions,
TupleConversionMap ***tup_conv_maps,
TupleTableSlot **partition_tuple_slot,
int *num_parted, int *num_partitions)
{
TupleDesc tupDesc = RelationGetDescr(rel);
List *leaf_parts;
ListCell *cell;
int i;
ResultRelInfo *leaf_part_rri;
/*
* Get the information about the partition tree after locking all the
* partitions.
*/
(void) find_all_inheritors(RelationGetRelid(rel), RowExclusiveLock, NULL);
*pd = RelationGetPartitionDispatchInfo(rel, num_parted, &leaf_parts);
*num_partitions = list_length(leaf_parts);
*partitions = (ResultRelInfo **) palloc(*num_partitions *
sizeof(ResultRelInfo *));
*tup_conv_maps = (TupleConversionMap **) palloc0(*num_partitions *
sizeof(TupleConversionMap *));
/*
* Initialize an empty slot that will be used to manipulate tuples of any
* given partition's rowtype. It is attached to the caller-specified node
* (such as ModifyTableState) and released when the node finishes
* processing.
*/
*partition_tuple_slot = MakeTupleTableSlot();
leaf_part_rri = (ResultRelInfo *) palloc0(*num_partitions *
sizeof(ResultRelInfo));
i = 0;
foreach(cell, leaf_parts)
{
Relation partrel;
TupleDesc part_tupdesc;
/*
* We locked all the partitions above including the leaf partitions.
* Note that each of the relations in *partitions are eventually
* closed by the caller.
*/
partrel = heap_open(lfirst_oid(cell), NoLock);
part_tupdesc = RelationGetDescr(partrel);
/*
* Save a tuple conversion map to convert a tuple routed to this
* partition from the parent's type to the partition's.
*/
(*tup_conv_maps)[i] = convert_tuples_by_name(tupDesc, part_tupdesc,
gettext_noop("could not convert row type"));
InitResultRelInfo(leaf_part_rri,
partrel,
resultRTindex,
rel,
estate->es_instrument);
/*
* Verify result relation is a valid target for INSERT.
*/
CheckValidResultRel(leaf_part_rri, CMD_INSERT);
/*
* Open partition indices (remember we do not support ON CONFLICT in
* case of partitioned tables, so we do not need support information
* for speculative insertion)
*/
if (leaf_part_rri->ri_RelationDesc->rd_rel->relhasindex &&
leaf_part_rri->ri_IndexRelationDescs == NULL)
ExecOpenIndices(leaf_part_rri, false);
estate->es_leaf_result_relations =
lappend(estate->es_leaf_result_relations, leaf_part_rri);
(*partitions)[i] = leaf_part_rri++;
i++;
}
}
/*
* ExecFindPartition -- Find a leaf partition in the partition tree rooted
* at parent, for the heap tuple contained in *slot
*
* estate must be non-NULL; we'll need it to compute any expressions in the
* partition key(s)
*
* If no leaf partition is found, this routine errors out with the appropriate
* error message, else it returns the leaf partition sequence number
* as an index into the array of (ResultRelInfos of) all leaf partitions in
* the partition tree.
*/
int
ExecFindPartition(ResultRelInfo *resultRelInfo, PartitionDispatch *pd,
TupleTableSlot *slot, EState *estate)
{
int result;
Datum values[PARTITION_MAX_KEYS];
bool isnull[PARTITION_MAX_KEYS];
Relation rel;
PartitionDispatch parent;
ExprContext *ecxt = GetPerTupleExprContext(estate);
TupleTableSlot *ecxt_scantuple_old = ecxt->ecxt_scantuple;
/*
* First check the root table's partition constraint, if any. No point in
* routing the tuple if it doesn't belong in the root table itself.
*/
if (resultRelInfo->ri_PartitionCheck)
ExecPartitionCheck(resultRelInfo, slot, estate);
/* start with the root partitioned table */
parent = pd[0];
while (true)
{
PartitionDesc partdesc;
TupleTableSlot *myslot = parent->tupslot;
TupleConversionMap *map = parent->tupmap;
int cur_index = -1;
rel = parent->reldesc;
partdesc = RelationGetPartitionDesc(rel);
/*
* Convert the tuple to this parent's layout so that we can do certain
* things we do below.
*/
if (myslot != NULL && map != NULL)
{
HeapTuple tuple = ExecFetchSlotTuple(slot);
ExecClearTuple(myslot);
tuple = do_convert_tuple(tuple, map);
ExecStoreTuple(tuple, myslot, InvalidBuffer, true);
slot = myslot;
}
/* Quick exit */
if (partdesc->nparts == 0)
{
result = -1;
break;
}
/*
* Extract partition key from tuple. Expression evaluation machinery
* that FormPartitionKeyDatum() invokes expects ecxt_scantuple to
* point to the correct tuple slot. The slot might have changed from
* what was used for the parent table if the table of the current
* partitioning level has different tuple descriptor from the parent.
* So update ecxt_scantuple accordingly.
*/
ecxt->ecxt_scantuple = slot;
FormPartitionKeyDatum(parent, slot, estate, values, isnull);
cur_index = get_partition_for_tuple(rel, values, isnull);
/*
* cur_index < 0 means we failed to find a partition of this parent.
* cur_index >= 0 means we either found the leaf partition, or the
* next parent to find a partition of.
*/
if (cur_index < 0)
{
result = -1;
break;
}
else if (parent->indexes[cur_index] >= 0)
{
result = parent->indexes[cur_index];
break;
}
else
parent = pd[-parent->indexes[cur_index]];
}
/* A partition was not found. */
if (result < 0)
{
char *val_desc;
val_desc = ExecBuildSlotPartitionKeyDescription(rel,
values, isnull, 64);
Assert(OidIsValid(RelationGetRelid(rel)));
ereport(ERROR,
(errcode(ERRCODE_CHECK_VIOLATION),
errmsg("no partition of relation \"%s\" found for row",
RelationGetRelationName(rel)),
val_desc ? errdetail("Partition key of the failing row contains %s.", val_desc) : 0));
}
ecxt->ecxt_scantuple = ecxt_scantuple_old;
return result;
}
/*
* RelationGetPartitionDispatchInfo
* Returns information necessary to route tuples down a partition tree
*
* The number of elements in the returned array (that is, the number of
* PartitionDispatch objects for the partitioned tables in the partition tree)
* is returned in *num_parted and a list of the OIDs of all the leaf
* partitions of rel is returned in *leaf_part_oids.
*
* All the relations in the partition tree (including 'rel') must have been
* locked (using at least the AccessShareLock) by the caller.
*/
static PartitionDispatch *
RelationGetPartitionDispatchInfo(Relation rel,
int *num_parted, List **leaf_part_oids)
{
List *pdlist = NIL;
PartitionDispatchData **pd;
ListCell *lc;
int i;
Assert(rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE);
*num_parted = 0;
*leaf_part_oids = NIL;
get_partition_dispatch_recurse(rel, NULL, &pdlist, leaf_part_oids);
*num_parted = list_length(pdlist);
pd = (PartitionDispatchData **) palloc(*num_parted *
sizeof(PartitionDispatchData *));
i = 0;
foreach(lc, pdlist)
{
pd[i++] = lfirst(lc);
}
return pd;
}
/*
* get_partition_dispatch_recurse
* Recursively expand partition tree rooted at rel
*
* As the partition tree is expanded in a depth-first manner, we maintain two
* global lists: of PartitionDispatch objects corresponding to partitioned
* tables in *pds and of the leaf partition OIDs in *leaf_part_oids.
*
* Note that the order of OIDs of leaf partitions in leaf_part_oids matches
* the order in which the planner's expand_partitioned_rtentry() processes
* them. It's not necessarily the case that the offsets match up exactly,
* because constraint exclusion might prune away some partitions on the
* planner side, whereas we'll always have the complete list; but unpruned
* partitions will appear in the same order in the plan as they are returned
* here.
*/
static void
get_partition_dispatch_recurse(Relation rel, Relation parent,
List **pds, List **leaf_part_oids)
{
TupleDesc tupdesc = RelationGetDescr(rel);
PartitionDesc partdesc = RelationGetPartitionDesc(rel);
PartitionKey partkey = RelationGetPartitionKey(rel);
PartitionDispatch pd;
int i;
check_stack_depth();
/* Build a PartitionDispatch for this table and add it to *pds. */
pd = (PartitionDispatch) palloc(sizeof(PartitionDispatchData));
*pds = lappend(*pds, pd);
pd->reldesc = rel;
pd->key = partkey;
pd->keystate = NIL;
pd->partdesc = partdesc;
if (parent != NULL)
{
/*
* For every partitioned table other than the root, we must store a
* tuple table slot initialized with its tuple descriptor and a tuple
* conversion map to convert a tuple from its parent's rowtype to its
* own. That is to make sure that we are looking at the correct row
* using the correct tuple descriptor when computing its partition key
* for tuple routing.
*/
pd->tupslot = MakeSingleTupleTableSlot(tupdesc);
pd->tupmap = convert_tuples_by_name(RelationGetDescr(parent),
tupdesc,
gettext_noop("could not convert row type"));
}
else
{
/* Not required for the root partitioned table */
pd->tupslot = NULL;
pd->tupmap = NULL;
}
/*
* Go look at each partition of this table. If it's a leaf partition,
* simply add its OID to *leaf_part_oids. If it's a partitioned table,
* recursively call get_partition_dispatch_recurse(), so that its
* partitions are processed as well and a corresponding PartitionDispatch
* object gets added to *pds.
*
* About the values in pd->indexes: for a leaf partition, it contains the
* leaf partition's position in the global list *leaf_part_oids minus 1,
* whereas for a partitioned table partition, it contains the partition's
* position in the global list *pds multiplied by -1. The latter is
* multiplied by -1 to distinguish partitioned tables from leaf partitions
* when going through the values in pd->indexes. So, for example, when
* using it during tuple-routing, encountering a value >= 0 means we found
* a leaf partition. It is immediately returned as the index in the array
* of ResultRelInfos of all the leaf partitions, using which we insert the
* tuple into that leaf partition. A negative value means we found a
* partitioned table. The value multiplied by -1 is returned as the index
* in the array of PartitionDispatch objects of all partitioned tables in
* the tree. This value is used to continue the search in the next level
* of the partition tree.
*/
pd->indexes = (int *) palloc(partdesc->nparts * sizeof(int));
for (i = 0; i < partdesc->nparts; i++)
{
Oid partrelid = partdesc->oids[i];
if (get_rel_relkind(partrelid) != RELKIND_PARTITIONED_TABLE)
{
*leaf_part_oids = lappend_oid(*leaf_part_oids, partrelid);
pd->indexes[i] = list_length(*leaf_part_oids) - 1;
}
else
{
/*
* We assume all tables in the partition tree were already locked
* by the caller.
*/
Relation partrel = heap_open(partrelid, NoLock);
pd->indexes[i] = -list_length(*pds);
get_partition_dispatch_recurse(partrel, rel, pds, leaf_part_oids);
}
}
}
/* ----------------
* FormPartitionKeyDatum
* Construct values[] and isnull[] arrays for the partition key
* of a tuple.
*
* pd Partition dispatch object of the partitioned table
* slot Heap tuple from which to extract partition key
* estate executor state for evaluating any partition key
* expressions (must be non-NULL)
* values Array of partition key Datums (output area)
* isnull Array of is-null indicators (output area)
*
* the ecxt_scantuple slot of estate's per-tuple expr context must point to
* the heap tuple passed in.
* ----------------
*/
static void
FormPartitionKeyDatum(PartitionDispatch pd,
TupleTableSlot *slot,
EState *estate,
Datum *values,
bool *isnull)
{
ListCell *partexpr_item;
int i;
if (pd->key->partexprs != NIL && pd->keystate == NIL)
{
/* Check caller has set up context correctly */
Assert(estate != NULL &&
GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
/* First time through, set up expression evaluation state */
pd->keystate = ExecPrepareExprList(pd->key->partexprs, estate);
}
partexpr_item = list_head(pd->keystate);
for (i = 0; i < pd->key->partnatts; i++)
{
AttrNumber keycol = pd->key->partattrs[i];
Datum datum;
bool isNull;
if (keycol != 0)
{
/* Plain column; get the value directly from the heap tuple */
datum = slot_getattr(slot, keycol, &isNull);
}
else
{
/* Expression; need to evaluate it */
if (partexpr_item == NULL)
elog(ERROR, "wrong number of partition key expressions");
datum = ExecEvalExprSwitchContext((ExprState *) lfirst(partexpr_item),
GetPerTupleExprContext(estate),
&isNull);
partexpr_item = lnext(partexpr_item);
}
values[i] = datum;
isnull[i] = isNull;
}
if (partexpr_item != NULL)
elog(ERROR, "wrong number of partition key expressions");
}
/*
* BuildSlotPartitionKeyDescription
*
* This works very much like BuildIndexValueDescription() and is currently
* used for building error messages when ExecFindPartition() fails to find
* partition for a row.
*/
static char *
ExecBuildSlotPartitionKeyDescription(Relation rel,
Datum *values,
bool *isnull,
int maxfieldlen)
{
StringInfoData buf;
PartitionKey key = RelationGetPartitionKey(rel);
int partnatts = get_partition_natts(key);
int i;
Oid relid = RelationGetRelid(rel);
AclResult aclresult;
if (check_enable_rls(relid, InvalidOid, true) == RLS_ENABLED)
return NULL;
/* If the user has table-level access, just go build the description. */
aclresult = pg_class_aclcheck(relid, GetUserId(), ACL_SELECT);
if (aclresult != ACLCHECK_OK)
{
/*
* Step through the columns of the partition key and make sure the
* user has SELECT rights on all of them.
*/
for (i = 0; i < partnatts; i++)
{
AttrNumber attnum = get_partition_col_attnum(key, i);
/*
* If this partition key column is an expression, we return no
* detail rather than try to figure out what column(s) the
* expression includes and if the user has SELECT rights on them.
*/
if (attnum == InvalidAttrNumber ||
pg_attribute_aclcheck(relid, attnum, GetUserId(),
ACL_SELECT) != ACLCHECK_OK)
return NULL;
}
}
initStringInfo(&buf);
appendStringInfo(&buf, "(%s) = (",
pg_get_partkeydef_columns(relid, true));
for (i = 0; i < partnatts; i++)
{
char *val;
int vallen;
if (isnull[i])
val = "null";
else
{
Oid foutoid;
bool typisvarlena;
getTypeOutputInfo(get_partition_col_typid(key, i),
&foutoid, &typisvarlena);
val = OidOutputFunctionCall(foutoid, values[i]);
}
if (i > 0)
appendStringInfoString(&buf, ", ");
/* truncate if needed */
vallen = strlen(val);
if (vallen <= maxfieldlen)
appendStringInfoString(&buf, val);
else
{
vallen = pg_mbcliplen(val, vallen, maxfieldlen);
appendBinaryStringInfo(&buf, val, vallen);
appendStringInfoString(&buf, "...");
}
}
appendStringInfoChar(&buf, ')');
return buf.data;
}

View File

@ -40,6 +40,7 @@
#include "access/htup_details.h"
#include "access/xact.h"
#include "commands/trigger.h"
#include "executor/execPartition.h"
#include "executor/executor.h"
#include "executor/nodeModifyTable.h"
#include "foreign/fdwapi.h"

View File

@ -42,37 +42,6 @@ typedef struct PartitionDescData
typedef struct PartitionDescData *PartitionDesc;
/*-----------------------
* PartitionDispatch - information about one partitioned table in a partition
* hierarchy required to route a tuple to one of its partitions
*
* reldesc Relation descriptor of the table
* key Partition key information of the table
* keystate Execution state required for expressions in the partition key
* partdesc Partition descriptor of the table
* tupslot A standalone TupleTableSlot initialized with this table's tuple
* descriptor
* tupmap TupleConversionMap to convert from the parent's rowtype to
* this table's rowtype (when extracting the partition key of a
* tuple just before routing it through this table)
* indexes Array with partdesc->nparts members (for details on what
* individual members represent, see how they are set in
* RelationGetPartitionDispatchInfo())
*-----------------------
*/
typedef struct PartitionDispatchData
{
Relation reldesc;
PartitionKey key;
List *keystate; /* list of ExprState */
PartitionDesc partdesc;
TupleTableSlot *tupslot;
TupleConversionMap *tupmap;
int *indexes;
} PartitionDispatchData;
typedef struct PartitionDispatchData *PartitionDispatch;
extern void RelationBuildPartitionDesc(Relation relation);
extern bool partition_bounds_equal(int partnatts, int16 *parttyplen,
bool *parttypbyval, PartitionBoundInfo b1,
@ -91,19 +60,6 @@ extern List *map_partition_varattnos(List *expr, int target_varno,
extern List *RelationGetPartitionQual(Relation rel);
extern Expr *get_partition_qual_relid(Oid relid);
/* For tuple routing */
extern PartitionDispatch *RelationGetPartitionDispatchInfo(Relation rel,
int *num_parted, List **leaf_part_oids);
extern void FormPartitionKeyDatum(PartitionDispatch pd,
TupleTableSlot *slot,
EState *estate,
Datum *values,
bool *isnull);
extern int get_partition_for_tuple(PartitionDispatch *pd,
TupleTableSlot *slot,
EState *estate,
PartitionDispatchData **failed_at,
TupleTableSlot **failed_slot);
extern Oid get_default_oid_from_partdesc(PartitionDesc partdesc);
extern Oid get_default_partition_oid(Oid parentId);
extern void update_default_partition_oid(Oid parentId, Oid defaultPartId);
@ -111,4 +67,8 @@ extern void check_default_allows_bound(Relation parent, Relation defaultRel,
PartitionBoundSpec *new_spec);
extern List *get_proposed_default_constraint(List *new_part_constaints);
/* For tuple routing */
extern int get_partition_for_tuple(Relation relation, Datum *values,
bool *isnull);
#endif /* PARTITION_H */

View File

@ -0,0 +1,65 @@
/*--------------------------------------------------------------------
* execPartition.h
* POSTGRES partitioning executor interface
*
* Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/include/executor/execPartition.h
*--------------------------------------------------------------------
*/
#ifndef EXECPARTITION_H
#define EXECPARTITION_H
#include "catalog/partition.h"
#include "nodes/execnodes.h"
#include "nodes/parsenodes.h"
#include "nodes/plannodes.h"
/*-----------------------
* PartitionDispatch - information about one partitioned table in a partition
* hierarchy required to route a tuple to one of its partitions
*
* reldesc Relation descriptor of the table
* key Partition key information of the table
* keystate Execution state required for expressions in the partition key
* partdesc Partition descriptor of the table
* tupslot A standalone TupleTableSlot initialized with this table's tuple
* descriptor
* tupmap TupleConversionMap to convert from the parent's rowtype to
* this table's rowtype (when extracting the partition key of a
* tuple just before routing it through this table)
* indexes Array with partdesc->nparts members (for details on what
* individual members represent, see how they are set in
* get_partition_dispatch_recurse())
*-----------------------
*/
typedef struct PartitionDispatchData
{
Relation reldesc;
PartitionKey key;
List *keystate; /* list of ExprState */
PartitionDesc partdesc;
TupleTableSlot *tupslot;
TupleConversionMap *tupmap;
int *indexes;
} PartitionDispatchData;
typedef struct PartitionDispatchData *PartitionDispatch;
extern void ExecSetupPartitionTupleRouting(Relation rel,
Index resultRTindex,
EState *estate,
PartitionDispatch **pd,
ResultRelInfo ***partitions,
TupleConversionMap ***tup_conv_maps,
TupleTableSlot **partition_tuple_slot,
int *num_parted, int *num_partitions);
extern int ExecFindPartition(ResultRelInfo *resultRelInfo,
PartitionDispatch *pd,
TupleTableSlot *slot,
EState *estate);
#endif /* EXECPARTITION_H */

View File

@ -188,6 +188,8 @@ extern void ExecCleanUpTriggerState(EState *estate);
extern bool ExecContextForcesOids(PlanState *planstate, bool *hasoids);
extern void ExecConstraints(ResultRelInfo *resultRelInfo,
TupleTableSlot *slot, EState *estate);
extern void ExecPartitionCheck(ResultRelInfo *resultRelInfo,
TupleTableSlot *slot, EState *estate);
extern void ExecWithCheckOptions(WCOKind kind, ResultRelInfo *resultRelInfo,
TupleTableSlot *slot, EState *estate);
extern LockTupleMode ExecUpdateLockMode(EState *estate, ResultRelInfo *relinfo);
@ -206,18 +208,6 @@ extern void EvalPlanQualSetPlan(EPQState *epqstate,
extern void EvalPlanQualSetTuple(EPQState *epqstate, Index rti,
HeapTuple tuple);
extern HeapTuple EvalPlanQualGetTuple(EPQState *epqstate, Index rti);
extern void ExecSetupPartitionTupleRouting(Relation rel,
Index resultRTindex,
EState *estate,
PartitionDispatch **pd,
ResultRelInfo ***partitions,
TupleConversionMap ***tup_conv_maps,
TupleTableSlot **partition_tuple_slot,
int *num_parted, int *num_partitions);
extern int ExecFindPartition(ResultRelInfo *resultRelInfo,
PartitionDispatch *pd,
TupleTableSlot *slot,
EState *estate);
#define EvalPlanQualSetSlot(epqstate, slot) ((epqstate)->origslot = (slot))
extern void EvalPlanQualFetchRowMarks(EPQState *epqstate);