Generic implementation of red-black binary tree. It's planned to use in

several places, but for now only GIN uses it during index creation.
Using self-balanced tree greatly speeds up index creation in corner cases
with preordered data.
This commit is contained in:
Teodor Sigaev 2010-02-11 14:29:50 +00:00
parent 161d9d51b3
commit 5209c084a6
7 changed files with 971 additions and 224 deletions

View File

@ -8,7 +8,7 @@
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/access/gin/ginbulk.c,v 1.17 2010/01/02 16:57:33 momjian Exp $
* $PostgreSQL: pgsql/src/backend/access/gin/ginbulk.c,v 1.18 2010/02/11 14:29:50 teodor Exp $
*-------------------------------------------------------------------------
*/
@ -22,59 +22,60 @@
#define DEF_NENTRY 2048
#define DEF_NPTR 4
void
ginInitBA(BuildAccumulator *accum)
static void*
ginAppendData(void *old, void *new, void *arg)
{
accum->maxdepth = 1;
accum->stackpos = 0;
accum->entries = NULL;
accum->stack = NULL;
accum->allocatedMemory = 0;
accum->entryallocator = NULL;
}
EntryAccumulator *eo = (EntryAccumulator*)old,
*en = (EntryAccumulator*)new;
static EntryAccumulator *
EAAllocate(BuildAccumulator *accum)
{
if (accum->entryallocator == NULL || accum->length >= DEF_NENTRY)
BuildAccumulator *accum = (BuildAccumulator*)arg;
if (eo->number >= eo->length)
{
accum->entryallocator = palloc(sizeof(EntryAccumulator) * DEF_NENTRY);
accum->allocatedMemory += GetMemoryChunkSpace(accum->entryallocator);
accum->length = 0;
accum->allocatedMemory -= GetMemoryChunkSpace(eo->list);
eo->length *= 2;
eo->list = (ItemPointerData *) repalloc(eo->list,
sizeof(ItemPointerData) * eo->length);
accum->allocatedMemory += GetMemoryChunkSpace(eo->list);
}
accum->length++;
return accum->entryallocator + accum->length - 1;
}
/*
* Stores heap item pointer. For robust, it checks that
* item pointer are ordered
*/
static void
ginInsertData(BuildAccumulator *accum, EntryAccumulator *entry, ItemPointer heapptr)
{
if (entry->number >= entry->length)
/* If item pointers are not ordered, they will need to be sorted. */
if (eo->shouldSort == FALSE)
{
accum->allocatedMemory -= GetMemoryChunkSpace(entry->list);
entry->length *= 2;
entry->list = (ItemPointerData *) repalloc(entry->list,
sizeof(ItemPointerData) * entry->length);
accum->allocatedMemory += GetMemoryChunkSpace(entry->list);
}
if (entry->shouldSort == FALSE)
{
int res = compareItemPointers(entry->list + entry->number - 1, heapptr);
int res;
res = compareItemPointers(eo->list + eo->number - 1, en->list);
Assert(res != 0);
if (res > 0)
entry->shouldSort = TRUE;
eo->shouldSort = TRUE;
}
entry->list[entry->number] = *heapptr;
entry->number++;
eo->list[eo->number] = en->list[0];
eo->number++;
return old;
}
static int
cmpEntryAccumulator(const void *a, const void *b, void *arg)
{
EntryAccumulator *ea = (EntryAccumulator*)a;
EntryAccumulator *eb = (EntryAccumulator*)b;
BuildAccumulator *accum = (BuildAccumulator*)arg;
return compareAttEntries(accum->ginstate, ea->attnum, ea->value,
eb->attnum, eb->value);
}
void
ginInitBA(BuildAccumulator *accum)
{
accum->allocatedMemory = 0;
accum->entryallocator = NULL;
accum->tree = rb_create(cmpEntryAccumulator, ginAppendData, NULL, accum);
accum->iterator = NULL;
accum->tmpList = NULL;
}
/*
@ -103,111 +104,104 @@ getDatumCopy(BuildAccumulator *accum, OffsetNumber attnum, Datum value)
static void
ginInsertEntry(BuildAccumulator *accum, ItemPointer heapptr, OffsetNumber attnum, Datum entry)
{
EntryAccumulator *ea = accum->entries,
*pea = NULL;
int res = 0;
uint32 depth = 1;
EntryAccumulator *key,
*ea;
while (ea)
/*
* Allocate memory by rather big chunk to decrease overhead, we don't
* keep pointer to previously allocated chunks because they will free
* by MemoryContextReset() call.
*/
if (accum->entryallocator == NULL || accum->length >= DEF_NENTRY)
{
res = compareAttEntries(accum->ginstate, attnum, entry, ea->attnum, ea->value);
if (res == 0)
break; /* found */
else
{
pea = ea;
if (res < 0)
ea = ea->left;
else
ea = ea->right;
}
depth++;
accum->entryallocator = palloc(sizeof(EntryAccumulator) * DEF_NENTRY);
accum->allocatedMemory += GetMemoryChunkSpace(accum->entryallocator);
accum->length = 0;
}
if (depth > accum->maxdepth)
accum->maxdepth = depth;
/* "Allocate" new key in chunk */
key = accum->entryallocator + accum->length;
accum->length++;
key->attnum = attnum;
key->value = entry;
/* To prevent multiple palloc/pfree cycles, we reuse array */
if (accum->tmpList == NULL)
accum->tmpList =
(ItemPointerData *) palloc(sizeof(ItemPointerData) * DEF_NPTR);
key->list = accum->tmpList;
key->list[0] = *heapptr;
ea = rb_insert(accum->tree, key);
if (ea == NULL)
{
ea = EAAllocate(accum);
ea->left = ea->right = NULL;
ea->attnum = attnum;
ea->value = getDatumCopy(accum, attnum, entry);
ea->length = DEF_NPTR;
ea->number = 1;
ea->shouldSort = FALSE;
ea->list = (ItemPointerData *) palloc(sizeof(ItemPointerData) * DEF_NPTR);
accum->allocatedMemory += GetMemoryChunkSpace(ea->list);
ea->list[0] = *heapptr;
if (pea == NULL)
accum->entries = ea;
else
{
Assert(res != 0);
if (res < 0)
pea->left = ea;
else
pea->right = ea;
}
/*
* The key has been inserted, so continue initialization.
*/
key->value = getDatumCopy(accum, attnum, entry);
key->length = DEF_NPTR;
key->number = 1;
key->shouldSort = FALSE;
accum->allocatedMemory += GetMemoryChunkSpace(key->list);
accum->tmpList = NULL;
}
else
ginInsertData(accum, ea, heapptr);
{
/*
* The key has been appended, so "free" allocated
* key by decrementing chunk's counter.
*/
accum->length--;
}
}
/*
* insert middle of left part the middle of right one,
* then calls itself for each parts
* Insert one heap pointer.
*
* Since the entries are being inserted into a balanced binary tree, you
* might think that the order of insertion wouldn't be critical, but it turns
* out that inserting the entries in sorted order results in a lot of
* rebalancing operations and is slow. To prevent this, we attempt to insert
* the nodes in an order that will produce a nearly-balanced tree if the input
* is in fact sorted.
*
* We do this as follows. First, we imagine that we have an array whose size
* is the smallest power of two greater than or equal to the actual array
* size. Second, we insert the middle entry of our virtual array into the
* tree; then, we insert the middles of each half of out virtual array, then
* middles of quarters, etc.
*/
static void
ginChooseElem(BuildAccumulator *accum, ItemPointer heapptr, OffsetNumber attnum,
Datum *entries, uint32 nentry,
uint32 low, uint32 high, uint32 offset)
{
uint32 pos;
uint32 middle = (low + high) >> 1;
pos = (low + middle) >> 1;
if (low != middle && pos >= offset && pos - offset < nentry)
ginInsertEntry(accum, heapptr, attnum, entries[pos - offset]);
pos = (high + middle + 1) >> 1;
if (middle + 1 != high && pos >= offset && pos - offset < nentry)
ginInsertEntry(accum, heapptr, attnum, entries[pos - offset]);
if (low != middle)
ginChooseElem(accum, heapptr, attnum, entries, nentry, low, middle, offset);
if (high != middle + 1)
ginChooseElem(accum, heapptr, attnum, entries, nentry, middle + 1, high, offset);
}
/*
* Insert one heap pointer. Suppose entries is sorted.
* Insertion order tries to get binary tree balanced: first insert middle value,
* next middle on left part and middle of right part.
*/
void
void
ginInsertRecordBA(BuildAccumulator *accum, ItemPointer heapptr, OffsetNumber attnum,
Datum *entries, int32 nentry)
{
uint32 i,
nbit = 0,
offset;
uint32 step = nentry;
if (nentry <= 0)
return;
Assert(ItemPointerIsValid(heapptr) && attnum >= FirstOffsetNumber);
i = nentry - 1;
for (; i > 0; i >>= 1)
nbit++;
/*
* step will contain largest power of 2 and <= nentry
*/
step |= (step >> 1);
step |= (step >> 2);
step |= (step >> 4);
step |= (step >> 8);
step |= (step >> 16);
step >>= 1;
step ++;
nbit = 1 << nbit;
offset = (nbit - nentry) / 2;
while(step > 0) {
int i;
ginInsertEntry(accum, heapptr, attnum, entries[(nbit >> 1) - offset]);
ginChooseElem(accum, heapptr, attnum, entries, nentry, 0, nbit, offset);
for (i = step - 1; i < nentry && i >= 0; i += step << 1 /* *2 */)
ginInsertEntry(accum, heapptr, attnum, entries[i]);
step >>= 1; /* /2 */
}
}
static int
@ -219,86 +213,16 @@ qsortCompareItemPointers(const void *a, const void *b)
return res;
}
/*
* walk on binary tree and returns ordered nodes
*/
static EntryAccumulator *
walkTree(BuildAccumulator *accum)
{
EntryAccumulator *entry = accum->stack[accum->stackpos];
if (entry->list != NULL)
{
/* return entry itself: we already was at left sublink */
return entry;
}
else if (entry->right && entry->right != accum->stack[accum->stackpos + 1])
{
/* go on right sublink */
accum->stackpos++;
entry = entry->right;
/* find most-left value */
for (;;)
{
accum->stack[accum->stackpos] = entry;
if (entry->left)
{
accum->stackpos++;
entry = entry->left;
}
else
break;
}
}
else
{
/* we already return all left subtree, itself and right subtree */
if (accum->stackpos == 0)
return 0;
accum->stackpos--;
return walkTree(accum);
}
return entry;
}
ItemPointerData *
ginGetEntry(BuildAccumulator *accum, OffsetNumber *attnum, Datum *value, uint32 *n)
{
EntryAccumulator *entry;
ItemPointerData *list;
if (accum->stack == NULL)
{
/* first call */
accum->stack = palloc0(sizeof(EntryAccumulator *) * (accum->maxdepth + 1));
accum->allocatedMemory += GetMemoryChunkSpace(accum->stack);
entry = accum->entries;
if (accum->iterator == NULL)
accum->iterator = rb_begin_iterate(accum->tree, LeftRightWalk);
if (entry == NULL)
return NULL;
/* find most-left value */
for (;;)
{
accum->stack[accum->stackpos] = entry;
if (entry->left)
{
accum->stackpos++;
entry = entry->left;
}
else
break;
}
}
else
{
accum->allocatedMemory -= GetMemoryChunkSpace(accum->stack[accum->stackpos]->list);
pfree(accum->stack[accum->stackpos]->list);
accum->stack[accum->stackpos]->list = NULL;
entry = walkTree(accum);
}
entry = rb_iterate(accum->iterator);
if (entry == NULL)
return NULL;

View File

@ -11,7 +11,7 @@
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/access/gin/ginfast.c,v 1.6 2010/01/02 16:57:33 momjian Exp $
* $PostgreSQL: pgsql/src/backend/access/gin/ginfast.c,v 1.7 2010/02/11 14:29:50 teodor Exp $
*
*-------------------------------------------------------------------------
*/
@ -765,8 +765,7 @@ ginInsertCleanup(Relation index, GinState *ginstate,
*/
if (GinPageGetOpaque(page)->rightlink == InvalidBlockNumber ||
(GinPageHasFullRow(page) &&
(accum.allocatedMemory >= maintenance_work_mem * 1024L ||
accum.maxdepth > GIN_MAX_TREE_DEPTH)))
(accum.allocatedMemory >= maintenance_work_mem * 1024L)))
{
ItemPointerData *list;
uint32 nlist;

View File

@ -8,7 +8,7 @@
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/access/gin/gininsert.c,v 1.25 2010/01/02 16:57:33 momjian Exp $
* $PostgreSQL: pgsql/src/backend/access/gin/gininsert.c,v 1.26 2010/02/11 14:29:50 teodor Exp $
*-------------------------------------------------------------------------
*/
@ -247,9 +247,7 @@ ginBuildCallback(Relation index, HeapTuple htup, Datum *values,
&htup->t_self);
/* If we've maxed out our available memory, dump everything to the index */
/* Also dump if the tree seems to be getting too unbalanced */
if (buildstate->accum.allocatedMemory >= maintenance_work_mem * 1024L ||
buildstate->accum.maxdepth > GIN_MAX_TREE_DEPTH)
if (buildstate->accum.allocatedMemory >= maintenance_work_mem * 1024L)
{
ItemPointerData *list;
Datum entry;

View File

@ -4,7 +4,7 @@
# Makefile for utils/misc
#
# IDENTIFICATION
# $PostgreSQL: pgsql/src/backend/utils/misc/Makefile,v 1.29 2009/08/28 20:26:19 petere Exp $
# $PostgreSQL: pgsql/src/backend/utils/misc/Makefile,v 1.30 2010/02/11 14:29:50 teodor Exp $
#
#-------------------------------------------------------------------------
@ -14,7 +14,8 @@ include $(top_builddir)/src/Makefile.global
override CPPFLAGS := -I. -I$(srcdir) $(CPPFLAGS)
OBJS = guc.o help_config.o pg_rusage.o ps_status.o superuser.o tzparser.o
OBJS = guc.o help_config.o pg_rusage.o ps_status.o superuser.o tzparser.o \
rbtree.o
# This location might depend on the installation directories. Therefore
# we can't subsitute it into pg_config.h.

View File

@ -0,0 +1,790 @@
/*-------------------------------------------------------------------------
*
* rbtree.c
* implementation for PostgreSQL generic Red-Black binary tree package
* Adopted from http://algolist.manual.ru/ds/rbtree.php
*
* This code comes from Thomas Niemann's "Sorting and Searching Algorithms:
* a Cookbook".
*
* See http://www.cs.auckland.ac.nz/software/AlgAnim/niemann/s_man.htm for
* license terms: "Source code, when part of a software project, may be used
* freely without reference to the author."
*
* Red-black trees are a type of balanced binary tree wherein (1) any child of
* a red node is always black, and (2) every path from root to leaf traverses
* an equal number of black nodes. From these properties, it follows that the
* longest path from root to leaf is only about twice as long as the shortest,
* so lookups are guaranteed to run in O(lg n) time.
*
* Copyright (c) 1996-2009, PostgreSQL Global Development Group
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/utils/misc/rbtree.c,v 1.1 2010/02/11 14:29:50 teodor Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "utils/rbtree.h"
/**********************************************************************
* Declarations *
**********************************************************************/
/*
* Values for RBNode->iteratorState
*/
#define InitialState (0)
#define FirstStepDone (1)
#define SecondStepDone (2)
#define ThirdStepDone (3)
/*
* Colors of node
*/
#define RBBLACK (0)
#define RBRED (1)
typedef struct RBNode
{
uint32 iteratorState:2,
color: 1 ,
unused: 29;
struct RBNode *left;
struct RBNode *right;
struct RBNode *parent;
void *data;
} RBNode;
struct RBTree
{
RBNode *root;
rb_comparator comparator;
rb_appendator appendator;
rb_freefunc freefunc;
void *arg;
};
struct RBTreeIterator
{
RBNode *node;
void *(*iterate) (RBTreeIterator *iterator);
};
/*
* all leafs are sentinels, use customized NIL name to prevent
* collision with sytem-wide NIL which is actually NULL
*/
#define RBNIL &sentinel
RBNode sentinel = {InitialState, RBBLACK, 0, RBNIL, RBNIL, NULL, NULL};
/**********************************************************************
* Create *
**********************************************************************/
RBTree *
rb_create(rb_comparator comparator, rb_appendator appendator,
rb_freefunc freefunc, void *arg)
{
RBTree *tree = palloc(sizeof(RBTree));
tree->root = RBNIL;
tree->comparator = comparator;
tree->appendator = appendator;
tree->freefunc = freefunc;
tree->arg = arg;
return tree;
}
/**********************************************************************
* Search *
**********************************************************************/
void *
rb_find(RBTree *rb, void *data)
{
RBNode *node = rb->root;
int cmp;
while (node != RBNIL)
{
cmp = rb->comparator(data, node->data, rb->arg);
if (cmp == 0)
return node->data;
else if (cmp < 0)
node = node->left;
else
node = node->right;
}
return NULL;
}
/**********************************************************************
* Insertion *
**********************************************************************/
/*
* Rotate node x to left.
*
* x's right child takes its place in the tree, and x becomes the left
* child of that node.
*/
static void
rb_rotate_left(RBTree *rb, RBNode *x)
{
RBNode *y = x->right;
/* establish x->right link */
x->right = y->left;
if (y->left != RBNIL)
y->left->parent = x;
/* establish y->parent link */
if (y != RBNIL)
y->parent = x->parent;
if (x->parent)
{
if (x == x->parent->left)
x->parent->left = y;
else
x->parent->right = y;
}
else
{
rb->root = y;
}
/* link x and y */
y->left = x;
if (x != RBNIL)
x->parent = y;
}
/*
* Rotate node x to right.
*
* x's left right child takes its place in the tree, and x becomes the right
* child of that node.
*/
static void
rb_rotate_right(RBTree *rb, RBNode *x)
{
RBNode *y = x->left;
/* establish x->left link */
x->left = y->right;
if (y->right != RBNIL)
y->right->parent = x;
/* establish y->parent link */
if (y != RBNIL)
y->parent = x->parent;
if (x->parent)
{
if (x == x->parent->right)
x->parent->right = y;
else
x->parent->left = y;
}
else
{
rb->root = y;
}
/* link x and y */
y->right = x;
if (x != RBNIL)
x->parent = y;
}
/*
* Maintain Red-Black tree balance after inserting node x.
*
* The newly inserted node is always initially marked red. That may lead to
* a situation where a red node has a red child, which is prohibited. We can
* always fix the problem by a series of color changes and/or "rotations",
* which move the problem progressively higher up in the tree. If one of the
* two red nodes is the root, we can always fix the problem by changing the
* root from red to black.
*
* (This does not work lower down in the tree because we must also maintain
* the invariant that every leaf has equal black-height.)
*/
static void
rb_insert_fixup(RBTree *rb, RBNode *x)
{
/*
* x is always a red node. Initially, it is the newly inserted node.
* Each iteration of this loop moves it higher up in the tree.
*/
while (x != rb->root && x->parent->color == RBRED)
{
/*
* x and x->parent are both red. Fix depends on whether x->parent is
* a left or right child. In either case, we define y to be the
* "uncle" of x, that is, the other child of x's grandparent.
*
* If the uncle is red, we flip the grandparent to red and its two
* children to black. Then we loop around again to check whether the
* grandparent still has a problem.
*
* If the uncle is black, we will perform one or two "rotations" to
* balance the tree. Either x or x->parent will take the grandparent's
* position in the tree and recolored black, and the original
* grandparent will be recolored red and become a child of that node.
* This always leaves us with a valid red-black tree, so the loop
* will terminate.
*/
if (x->parent == x->parent->parent->left)
{
RBNode *y = x->parent->parent->right;
if (y->color == RBRED)
{
/* uncle is RBRED */
x->parent->color = RBBLACK;
y->color = RBBLACK;
x->parent->parent->color = RBRED;
x = x->parent->parent;
}
else
{
/* uncle is RBBLACK */
if (x == x->parent->right)
{
/* make x a left child */
x = x->parent;
rb_rotate_left(rb, x);
}
/* recolor and rotate */
x->parent->color = RBBLACK;
x->parent->parent->color = RBRED;
rb_rotate_right(rb, x->parent->parent);
}
}
else
{
/* mirror image of above code */
RBNode *y = x->parent->parent->left;
if (y->color == RBRED)
{
/* uncle is RBRED */
x->parent->color = RBBLACK;
y->color = RBBLACK;
x->parent->parent->color = RBRED;
x = x->parent->parent;
}
else
{
/* uncle is RBBLACK */
if (x == x->parent->left)
{
x = x->parent;
rb_rotate_right(rb, x);
}
x->parent->color = RBBLACK;
x->parent->parent->color = RBRED;
rb_rotate_left(rb, x->parent->parent);
}
}
}
/*
* The root may already have been black; if not, the black-height of every
* node in the tree increases by one.
*/
rb->root->color = RBBLACK;
}
/*
* Allocate node for data and insert in tree.
*
* Return old data (or result of appendator method) if it exists and NULL
* otherwise.
*/
void *
rb_insert(RBTree *rb, void *data)
{
RBNode *current,
*parent,
*x;
int cmp;
/* find where node belongs */
current = rb->root;
parent = NULL;
while (current != RBNIL)
{
cmp = rb->comparator(data, current->data, rb->arg);
if (cmp == 0)
{
/*
* Found node with given key. If appendator method is provided,
* call it to join old and new data; else, new data replaces old
* data.
*/
if (rb->appendator)
{
current->data = rb->appendator(current->data, data, rb->arg);
return current->data;
}
else
{
void *old = current->data;
current->data = data;
return old;
}
}
parent = current;
current = (cmp < 0) ? current->left : current->right;
}
/* setup new node in tree */
x = palloc(sizeof(RBNode));
x->data = data;
x->parent = parent;
x->left = RBNIL;
x->right = RBNIL;
x->color = RBRED;
x->iteratorState = InitialState;
/* insert node in tree */
if (parent)
{
if (cmp < 0)
parent->left = x;
else
parent->right = x;
}
else
{
rb->root = x;
}
rb_insert_fixup(rb, x);
return NULL;
}
/**********************************************************************
* Deletion *
**********************************************************************/
/*
* Maintain Red-Black tree balance after deleting a black node.
*/
static void
rb_delete_fixup(RBTree *rb, RBNode *x)
{
/*
* x is always a black node. Initially, it is the former child of the
* deleted node. Each iteration of this loop moves it higher up in the
* tree.
*/
while (x != rb->root && x->color == RBBLACK)
{
/*
* Left and right cases are symmetric. Any nodes that are children
* of x have a black-height one less than the remainder of the nodes
* in the tree. We rotate and recolor nodes to move the problem up
* the tree: at some stage we'll either fix the problem, or reach the
* root (where the black-height is allowed to decrease).
*/
if (x == x->parent->left)
{
RBNode *w = x->parent->right;
if (w->color == RBRED)
{
w->color = RBBLACK;
x->parent->color = RBRED;
rb_rotate_left(rb, x->parent);
w = x->parent->right;
}
if (w->left->color == RBBLACK && w->right->color == RBBLACK)
{
w->color = RBRED;
x = x->parent;
}
else
{
if (w->right->color == RBBLACK)
{
w->left->color = RBBLACK;
w->color = RBRED;
rb_rotate_right(rb, w);
w = x->parent->right;
}
w->color = x->parent->color;
x->parent->color = RBBLACK;
w->right->color = RBBLACK;
rb_rotate_left(rb, x->parent);
x = rb->root; /* Arrange for loop to terminate. */
}
}
else
{
RBNode *w = x->parent->left;
if (w->color == RBRED)
{
w->color = RBBLACK;
x->parent->color = RBRED;
rb_rotate_right(rb, x->parent);
w = x->parent->left;
}
if (w->right->color == RBBLACK && w->left->color == RBBLACK)
{
w->color = RBRED;
x = x->parent;
}
else
{
if (w->left->color == RBBLACK)
{
w->right->color = RBBLACK;
w->color = RBRED;
rb_rotate_left(rb, w);
w = x->parent->left;
}
w->color = x->parent->color;
x->parent->color = RBBLACK;
w->left->color = RBBLACK;
rb_rotate_right(rb, x->parent);
x = rb->root; /* Arrange for loop to terminate. */
}
}
}
x->color = RBBLACK;
}
/*
* Delete node z from tree.
*/
static void
rb_delete_node(RBTree *rb, RBNode *z)
{
RBNode *x,
*y;
if (!z || z == RBNIL)
return;
/*
* y is the node that will actually be removed from the tree. This will
* be z if z has fewer than two children, or the tree successor of z
* otherwise.
*/
if (z->left == RBNIL || z->right == RBNIL)
{
/* y has a RBNIL node as a child */
y = z;
}
else
{
/* find tree successor */
y = z->right;
while (y->left != RBNIL)
y = y->left;
}
/* x is y's only child */
if (y->left != RBNIL)
x = y->left;
else
x = y->right;
/* Remove y from the tree. */
x->parent = y->parent;
if (y->parent)
{
if (y == y->parent->left)
y->parent->left = x;
else
y->parent->right = x;
}
else
{
rb->root = x;
}
/*
* If we removed the tree successor of z rather than z itself, then
* attach the data for the removed node to the one we were supposed to
* remove.
*/
if (y != z)
z->data = y->data;
/*
* Removing a black node might make some paths from root to leaf contain
* fewer black nodes than others, or it might make two red nodes adjacent.
*/
if (y->color == RBBLACK)
rb_delete_fixup(rb, x);
pfree(y);
}
extern void
rb_delete(RBTree *rb, void *data)
{
RBNode *node = rb->root;
int cmp;
while (node != RBNIL)
{
cmp = rb->comparator(data, node->data, rb->arg);
if (cmp == 0)
{
/* found node to delete */
if (rb->freefunc)
rb->freefunc(node->data);
node->data = NULL;
rb_delete_node(rb, node);
return;
}
else if (cmp < 0)
node = node->left;
else
node = node->right;
}
}
/*
* Return data on left most node and delete
* that node
*/
extern void *
rb_leftmost(RBTree *rb)
{
RBNode *node = rb->root;
RBNode *leftmost = rb->root;
void *res = NULL;
while (node != RBNIL)
{
leftmost = node;
node = node->left;
}
if (leftmost != RBNIL)
{
res = leftmost->data;
leftmost->data = NULL;
rb_delete_node(rb, leftmost);
}
return res;
}
/**********************************************************************
* Traverse *
**********************************************************************/
static void *
rb_next_node(RBTreeIterator *iterator, RBNode *node)
{
node->iteratorState = InitialState;
iterator->node = node;
return iterator->iterate(iterator);
}
static void *
rb_left_right_iterator(RBTreeIterator *iterator)
{
RBNode *node = iterator->node;
switch (node->iteratorState)
{
case InitialState:
if (node->left != RBNIL)
{
node->iteratorState = FirstStepDone;
return rb_next_node(iterator, node->left);
}
case FirstStepDone:
node->iteratorState = SecondStepDone;
return node->data;
case SecondStepDone:
if (node->right != RBNIL)
{
node->iteratorState = ThirdStepDone;
return rb_next_node(iterator, node->right);
}
case ThirdStepDone:
if (node->parent)
{
iterator->node = node->parent;
return iterator->iterate(iterator);
}
break;
default:
elog(ERROR, "Unknow node state: %d", node->iteratorState);
}
return NULL;
}
static void *
rb_right_left_iterator(RBTreeIterator *iterator)
{
RBNode *node = iterator->node;
switch (node->iteratorState)
{
case InitialState:
if (node->right != RBNIL)
{
node->iteratorState = FirstStepDone;
return rb_next_node(iterator, node->right);
}
case FirstStepDone:
node->iteratorState = SecondStepDone;
return node->data;
case SecondStepDone:
if (node->left != RBNIL)
{
node->iteratorState = ThirdStepDone;
return rb_next_node(iterator, node->left);
}
case ThirdStepDone:
if (node->parent)
{
iterator->node = node->parent;
return iterator->iterate(iterator);
}
break;
default:
elog(ERROR, "Unknow node state: %d", node->iteratorState);
}
return NULL;
}
static void *
rb_direct_iterator(RBTreeIterator *iterator)
{
RBNode *node = iterator->node;
switch (node->iteratorState)
{
case InitialState:
node->iteratorState = FirstStepDone;
return node->data;
case FirstStepDone:
if (node->left != RBNIL)
{
node->iteratorState = SecondStepDone;
return rb_next_node(iterator, node->left);
}
case SecondStepDone:
if (node->right != RBNIL)
{
node->iteratorState = ThirdStepDone;
return rb_next_node(iterator, node->right);
}
case ThirdStepDone:
if (node->parent)
{
iterator->node = node->parent;
return iterator->iterate(iterator);
}
break;
default:
elog(ERROR, "Unknow node state: %d", node->iteratorState);
}
return NULL;
}
static void *
rb_inverted_iterator(RBTreeIterator *iterator)
{
RBNode *node = iterator->node;
switch (node->iteratorState)
{
case InitialState:
if (node->left != RBNIL)
{
node->iteratorState = FirstStepDone;
return rb_next_node(iterator, node->left);
}
case FirstStepDone:
if (node->right != RBNIL)
{
node->iteratorState = SecondStepDone;
return rb_next_node(iterator, node->right);
}
case SecondStepDone:
node->iteratorState = ThirdStepDone;
return node->data;
case ThirdStepDone:
if (node->parent)
{
iterator->node = node->parent;
return iterator->iterate(iterator);
}
break;
default:
elog(ERROR, "Unknow node state: %d", node->iteratorState);
}
return NULL;
}
RBTreeIterator *
rb_begin_iterate(RBTree *rb, RBOrderControl ctrl)
{
RBTreeIterator *iterator = palloc(sizeof(RBTreeIterator));
iterator->node = rb->root;
if (iterator->node != RBNIL)
iterator->node->iteratorState = InitialState;
switch (ctrl)
{
case LeftRightWalk: /* visit left, then self, then right */
iterator->iterate = rb_left_right_iterator;
break;
case RightLeftWalk: /* visit right, then self, then left */
iterator->iterate = rb_right_left_iterator;
break;
case DirectWalk: /* visit self, then left, then right */
iterator->iterate = rb_direct_iterator;
break;
case InvertedWalk: /* visit left, then right, then self */
iterator->iterate = rb_inverted_iterator;
break;
default:
elog(ERROR, "Unknown iterator order: %d", ctrl);
}
return iterator;
}
void *
rb_iterate(RBTreeIterator *iterator)
{
if (iterator->node == RBNIL)
return NULL;
return iterator->iterate(iterator);
}
void
rb_free_iterator(RBTreeIterator *iterator)
{
pfree(iterator);
}

View File

@ -4,7 +4,7 @@
*
* Copyright (c) 2006-2010, PostgreSQL Global Development Group
*
* $PostgreSQL: pgsql/src/include/access/gin.h,v 1.36 2010/01/02 16:58:00 momjian Exp $
* $PostgreSQL: pgsql/src/include/access/gin.h,v 1.37 2010/02/11 14:29:50 teodor Exp $
*--------------------------------------------------------------------------
*/
#ifndef GIN_H
@ -13,6 +13,7 @@
#include "access/genam.h"
#include "access/itup.h"
#include "access/xlog.h"
#include "utils/rbtree.h"
#include "fmgr.h"
@ -26,14 +27,6 @@
#define GIN_COMPARE_PARTIAL_PROC 5
#define GINNProcs 5
/*
* Max depth allowed in search tree during bulk inserts. This is to keep from
* degenerating to O(N^2) behavior when the tree is unbalanced due to sorted
* or nearly-sorted input. (Perhaps it would be better to use a balanced-tree
* algorithm, but in common cases that would only add useless overhead.)
*/
#define GIN_MAX_TREE_DEPTH 100
/*
* Page opaque data in a inverted index page.
*
@ -570,27 +563,23 @@ extern Datum ginarrayconsistent(PG_FUNCTION_ARGS);
/* ginbulk.c */
typedef struct EntryAccumulator
{
OffsetNumber attnum;
Datum value;
uint32 length;
uint32 number;
ItemPointerData *list;
OffsetNumber attnum;
bool shouldSort;
struct EntryAccumulator *left;
struct EntryAccumulator *right;
ItemPointerData *list;
} EntryAccumulator;
typedef struct
{
GinState *ginstate;
EntryAccumulator *entries;
uint32 maxdepth;
EntryAccumulator **stack;
uint32 stackpos;
long allocatedMemory;
uint32 length;
EntryAccumulator *entryallocator;
EntryAccumulator *entryallocator;
ItemPointerData *tmpList;
RBTree *tree;
RBTreeIterator *iterator;
} BuildAccumulator;
extern void ginInitBA(BuildAccumulator *accum);

View File

@ -0,0 +1,46 @@
/*-------------------------------------------------------------------------
*
* rbtree.h
* interface for PostgreSQL generic Red-Black binary tree package
*
* Copyright (c) 1996-2009, PostgreSQL Global Development Group
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/include/utils/rbtree.h,v 1.1 2010/02/11 14:29:50 teodor Exp $
*
*-------------------------------------------------------------------------
*/
#ifndef RBTREE_H
#define RBTREE_H
typedef struct RBTree RBTree;
typedef struct RBTreeIterator RBTreeIterator;
typedef int (*rb_comparator) (const void *a, const void *b, void *arg);
typedef void* (*rb_appendator) (void *current, void *new, void *arg);
typedef void (*rb_freefunc) (void *a);
extern RBTree *rb_create(rb_comparator comparator,
rb_appendator appendator,
rb_freefunc freefunc,
void *arg);
extern void *rb_find(RBTree *rb, void *data);
extern void *rb_insert(RBTree *rb, void *data);
extern void rb_delete(RBTree *rb, void *data);
extern void *rb_leftmost(RBTree *rb);
typedef enum RBOrderControl
{
LeftRightWalk,
RightLeftWalk,
DirectWalk,
InvertedWalk
} RBOrderControl;
extern RBTreeIterator* rb_begin_iterate(RBTree *rb, RBOrderControl ctrl);
extern void *rb_iterate(RBTreeIterator *iterator);
extern void rb_free_iterator(RBTreeIterator *iterator);
#endif