Support multi-argument UNNEST(), and TABLE() syntax for multiple functions.

This patch adds the ability to write TABLE( function1(), function2(), ...)
as a single FROM-clause entry.  The result is the concatenation of the
first row from each function, followed by the second row from each
function, etc; with NULLs inserted if any function produces fewer rows than
others.  This is believed to be a much more useful behavior than what
Postgres currently does with multiple SRFs in a SELECT list.

This syntax also provides a reasonable way to combine use of column
definition lists with WITH ORDINALITY: put the column definition list
inside TABLE(), where it's clear that it doesn't control the ordinality
column as well.

Also implement SQL-compliant multiple-argument UNNEST(), by turning
UNNEST(a,b,c) into TABLE(unnest(a), unnest(b), unnest(c)).

The SQL standard specifies TABLE() with only a single function, not
multiple functions, and it seems to require an implicit UNNEST() which is
not what this patch does.  There may be something wrong with that reading
of the spec, though, because if it's right then the spec's TABLE() is just
a pointless alternative spelling of UNNEST().  After further review of
that, we might choose to adopt a different syntax for what this patch does,
but in any case this functionality seems clearly worthwhile.

Andrew Gierth, reviewed by Zoltán Böszörményi and Heikki Linnakangas, and
significantly revised by me
This commit is contained in:
Tom Lane 2013-11-21 19:37:02 -05:00
parent 38f4328981
commit 784e762e88
48 changed files with 2643 additions and 1207 deletions

View File

@ -1456,7 +1456,7 @@ JumbleRangeTable(pgssJumbleState *jstate, List *rtable)
APP_JUMB(rte->jointype);
break;
case RTE_FUNCTION:
JumbleExpr(jstate, rte->funcexpr);
JumbleExpr(jstate, (Node *) rte->functions);
break;
case RTE_VALUES:
JumbleExpr(jstate, (Node *) rte->values_lists);
@ -1866,6 +1866,13 @@ JumbleExpr(pgssJumbleState *jstate, Node *node)
JumbleExpr(jstate, setop->rarg);
}
break;
case T_RangeTblFunction:
{
RangeTblFunction *rtfunc = (RangeTblFunction *) node;
JumbleExpr(jstate, rtfunc->funcexpr);
}
break;
default:
/* Only a warning, since we can stumble along anyway */
elog(WARNING, "unrecognized node type: %d",

View File

@ -11185,6 +11185,21 @@ SELECT NULLIF(value, '(none)') ...
<entry><literallayout class="monospaced">1
2</literallayout>(2 rows)</entry>
</row>
<row>
<entry>
<literal>
<function>unnest</function>(<type>anyarray</type>, <type>anyarray</type> [, ...])
</literal>
</entry>
<entry><type>setof anyelement, anyelement [, ...]</type></entry>
<entry>expand multiple arrays (possibly of different types) to a set
of rows. This is only allowed in the FROM clause; see
<xref linkend="queries-tablefunctions"></entry>
<entry><literal>unnest(ARRAY[1,2],ARRAY['foo','bar','baz'])</literal></entry>
<entry><literallayout class="monospaced">1 foo
2 bar
NULL baz</literallayout>(3 rows)</entry>
</row>
</tbody>
</tgroup>
</table>
@ -13295,6 +13310,8 @@ AND
functions, as detailed in <xref linkend="functions-srf-series"> and
<xref linkend="functions-srf-subscripts">. Other, more specialized
set-returning functions are described elsewhere in this manual.
See <xref linkend="queries-tablefunctions"> for ways to combine multiple
set-returning functions.
</para>
<table id="functions-srf-series">
@ -13499,14 +13516,11 @@ SELECT * FROM unnest2(ARRAY[[1,2],[3,4]]);
</indexterm>
<para>
When a function in the <literal>FROM</literal> clause is suffixed by
<literal>WITH ORDINALITY</literal>, a <type>bigint</type> column is appended
to the output which starts from 1 and increments by 1 for each row of the
function's output. This is most useful in the case of set returning functions
such as UNNEST(). This functionality is available for functions returning
composite types or using <literal>OUT</literal> parameters, but not when using
a function returning <literal>RECORD</literal> with an explicit column
definition list.
When a function in the <literal>FROM</literal> clause is suffixed
by <literal>WITH ORDINALITY</literal>, a <type>bigint</type> column is
appended to the output which starts from 1 and increments by 1 for each row
of the function's output. This is most useful in the case of set returning
functions such as <function>unnest()</>.
<programlisting>
-- set returning function WITH ORDINALITY

View File

@ -643,21 +643,55 @@ FROM (VALUES ('anne', 'smith'), ('bob', 'jones'), ('joe', 'blow'))
the <literal>FROM</> clause of a query. Columns returned by table
functions can be included in <literal>SELECT</>,
<literal>JOIN</>, or <literal>WHERE</> clauses in the same manner
as a table, view, or subquery column.
as columns of a table, view, or subquery.
</para>
<para>
If a table function returns a base data type, the single result
column name matches the function name. If the function returns a
composite type, the result columns get the same names as the
individual attributes of the type.
Table functions may also be combined using the <literal>TABLE</literal>
syntax, with the results returned in parallel columns; the number of
result rows in this case is that of the largest function result, with
smaller results padded with NULLs to match.
</para>
<synopsis>
<replaceable>function_call</replaceable> <optional>WITH ORDINALITY</optional> <optional><optional>AS</optional> <replaceable>table_alias</replaceable> <optional>(<replaceable>column_alias</replaceable> <optional>, ... </optional>)</optional></optional>
TABLE( <replaceable>function_call</replaceable> <optional>, ... </optional> ) <optional>WITH ORDINALITY</optional> <optional><optional>AS</optional> <replaceable>table_alias</replaceable> <optional>(<replaceable>column_alias</replaceable> <optional>, ... </optional>)</optional></optional>
</synopsis>
<para>
If the <literal>WITH ORDINALITY</literal> clause is specified, an
additional column of type <type>bigint</type> will be added to the
function result columns. This column numbers the rows of the function
result set, starting from 1. (This is a generalization of the
SQL-standard syntax for <literal>UNNEST ... WITH ORDINALITY</literal>.)
By default, the ordinal column is called <literal>ordinality</>, but
a different column name can be assigned to it using
an <literal>AS</literal> clause.
</para>
<para>
A table function can be aliased in the <literal>FROM</> clause,
but it also can be left unaliased. If a function is used in the
<literal>FROM</> clause with no alias, the function name is used
as the resulting table name.
The special table function <literal>UNNEST</literal> may be called with
any number of array parameters, and it returns a corresponding number of
columns, as if <literal>UNNEST</literal>
(<xref linkend="functions-array">) had been called on each parameter
separately and combined using the <literal>TABLE</literal> construct.
</para>
<synopsis>
UNNEST( <replaceable>array_expression</replaceable> <optional>, ... </optional> ) <optional>WITH ORDINALITY</optional> <optional><optional>AS</optional> <replaceable>table_alias</replaceable> <optional>(<replaceable>column_alias</replaceable> <optional>, ... </optional>)</optional></optional>
</synopsis>
<para>
If no <replaceable>table_alias</replaceable> is specified, the function
name is used as the table name; in the case of a <literal>TABLE()</>
construct, the first function's name is used.
</para>
<para>
If column aliases are not supplied, then for a function returning a base
data type, the column name is also the same as the function name. For a
function returning a composite type, the result columns get the names
of the individual attributes of the type.
</para>
<para>
@ -691,7 +725,30 @@ SELECT * FROM vw_getfoo;
the pseudotype <type>record</>. When such a function is used in
a query, the expected row structure must be specified in the
query itself, so that the system can know how to parse and plan
the query. Consider this example:
the query. This syntax looks like:
</para>
<synopsis>
<replaceable>function_call</replaceable> <optional>AS</optional> <replaceable>alias</replaceable> (<replaceable>column_definition</replaceable> <optional>, ... </optional>)
<replaceable>function_call</replaceable> AS <optional><replaceable>alias</replaceable></optional> (<replaceable>column_definition</replaceable> <optional>, ... </optional>)
TABLE( ... <replaceable>function_call</replaceable> AS (<replaceable>column_definition</replaceable> <optional>, ... </optional>) <optional>, ... </optional> )
</synopsis>
<para>
When not using the <literal>TABLE()</> syntax,
the <replaceable>column_definition</replaceable> list replaces the column
alias list that could otherwise be attached to the <literal>FROM</>
item; the names in the column definitions serve as column aliases.
When using the <literal>TABLE()</> syntax,
a <replaceable>column_definition</replaceable> list can be attached to
each member function separately; or if there is only one member function
and no <literal>WITH ORDINALITY</> clause,
a <replaceable>column_definition</replaceable> list can be written in
place of a column alias list following <literal>TABLE()</>.
</para>
<para>
Consider this example:
<programlisting>
SELECT *
FROM dblink('dbname=mydb', 'SELECT proname, prosrc FROM pg_proc')

View File

@ -52,9 +52,12 @@ SELECT [ ALL | DISTINCT [ ON ( <replaceable class="parameter">expression</replac
[ ONLY ] <replaceable class="parameter">table_name</replaceable> [ * ] [ [ AS ] <replaceable class="parameter">alias</replaceable> [ ( <replaceable class="parameter">column_alias</replaceable> [, ...] ) ] ]
[ LATERAL ] ( <replaceable class="parameter">select</replaceable> ) [ AS ] <replaceable class="parameter">alias</replaceable> [ ( <replaceable class="parameter">column_alias</replaceable> [, ...] ) ]
<replaceable class="parameter">with_query_name</replaceable> [ [ AS ] <replaceable class="parameter">alias</replaceable> [ ( <replaceable class="parameter">column_alias</replaceable> [, ...] ) ] ]
[ LATERAL ] <replaceable class="parameter">function_name</replaceable> ( [ <replaceable class="parameter">argument</replaceable> [, ...] ] ) [ WITH ORDINALITY ] [ [ AS ] <replaceable class="parameter">alias</replaceable> [ ( <replaceable class="parameter">column_alias</replaceable> [, ...] ) ] ]
[ LATERAL ] <replaceable class="parameter">function_name</replaceable> ( [ <replaceable class="parameter">argument</replaceable> [, ...] ] )
[ WITH ORDINALITY ] [ [ AS ] <replaceable class="parameter">alias</replaceable> [ ( <replaceable class="parameter">column_alias</replaceable> [, ...] ) ] ]
[ LATERAL ] <replaceable class="parameter">function_name</replaceable> ( [ <replaceable class="parameter">argument</replaceable> [, ...] ] ) [ AS ] <replaceable class="parameter">alias</replaceable> ( <replaceable class="parameter">column_definition</replaceable> [, ...] )
[ LATERAL ] <replaceable class="parameter">function_name</replaceable> ( [ <replaceable class="parameter">argument</replaceable> [, ...] ] ) AS ( <replaceable class="parameter">column_definition</replaceable> [, ...] )
[ LATERAL ] TABLE( <replaceable class="parameter">function_name</replaceable> ( [ <replaceable class="parameter">argument</replaceable> [, ...] ] ) [ AS ( <replaceable class="parameter">column_definition</replaceable> [, ...] ) ] [, ...] )
[ WITH ORDINALITY ] [ [ AS ] <replaceable class="parameter">alias</replaceable> [ ( <replaceable class="parameter">column_alias</replaceable> [, ...] ) ] ]
<replaceable class="parameter">from_item</replaceable> [ NATURAL ] <replaceable class="parameter">join_type</replaceable> <replaceable class="parameter">from_item</replaceable> [ ON <replaceable class="parameter">join_condition</replaceable> | USING ( <replaceable class="parameter">join_column</replaceable> [, ...] ) ]
<phrase>and <replaceable class="parameter">with_query</replaceable> is:</phrase>
@ -368,30 +371,32 @@ TABLE [ ONLY ] <replaceable class="parameter">table_name</replaceable> [ * ]
Function calls can appear in the <literal>FROM</literal>
clause. (This is especially useful for functions that return
result sets, but any function can be used.) This acts as
though its output were created as a temporary table for the
though the function's output were created as a temporary table for the
duration of this single <command>SELECT</command> command.
When the optional <command>WITH ORDINALITY</command> is
appended to the function call, a new column is appended after
all the function call's columns with numbering for each row.
For example:
<programlisting>
SELECT * FROM unnest(ARRAY['a','b','c','d','e','f']) WITH ORDINALITY;
unnest | ordinality
--------+----------
a | 1
b | 2
c | 3
d | 4
e | 5
f | 6
(6 rows)
</programlisting>
An alias can also be used. If an alias is written, a column
When the optional <command>WITH ORDINALITY</command> clause is
added to the function call, a new column is appended after
all the function's output columns with numbering for each row.
</para>
<para>
An alias can be provided in the same way as for a table.
If an alias is written, a column
alias list can also be written to provide substitute names for
one or more attributes of the function's composite return
type, including the column added by <literal>ORDINALITY</literal>
if present.
</para>
</para>
<para>
Multiple function calls can be combined into a
single <literal>FROM</>-clause item by surrounding them
with <literal>TABLE( ... )</>. The output of such an item is the
concatenation of the first row from each function, then the second
row from each function, etc. If some of the functions produce fewer
rows than others, NULLs are substituted for the missing data, so
that the total number of rows returned is always the same as for the
function that produced the most rows.
</para>
<para>
If the function has been defined as returning the
@ -402,7 +407,21 @@ SELECT * FROM unnest(ARRAY['a','b','c','d','e','f']) WITH ORDINALITY;
class="parameter">data_type</replaceable> <optional>, ...
</>)</literal>. The column definition list must match the
actual number and types of columns returned by the function.
<literal>ORDINALITY</literal> does not work in this case.
</para>
<para>
When using the <literal>TABLE( ... )</> syntax, if one of the
functions requires a column definition list, it's preferred to put
the column definition list after the function call inside
<literal>TABLE( ... )</>. A column definition list can be placed
after the <literal>TABLE( ... )</> construct only if there's just a
single function and no <literal>WITH ORDINALITY</> clause.
</para>
<para>
To use <literal>ORDINALITY</literal> together with a column definition
list, you must use the <literal>TABLE( ... )</> syntax and put the
column definition list inside <literal>TABLE( ... )</>.
</para>
</listitem>
</varlistentry>
@ -1598,6 +1617,23 @@ SELECT * FROM distributors_2(111) AS (f1 int, f2 text);
</programlisting>
</para>
<para>
Here is an example of a function with an ordinality column added:
<programlisting>
SELECT * FROM unnest(ARRAY['a','b','c','d','e','f']) WITH ORDINALITY;
unnest | ordinality
--------+----------
a | 1
b | 2
c | 3
d | 4
e | 5
f | 6
(6 rows)
</programlisting>
</para>
<para>
This example shows how to use a simple <literal>WITH</> clause:
@ -1773,6 +1809,11 @@ SELECT distributors.* WHERE distributors.name = 'Westward';
<productname>PostgreSQL</productname> treats <literal>UNNEST()</> the
same as other set-returning functions.
</para>
<para>
Placing multiple function calls inside <literal>TABLE( ... )</> syntax is
also an extension of the SQL standard.
</para>
</refsect2>
<refsect2>

View File

@ -157,40 +157,6 @@ CreateTupleDescCopy(TupleDesc tupdesc)
return desc;
}
/*
* CreateTupleDescCopyExtend
* This function creates a new TupleDesc by copying from an existing
* TupleDesc, but adding space for more columns. The new tupdesc is
* not regarded as the same record type as the old one (and therefore
* does not inherit its typeid/typmod, which instead are left as an
* anonymous record type).
*
* The additional column slots are not initialized in any way;
* callers must do their own TupleDescInitEntry on each.
*
* !!! Constraints and defaults are not copied !!!
*/
TupleDesc
CreateTupleDescCopyExtend(TupleDesc tupdesc, int moreatts)
{
TupleDesc desc;
int i;
int src_natts = tupdesc->natts;
Assert(moreatts >= 0);
desc = CreateTemplateTupleDesc(src_natts + moreatts, tupdesc->tdhasoid);
for (i = 0; i < src_natts; i++)
{
memcpy(desc->attrs[i], tupdesc->attrs[i], ATTRIBUTE_FIXED_PART_SIZE);
desc->attrs[i]->attnotnull = false;
desc->attrs[i]->atthasdef = false;
}
return desc;
}
/*
* CreateTupleDescCopyConstr
* This function creates a new TupleDesc by copying from an existing
@ -250,6 +216,47 @@ CreateTupleDescCopyConstr(TupleDesc tupdesc)
return desc;
}
/*
* TupleDescCopyEntry
* This function copies a single attribute structure from one tuple
* descriptor to another.
*
* !!! Constraints and defaults are not copied !!!
*/
void
TupleDescCopyEntry(TupleDesc dst, AttrNumber dstAttno,
TupleDesc src, AttrNumber srcAttno)
{
/*
* sanity checks
*/
AssertArg(PointerIsValid(src));
AssertArg(PointerIsValid(dst));
AssertArg(srcAttno >= 1);
AssertArg(srcAttno <= src->natts);
AssertArg(dstAttno >= 1);
AssertArg(dstAttno <= dst->natts);
memcpy(dst->attrs[dstAttno - 1], src->attrs[srcAttno - 1],
ATTRIBUTE_FIXED_PART_SIZE);
/*
* Aside from updating the attno, we'd better reset attcacheoff.
*
* XXX Actually, to be entirely safe we'd need to reset the attcacheoff of
* all following columns in dst as well. Current usage scenarios don't
* require that though, because all following columns will get initialized
* by other uses of this function or TupleDescInitEntry. So we cheat a
* bit to avoid a useless O(N^2) penalty.
*/
dst->attrs[dstAttno - 1]->attnum = dstAttno;
dst->attrs[dstAttno - 1]->attcacheoff = -1;
/* since we're not copying constraints or defaults, clear these */
dst->attrs[dstAttno - 1]->attnotnull = false;
dst->attrs[dstAttno - 1]->atthasdef = false;
}
/*
* Free a TupleDesc including all substructure
*/

View File

@ -1757,8 +1757,7 @@ find_expr_references_walker(Node *node,
/*
* Add whole-relation refs for each plain relation mentioned in the
* subquery's rtable, as well as refs for any datatypes and collations
* used in a RECORD function's output.
* subquery's rtable.
*
* Note: query_tree_walker takes care of recursing into RTE_FUNCTION
* RTEs, subqueries, etc, so no need to do that here. But keep it
@ -1766,12 +1765,13 @@ find_expr_references_walker(Node *node,
*
* Note: we don't need to worry about collations mentioned in
* RTE_VALUES or RTE_CTE RTEs, because those must just duplicate
* collations referenced in other parts of the Query.
* collations referenced in other parts of the Query. We do have to
* worry about collations mentioned in RTE_FUNCTION, but we take care
* of those when we recurse to the RangeTblFunction node(s).
*/
foreach(lc, query->rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
ListCell *ct;
switch (rte->rtekind)
{
@ -1779,22 +1779,6 @@ find_expr_references_walker(Node *node,
add_object_address(OCLASS_CLASS, rte->relid, 0,
context->addrs);
break;
case RTE_FUNCTION:
foreach(ct, rte->funccoltypes)
{
add_object_address(OCLASS_TYPE, lfirst_oid(ct), 0,
context->addrs);
}
foreach(ct, rte->funccolcollations)
{
Oid collid = lfirst_oid(ct);
if (OidIsValid(collid) &&
collid != DEFAULT_COLLATION_OID)
add_object_address(OCLASS_COLLATION, collid, 0,
context->addrs);
}
break;
default:
break;
}
@ -1863,6 +1847,30 @@ find_expr_references_walker(Node *node,
find_expr_references_walker((Node *) setop->groupClauses, context);
/* fall through to examine child nodes */
}
else if (IsA(node, RangeTblFunction))
{
RangeTblFunction *rtfunc = (RangeTblFunction *) node;
ListCell *ct;
/*
* Add refs for any datatypes and collations used in a column
* definition list for a RECORD function. (For other cases, it should
* be enough to depend on the function itself.)
*/
foreach(ct, rtfunc->funccoltypes)
{
add_object_address(OCLASS_TYPE, lfirst_oid(ct), 0,
context->addrs);
}
foreach(ct, rtfunc->funccolcollations)
{
Oid collid = lfirst_oid(ct);
if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
add_object_address(OCLASS_COLLATION, collid, 0,
context->addrs);
}
}
return expression_tree_walker(node, find_expr_references_walker,
(void *) context);

View File

@ -319,6 +319,7 @@ intorel_startup(DestReceiver *self, int operation, TupleDesc typeinfo)
col->collOid = attribute->attcollation;
col->constraints = NIL;
col->fdwoptions = NIL;
col->location = -1;
coltype->names = NIL;
coltype->typeOid = attribute->atttypid;

View File

@ -1259,9 +1259,21 @@ ExplainNode(PlanState *planstate, List *ancestors,
break;
case T_FunctionScan:
if (es->verbose)
show_expression(((FunctionScan *) plan)->funcexpr,
{
List *fexprs = NIL;
ListCell *lc;
foreach(lc, ((FunctionScan *) plan)->functions)
{
RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
fexprs = lappend(fexprs, rtfunc->funcexpr);
}
/* We rely on show_expression to insert commas as needed */
show_expression((Node *) fexprs,
"Function Call", planstate, ancestors,
es->verbose, es);
}
show_scan_qual(plan->qual, "Filter", planstate, ancestors, es);
if (plan->qual)
show_instrumentation_count("Rows Removed by Filter", 1,
@ -1984,26 +1996,31 @@ ExplainTargetRel(Plan *plan, Index rti, ExplainState *es)
break;
case T_FunctionScan:
{
Node *funcexpr;
FunctionScan *fscan = (FunctionScan *) plan;
/* Assert it's on a RangeFunction */
Assert(rte->rtekind == RTE_FUNCTION);
/*
* If the expression is still a function call, we can get the
* real name of the function. Otherwise, punt (this can
* happen if the optimizer simplified away the function call,
* for example).
* If the expression is still a function call of a single
* function, we can get the real name of the function.
* Otherwise, punt. (Even if it was a single function call
* originally, the optimizer could have simplified it away.)
*/
funcexpr = ((FunctionScan *) plan)->funcexpr;
if (funcexpr && IsA(funcexpr, FuncExpr))
if (list_length(fscan->functions) == 1)
{
Oid funcid = ((FuncExpr *) funcexpr)->funcid;
RangeTblFunction *rtfunc = (RangeTblFunction *) linitial(fscan->functions);
objectname = get_func_name(funcid);
if (es->verbose)
namespace =
get_namespace_name(get_func_namespace(funcid));
if (IsA(rtfunc->funcexpr, FuncExpr))
{
FuncExpr *funcexpr = (FuncExpr *) rtfunc->funcexpr;
Oid funcid = funcexpr->funcid;
objectname = get_func_name(funcid);
if (es->verbose)
namespace =
get_namespace_name(get_func_namespace(funcid));
}
}
objecttag = "Function Name";
}

View File

@ -143,6 +143,7 @@ DefineSequence(CreateSeqStmt *seq)
coldef->collClause = NULL;
coldef->collOid = InvalidOid;
coldef->constraints = NIL;
coldef->location = -1;
null[i - 1] = false;

View File

@ -1605,6 +1605,7 @@ MergeAttributes(List *schema, List *supers, char relpersistence,
def->collClause = NULL;
def->collOid = attribute->attcollation;
def->constraints = NIL;
def->location = -1;
inhSchema = lappend(inhSchema, def);
newattno[parent_attno - 1] = ++child_attno;
}
@ -4823,6 +4824,7 @@ ATPrepAddOids(List **wqueue, Relation rel, bool recurse, AlterTableCmd *cmd, LOC
cdef->is_local = true;
cdef->is_not_null = true;
cdef->storage = 0;
cdef->location = -1;
cmd->def = (Node *) cdef;
}
ATPrepAddColumn(wqueue, rel, recurse, false, cmd, lockmode);

View File

@ -100,6 +100,7 @@ DefineVirtualRelation(RangeVar *relation, List *tlist, bool replace,
def->cooked_default = NULL;
def->collClause = NULL;
def->collOid = exprCollation((Node *) tle->expr);
def->location = -1;
/*
* It's possible that the column is of a collatable type but the

View File

@ -22,13 +22,30 @@
*/
#include "postgres.h"
#include "catalog/pg_type.h"
#include "executor/nodeFunctionscan.h"
#include "funcapi.h"
#include "nodes/nodeFuncs.h"
#include "catalog/pg_type.h"
#include "parser/parsetree.h"
#include "utils/builtins.h"
/*
* Runtime data for each function being scanned.
*/
typedef struct FunctionScanPerFuncState
{
ExprState *funcexpr; /* state of the expression being evaluated */
TupleDesc tupdesc; /* desc of the function result type */
int colcount; /* expected number of result columns */
Tuplestorestate *tstore; /* holds the function result set */
int64 rowcount; /* # of rows in result set, -1 if not known */
TupleTableSlot *func_slot; /* function result slot (or NULL) */
} FunctionScanPerFuncState;
static TupleTableSlot *FunctionNext(FunctionScanState *node);
/* ----------------------------------------------------------------
* Scan Support
* ----------------------------------------------------------------
@ -44,108 +61,183 @@ FunctionNext(FunctionScanState *node)
{
EState *estate;
ScanDirection direction;
Tuplestorestate *tuplestorestate;
TupleTableSlot *scanslot;
TupleTableSlot *funcslot;
if (node->func_slot)
{
/*
* ORDINALITY case:
*
* We fetch the function result into FUNCSLOT (which matches the
* function return type), and then copy the values to SCANSLOT
* (which matches the scan result type), setting the ordinal
* column in the process.
*/
funcslot = node->func_slot;
scanslot = node->ss.ss_ScanTupleSlot;
}
else
{
/*
* non-ORDINALITY case: the function return type and scan result
* type are the same, so we fetch the function result straight
* into the scan result slot.
*/
funcslot = node->ss.ss_ScanTupleSlot;
scanslot = NULL;
}
bool alldone;
int64 oldpos;
int funcno;
int att;
/*
* get information from the estate and scan state
*/
estate = node->ss.ps.state;
direction = estate->es_direction;
scanslot = node->ss.ss_ScanTupleSlot;
tuplestorestate = node->tuplestorestate;
/*
* If first time through, read all tuples from function and put them in a
* tuplestore. Subsequent calls just fetch tuples from tuplestore.
*/
if (tuplestorestate == NULL)
if (node->simple)
{
node->tuplestorestate = tuplestorestate =
ExecMakeTableFunctionResult(node->funcexpr,
node->ss.ps.ps_ExprContext,
node->func_tupdesc,
node->eflags & EXEC_FLAG_BACKWARD);
/*
* Fast path for the trivial case: the function return type and scan
* result type are the same, so we fetch the function result straight
* into the scan result slot. No need to update ordinality or
* rowcounts either.
*/
Tuplestorestate *tstore = node->funcstates[0].tstore;
/*
* If first time through, read all tuples from function and put them
* in a tuplestore. Subsequent calls just fetch tuples from
* tuplestore.
*/
if (tstore == NULL)
{
node->funcstates[0].tstore = tstore =
ExecMakeTableFunctionResult(node->funcstates[0].funcexpr,
node->ss.ps.ps_ExprContext,
node->funcstates[0].tupdesc,
node->eflags & EXEC_FLAG_BACKWARD);
/*
* paranoia - cope if the function, which may have constructed the
* tuplestore itself, didn't leave it pointing at the start. This
* call is fast, so the overhead shouldn't be an issue.
*/
tuplestore_rescan(tstore);
}
/*
* Get the next tuple from tuplestore.
*/
(void) tuplestore_gettupleslot(tstore,
ScanDirectionIsForward(direction),
false,
scanslot);
return scanslot;
}
/*
* Get the next tuple from tuplestore. Return NULL if no more tuples.
* Increment or decrement ordinal counter before checking for end-of-data,
* so that we can move off either end of the result by 1 (and no more than
* 1) without losing correct count. See PortalRunSelect for why we can
* assume that we won't be called repeatedly in the end-of-data state.
*/
(void) tuplestore_gettupleslot(tuplestorestate,
ScanDirectionIsForward(direction),
false,
funcslot);
if (!scanslot)
return funcslot;
/*
* we're doing ordinality, so we copy the values from the function return
* slot to the (distinct) scan slot. We can do this because the lifetimes
* of the values in each slot are the same; until we reset the scan or
* fetch the next tuple, both will be valid.
*/
ExecClearTuple(scanslot);
/*
* increment or decrement before checking for end-of-data, so that we can
* move off either end of the result by 1 (and no more than 1) without
* losing correct count. See PortalRunSelect for why we assume that we
* won't be called repeatedly in the end-of-data state.
*/
oldpos = node->ordinal;
if (ScanDirectionIsForward(direction))
node->ordinal++;
else
node->ordinal--;
if (!TupIsNull(funcslot))
/*
* Main loop over functions.
*
* We fetch the function results into func_slots (which match the function
* return types), and then copy the values to scanslot (which matches the
* scan result type), setting the ordinal column (if any) as well.
*/
ExecClearTuple(scanslot);
att = 0;
alldone = true;
for (funcno = 0; funcno < node->nfuncs; funcno++)
{
int natts = funcslot->tts_tupleDescriptor->natts;
int i;
FunctionScanPerFuncState *fs = &node->funcstates[funcno];
int i;
slot_getallattrs(funcslot);
for (i = 0; i < natts; ++i)
/*
* If first time through, read all tuples from function and put them
* in a tuplestore. Subsequent calls just fetch tuples from
* tuplestore.
*/
if (fs->tstore == NULL)
{
scanslot->tts_values[i] = funcslot->tts_values[i];
scanslot->tts_isnull[i] = funcslot->tts_isnull[i];
fs->tstore =
ExecMakeTableFunctionResult(fs->funcexpr,
node->ss.ps.ps_ExprContext,
fs->tupdesc,
node->eflags & EXEC_FLAG_BACKWARD);
/*
* paranoia - cope if the function, which may have constructed the
* tuplestore itself, didn't leave it pointing at the start. This
* call is fast, so the overhead shouldn't be an issue.
*/
tuplestore_rescan(fs->tstore);
}
scanslot->tts_values[natts] = Int64GetDatumFast(node->ordinal);
scanslot->tts_isnull[natts] = false;
/*
* Get the next tuple from tuplestore.
*
* If we have a rowcount for the function, and we know the previous
* read position was out of bounds, don't try the read. This allows
* backward scan to work when there are mixed row counts present.
*/
if (fs->rowcount != -1 && fs->rowcount < oldpos)
ExecClearTuple(fs->func_slot);
else
(void) tuplestore_gettupleslot(fs->tstore,
ScanDirectionIsForward(direction),
false,
fs->func_slot);
ExecStoreVirtualTuple(scanslot);
if (TupIsNull(fs->func_slot))
{
/*
* If we ran out of data for this function in the forward
* direction then we now know how many rows it returned. We need
* to know this in order to handle backwards scans. The row count
* we store is actually 1+ the actual number, because we have to
* position the tuplestore 1 off its end sometimes.
*/
if (ScanDirectionIsForward(direction) && fs->rowcount == -1)
fs->rowcount = node->ordinal;
/*
* populate the result cols with nulls
*/
for (i = 0; i < fs->colcount; i++)
{
scanslot->tts_values[att] = (Datum) 0;
scanslot->tts_isnull[att] = true;
att++;
}
}
else
{
/*
* we have a result, so just copy it to the result cols.
*/
slot_getallattrs(fs->func_slot);
for (i = 0; i < fs->colcount; i++)
{
scanslot->tts_values[att] = fs->func_slot->tts_values[i];
scanslot->tts_isnull[att] = fs->func_slot->tts_isnull[i];
att++;
}
/*
* We're not done until every function result is exhausted; we pad
* the shorter results with nulls until then.
*/
alldone = false;
}
}
/*
* ordinal col is always last, per spec.
*/
if (node->ordinality)
{
scanslot->tts_values[att] = Int64GetDatumFast(node->ordinal);
scanslot->tts_isnull[att] = false;
}
/*
* If alldone, we just return the previously-cleared scanslot. Otherwise,
* finish creating the virtual tuple.
*/
if (!alldone)
ExecStoreVirtualTuple(scanslot);
return scanslot;
}
@ -184,10 +276,13 @@ FunctionScanState *
ExecInitFunctionScan(FunctionScan *node, EState *estate, int eflags)
{
FunctionScanState *scanstate;
Oid funcrettype;
TypeFuncClass functypclass;
TupleDesc func_tupdesc = NULL;
TupleDesc scan_tupdesc = NULL;
RangeTblEntry *rte = rt_fetch(node->scan.scanrelid,
estate->es_range_table);
int nfuncs = list_length(node->functions);
TupleDesc scan_tupdesc;
int i,
natts;
ListCell *lc;
/* check for unsupported flags */
Assert(!(eflags & EXEC_FLAG_MARK));
@ -206,6 +301,29 @@ ExecInitFunctionScan(FunctionScan *node, EState *estate, int eflags)
scanstate->ss.ps.state = estate;
scanstate->eflags = eflags;
/*
* are we adding an ordinality column?
*/
scanstate->ordinality = node->funcordinality;
scanstate->nfuncs = nfuncs;
if (nfuncs == 1 && !node->funcordinality)
scanstate->simple = true;
else
scanstate->simple = false;
/*
* Ordinal 0 represents the "before the first row" position.
*
* We need to track ordinal position even when not adding an ordinality
* column to the result, in order to handle backwards scanning properly
* with multiple functions with different result sizes. (We can't position
* any individual function's tuplestore any more than 1 place beyond its
* end, so when scanning backwards, we need to know when to start
* including the function in the scan again.)
*/
scanstate->ordinal = 0;
/*
* Miscellaneous initialization
*
@ -213,22 +331,14 @@ ExecInitFunctionScan(FunctionScan *node, EState *estate, int eflags)
*/
ExecAssignExprContext(estate, &scanstate->ss.ps);
scanstate->ss.ps.ps_TupFromTlist = false;
/*
* tuple table initialization
*/
ExecInitResultTupleSlot(estate, &scanstate->ss.ps);
ExecInitScanTupleSlot(estate, &scanstate->ss);
/*
* We only need a separate slot for the function result if we are doing
* ordinality; otherwise, we fetch function results directly into the
* scan slot.
*/
if (node->funcordinality)
scanstate->func_slot = ExecInitExtraTupleSlot(estate);
else
scanstate->func_slot = NULL;
/*
* initialize child expressions
*/
@ -239,113 +349,165 @@ ExecInitFunctionScan(FunctionScan *node, EState *estate, int eflags)
ExecInitExpr((Expr *) node->scan.plan.qual,
(PlanState *) scanstate);
/*
* Now determine if the function returns a simple or composite
* type, and build an appropriate tupdesc. This tupdesc
* (func_tupdesc) is the one that matches the shape of the
* function result, no extra columns.
*/
functypclass = get_expr_result_type(node->funcexpr,
&funcrettype,
&func_tupdesc);
scanstate->funcstates = palloc(nfuncs * sizeof(FunctionScanPerFuncState));
if (functypclass == TYPEFUNC_COMPOSITE)
natts = 0;
i = 0;
foreach(lc, node->functions)
{
/* Composite data type, e.g. a table's row type */
Assert(func_tupdesc);
RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
Node *funcexpr = rtfunc->funcexpr;
int colcount = rtfunc->funccolcount;
FunctionScanPerFuncState *fs = &scanstate->funcstates[i];
TypeFuncClass functypclass;
Oid funcrettype;
TupleDesc tupdesc;
fs->funcexpr = ExecInitExpr((Expr *) funcexpr, (PlanState *) scanstate);
/*
* XXX
* Existing behaviour is a bit inconsistent with regard to aliases and
* whole-row Vars of the function result. If the function returns a
* composite type, then the whole-row Var will refer to this tupdesc,
* which has the type's own column names rather than the alias column
* names given in the query. This affects the output of constructs like
* row_to_json which read the column names from the passed-in values.
* Don't allocate the tuplestores; the actual calls to the functions
* do that. NULL means that we have not called the function yet (or
* need to call it again after a rescan).
*/
fs->tstore = NULL;
fs->rowcount = -1;
/* Must copy it out of typcache for safety */
func_tupdesc = CreateTupleDescCopy(func_tupdesc);
}
else if (functypclass == TYPEFUNC_SCALAR)
{
/* Base data type, i.e. scalar */
char *attname = strVal(linitial(node->funccolnames));
/*
* Now determine if the function returns a simple or composite type,
* and build an appropriate tupdesc. Note that in the composite case,
* the function may now return more columns than it did when the plan
* was made; we have to ignore any columns beyond "colcount".
*/
functypclass = get_expr_result_type(funcexpr,
&funcrettype,
&tupdesc);
func_tupdesc = CreateTemplateTupleDesc(1, false);
TupleDescInitEntry(func_tupdesc,
(AttrNumber) 1,
attname,
funcrettype,
-1,
0);
TupleDescInitEntryCollation(func_tupdesc,
(AttrNumber) 1,
exprCollation(node->funcexpr));
}
else if (functypclass == TYPEFUNC_RECORD)
{
func_tupdesc = BuildDescFromLists(node->funccolnames,
node->funccoltypes,
node->funccoltypmods,
node->funccolcollations);
}
else
{
/* crummy error message, but parser should have caught this */
elog(ERROR, "function in FROM has unsupported return type");
if (functypclass == TYPEFUNC_COMPOSITE)
{
/* Composite data type, e.g. a table's row type */
Assert(tupdesc);
Assert(tupdesc->natts >= colcount);
/* Must copy it out of typcache for safety */
tupdesc = CreateTupleDescCopy(tupdesc);
}
else if (functypclass == TYPEFUNC_SCALAR)
{
/* Base data type, i.e. scalar */
tupdesc = CreateTemplateTupleDesc(1, false);
TupleDescInitEntry(tupdesc,
(AttrNumber) 1,
NULL, /* don't care about the name here */
funcrettype,
-1,
0);
TupleDescInitEntryCollation(tupdesc,
(AttrNumber) 1,
exprCollation(funcexpr));
}
else if (functypclass == TYPEFUNC_RECORD)
{
tupdesc = BuildDescFromLists(rtfunc->funccolnames,
rtfunc->funccoltypes,
rtfunc->funccoltypmods,
rtfunc->funccolcollations);
/*
* For RECORD results, make sure a typmod has been assigned. (The
* function should do this for itself, but let's cover things in
* case it doesn't.)
*/
BlessTupleDesc(tupdesc);
}
else
{
/* crummy error message, but parser should have caught this */
elog(ERROR, "function in FROM has unsupported return type");
}
fs->tupdesc = tupdesc;
fs->colcount = colcount;
/*
* We only need separate slots for the function results if we are
* doing ordinality or multiple functions; otherwise, we'll fetch
* function results directly into the scan slot.
*/
if (!scanstate->simple)
{
fs->func_slot = ExecInitExtraTupleSlot(estate);
ExecSetSlotDescriptor(fs->func_slot, fs->tupdesc);
}
else
fs->func_slot = NULL;
natts += colcount;
i++;
}
/*
* For RECORD results, make sure a typmod has been assigned. (The
* function should do this for itself, but let's cover things in case it
* doesn't.)
*/
BlessTupleDesc(func_tupdesc);
/*
* If doing ordinality, we need a new tupdesc with one additional column
* tacked on, always of type "bigint". The name to use has already been
* recorded by the parser as the last element of funccolnames.
* Create the combined TupleDesc
*
* Without ordinality, the scan result tupdesc is the same as the
* function result tupdesc. (No need to make a copy.)
* If there is just one function without ordinality, the scan result
* tupdesc is the same as the function result tupdesc --- except that
* we may stuff new names into it below, so drop any rowtype label.
*/
if (node->funcordinality)
if (scanstate->simple)
{
int natts = func_tupdesc->natts;
scan_tupdesc = CreateTupleDescCopyExtend(func_tupdesc, 1);
TupleDescInitEntry(scan_tupdesc,
natts + 1,
strVal(llast(node->funccolnames)),
INT8OID,
-1,
0);
BlessTupleDesc(scan_tupdesc);
scan_tupdesc = CreateTupleDescCopy(scanstate->funcstates[0].tupdesc);
scan_tupdesc->tdtypeid = RECORDOID;
scan_tupdesc->tdtypmod = -1;
}
else
scan_tupdesc = func_tupdesc;
{
AttrNumber attno = 0;
scanstate->scan_tupdesc = scan_tupdesc;
scanstate->func_tupdesc = func_tupdesc;
ExecAssignScanType(&scanstate->ss, scan_tupdesc);
if (node->funcordinality)
natts++;
if (scanstate->func_slot)
ExecSetSlotDescriptor(scanstate->func_slot, func_tupdesc);
scan_tupdesc = CreateTemplateTupleDesc(natts, false);
for (i = 0; i < nfuncs; i++)
{
TupleDesc tupdesc = scanstate->funcstates[i].tupdesc;
int colcount = scanstate->funcstates[i].colcount;
int j;
for (j = 1; j <= colcount; j++)
TupleDescCopyEntry(scan_tupdesc, ++attno, tupdesc, j);
}
/* If doing ordinality, add a column of type "bigint" at the end */
if (node->funcordinality)
{
TupleDescInitEntry(scan_tupdesc,
++attno,
NULL, /* don't care about the name here */
INT8OID,
-1,
0);
}
Assert(attno == natts);
}
/*
* Other node-specific setup
* Make sure the scan result tupdesc has the column names the query
* expects. This affects the output of constructs like row_to_json which
* read the column names from the passed-in tupdesc.
*/
scanstate->ordinal = 0;
scanstate->tuplestorestate = NULL;
i = 0;
foreach(lc, rte->eref->colnames)
{
char *attname = strVal(lfirst(lc));
scanstate->funcexpr = ExecInitExpr((Expr *) node->funcexpr,
(PlanState *) scanstate);
if (i >= scan_tupdesc->natts)
break; /* shouldn't happen, but just in case */
namestrcpy(&(scan_tupdesc->attrs[i]->attname), attname);
i++;
}
scanstate->ss.ps.ps_TupFromTlist = false;
ExecAssignScanType(&scanstate->ss, scan_tupdesc);
/*
* Initialize result tuple type and projection info.
@ -365,6 +527,8 @@ ExecInitFunctionScan(FunctionScan *node, EState *estate, int eflags)
void
ExecEndFunctionScan(FunctionScanState *node)
{
int i;
/*
* Free the exprcontext
*/
@ -375,15 +539,23 @@ ExecEndFunctionScan(FunctionScanState *node)
*/
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
ExecClearTuple(node->ss.ss_ScanTupleSlot);
if (node->func_slot)
ExecClearTuple(node->func_slot);
/*
* Release tuplestore resources
* Release slots and tuplestore resources
*/
if (node->tuplestorestate != NULL)
tuplestore_end(node->tuplestorestate);
node->tuplestorestate = NULL;
for (i = 0; i < node->nfuncs; i++)
{
FunctionScanPerFuncState *fs = &node->funcstates[i];
if (fs->func_slot)
ExecClearTuple(fs->func_slot);
if (fs->tstore != NULL)
{
tuplestore_end(node->funcstates[i].tstore);
fs->tstore = NULL;
}
}
}
/* ----------------------------------------------------------------
@ -395,31 +567,58 @@ ExecEndFunctionScan(FunctionScanState *node)
void
ExecReScanFunctionScan(FunctionScanState *node)
{
FunctionScan *scan = (FunctionScan *) node->ss.ps.plan;
int i;
Bitmapset *chgparam = node->ss.ps.chgParam;
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
if (node->func_slot)
ExecClearTuple(node->func_slot);
for (i = 0; i < node->nfuncs; i++)
{
FunctionScanPerFuncState *fs = &node->funcstates[i];
if (fs->func_slot)
ExecClearTuple(fs->func_slot);
}
ExecScanReScan(&node->ss);
/*
* Here we have a choice whether to drop the tuplestores (and recompute
* the function outputs) or just rescan them. We must recompute if an
* expression contains changed parameters, else we rescan.
*
* XXX maybe we should recompute if the function is volatile? But in
* general the executor doesn't conditionalize its actions on that.
*/
if (chgparam)
{
ListCell *lc;
i = 0;
foreach(lc, scan->functions)
{
RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
if (bms_overlap(chgparam, rtfunc->funcparams))
{
if (node->funcstates[i].tstore != NULL)
{
tuplestore_end(node->funcstates[i].tstore);
node->funcstates[i].tstore = NULL;
}
node->funcstates[i].rowcount = -1;
}
i++;
}
}
/* Reset ordinality counter */
node->ordinal = 0;
/*
* If we haven't materialized yet, just return.
*/
if (!node->tuplestorestate)
return;
/*
* Here we have a choice whether to drop the tuplestore (and recompute the
* function outputs) or just rescan it. We must recompute if the
* expression contains parameters, else we rescan. XXX maybe we should
* recompute if the function is volatile?
*/
if (node->ss.ps.chgParam != NULL)
/* Make sure we rewind any remaining tuplestores */
for (i = 0; i < node->nfuncs; i++)
{
tuplestore_end(node->tuplestorestate);
node->tuplestorestate = NULL;
if (node->funcstates[i].tstore != NULL)
tuplestore_rescan(node->funcstates[i].tstore);
}
else
tuplestore_rescan(node->tuplestorestate);
}

View File

@ -504,11 +504,7 @@ _copyFunctionScan(const FunctionScan *from)
/*
* copy remainder of node
*/
COPY_NODE_FIELD(funcexpr);
COPY_NODE_FIELD(funccolnames);
COPY_NODE_FIELD(funccoltypes);
COPY_NODE_FIELD(funccoltypmods);
COPY_NODE_FIELD(funccolcollations);
COPY_NODE_FIELD(functions);
COPY_SCALAR_FIELD(funcordinality);
return newnode;
@ -1981,10 +1977,7 @@ _copyRangeTblEntry(const RangeTblEntry *from)
COPY_SCALAR_FIELD(security_barrier);
COPY_SCALAR_FIELD(jointype);
COPY_NODE_FIELD(joinaliasvars);
COPY_NODE_FIELD(funcexpr);
COPY_NODE_FIELD(funccoltypes);
COPY_NODE_FIELD(funccoltypmods);
COPY_NODE_FIELD(funccolcollations);
COPY_NODE_FIELD(functions);
COPY_SCALAR_FIELD(funcordinality);
COPY_NODE_FIELD(values_lists);
COPY_NODE_FIELD(values_collations);
@ -2007,6 +2000,22 @@ _copyRangeTblEntry(const RangeTblEntry *from)
return newnode;
}
static RangeTblFunction *
_copyRangeTblFunction(const RangeTblFunction *from)
{
RangeTblFunction *newnode = makeNode(RangeTblFunction);
COPY_NODE_FIELD(funcexpr);
COPY_SCALAR_FIELD(funccolcount);
COPY_NODE_FIELD(funccolnames);
COPY_NODE_FIELD(funccoltypes);
COPY_NODE_FIELD(funccoltypmods);
COPY_NODE_FIELD(funccolcollations);
COPY_BITMAPSET_FIELD(funcparams);
return newnode;
}
static WithCheckOption *
_copyWithCheckOption(const WithCheckOption *from)
{
@ -2299,9 +2308,10 @@ _copyRangeFunction(const RangeFunction *from)
{
RangeFunction *newnode = makeNode(RangeFunction);
COPY_SCALAR_FIELD(ordinality);
COPY_SCALAR_FIELD(lateral);
COPY_NODE_FIELD(funccallnode);
COPY_SCALAR_FIELD(ordinality);
COPY_SCALAR_FIELD(is_table);
COPY_NODE_FIELD(functions);
COPY_NODE_FIELD(alias);
COPY_NODE_FIELD(coldeflist);
@ -2366,6 +2376,7 @@ _copyColumnDef(const ColumnDef *from)
COPY_SCALAR_FIELD(collOid);
COPY_NODE_FIELD(constraints);
COPY_NODE_FIELD(fdwoptions);
COPY_LOCATION_FIELD(location);
return newnode;
}
@ -4550,6 +4561,9 @@ copyObject(const void *from)
case T_RangeTblEntry:
retval = _copyRangeTblEntry(from);
break;
case T_RangeTblFunction:
retval = _copyRangeTblFunction(from);
break;
case T_WithCheckOption:
retval = _copyWithCheckOption(from);
break;

View File

@ -2140,9 +2140,10 @@ _equalRangeSubselect(const RangeSubselect *a, const RangeSubselect *b)
static bool
_equalRangeFunction(const RangeFunction *a, const RangeFunction *b)
{
COMPARE_SCALAR_FIELD(ordinality);
COMPARE_SCALAR_FIELD(lateral);
COMPARE_NODE_FIELD(funccallnode);
COMPARE_SCALAR_FIELD(ordinality);
COMPARE_SCALAR_FIELD(is_table);
COMPARE_NODE_FIELD(functions);
COMPARE_NODE_FIELD(alias);
COMPARE_NODE_FIELD(coldeflist);
@ -2179,6 +2180,7 @@ _equalColumnDef(const ColumnDef *a, const ColumnDef *b)
COMPARE_SCALAR_FIELD(collOid);
COMPARE_NODE_FIELD(constraints);
COMPARE_NODE_FIELD(fdwoptions);
COMPARE_LOCATION_FIELD(location);
return true;
}
@ -2245,10 +2247,7 @@ _equalRangeTblEntry(const RangeTblEntry *a, const RangeTblEntry *b)
COMPARE_SCALAR_FIELD(security_barrier);
COMPARE_SCALAR_FIELD(jointype);
COMPARE_NODE_FIELD(joinaliasvars);
COMPARE_NODE_FIELD(funcexpr);
COMPARE_NODE_FIELD(funccoltypes);
COMPARE_NODE_FIELD(funccoltypmods);
COMPARE_NODE_FIELD(funccolcollations);
COMPARE_NODE_FIELD(functions);
COMPARE_SCALAR_FIELD(funcordinality);
COMPARE_NODE_FIELD(values_lists);
COMPARE_NODE_FIELD(values_collations);
@ -2271,6 +2270,20 @@ _equalRangeTblEntry(const RangeTblEntry *a, const RangeTblEntry *b)
return true;
}
static bool
_equalRangeTblFunction(const RangeTblFunction *a, const RangeTblFunction *b)
{
COMPARE_NODE_FIELD(funcexpr);
COMPARE_SCALAR_FIELD(funccolcount);
COMPARE_NODE_FIELD(funccolnames);
COMPARE_NODE_FIELD(funccoltypes);
COMPARE_NODE_FIELD(funccoltypmods);
COMPARE_NODE_FIELD(funccolcollations);
COMPARE_BITMAPSET_FIELD(funcparams);
return true;
}
static bool
_equalWithCheckOption(const WithCheckOption *a, const WithCheckOption *b)
{
@ -3018,6 +3031,9 @@ equal(const void *a, const void *b)
case T_RangeTblEntry:
retval = _equalRangeTblEntry(a, b);
break;
case T_RangeTblFunction:
retval = _equalRangeTblFunction(a, b);
break;
case T_WithCheckOption:
retval = _equalWithCheckOption(a, b);
break;

View File

@ -122,14 +122,10 @@ makeVarFromTargetEntry(Index varno,
* a rowtype; either a named composite type, or RECORD. This function
* encapsulates the logic for determining the correct rowtype OID to use.
*
* If allowScalar is true, then for the case where the RTE is a function
* If allowScalar is true, then for the case where the RTE is a single function
* returning a non-composite result type, we produce a normal Var referencing
* the function's result directly, instead of the single-column composite
* value that the whole-row notation might otherwise suggest.
*
* We also handle the specific case of function RTEs with ordinality,
* where the additional column has to be added. This forces the result
* to be composite and RECORD type.
*/
Var *
makeWholeRowVar(RangeTblEntry *rte,
@ -139,6 +135,7 @@ makeWholeRowVar(RangeTblEntry *rte,
{
Var *result;
Oid toid;
Node *fexpr;
switch (rte->rtekind)
{
@ -157,31 +154,27 @@ makeWholeRowVar(RangeTblEntry *rte,
break;
case RTE_FUNCTION:
/*
* RTE is a function with or without ordinality. We map the
* cases as follows:
*
* If ordinality is set, we return a composite var even if
* the function is a scalar. This var is always of RECORD type.
*
* If ordinality is not set but the function returns a row,
* we keep the function's return type.
*
* If the function is a scalar, we do what allowScalar requests.
*/
toid = exprType(rte->funcexpr);
if (rte->funcordinality)
/*
* If there's more than one function, or ordinality is requested,
* force a RECORD result, since there's certainly more than one
* column involved and it can't be a known named type.
*/
if (rte->funcordinality || list_length(rte->functions) != 1)
{
/* ORDINALITY always produces an anonymous RECORD result */
/* always produces an anonymous RECORD result */
result = makeVar(varno,
InvalidAttrNumber,
RECORDOID,
-1,
InvalidOid,
varlevelsup);
break;
}
else if (type_is_rowtype(toid))
fexpr = ((RangeTblFunction *) linitial(rte->functions))->funcexpr;
toid = exprType(fexpr);
if (type_is_rowtype(toid))
{
/* func returns composite; same as relation case */
result = makeVar(varno,
@ -198,7 +191,7 @@ makeWholeRowVar(RangeTblEntry *rte,
1,
toid,
-1,
exprCollation(rte->funcexpr),
exprCollation(fexpr),
varlevelsup);
}
else
@ -214,6 +207,7 @@ makeWholeRowVar(RangeTblEntry *rte,
break;
default:
/*
* RTE is a join, subselect, or VALUES. We represent this as a
* whole-row Var of RECORD type. (Note that in most cases the Var
@ -541,23 +535,21 @@ makeDefElemExtended(char *nameSpace, char *name, Node *arg,
* makeFuncCall -
*
* Initialize a FuncCall struct with the information every caller must
* supply. Any non-default parameters have to be handled by the
* caller.
*
* supply. Any non-default parameters have to be inserted by the caller.
*/
FuncCall *
makeFuncCall(List *name, List *args, int location)
{
FuncCall *n = makeNode(FuncCall);
FuncCall *n = makeNode(FuncCall);
n->funcname = name;
n->args = args;
n->location = location;
n->agg_order = NIL;
n->agg_filter = NULL;
n->agg_star = FALSE;
n->agg_distinct = FALSE;
n->func_variadic = FALSE;
n->over = NULL;
n->location = location;
return n;
}

View File

@ -1447,6 +1447,9 @@ exprLocation(const Node *expr)
case T_TypeName:
loc = ((const TypeName *) expr)->location;
break;
case T_ColumnDef:
loc = ((const ColumnDef *) expr)->location;
break;
case T_Constraint:
loc = ((const Constraint *) expr)->location;
break;
@ -1901,6 +1904,8 @@ expression_tree_walker(Node *node,
break;
case T_PlaceHolderInfo:
return walker(((PlaceHolderInfo *) node)->ph_var, context);
case T_RangeTblFunction:
return walker(((RangeTblFunction *) node)->funcexpr, context);
default:
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(node));
@ -2000,7 +2005,7 @@ range_table_walker(List *rtable,
return true;
break;
case RTE_FUNCTION:
if (walker(rte->funcexpr, context))
if (walker(rte->functions, context))
return true;
break;
case RTE_VALUES:
@ -2615,6 +2620,17 @@ expression_tree_mutator(Node *node,
return (Node *) newnode;
}
break;
case T_RangeTblFunction:
{
RangeTblFunction *rtfunc = (RangeTblFunction *) node;
RangeTblFunction *newnode;
FLATCOPY(newnode, rtfunc, RangeTblFunction);
MUTATE(newnode->funcexpr, rtfunc->funcexpr, Node *);
/* Assume we need not copy the coldef info lists */
return (Node *) newnode;
}
break;
default:
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(node));
@ -2725,7 +2741,7 @@ range_table_mutator(List *rtable,
}
break;
case RTE_FUNCTION:
MUTATE(newrte->funcexpr, rte->funcexpr, Node *);
MUTATE(newrte->functions, rte->functions, List *);
break;
case RTE_VALUES:
MUTATE(newrte->values_lists, rte->values_lists, List *);
@ -3113,10 +3129,12 @@ raw_expression_tree_walker(Node *node,
{
RangeFunction *rf = (RangeFunction *) node;
if (walker(rf->funccallnode, context))
if (walker(rf->functions, context))
return true;
if (walker(rf->alias, context))
return true;
if (walker(rf->coldeflist, context))
return true;
}
break;
case T_TypeName:

View File

@ -516,11 +516,7 @@ _outFunctionScan(StringInfo str, const FunctionScan *node)
_outScanInfo(str, (const Scan *) node);
WRITE_NODE_FIELD(funcexpr);
WRITE_NODE_FIELD(funccolnames);
WRITE_NODE_FIELD(funccoltypes);
WRITE_NODE_FIELD(funccoltypmods);
WRITE_NODE_FIELD(funccolcollations);
WRITE_NODE_FIELD(functions);
WRITE_BOOL_FIELD(funcordinality);
}
@ -2154,6 +2150,7 @@ _outColumnDef(StringInfo str, const ColumnDef *node)
WRITE_OID_FIELD(collOid);
WRITE_NODE_FIELD(constraints);
WRITE_NODE_FIELD(fdwoptions);
WRITE_LOCATION_FIELD(location);
}
static void
@ -2382,10 +2379,7 @@ _outRangeTblEntry(StringInfo str, const RangeTblEntry *node)
WRITE_NODE_FIELD(joinaliasvars);
break;
case RTE_FUNCTION:
WRITE_NODE_FIELD(funcexpr);
WRITE_NODE_FIELD(funccoltypes);
WRITE_NODE_FIELD(funccoltypmods);
WRITE_NODE_FIELD(funccolcollations);
WRITE_NODE_FIELD(functions);
WRITE_BOOL_FIELD(funcordinality);
break;
case RTE_VALUES:
@ -2414,6 +2408,20 @@ _outRangeTblEntry(StringInfo str, const RangeTblEntry *node)
WRITE_BITMAPSET_FIELD(modifiedCols);
}
static void
_outRangeTblFunction(StringInfo str, const RangeTblFunction *node)
{
WRITE_NODE_TYPE("RANGETBLFUNCTION");
WRITE_NODE_FIELD(funcexpr);
WRITE_INT_FIELD(funccolcount);
WRITE_NODE_FIELD(funccolnames);
WRITE_NODE_FIELD(funccoltypes);
WRITE_NODE_FIELD(funccoltypmods);
WRITE_NODE_FIELD(funccolcollations);
WRITE_BITMAPSET_FIELD(funcparams);
}
static void
_outAExpr(StringInfo str, const A_Expr *node)
{
@ -2619,9 +2627,10 @@ _outRangeFunction(StringInfo str, const RangeFunction *node)
{
WRITE_NODE_TYPE("RANGEFUNCTION");
WRITE_BOOL_FIELD(ordinality);
WRITE_BOOL_FIELD(lateral);
WRITE_NODE_FIELD(funccallnode);
WRITE_BOOL_FIELD(ordinality);
WRITE_BOOL_FIELD(is_table);
WRITE_NODE_FIELD(functions);
WRITE_NODE_FIELD(alias);
WRITE_NODE_FIELD(coldeflist);
}
@ -3156,6 +3165,9 @@ _outNode(StringInfo str, const void *obj)
case T_RangeTblEntry:
_outRangeTblEntry(str, obj);
break;
case T_RangeTblFunction:
_outRangeTblFunction(str, obj);
break;
case T_A_Expr:
_outAExpr(str, obj);
break;

View File

@ -1220,10 +1220,7 @@ _readRangeTblEntry(void)
READ_NODE_FIELD(joinaliasvars);
break;
case RTE_FUNCTION:
READ_NODE_FIELD(funcexpr);
READ_NODE_FIELD(funccoltypes);
READ_NODE_FIELD(funccoltypmods);
READ_NODE_FIELD(funccolcollations);
READ_NODE_FIELD(functions);
READ_BOOL_FIELD(funcordinality);
break;
case RTE_VALUES:
@ -1255,6 +1252,25 @@ _readRangeTblEntry(void)
READ_DONE();
}
/*
* _readRangeTblFunction
*/
static RangeTblFunction *
_readRangeTblFunction(void)
{
READ_LOCALS(RangeTblFunction);
READ_NODE_FIELD(funcexpr);
READ_INT_FIELD(funccolcount);
READ_NODE_FIELD(funccolnames);
READ_NODE_FIELD(funccoltypes);
READ_NODE_FIELD(funccoltypmods);
READ_NODE_FIELD(funccolcollations);
READ_BITMAPSET_FIELD(funcparams);
READ_DONE();
}
/*
* parseNodeString
@ -1378,6 +1394,8 @@ parseNodeString(void)
return_value = _readFromExpr();
else if (MATCH("RTE", 3))
return_value = _readRangeTblEntry();
else if (MATCH("RANGETBLFUNCTION", 16))
return_value = _readRangeTblFunction();
else if (MATCH("NOTIFY", 6))
return_value = _readNotifyStmt();
else if (MATCH("DECLARECURSOR", 13))

View File

@ -18,6 +18,7 @@
#include <math.h>
#include "catalog/pg_class.h"
#include "catalog/pg_operator.h"
#include "foreign/fdwapi.h"
#include "nodes/nodeFuncs.h"
#ifdef OPTIMIZER_DEBUG
@ -1258,6 +1259,7 @@ static void
set_function_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
Relids required_outer;
List *pathkeys = NIL;
/*
* We don't support pushing join clauses into the quals of a function
@ -1266,8 +1268,55 @@ set_function_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
*/
required_outer = rel->lateral_relids;
/*
* The result is considered unordered unless ORDINALITY was used, in which
* case it is ordered by the ordinal column (the last one). See if we
* care, by checking for uses of that Var in equivalence classes.
*/
if (rte->funcordinality)
{
AttrNumber ordattno = rel->max_attr;
Var *var = NULL;
ListCell *lc;
/*
* Is there a Var for it in reltargetlist? If not, the query did not
* reference the ordinality column, or at least not in any way that
* would be interesting for sorting.
*/
foreach(lc, rel->reltargetlist)
{
Var *node = (Var *) lfirst(lc);
/* checking varno/varlevelsup is just paranoia */
if (IsA(node, Var) &&
node->varattno == ordattno &&
node->varno == rel->relid &&
node->varlevelsup == 0)
{
var = node;
break;
}
}
/*
* Try to build pathkeys for this Var with int8 sorting. We tell
* build_expression_pathkey not to build any new equivalence class; if
* the Var isn't already mentioned in some EC, it means that nothing
* cares about the ordering.
*/
if (var)
pathkeys = build_expression_pathkey(root,
(Expr *) var,
NULL, /* below outer joins */
Int8LessOperator,
rel->relids,
false);
}
/* Generate appropriate path */
add_path(rel, create_functionscan_path(root, rel, required_outer));
add_path(rel, create_functionscan_path(root, rel,
pathkeys, required_outer));
/* Select cheapest path (pretty easy in this case...) */
set_cheapest(rel);

View File

@ -1076,9 +1076,9 @@ cost_functionscan(Path *path, PlannerInfo *root,
path->rows = baserel->rows;
/*
* Estimate costs of executing the function expression.
* Estimate costs of executing the function expression(s).
*
* Currently, nodeFunctionscan.c always executes the function to
* Currently, nodeFunctionscan.c always executes the functions to
* completion before returning any rows, and caches the results in a
* tuplestore. So the function eval cost is all startup cost, and per-row
* costs are minimal.
@ -1088,7 +1088,7 @@ cost_functionscan(Path *path, PlannerInfo *root,
* estimates for functions tend to be, there's not a lot of point in that
* refinement right now.
*/
cost_qual_eval_node(&exprcost, rte->funcexpr, root);
cost_qual_eval_node(&exprcost, (Node *) rte->functions, root);
startup_cost += exprcost.startup + exprcost.per_tuple;
@ -3845,14 +3845,26 @@ void
set_function_size_estimates(PlannerInfo *root, RelOptInfo *rel)
{
RangeTblEntry *rte;
ListCell *lc;
/* Should only be applied to base relations that are functions */
Assert(rel->relid > 0);
rte = planner_rt_fetch(rel->relid, root);
Assert(rte->rtekind == RTE_FUNCTION);
/* Estimate number of rows the function itself will return */
rel->tuples = expression_returns_set_rows(rte->funcexpr);
/*
* Estimate number of rows the functions will return. The rowcount of the
* node is that of the largest function result.
*/
rel->tuples = 0;
foreach(lc, rte->functions)
{
RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
double ntup = expression_returns_set_rows(rtfunc->funcexpr);
if (ntup > rel->tuples)
rel->tuples = ntup;
}
/* Now estimate number of output rows, etc */
set_baserel_size_estimates(root, rel);

View File

@ -501,6 +501,57 @@ build_index_pathkeys(PlannerInfo *root,
return retval;
}
/*
* build_expression_pathkey
* Build a pathkeys list that describes an ordering by a single expression
* using the given sort operator.
*
* expr, nullable_relids, and rel are as for make_pathkey_from_sortinfo.
* We induce the other arguments assuming default sort order for the operator.
*
* Similarly to make_pathkey_from_sortinfo, the result is NIL if create_it
* is false and the expression isn't already in some EquivalenceClass.
*/
List *
build_expression_pathkey(PlannerInfo *root,
Expr *expr,
Relids nullable_relids,
Oid opno,
Relids rel,
bool create_it)
{
List *pathkeys;
Oid opfamily,
opcintype;
int16 strategy;
PathKey *cpathkey;
/* Find the operator in pg_amop --- failure shouldn't happen */
if (!get_ordering_op_properties(opno,
&opfamily, &opcintype, &strategy))
elog(ERROR, "operator %u is not a valid ordering operator",
opno);
cpathkey = make_pathkey_from_sortinfo(root,
expr,
nullable_relids,
opfamily,
opcintype,
exprCollation((Node *) expr),
(strategy == BTGreaterStrategyNumber),
(strategy == BTGreaterStrategyNumber),
0,
rel,
create_it);
if (cpathkey)
pathkeys = list_make1(cpathkey);
else
pathkeys = NIL;
return pathkeys;
}
/*
* convert_subquery_pathkeys
* Build a pathkeys list that describes the ordering of a subquery's

View File

@ -115,9 +115,7 @@ static BitmapHeapScan *make_bitmap_heapscan(List *qptlist,
static TidScan *make_tidscan(List *qptlist, List *qpqual, Index scanrelid,
List *tidquals);
static FunctionScan *make_functionscan(List *qptlist, List *qpqual,
Index scanrelid, Node *funcexpr, bool ordinality,
List *funccolnames, List *funccoltypes, List *funccoltypmods,
List *funccolcollations);
Index scanrelid, List *functions, bool funcordinality);
static ValuesScan *make_valuesscan(List *qptlist, List *qpqual,
Index scanrelid, List *values_lists);
static CteScan *make_ctescan(List *qptlist, List *qpqual,
@ -1709,13 +1707,13 @@ create_functionscan_plan(PlannerInfo *root, Path *best_path,
FunctionScan *scan_plan;
Index scan_relid = best_path->parent->relid;
RangeTblEntry *rte;
Node *funcexpr;
List *functions;
/* it should be a function base rel... */
Assert(scan_relid > 0);
rte = planner_rt_fetch(scan_relid, root);
Assert(rte->rtekind == RTE_FUNCTION);
funcexpr = rte->funcexpr;
functions = rte->functions;
/* Sort clauses into best execution order */
scan_clauses = order_qual_clauses(root, scan_clauses);
@ -1728,17 +1726,12 @@ create_functionscan_plan(PlannerInfo *root, Path *best_path,
{
scan_clauses = (List *)
replace_nestloop_params(root, (Node *) scan_clauses);
/* The func expression itself could contain nestloop params, too */
funcexpr = replace_nestloop_params(root, funcexpr);
/* The function expressions could contain nestloop params, too */
functions = (List *) replace_nestloop_params(root, (Node *) functions);
}
scan_plan = make_functionscan(tlist, scan_clauses, scan_relid,
funcexpr,
rte->funcordinality,
rte->eref->colnames,
rte->funccoltypes,
rte->funccoltypmods,
rte->funccolcollations);
functions, rte->funcordinality);
copy_path_costsize(&scan_plan->scan.plan, best_path);
@ -3388,12 +3381,8 @@ static FunctionScan *
make_functionscan(List *qptlist,
List *qpqual,
Index scanrelid,
Node *funcexpr,
bool ordinality,
List *funccolnames,
List *funccoltypes,
List *funccoltypmods,
List *funccolcollations)
List *functions,
bool funcordinality)
{
FunctionScan *node = makeNode(FunctionScan);
Plan *plan = &node->scan.plan;
@ -3404,12 +3393,8 @@ make_functionscan(List *qptlist,
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->funcexpr = funcexpr;
node->funcordinality = ordinality;
node->funccolnames = funccolnames;
node->funccoltypes = funccoltypes;
node->funccoltypmods = funccoltypmods;
node->funccolcollations = funccolcollations;
node->functions = functions;
node->funcordinality = funcordinality;
return node;
}

View File

@ -307,7 +307,7 @@ extract_lateral_references(PlannerInfo *root, RelOptInfo *brel, Index rtindex)
if (rte->rtekind == RTE_SUBQUERY)
vars = pull_vars_of_level((Node *) rte->subquery, 1);
else if (rte->rtekind == RTE_FUNCTION)
vars = pull_vars_of_level(rte->funcexpr, 0);
vars = pull_vars_of_level((Node *) rte->functions, 0);
else if (rte->rtekind == RTE_VALUES)
vars = pull_vars_of_level((Node *) rte->values_lists, 0);
else

View File

@ -485,9 +485,9 @@ subquery_planner(PlannerGlobal *glob, Query *parse,
}
else if (rte->rtekind == RTE_FUNCTION)
{
/* Preprocess the function expression fully */
/* Preprocess the function expression(s) fully */
kind = rte->lateral ? EXPRKIND_RTFUNC_LATERAL : EXPRKIND_RTFUNC;
rte->funcexpr = preprocess_expression(root, rte->funcexpr, kind);
rte->functions = (List *) preprocess_expression(root, (Node *) rte->functions, kind);
}
else if (rte->rtekind == RTE_VALUES)
{

View File

@ -381,10 +381,7 @@ add_rte_to_flat_rtable(PlannerGlobal *glob, RangeTblEntry *rte)
/* zap unneeded sub-structure */
newrte->subquery = NULL;
newrte->joinaliasvars = NIL;
newrte->funcexpr = NULL;
newrte->funccoltypes = NIL;
newrte->funccoltypmods = NIL;
newrte->funccolcollations = NIL;
newrte->functions = NIL;
newrte->values_lists = NIL;
newrte->values_collations = NIL;
newrte->ctecoltypes = NIL;
@ -525,8 +522,8 @@ set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset)
fix_scan_list(root, splan->scan.plan.targetlist, rtoffset);
splan->scan.plan.qual =
fix_scan_list(root, splan->scan.plan.qual, rtoffset);
splan->funcexpr =
fix_scan_expr(root, splan->funcexpr, rtoffset);
splan->functions =
fix_scan_list(root, splan->functions, rtoffset);
}
break;
case T_ValuesScan:

View File

@ -2135,9 +2135,37 @@ finalize_plan(PlannerInfo *root, Plan *plan, Bitmapset *valid_params,
break;
case T_FunctionScan:
finalize_primnode(((FunctionScan *) plan)->funcexpr,
&context);
context.paramids = bms_add_members(context.paramids, scan_params);
{
FunctionScan *fscan = (FunctionScan *) plan;
ListCell *lc;
/*
* Call finalize_primnode independently on each function
* expression, so that we can record which params are
* referenced in each, in order to decide which need
* re-evaluating during rescan.
*/
foreach(lc, fscan->functions)
{
RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
finalize_primnode_context funccontext;
funccontext = context;
funccontext.paramids = NULL;
finalize_primnode(rtfunc->funcexpr, &funccontext);
/* remember results for execution */
rtfunc->funcparams = funccontext.paramids;
/* add the function's params to the overall set */
context.paramids = bms_add_members(context.paramids,
funccontext.paramids);
}
context.paramids = bms_add_members(context.paramids,
scan_params);
}
break;
case T_ValuesScan:

View File

@ -580,10 +580,7 @@ inline_set_returning_functions(PlannerInfo *root)
/* Successful expansion, replace the rtable entry */
rte->rtekind = RTE_SUBQUERY;
rte->subquery = funcquery;
rte->funcexpr = NULL;
rte->funccoltypes = NIL;
rte->funccoltypmods = NIL;
rte->funccolcollations = NIL;
rte->functions = NIL;
}
}
}
@ -1623,8 +1620,8 @@ replace_vars_in_jointree(Node *jtnode,
context);
break;
case RTE_FUNCTION:
rte->funcexpr =
pullup_replace_vars(rte->funcexpr,
rte->functions = (List *)
pullup_replace_vars((Node *) rte->functions,
context);
break;
case RTE_VALUES:

View File

@ -4509,6 +4509,7 @@ evaluate_expr(Expr *expr, Oid result_type, int32 result_typmod,
Query *
inline_set_returning_function(PlannerInfo *root, RangeTblEntry *rte)
{
RangeTblFunction *rtfunc;
FuncExpr *fexpr;
Oid func_oid;
HeapTuple func_tuple;
@ -4537,14 +4538,18 @@ inline_set_returning_function(PlannerInfo *root, RangeTblEntry *rte)
*/
check_stack_depth();
/* Fail if the caller wanted ORDINALITY - we don't implement that here. */
/* Fail if the RTE has ORDINALITY - we don't implement that here. */
if (rte->funcordinality)
return NULL;
/* Fail if FROM item isn't a simple FuncExpr */
fexpr = (FuncExpr *) rte->funcexpr;
if (fexpr == NULL || !IsA(fexpr, FuncExpr))
/* Fail if RTE isn't a single, simple FuncExpr */
if (list_length(rte->functions) != 1)
return NULL;
rtfunc = (RangeTblFunction *) linitial(rte->functions);
if (!IsA(rtfunc->funcexpr, FuncExpr))
return NULL;
fexpr = (FuncExpr *) rtfunc->funcexpr;
func_oid = fexpr->funcid;
@ -4734,7 +4739,8 @@ inline_set_returning_function(PlannerInfo *root, RangeTblEntry *rte)
*/
if (fexpr->funcresulttype == RECORDOID &&
get_func_result_type(func_oid, NULL, NULL) == TYPEFUNC_RECORD &&
!tlist_matches_coltypelist(querytree->targetList, rte->funccoltypes))
!tlist_matches_coltypelist(querytree->targetList,
rtfunc->funccoltypes))
goto fail;
/*

View File

@ -1623,7 +1623,7 @@ create_subqueryscan_path(PlannerInfo *root, RelOptInfo *rel,
*/
Path *
create_functionscan_path(PlannerInfo *root, RelOptInfo *rel,
Relids required_outer)
List *pathkeys, Relids required_outer)
{
Path *pathnode = makeNode(Path);
@ -1631,7 +1631,7 @@ create_functionscan_path(PlannerInfo *root, RelOptInfo *rel,
pathnode->parent = rel;
pathnode->param_info = get_baserel_parampathinfo(root, rel,
required_outer);
pathnode->pathkeys = NIL; /* for now, assume unordered result */
pathnode->pathkeys = pathkeys;
cost_functionscan(pathnode, root, rel, pathnode->param_info);

View File

@ -406,6 +406,8 @@ static Node *makeRecursiveViewSelect(char *relname, List *aliases, Node *query);
a_expr b_expr c_expr AexprConst indirection_el
columnref in_expr having_clause func_table array_expr
ExclusionWhereClause
%type <list> func_table_item func_table_list opt_col_def_list
%type <boolean> opt_ordinality
%type <list> ExclusionConstraintList ExclusionConstraintElem
%type <list> func_arg_list
%type <node> func_arg_expr
@ -613,6 +615,7 @@ static Node *makeRecursiveViewSelect(char *relname, List *aliases, Node *query);
*/
%token NULLS_FIRST NULLS_LAST WITH_ORDINALITY WITH_TIME
/* Precedence: lowest to highest */
%nonassoc SET /* see relation_expr_opt_alias */
%left UNION EXCEPT
@ -1926,10 +1929,11 @@ alter_table_cmd:
n->subtype = AT_AlterColumnType;
n->name = $3;
n->def = (Node *) def;
/* We only use these three fields of the ColumnDef node */
/* We only use these fields of the ColumnDef node */
def->typeName = $6;
def->collClause = (CollateClause *) $7;
def->raw_default = $8;
def->location = @3;
$$ = (Node *)n;
}
/* ALTER FOREIGN TABLE <name> ALTER [COLUMN] <colname> OPTIONS */
@ -2354,10 +2358,11 @@ alter_type_cmd:
n->name = $3;
n->def = (Node *) def;
n->behavior = $8;
/* We only use these three fields of the ColumnDef node */
/* We only use these fields of the ColumnDef node */
def->typeName = $6;
def->collClause = (CollateClause *) $7;
def->raw_default = NULL;
def->location = @3;
$$ = (Node *)n;
}
;
@ -2782,6 +2787,7 @@ columnDef: ColId Typename create_generic_options ColQualList
n->fdwoptions = $3;
SplitColQualList($4, &n->constraints, &n->collClause,
yyscanner);
n->location = @1;
$$ = (Node *)n;
}
;
@ -2801,6 +2807,7 @@ columnOptions: ColId WITH OPTIONS ColQualList
n->collOid = InvalidOid;
SplitColQualList($4, &n->constraints, &n->collClause,
yyscanner);
n->location = @1;
$$ = (Node *)n;
}
;
@ -9648,44 +9655,19 @@ table_ref: relation_expr opt_alias_clause
}
| func_table func_alias_clause
{
RangeFunction *n = makeNode(RangeFunction);
n->lateral = false;
n->ordinality = false;
n->funccallnode = $1;
RangeFunction *n = (RangeFunction *) $1;
n->alias = linitial($2);
n->coldeflist = lsecond($2);
$$ = (Node *) n;
}
| func_table WITH_ORDINALITY func_alias_clause
{
RangeFunction *n = makeNode(RangeFunction);
n->lateral = false;
n->ordinality = true;
n->funccallnode = $1;
n->alias = linitial($3);
n->coldeflist = lsecond($3);
$$ = (Node *) n;
}
| LATERAL_P func_table func_alias_clause
{
RangeFunction *n = makeNode(RangeFunction);
RangeFunction *n = (RangeFunction *) $2;
n->lateral = true;
n->ordinality = false;
n->funccallnode = $2;
n->alias = linitial($3);
n->coldeflist = lsecond($3);
$$ = (Node *) n;
}
| LATERAL_P func_table WITH_ORDINALITY func_alias_clause
{
RangeFunction *n = makeNode(RangeFunction);
n->lateral = true;
n->ordinality = true;
n->funccallnode = $2;
n->alias = linitial($4);
n->coldeflist = lsecond($4);
$$ = (Node *) n;
}
| select_with_parens opt_alias_clause
{
RangeSubselect *n = makeNode(RangeSubselect);
@ -9996,7 +9978,54 @@ relation_expr_opt_alias: relation_expr %prec UMINUS
}
;
func_table: func_expr_windowless { $$ = $1; }
/*
* func_table represents a function invocation in a FROM list. It can be
* a plain function call, like "foo(...)", or a TABLE expression with
* one or more function calls, "TABLE (foo(...), bar(...))",
* optionally with WITH ORDINALITY attached.
* In the TABLE syntax, a column definition list can be given for each
* function, for example:
* TABLE (foo() AS (foo_res_a text, foo_res_b text),
* bar() AS (bar_res_a text, bar_res_b text))
* It's also possible to attach a column definition list to the RangeFunction
* as a whole, but that's handled by the table_ref production.
*/
func_table: func_expr_windowless opt_ordinality
{
RangeFunction *n = makeNode(RangeFunction);
n->lateral = false;
n->ordinality = $2;
n->is_table = false;
n->functions = list_make1(list_make2($1, NIL));
/* alias and coldeflist are set by table_ref production */
$$ = (Node *) n;
}
| TABLE '(' func_table_list ')' opt_ordinality
{
RangeFunction *n = makeNode(RangeFunction);
n->lateral = false;
n->ordinality = $5;
n->is_table = true;
n->functions = $3;
/* alias and coldeflist are set by table_ref production */
$$ = (Node *) n;
}
;
func_table_item: func_expr_windowless opt_col_def_list
{ $$ = list_make2($1, $2); }
;
func_table_list: func_table_item { $$ = list_make1($1); }
| func_table_list ',' func_table_item { $$ = lappend($1, $3); }
;
opt_col_def_list: AS '(' TableFuncElementList ')' { $$ = $3; }
| /*EMPTY*/ { $$ = NIL; }
;
opt_ordinality: WITH_ORDINALITY { $$ = true; }
| /*EMPTY*/ { $$ = false; }
;
@ -10051,6 +10080,7 @@ TableFuncElement: ColId Typename opt_collate_clause
n->collClause = (CollateClause *) $3;
n->collOid = InvalidOid;
n->constraints = NIL;
n->location = @1;
$$ = (Node *)n;
}
;
@ -11172,11 +11202,11 @@ func_application: func_name '(' ')'
/*
* func_expr and its cousin func_expr_windowless is split out from c_expr just
* func_expr and its cousin func_expr_windowless are split out from c_expr just
* so that we have classifications for "everything that is a function call or
* looks like one". This isn't very important, but it saves us having to document
* which variants are legal in the backwards-compatible functional-index syntax
* for CREATE INDEX.
* looks like one". This isn't very important, but it saves us having to
* document which variants are legal in places like "FROM function()" or the
* backwards-compatible functional-index syntax for CREATE INDEX.
* (Note that many of the special SQL functions wouldn't actually make any
* sense as functional index entries, but we ignore that consideration here.)
*/

View File

@ -24,6 +24,7 @@
#include "optimizer/tlist.h"
#include "parser/analyze.h"
#include "parser/parsetree.h"
#include "parser/parser.h"
#include "parser/parse_clause.h"
#include "parser/parse_coerce.h"
#include "parser/parse_collate.h"
@ -515,24 +516,18 @@ transformRangeSubselect(ParseState *pstate, RangeSubselect *r)
static RangeTblEntry *
transformRangeFunction(ParseState *pstate, RangeFunction *r)
{
Node *funcexpr;
char *funcname;
List *funcexprs = NIL;
List *funcnames = NIL;
List *coldeflists = NIL;
bool is_lateral;
RangeTblEntry *rte;
/*
* Get function name for possible use as alias. We use the same
* transformation rules as for a SELECT output expression. For a FuncCall
* node, the result will be the function name, but it is possible for the
* grammar to hand back other node types.
*/
funcname = FigureColname(r->funccallnode);
ListCell *lc;
/*
* We make lateral_only names of this level visible, whether or not the
* function is explicitly marked LATERAL. This is needed for SQL spec
* compliance in the case of UNNEST(), and seems useful on convenience
* grounds for all functions in FROM.
* RangeFunction is explicitly marked LATERAL. This is needed for SQL
* spec compliance in the case of UNNEST(), and seems useful on
* convenience grounds for all functions in FROM.
*
* (LATERAL can't nest within a single pstate level, so we don't need
* save/restore logic here.)
@ -541,46 +536,171 @@ transformRangeFunction(ParseState *pstate, RangeFunction *r)
pstate->p_lateral_active = true;
/*
* Transform the raw expression.
* Transform the raw expressions.
*
* While transforming, also save function names for possible use as alias
* and column names. We use the same transformation rules as for a SELECT
* output expression. For a FuncCall node, the result will be the
* function name, but it is possible for the grammar to hand back other
* node types.
*
* We have to get this info now, because FigureColname only works on raw
* parsetrees. Actually deciding what to do with the names is left up to
* addRangeTableEntryForFunction.
*
* Likewise, collect column definition lists if there were any. But
* complain if we find one here and the RangeFunction has one too.
*/
funcexpr = transformExpr(pstate, r->funccallnode, EXPR_KIND_FROM_FUNCTION);
foreach(lc, r->functions)
{
List *pair = (List *) lfirst(lc);
Node *fexpr;
List *coldeflist;
/* Disassemble the function-call/column-def-list pairs */
Assert(list_length(pair) == 2);
fexpr = (Node *) linitial(pair);
coldeflist = (List *) lsecond(pair);
/*
* If we find a function call unnest() with more than one argument and
* no special decoration, transform it into separate unnest() calls on
* each argument. This is a kluge, for sure, but it's less nasty than
* other ways of implementing the SQL-standard UNNEST() syntax.
*
* If there is any decoration (including a coldeflist), we don't
* transform, which probably means a no-such-function error later. We
* could alternatively throw an error right now, but that doesn't seem
* tremendously helpful. If someone is using any such decoration,
* then they're not using the SQL-standard syntax, and they're more
* likely expecting an un-tweaked function call.
*
* Note: the transformation changes a non-schema-qualified unnest()
* function name into schema-qualified pg_catalog.unnest(). This
* choice is also a bit debatable, but it seems reasonable to force
* use of built-in unnest() when we make this transformation.
*/
if (IsA(fexpr, FuncCall))
{
FuncCall *fc = (FuncCall *) fexpr;
if (list_length(fc->funcname) == 1 &&
strcmp(strVal(linitial(fc->funcname)), "unnest") == 0 &&
list_length(fc->args) > 1 &&
fc->agg_order == NIL &&
fc->agg_filter == NULL &&
!fc->agg_star &&
!fc->agg_distinct &&
!fc->func_variadic &&
fc->over == NULL &&
coldeflist == NIL)
{
ListCell *lc;
foreach(lc, fc->args)
{
Node *arg = (Node *) lfirst(lc);
FuncCall *newfc;
newfc = makeFuncCall(SystemFuncName("unnest"),
list_make1(arg),
fc->location);
funcexprs = lappend(funcexprs,
transformExpr(pstate, (Node *) newfc,
EXPR_KIND_FROM_FUNCTION));
funcnames = lappend(funcnames,
FigureColname((Node *) newfc));
/* coldeflist is empty, so no error is possible */
coldeflists = lappend(coldeflists, coldeflist);
}
continue; /* done with this function item */
}
}
/* normal case ... */
funcexprs = lappend(funcexprs,
transformExpr(pstate, fexpr,
EXPR_KIND_FROM_FUNCTION));
funcnames = lappend(funcnames,
FigureColname(fexpr));
if (coldeflist && r->coldeflist)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("multiple column definition lists are not allowed for the same function"),
parser_errposition(pstate,
exprLocation((Node *) r->coldeflist))));
coldeflists = lappend(coldeflists, coldeflist);
}
pstate->p_lateral_active = false;
/*
* We must assign collations now so that we can fill funccolcollations.
* We must assign collations now so that the RTE exposes correct collation
* info for Vars created from it.
*/
assign_expr_collations(pstate, funcexpr);
assign_list_collations(pstate, funcexprs);
/*
* Install the top-level coldeflist if there was one (we already checked
* that there was no conflicting per-function coldeflist).
*
* We only allow this when there's a single function (even after UNNEST
* expansion) and no WITH ORDINALITY. The reason for the latter
* restriction is that it's not real clear whether the ordinality column
* should be in the coldeflist, and users are too likely to make mistakes
* in one direction or the other. Putting the coldeflist inside TABLE()
* is much clearer in this case.
*/
if (r->coldeflist)
{
if (list_length(funcexprs) != 1)
{
if (r->is_table)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("TABLE() with multiple functions cannot have a column definition list"),
errhint("Put a separate column definition list for each function inside TABLE()."),
parser_errposition(pstate,
exprLocation((Node *) r->coldeflist))));
else
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("UNNEST() with multiple arguments cannot have a column definition list"),
errhint("Use separate UNNEST() calls inside TABLE(), and attach a column definition list to each one."),
parser_errposition(pstate,
exprLocation((Node *) r->coldeflist))));
}
if (r->ordinality)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("WITH ORDINALITY cannot be used with a column definition list"),
errhint("Put the column definition list inside TABLE()."),
parser_errposition(pstate,
exprLocation((Node *) r->coldeflist))));
coldeflists = list_make1(r->coldeflist);
}
/*
* Mark the RTE as LATERAL if the user said LATERAL explicitly, or if
* there are any lateral cross-references in it.
*/
is_lateral = r->lateral || contain_vars_of_level(funcexpr, 0);
is_lateral = r->lateral || contain_vars_of_level((Node *) funcexprs, 0);
/*
* OK, build an RTE for the function.
*/
rte = addRangeTableEntryForFunction(pstate, funcname, funcexpr,
rte = addRangeTableEntryForFunction(pstate,
funcnames, funcexprs, coldeflists,
r, is_lateral, true);
/*
* If a coldeflist was supplied, ensure it defines a legal set of names
* (no duplicates) and datatypes (no pseudo-types, for instance).
* addRangeTableEntryForFunction looked up the type names but didn't check
* them further than that.
*/
if (r->coldeflist)
{
TupleDesc tupdesc;
tupdesc = BuildDescFromLists(rte->eref->colnames,
rte->funccoltypes,
rte->funccoltypmods,
rte->funccolcollations);
CheckAttributeNamesTypes(tupdesc, RELKIND_COMPOSITE_TYPE, false);
}
return rte;
}

File diff suppressed because it is too large Load Diff

View File

@ -472,7 +472,7 @@ GetColumnDefCollation(ParseState *pstate, ColumnDef *coldef, Oid typeOid)
{
Oid result;
Oid typcollation = get_typcollation(typeOid);
int location = -1;
int location = coldef->location;
if (coldef->collClause)
{

View File

@ -754,6 +754,7 @@ transformTableLikeClause(CreateStmtContext *cxt, TableLikeClause *table_like_cla
def->collClause = NULL;
def->collOid = attribute->attcollation;
def->constraints = NIL;
def->location = -1;
/*
* Add to column list
@ -969,6 +970,7 @@ transformOfType(CreateStmtContext *cxt, TypeName *ofTypename)
n->collClause = NULL;
n->collOid = attr->attcollation;
n->constraints = NIL;
n->location = -1;
cxt->columns = lappend(cxt->columns, n);
}
DecrTupleDescRefCount(tupdesc);

View File

@ -390,7 +390,7 @@ rewriteRuleAction(Query *parsetree,
{
case RTE_FUNCTION:
sub_action->hasSubLinks =
checkExprHasSubLink(rte->funcexpr);
checkExprHasSubLink((Node *) rte->functions);
break;
case RTE_VALUES:
sub_action->hasSubLinks =

View File

@ -387,8 +387,8 @@ static void get_from_clause_item(Node *jtnode, Query *query,
deparse_context *context);
static void get_column_alias_list(deparse_columns *colinfo,
deparse_context *context);
static void get_from_clause_coldeflist(deparse_columns *colinfo,
List *types, List *typmods, List *collations,
static void get_from_clause_coldeflist(RangeTblFunction *rtfunc,
deparse_columns *colinfo,
deparse_context *context);
static void get_opclass_name(Oid opclass, Oid actual_datatype,
StringInfo buf);
@ -8012,6 +8012,7 @@ get_from_clause_item(Node *jtnode, Query *query, deparse_context *context)
RangeTblEntry *rte = rt_fetch(varno, query->rtable);
char *refname = get_rtable_name(varno, context);
deparse_columns *colinfo = deparse_columns_fetch(varno, dpns);
RangeTblFunction *rtfunc1 = NULL;
bool printalias;
if (rte->lateral)
@ -8037,7 +8038,96 @@ get_from_clause_item(Node *jtnode, Query *query, deparse_context *context)
break;
case RTE_FUNCTION:
/* Function RTE */
get_rule_expr(rte->funcexpr, context, true);
rtfunc1 = (RangeTblFunction *) linitial(rte->functions);
/*
* Omit TABLE() syntax if there's just one function, unless it
* has both a coldeflist and WITH ORDINALITY. If it has both,
* we must use TABLE() syntax to avoid ambiguity about whether
* the coldeflist includes the ordinality column.
*/
if (list_length(rte->functions) == 1 &&
(rtfunc1->funccolnames == NIL || !rte->funcordinality))
{
get_rule_expr(rtfunc1->funcexpr, context, true);
/* we'll print the coldeflist below, if it has one */
}
else
{
bool all_unnest;
ListCell *lc;
/*
* If all the function calls in the list are to unnest,
* and none need a coldeflist, then collapse the list back
* down to UNNEST(args). (If we had more than one
* built-in unnest function, this would get more
* difficult.)
*
* XXX This is pretty ugly, since it makes not-terribly-
* future-proof assumptions about what the parser would do
* with the output; but the alternative is to emit our
* nonstandard extended TABLE() notation for what might
* have been a perfectly spec-compliant multi-argument
* UNNEST().
*/
all_unnest = true;
foreach(lc, rte->functions)
{
RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
if (!IsA(rtfunc->funcexpr, FuncExpr) ||
((FuncExpr *) rtfunc->funcexpr)->funcid != F_ARRAY_UNNEST ||
rtfunc->funccolnames != NIL)
{
all_unnest = false;
break;
}
}
if (all_unnest)
{
List *allargs = NIL;
foreach(lc, rte->functions)
{
RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
List *args = ((FuncExpr *) rtfunc->funcexpr)->args;
allargs = list_concat(allargs, list_copy(args));
}
appendStringInfoString(buf, "UNNEST(");
get_rule_expr((Node *) allargs, context, true);
appendStringInfoChar(buf, ')');
}
else
{
int funcno = 0;
appendStringInfoString(buf, "TABLE(");
foreach(lc, rte->functions)
{
RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
if (funcno > 0)
appendStringInfoString(buf, ", ");
get_rule_expr(rtfunc->funcexpr, context, true);
if (rtfunc->funccolnames != NIL)
{
/* Reconstruct the column definition list */
appendStringInfoString(buf, " AS ");
get_from_clause_coldeflist(rtfunc,
NULL,
context);
}
funcno++;
}
appendStringInfoChar(buf, ')');
}
/* prevent printing duplicate coldeflist below */
rtfunc1 = NULL;
}
if (rte->funcordinality)
appendStringInfoString(buf, " WITH ORDINALITY");
break;
@ -8081,7 +8171,7 @@ get_from_clause_item(Node *jtnode, Query *query, deparse_context *context)
* For a function RTE, always print alias. This covers possible
* renaming of the function and/or instability of the
* FigureColname rules for things that aren't simple functions.
* Also note we'd need to force it anyway for the RECORD case.
* Note we'd need to force it anyway for the columndef list case.
*/
printalias = true;
}
@ -8099,14 +8189,10 @@ get_from_clause_item(Node *jtnode, Query *query, deparse_context *context)
appendStringInfo(buf, " %s", quote_identifier(refname));
/* Print the column definitions or aliases, if needed */
if (rte->rtekind == RTE_FUNCTION && rte->funccoltypes != NIL)
if (rtfunc1 && rtfunc1->funccolnames != NIL)
{
/* Function returning RECORD, reconstruct the columndefs */
get_from_clause_coldeflist(colinfo,
rte->funccoltypes,
rte->funccoltypmods,
rte->funccolcollations,
context);
/* Reconstruct the columndef list, which is also the aliases */
get_from_clause_coldeflist(rtfunc1, colinfo, context);
}
else
{
@ -8250,29 +8336,45 @@ get_column_alias_list(deparse_columns *colinfo, deparse_context *context)
/*
* get_from_clause_coldeflist - reproduce FROM clause coldeflist
*
* When printing a top-level coldeflist (which is syntactically also the
* relation's column alias list), use column names from colinfo. But when
* printing a coldeflist embedded inside TABLE(), we prefer to use the
* original coldeflist's names, which are available in rtfunc->funccolnames.
* Pass NULL for colinfo to select the latter behavior.
*
* The coldeflist is appended immediately (no space) to buf. Caller is
* responsible for ensuring that an alias or AS is present before it.
*/
static void
get_from_clause_coldeflist(deparse_columns *colinfo,
List *types, List *typmods, List *collations,
get_from_clause_coldeflist(RangeTblFunction *rtfunc,
deparse_columns *colinfo,
deparse_context *context)
{
StringInfo buf = context->buf;
ListCell *l1;
ListCell *l2;
ListCell *l3;
ListCell *l4;
int i;
appendStringInfoChar(buf, '(');
/* there's no forfour(), so must chase one list the hard way */
i = 0;
forthree(l1, types, l2, typmods, l3, collations)
l4 = list_head(rtfunc->funccolnames);
forthree(l1, rtfunc->funccoltypes,
l2, rtfunc->funccoltypmods,
l3, rtfunc->funccolcollations)
{
char *attname = colinfo->colnames[i];
Oid atttypid = lfirst_oid(l1);
int32 atttypmod = lfirst_int(l2);
Oid attcollation = lfirst_oid(l3);
char *attname;
if (colinfo)
attname = colinfo->colnames[i];
else
attname = strVal(lfirst(l4));
Assert(attname); /* shouldn't be any dropped columns here */
@ -8285,6 +8387,8 @@ get_from_clause_coldeflist(deparse_columns *colinfo,
attcollation != get_typcollation(atttypid))
appendStringInfo(buf, " COLLATE %s",
generate_collation_name(attcollation));
l4 = lnext(l4);
i++;
}

View File

@ -87,10 +87,12 @@ extern TupleDesc CreateTupleDesc(int natts, bool hasoid,
Form_pg_attribute *attrs);
extern TupleDesc CreateTupleDescCopy(TupleDesc tupdesc);
extern TupleDesc CreateTupleDescCopyExtend(TupleDesc tupdesc, int moreatts);
extern TupleDesc CreateTupleDescCopyConstr(TupleDesc tupdesc);
extern void TupleDescCopyEntry(TupleDesc dst, AttrNumber dstAttno,
TupleDesc src, AttrNumber srcAttno);
extern void FreeTupleDesc(TupleDesc tupdesc);
extern void IncrTupleDescRefCount(TupleDesc tupdesc);

View File

@ -53,6 +53,6 @@
*/
/* yyyymmddN */
#define CATALOG_VERSION_NO 201311171
#define CATALOG_VERSION_NO 201311211
#endif

View File

@ -175,6 +175,7 @@ DATA(insert OID = 411 ( "<>" PGNSP PGUID b f f 20 20 16 411 410 int8ne neqsel
DESCR("not equal");
DATA(insert OID = 412 ( "<" PGNSP PGUID b f f 20 20 16 413 415 int8lt scalarltsel scalarltjoinsel ));
DESCR("less than");
#define Int8LessOperator 412
DATA(insert OID = 413 ( ">" PGNSP PGUID b f f 20 20 16 412 414 int8gt scalargtsel scalargtjoinsel ));
DESCR("greater than");
DATA(insert OID = 414 ( "<=" PGNSP PGUID b f f 20 20 16 415 413 int8le scalarltsel scalarltjoinsel ));

View File

@ -1395,24 +1395,26 @@ typedef struct SubqueryScanState
* function appearing in FROM (typically a function returning set).
*
* eflags node's capability flags
* ordinal column value for WITH ORDINALITY
* scan_tupdesc scan tuple descriptor
* func_tupdesc function tuple descriptor
* func_slot function result slot, or null
* tuplestorestate private state of tuplestore.c
* funcexpr state for function expression being evaluated
* ordinality is this scan WITH ORDINALITY?
* simple true if we have 1 function and no ordinality
* ordinal current ordinal column value
* nfuncs number of functions being executed
* funcstates per-function execution states (private in
* nodeFunctionscan.c)
* ----------------
*/
struct FunctionScanPerFuncState;
typedef struct FunctionScanState
{
ScanState ss; /* its first field is NodeTag */
int eflags;
int64 ordinal;
TupleDesc scan_tupdesc;
TupleDesc func_tupdesc;
TupleTableSlot *func_slot;
Tuplestorestate *tuplestorestate;
ExprState *funcexpr;
bool ordinality;
bool simple;
int64 ordinal;
int nfuncs;
struct FunctionScanPerFuncState *funcstates; /* array of length
* nfuncs */
} FunctionScanState;
/* ----------------

View File

@ -389,6 +389,7 @@ typedef enum NodeTag
T_Constraint,
T_DefElem,
T_RangeTblEntry,
T_RangeTblFunction,
T_WithCheckOption,
T_SortGroupClause,
T_WindowClause,

View File

@ -288,10 +288,8 @@ typedef struct CollateClause
* aggregate or some other kind of function. However, if FILTER or OVER is
* present it had better be an aggregate or window function.
*
* Normally, you'd initialize this via makeFuncCall() and then only
* change the parts of the struct its defaults don't match afterwards
* if needed.
*
* Normally, you'd initialize this via makeFuncCall() and then only change the
* parts of the struct its defaults don't match afterwards, as needed.
*/
typedef struct FuncCall
{
@ -466,13 +464,25 @@ typedef struct RangeSubselect
/*
* RangeFunction - function call appearing in a FROM clause
*
* functions is a List because we use this to represent the construct
* TABLE(func1(...), func2(...), ...). Each element of this list is a
* two-element sublist, the first element being the untransformed function
* call tree, and the second element being a possibly-empty list of ColumnDef
* nodes representing any columndef list attached to that function within the
* TABLE() syntax.
*
* alias and coldeflist represent any alias and/or columndef list attached
* at the top level. (We disallow coldeflist appearing both here and
* per-function, but that's checked in parse analysis, not by the grammar.)
*/
typedef struct RangeFunction
{
NodeTag type;
bool lateral; /* does it have LATERAL prefix? */
bool ordinality; /* does it have WITH ORDINALITY suffix? */
Node *funccallnode; /* untransformed function call tree */
bool is_table; /* is result of TABLE() syntax? */
List *functions; /* per-function information, see above */
Alias *alias; /* table alias & optional column aliases */
List *coldeflist; /* list of ColumnDef nodes to describe result
* of function returning RECORD */
@ -512,6 +522,7 @@ typedef struct ColumnDef
Oid collOid; /* collation OID (InvalidOid if not set) */
List *constraints; /* other constraints on column */
List *fdwoptions; /* per-column FDW options */
int location; /* parse location, or -1 if none/unknown */
} ColumnDef;
/*
@ -652,13 +663,8 @@ typedef struct XmlSerialize
* dropped columns. Note however that a stored rule may have nonempty
* colnames for columns dropped since the rule was created (and for that
* matter the colnames might be out of date due to column renamings).
*
* The same comments apply to FUNCTION RTEs when the function's return type
* is a named composite type. In addition, for all return types, FUNCTION
* RTEs with ORDINALITY must always have the last colname entry being the
* one for the ordinal column; this is enforced when constructing the RTE.
* Thus when ORDINALITY is used, there will be exactly one more colname
* than would have been present otherwise.
* The same comments apply to FUNCTION RTEs when a function's return type
* is a named composite type.
*
* In JOIN RTEs, the colnames in both alias and eref are one-to-one with
* joinaliasvars entries. A JOIN RTE will omit columns of its inputs when
@ -755,23 +761,15 @@ typedef struct RangeTblEntry
List *joinaliasvars; /* list of alias-var expansions */
/*
* Fields valid for a function RTE (else NULL):
* Fields valid for a function RTE (else NIL/zero):
*
* If the function returns an otherwise-unspecified RECORD, funccoltypes
* lists the column types declared in the RTE's column type specification,
* funccoltypmods lists their declared typmods, funccolcollations their
* collations. Note that in this case, ORDINALITY is not permitted, so
* there is no extra ordinal column to be allowed for.
*
* Otherwise, those fields are NIL, and the result column types must be
* derived from the funcexpr while treating the ordinal column, if
* present, as a special case. (see get_rte_attribute_*)
* When funcordinality is true, the eref->colnames list includes an alias
* for the ordinality column. The ordinality column is otherwise
* implicit, and must be accounted for "by hand" in places such as
* expandRTE().
*/
Node *funcexpr; /* expression tree for func call */
List *funccoltypes; /* OID list of column type OIDs */
List *funccoltypmods; /* integer list of column typmods */
List *funccolcollations; /* OID list of column collation OIDs */
bool funcordinality; /* is this called WITH ORDINALITY? */
List *functions; /* list of RangeTblFunction nodes */
bool funcordinality; /* is this called WITH ORDINALITY? */
/*
* Fields valid for a values RTE (else NIL):
@ -803,6 +801,37 @@ typedef struct RangeTblEntry
Bitmapset *modifiedCols; /* columns needing INSERT/UPDATE permission */
} RangeTblEntry;
/*
* RangeTblFunction -
* RangeTblEntry subsidiary data for one function in a FUNCTION RTE.
*
* If the function had a column definition list (required for an
* otherwise-unspecified RECORD result), funccolnames lists the names given
* in the definition list, funccoltypes lists their declared column types,
* funccoltypmods lists their typmods, funccolcollations their collations.
* Otherwise, those fields are NIL.
*
* Notice we don't attempt to store info about the results of functions
* returning named composite types, because those can change from time to
* time. We do however remember how many columns we thought the type had
* (including dropped columns!), so that we can successfully ignore any
* columns added after the query was parsed.
*/
typedef struct RangeTblFunction
{
NodeTag type;
Node *funcexpr; /* expression tree for func call */
int funccolcount; /* number of columns it contributes to RTE */
/* These fields record the contents of a column definition list, if any: */
List *funccolnames; /* column names (list of String) */
List *funccoltypes; /* OID list of column type OIDs */
List *funccoltypmods; /* integer list of column typmods */
List *funccolcollations; /* OID list of column collation OIDs */
/* This is set during planning for use by the executor: */
Bitmapset *funcparams; /* PARAM_EXEC Param IDs affecting this func */
} RangeTblFunction;
/*
* WithCheckOption -
* representation of WITH CHECK OPTION checks to be applied to new tuples

View File

@ -424,12 +424,8 @@ typedef struct SubqueryScan
typedef struct FunctionScan
{
Scan scan;
Node *funcexpr; /* expression tree for func call */
bool funcordinality; /* WITH ORDINALITY */
List *funccolnames; /* output column names (string Value nodes) */
List *funccoltypes; /* OID list of column type OIDs */
List *funccoltypmods; /* integer list of column typmods */
List *funccolcollations; /* OID list of column collation OIDs */
List *functions; /* list of RangeTblFunction nodes */
bool funcordinality; /* WITH ORDINALITY */
} FunctionScan;
/* ----------------

View File

@ -70,7 +70,7 @@ extern UniquePath *create_unique_path(PlannerInfo *root, RelOptInfo *rel,
extern Path *create_subqueryscan_path(PlannerInfo *root, RelOptInfo *rel,
List *pathkeys, Relids required_outer);
extern Path *create_functionscan_path(PlannerInfo *root, RelOptInfo *rel,
Relids required_outer);
List *pathkeys, Relids required_outer);
extern Path *create_valuesscan_path(PlannerInfo *root, RelOptInfo *rel,
Relids required_outer);
extern Path *create_ctescan_path(PlannerInfo *root, RelOptInfo *rel,

View File

@ -166,6 +166,9 @@ extern Path *get_cheapest_fractional_path_for_pathkeys(List *paths,
double fraction);
extern List *build_index_pathkeys(PlannerInfo *root, IndexOptInfo *index,
ScanDirection scandir);
extern List *build_expression_pathkey(PlannerInfo *root, Expr *expr,
Relids nullable_relids, Oid opno,
Relids rel, bool create_it);
extern List *convert_subquery_pathkeys(PlannerInfo *root, RelOptInfo *rel,
List *subquery_pathkeys);
extern List *build_join_pathkeys(PlannerInfo *root,

View File

@ -58,8 +58,9 @@ extern RangeTblEntry *addRangeTableEntryForSubquery(ParseState *pstate,
bool lateral,
bool inFromCl);
extern RangeTblEntry *addRangeTableEntryForFunction(ParseState *pstate,
char *funcname,
Node *funcexpr,
List *funcnames,
List *funcexprs,
List *coldeflists,
RangeFunction *rangefunc,
bool lateral,
bool inFromCl);

File diff suppressed because it is too large Load Diff

View File

@ -16,14 +16,41 @@ select a,ord from unnest(array['a','b']) with ordinality as z(a,ord);
select * from unnest(array['a','b']) with ordinality as z(a,ord);
select a,ord from unnest(array[1.0::float8]) with ordinality as z(a,ord);
select * from unnest(array[1.0::float8]) with ordinality as z(a,ord);
select row_to_json(s.*) from generate_series(11,14) with ordinality s;
-- ordinality vs. views
create temporary view vw_ord as select * from (values (1)) v(n) join foot(1) with ordinality as z(a,b,ord) on (n=ord);
select * from vw_ord;
select definition from pg_views where viewname='vw_ord';
drop view vw_ord;
-- ordinality vs. rewind and reverse scan
-- multiple functions
select * from table(foot(1),foot(2)) with ordinality as z(a,b,c,d,ord);
create temporary view vw_ord as select * from (values (1)) v(n) join table(foot(1),foot(2)) with ordinality as z(a,b,c,d,ord) on (n=ord);
select * from vw_ord;
select definition from pg_views where viewname='vw_ord';
drop view vw_ord;
-- expansions of unnest()
select * from unnest(array[10,20],array['foo','bar'],array[1.0]);
select * from unnest(array[10,20],array['foo','bar'],array[1.0]) with ordinality as z(a,b,c,ord);
select * from table(unnest(array[10,20],array['foo','bar'],array[1.0])) with ordinality as z(a,b,c,ord);
select * from table(unnest(array[10,20],array['foo','bar']), generate_series(101,102)) with ordinality as z(a,b,c,ord);
create temporary view vw_ord as select * from unnest(array[10,20],array['foo','bar'],array[1.0]) as z(a,b,c);
select * from vw_ord;
select definition from pg_views where viewname='vw_ord';
drop view vw_ord;
create temporary view vw_ord as select * from table(unnest(array[10,20],array['foo','bar'],array[1.0])) as z(a,b,c);
select * from vw_ord;
select definition from pg_views where viewname='vw_ord';
drop view vw_ord;
create temporary view vw_ord as select * from table(unnest(array[10,20],array['foo','bar']), generate_series(1,2)) as z(a,b,c);
select * from vw_ord;
select definition from pg_views where viewname='vw_ord';
drop view vw_ord;
-- ordinality and multiple functions vs. rewind and reverse scan
begin;
declare foo scroll cursor for select * from generate_series(1,5) with ordinality as g(i,o);
declare foo scroll cursor for select * from table(generate_series(1,5),generate_series(1,2)) with ordinality as g(i,j,o);
fetch all from foo;
fetch backward all from foo;
fetch all from foo;
@ -31,6 +58,12 @@ fetch next from foo;
fetch next from foo;
fetch prior from foo;
fetch absolute 1 from foo;
fetch next from foo;
fetch next from foo;
fetch next from foo;
fetch prior from foo;
fetch prior from foo;
fetch prior from foo;
commit;
-- function with implicit LATERAL
@ -57,133 +90,169 @@ INSERT INTO foo VALUES(1,2,'Ed');
INSERT INTO foo VALUES(2,1,'Mary');
-- sql, proretset = f, prorettype = b
CREATE FUNCTION getfoo(int) RETURNS int AS 'SELECT $1;' LANGUAGE SQL;
SELECT * FROM getfoo(1) AS t1;
SELECT * FROM getfoo(1) WITH ORDINALITY AS t1(v,o);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1);
CREATE FUNCTION getfoo1(int) RETURNS int AS 'SELECT $1;' LANGUAGE SQL;
SELECT * FROM getfoo1(1) AS t1;
SELECT * FROM getfoo1(1) WITH ORDINALITY AS t1(v,o);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo1(1);
SELECT * FROM vw_getfoo;
DROP VIEW vw_getfoo;
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1) WITH ORDINALITY as t1(v,o);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo1(1) WITH ORDINALITY as t1(v,o);
SELECT * FROM vw_getfoo;
DROP VIEW vw_getfoo;
-- sql, proretset = t, prorettype = b
DROP VIEW vw_getfoo;
DROP FUNCTION getfoo(int);
CREATE FUNCTION getfoo(int) RETURNS setof int AS 'SELECT fooid FROM foo WHERE fooid = $1;' LANGUAGE SQL;
SELECT * FROM getfoo(1) AS t1;
SELECT * FROM getfoo(1) WITH ORDINALITY AS t1(v,o);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1);
CREATE FUNCTION getfoo2(int) RETURNS setof int AS 'SELECT fooid FROM foo WHERE fooid = $1;' LANGUAGE SQL;
SELECT * FROM getfoo2(1) AS t1;
SELECT * FROM getfoo2(1) WITH ORDINALITY AS t1(v,o);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo2(1);
SELECT * FROM vw_getfoo;
DROP VIEW vw_getfoo;
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1) WITH ORDINALITY AS t1(v,o);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo2(1) WITH ORDINALITY AS t1(v,o);
SELECT * FROM vw_getfoo;
DROP VIEW vw_getfoo;
-- sql, proretset = t, prorettype = b
DROP VIEW vw_getfoo;
DROP FUNCTION getfoo(int);
CREATE FUNCTION getfoo(int) RETURNS setof text AS 'SELECT fooname FROM foo WHERE fooid = $1;' LANGUAGE SQL;
SELECT * FROM getfoo(1) AS t1;
SELECT * FROM getfoo(1) WITH ORDINALITY AS t1(v,o);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1);
CREATE FUNCTION getfoo3(int) RETURNS setof text AS 'SELECT fooname FROM foo WHERE fooid = $1;' LANGUAGE SQL;
SELECT * FROM getfoo3(1) AS t1;
SELECT * FROM getfoo3(1) WITH ORDINALITY AS t1(v,o);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo3(1);
SELECT * FROM vw_getfoo;
DROP VIEW vw_getfoo;
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1) WITH ORDINALITY AS t1(v,o);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo3(1) WITH ORDINALITY AS t1(v,o);
SELECT * FROM vw_getfoo;
DROP VIEW vw_getfoo;
-- sql, proretset = f, prorettype = c
DROP VIEW vw_getfoo;
DROP FUNCTION getfoo(int);
CREATE FUNCTION getfoo(int) RETURNS foo AS 'SELECT * FROM foo WHERE fooid = $1;' LANGUAGE SQL;
SELECT * FROM getfoo(1) AS t1;
SELECT * FROM getfoo(1) WITH ORDINALITY AS t1(a,b,c,o);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1);
CREATE FUNCTION getfoo4(int) RETURNS foo AS 'SELECT * FROM foo WHERE fooid = $1;' LANGUAGE SQL;
SELECT * FROM getfoo4(1) AS t1;
SELECT * FROM getfoo4(1) WITH ORDINALITY AS t1(a,b,c,o);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo4(1);
SELECT * FROM vw_getfoo;
DROP VIEW vw_getfoo;
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1) WITH ORDINALITY AS t1(a,b,c,o);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo4(1) WITH ORDINALITY AS t1(a,b,c,o);
SELECT * FROM vw_getfoo;
DROP VIEW vw_getfoo;
-- sql, proretset = t, prorettype = c
DROP VIEW vw_getfoo;
DROP FUNCTION getfoo(int);
CREATE FUNCTION getfoo(int) RETURNS setof foo AS 'SELECT * FROM foo WHERE fooid = $1;' LANGUAGE SQL;
SELECT * FROM getfoo(1) AS t1;
SELECT * FROM getfoo(1) WITH ORDINALITY AS t1(a,b,c,o);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1);
CREATE FUNCTION getfoo5(int) RETURNS setof foo AS 'SELECT * FROM foo WHERE fooid = $1;' LANGUAGE SQL;
SELECT * FROM getfoo5(1) AS t1;
SELECT * FROM getfoo5(1) WITH ORDINALITY AS t1(a,b,c,o);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo5(1);
SELECT * FROM vw_getfoo;
DROP VIEW vw_getfoo;
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1) WITH ORDINALITY AS t1(a,b,c,o);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo5(1) WITH ORDINALITY AS t1(a,b,c,o);
SELECT * FROM vw_getfoo;
DROP VIEW vw_getfoo;
-- ordinality not supported for returns record yet
-- sql, proretset = f, prorettype = record
DROP VIEW vw_getfoo;
DROP FUNCTION getfoo(int);
CREATE FUNCTION getfoo(int) RETURNS RECORD AS 'SELECT * FROM foo WHERE fooid = $1;' LANGUAGE SQL;
SELECT * FROM getfoo(1) AS t1(fooid int, foosubid int, fooname text);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1) AS
CREATE FUNCTION getfoo6(int) RETURNS RECORD AS 'SELECT * FROM foo WHERE fooid = $1;' LANGUAGE SQL;
SELECT * FROM getfoo6(1) AS t1(fooid int, foosubid int, fooname text);
SELECT * FROM TABLE( getfoo6(1) AS (fooid int, foosubid int, fooname text) ) WITH ORDINALITY;
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo6(1) AS
(fooid int, foosubid int, fooname text);
SELECT * FROM vw_getfoo;
DROP VIEW vw_getfoo;
CREATE VIEW vw_getfoo AS
SELECT * FROM TABLE( getfoo6(1) AS (fooid int, foosubid int, fooname text) )
WITH ORDINALITY;
SELECT * FROM vw_getfoo;
DROP VIEW vw_getfoo;
-- sql, proretset = t, prorettype = record
DROP VIEW vw_getfoo;
DROP FUNCTION getfoo(int);
CREATE FUNCTION getfoo(int) RETURNS setof record AS 'SELECT * FROM foo WHERE fooid = $1;' LANGUAGE SQL;
SELECT * FROM getfoo(1) AS t1(fooid int, foosubid int, fooname text);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1) AS
CREATE FUNCTION getfoo7(int) RETURNS setof record AS 'SELECT * FROM foo WHERE fooid = $1;' LANGUAGE SQL;
SELECT * FROM getfoo7(1) AS t1(fooid int, foosubid int, fooname text);
SELECT * FROM TABLE( getfoo7(1) AS (fooid int, foosubid int, fooname text) ) WITH ORDINALITY;
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo7(1) AS
(fooid int, foosubid int, fooname text);
SELECT * FROM vw_getfoo;
DROP VIEW vw_getfoo;
CREATE VIEW vw_getfoo AS
SELECT * FROM TABLE( getfoo7(1) AS (fooid int, foosubid int, fooname text) )
WITH ORDINALITY;
SELECT * FROM vw_getfoo;
DROP VIEW vw_getfoo;
-- plpgsql, proretset = f, prorettype = b
DROP VIEW vw_getfoo;
DROP FUNCTION getfoo(int);
CREATE FUNCTION getfoo(int) RETURNS int AS 'DECLARE fooint int; BEGIN SELECT fooid into fooint FROM foo WHERE fooid = $1; RETURN fooint; END;' LANGUAGE plpgsql;
SELECT * FROM getfoo(1) AS t1;
SELECT * FROM getfoo(1) WITH ORDINALITY AS t1(v,o);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1);
CREATE FUNCTION getfoo8(int) RETURNS int AS 'DECLARE fooint int; BEGIN SELECT fooid into fooint FROM foo WHERE fooid = $1; RETURN fooint; END;' LANGUAGE plpgsql;
SELECT * FROM getfoo8(1) AS t1;
SELECT * FROM getfoo8(1) WITH ORDINALITY AS t1(v,o);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo8(1);
SELECT * FROM vw_getfoo;
DROP VIEW vw_getfoo;
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1) WITH ORDINALITY AS t1(v,o);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo8(1) WITH ORDINALITY AS t1(v,o);
SELECT * FROM vw_getfoo;
DROP VIEW vw_getfoo;
-- plpgsql, proretset = f, prorettype = c
DROP VIEW vw_getfoo;
DROP FUNCTION getfoo(int);
CREATE FUNCTION getfoo(int) RETURNS foo AS 'DECLARE footup foo%ROWTYPE; BEGIN SELECT * into footup FROM foo WHERE fooid = $1; RETURN footup; END;' LANGUAGE plpgsql;
SELECT * FROM getfoo(1) AS t1;
SELECT * FROM getfoo(1) WITH ORDINALITY AS t1(a,b,c,o);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1);
CREATE FUNCTION getfoo9(int) RETURNS foo AS 'DECLARE footup foo%ROWTYPE; BEGIN SELECT * into footup FROM foo WHERE fooid = $1; RETURN footup; END;' LANGUAGE plpgsql;
SELECT * FROM getfoo9(1) AS t1;
SELECT * FROM getfoo9(1) WITH ORDINALITY AS t1(a,b,c,o);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo9(1);
SELECT * FROM vw_getfoo;
DROP VIEW vw_getfoo;
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1) WITH ORDINALITY AS t1(a,b,c,o);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo9(1) WITH ORDINALITY AS t1(a,b,c,o);
SELECT * FROM vw_getfoo;
DROP VIEW vw_getfoo;
DROP VIEW vw_getfoo;
DROP FUNCTION getfoo(int);
-- mix 'n match kinds, to exercise expandRTE and related logic
select * from table(getfoo1(1),getfoo2(1),getfoo3(1),getfoo4(1),getfoo5(1),
getfoo6(1) AS (fooid int, foosubid int, fooname text),
getfoo7(1) AS (fooid int, foosubid int, fooname text),
getfoo8(1),getfoo9(1))
with ordinality as t1(a,b,c,d,e,f,g,h,i,j,k,l,m,o,p,q,r,s,t,u);
select * from table(getfoo9(1),getfoo8(1),
getfoo7(1) AS (fooid int, foosubid int, fooname text),
getfoo6(1) AS (fooid int, foosubid int, fooname text),
getfoo5(1),getfoo4(1),getfoo3(1),getfoo2(1),getfoo1(1))
with ordinality as t1(a,b,c,d,e,f,g,h,i,j,k,l,m,o,p,q,r,s,t,u);
create temporary view vw_foo as
select * from table(getfoo9(1),
getfoo7(1) AS (fooid int, foosubid int, fooname text),
getfoo1(1))
with ordinality as t1(a,b,c,d,e,f,g,n);
select * from vw_foo;
select pg_get_viewdef('vw_foo');
drop view vw_foo;
DROP FUNCTION getfoo1(int);
DROP FUNCTION getfoo2(int);
DROP FUNCTION getfoo3(int);
DROP FUNCTION getfoo4(int);
DROP FUNCTION getfoo5(int);
DROP FUNCTION getfoo6(int);
DROP FUNCTION getfoo7(int);
DROP FUNCTION getfoo8(int);
DROP FUNCTION getfoo9(int);
DROP FUNCTION foot(int);
DROP TABLE foo2;
DROP TABLE foo;
-- Rescan tests --
CREATE TEMPORARY SEQUENCE foo_rescan_seq;
CREATE TEMPORARY SEQUENCE foo_rescan_seq1;
CREATE TEMPORARY SEQUENCE foo_rescan_seq2;
CREATE TYPE foo_rescan_t AS (i integer, s bigint);
CREATE FUNCTION foo_sql(int,int) RETURNS setof foo_rescan_t AS 'SELECT i, nextval(''foo_rescan_seq'') FROM generate_series($1,$2) i;' LANGUAGE SQL;
CREATE FUNCTION foo_sql(int,int) RETURNS setof foo_rescan_t AS 'SELECT i, nextval(''foo_rescan_seq1'') FROM generate_series($1,$2) i;' LANGUAGE SQL;
-- plpgsql functions use materialize mode
CREATE FUNCTION foo_mat(int,int) RETURNS setof foo_rescan_t AS 'begin for i in $1..$2 loop return next (i, nextval(''foo_rescan_seq'')); end loop; end;' LANGUAGE plpgsql;
CREATE FUNCTION foo_mat(int,int) RETURNS setof foo_rescan_t AS 'begin for i in $1..$2 loop return next (i, nextval(''foo_rescan_seq2'')); end loop; end;' LANGUAGE plpgsql;
--invokes ExecReScanFunctionScan - all these cases should materialize the function only once
-- LEFT JOIN on a condition that the planner can't prove to be true is used to ensure the function
-- is on the inner path of a nestloop join
SELECT setval('foo_rescan_seq',1,false);
SELECT setval('foo_rescan_seq1',1,false),setval('foo_rescan_seq2',1,false);
SELECT * FROM (VALUES (1),(2),(3)) v(r) LEFT JOIN foo_sql(11,13) ON (r+i)<100;
SELECT setval('foo_rescan_seq',1,false);
SELECT setval('foo_rescan_seq1',1,false),setval('foo_rescan_seq2',1,false);
SELECT * FROM (VALUES (1),(2),(3)) v(r) LEFT JOIN foo_sql(11,13) WITH ORDINALITY AS f(i,s,o) ON (r+i)<100;
SELECT setval('foo_rescan_seq',1,false);
SELECT setval('foo_rescan_seq1',1,false),setval('foo_rescan_seq2',1,false);
SELECT * FROM (VALUES (1),(2),(3)) v(r) LEFT JOIN foo_mat(11,13) ON (r+i)<100;
SELECT setval('foo_rescan_seq',1,false);
SELECT setval('foo_rescan_seq1',1,false),setval('foo_rescan_seq2',1,false);
SELECT * FROM (VALUES (1),(2),(3)) v(r) LEFT JOIN foo_mat(11,13) WITH ORDINALITY AS f(i,s,o) ON (r+i)<100;
SELECT setval('foo_rescan_seq1',1,false),setval('foo_rescan_seq2',1,false);
SELECT * FROM (VALUES (1),(2),(3)) v(r) LEFT JOIN TABLE( foo_sql(11,13), foo_mat(11,13) ) WITH ORDINALITY AS f(i1,s1,i2,s2,o) ON (r+i1+i2)<100;
SELECT * FROM (VALUES (1),(2),(3)) v(r) LEFT JOIN generate_series(11,13) f(i) ON (r+i)<100;
SELECT * FROM (VALUES (1),(2),(3)) v(r) LEFT JOIN generate_series(11,13) WITH ORDINALITY AS f(i,o) ON (r+i)<100;
@ -193,32 +262,44 @@ SELECT * FROM (VALUES (1),(2),(3)) v(r) LEFT JOIN unnest(array[10,20,30]) WITH O
--invokes ExecReScanFunctionScan with chgParam != NULL (using implied LATERAL)
SELECT setval('foo_rescan_seq',1,false);
SELECT setval('foo_rescan_seq1',1,false),setval('foo_rescan_seq2',1,false);
SELECT * FROM (VALUES (1),(2),(3)) v(r), foo_sql(10+r,13);
SELECT setval('foo_rescan_seq',1,false);
SELECT setval('foo_rescan_seq1',1,false),setval('foo_rescan_seq2',1,false);
SELECT * FROM (VALUES (1),(2),(3)) v(r), foo_sql(10+r,13) WITH ORDINALITY AS f(i,s,o);
SELECT setval('foo_rescan_seq',1,false);
SELECT setval('foo_rescan_seq1',1,false),setval('foo_rescan_seq2',1,false);
SELECT * FROM (VALUES (1),(2),(3)) v(r), foo_sql(11,10+r);
SELECT setval('foo_rescan_seq',1,false);
SELECT setval('foo_rescan_seq1',1,false),setval('foo_rescan_seq2',1,false);
SELECT * FROM (VALUES (1),(2),(3)) v(r), foo_sql(11,10+r) WITH ORDINALITY AS f(i,s,o);
SELECT setval('foo_rescan_seq',1,false);
SELECT setval('foo_rescan_seq1',1,false),setval('foo_rescan_seq2',1,false);
SELECT * FROM (VALUES (11,12),(13,15),(16,20)) v(r1,r2), foo_sql(r1,r2);
SELECT setval('foo_rescan_seq',1,false);
SELECT setval('foo_rescan_seq1',1,false),setval('foo_rescan_seq2',1,false);
SELECT * FROM (VALUES (11,12),(13,15),(16,20)) v(r1,r2), foo_sql(r1,r2) WITH ORDINALITY AS f(i,s,o);
SELECT setval('foo_rescan_seq',1,false);
SELECT setval('foo_rescan_seq1',1,false),setval('foo_rescan_seq2',1,false);
SELECT * FROM (VALUES (1),(2),(3)) v(r), foo_mat(10+r,13);
SELECT setval('foo_rescan_seq',1,false);
SELECT setval('foo_rescan_seq1',1,false),setval('foo_rescan_seq2',1,false);
SELECT * FROM (VALUES (1),(2),(3)) v(r), foo_mat(10+r,13) WITH ORDINALITY AS f(i,s,o);
SELECT setval('foo_rescan_seq',1,false);
SELECT setval('foo_rescan_seq1',1,false),setval('foo_rescan_seq2',1,false);
SELECT * FROM (VALUES (1),(2),(3)) v(r), foo_mat(11,10+r);
SELECT setval('foo_rescan_seq',1,false);
SELECT setval('foo_rescan_seq1',1,false),setval('foo_rescan_seq2',1,false);
SELECT * FROM (VALUES (1),(2),(3)) v(r), foo_mat(11,10+r) WITH ORDINALITY AS f(i,s,o);
SELECT setval('foo_rescan_seq',1,false);
SELECT setval('foo_rescan_seq1',1,false),setval('foo_rescan_seq2',1,false);
SELECT * FROM (VALUES (11,12),(13,15),(16,20)) v(r1,r2), foo_mat(r1,r2);
SELECT setval('foo_rescan_seq',1,false);
SELECT setval('foo_rescan_seq1',1,false),setval('foo_rescan_seq2',1,false);
SELECT * FROM (VALUES (11,12),(13,15),(16,20)) v(r1,r2), foo_mat(r1,r2) WITH ORDINALITY AS f(i,s,o);
-- selective rescan of multiple functions:
SELECT setval('foo_rescan_seq1',1,false),setval('foo_rescan_seq2',1,false);
SELECT * FROM (VALUES (1),(2),(3)) v(r), TABLE( foo_sql(11,11), foo_mat(10+r,13) );
SELECT setval('foo_rescan_seq1',1,false),setval('foo_rescan_seq2',1,false);
SELECT * FROM (VALUES (1),(2),(3)) v(r), TABLE( foo_sql(10+r,13), foo_mat(11,11) );
SELECT setval('foo_rescan_seq1',1,false),setval('foo_rescan_seq2',1,false);
SELECT * FROM (VALUES (1),(2),(3)) v(r), TABLE( foo_sql(10+r,13), foo_mat(10+r,13) );
SELECT setval('foo_rescan_seq1',1,false),setval('foo_rescan_seq2',1,false);
SELECT * FROM generate_series(1,2) r1, generate_series(r1,3) r2, TABLE( foo_sql(10+r1,13), foo_mat(10+r2,13) );
SELECT * FROM (VALUES (1),(2),(3)) v(r), generate_series(10+r,20-r) f(i);
SELECT * FROM (VALUES (1),(2),(3)) v(r), generate_series(10+r,20-r) WITH ORDINALITY AS f(i,o);
@ -242,7 +323,8 @@ SELECT * FROM (VALUES (1),(2),(3)) v1(r1),
DROP FUNCTION foo_sql(int,int);
DROP FUNCTION foo_mat(int,int);
DROP SEQUENCE foo_rescan_seq;
DROP SEQUENCE foo_rescan_seq1;
DROP SEQUENCE foo_rescan_seq2;
--
-- Test cases involving OUT parameters
@ -444,12 +526,12 @@ select * from testfoo(); -- fail
drop function testfoo();
--
-- Check some cases involving dropped columns in a rowtype result
-- Check some cases involving added/dropped columns in a rowtype result
--
create temp table users (userid text, email text, todrop bool, enabled bool);
insert into users values ('id','email',true,true);
insert into users values ('id2','email2',true,true);
create temp table users (userid text, seq int, email text, todrop bool, moredrop int, enabled bool);
insert into users values ('id',1,'email',true,11,true);
insert into users values ('id2',2,'email2',true,12,true);
alter table users drop column todrop;
create or replace function get_first_user() returns users as
@ -467,6 +549,23 @@ SELECT get_users();
SELECT * FROM get_users();
SELECT * FROM get_users() WITH ORDINALITY; -- make sure ordinality copes
-- multiple functions vs. dropped columns
SELECT * FROM TABLE(generate_series(10,11), get_users()) WITH ORDINALITY;
SELECT * FROM TABLE(get_users(), generate_series(10,11)) WITH ORDINALITY;
-- check that we can cope with post-parsing changes in rowtypes
create temp view usersview as
SELECT * FROM TABLE(get_users(), generate_series(10,11)) WITH ORDINALITY;
select * from usersview;
alter table users drop column moredrop;
select * from usersview;
alter table users add column junk text;
select * from usersview;
alter table users alter column seq type numeric;
select * from usersview; -- expect clean failure
drop view usersview;
drop function get_first_user();
drop function get_users();
drop table users;