Revert indexed and enlargable binary heap implementation.

This reverts commit b840508644 and bcb14f4abc. These commits were made
for commit 5bec1d6bc5 (Improve eviction algorithm in ReorderBuffer
using max-heap for many subtransactions). However, per discussion,
commit efb8acc0d0 replaced binary heap + index with pairing heap, and
made these commits unnecessary.

Reported-by: Jeff Davis
Discussion: https://postgr.es/m/12747c15811d94efcc5cda72d6b35c80d7bf3443.camel%40j-davis.com
This commit is contained in:
Masahiko Sawada 2024-04-11 17:18:05 +09:00
parent efb8acc0d0
commit 810f64a015
10 changed files with 38 additions and 259 deletions

View File

@ -422,7 +422,6 @@ gather_merge_setup(GatherMergeState *gm_state)
/* Allocate the resources for the merge */ /* Allocate the resources for the merge */
gm_state->gm_heap = binaryheap_allocate(nreaders + 1, gm_state->gm_heap = binaryheap_allocate(nreaders + 1,
heap_compare_slots, heap_compare_slots,
false,
gm_state); gm_state);
} }

View File

@ -125,7 +125,7 @@ ExecInitMergeAppend(MergeAppend *node, EState *estate, int eflags)
mergestate->ms_nplans = nplans; mergestate->ms_nplans = nplans;
mergestate->ms_slots = (TupleTableSlot **) palloc0(sizeof(TupleTableSlot *) * nplans); mergestate->ms_slots = (TupleTableSlot **) palloc0(sizeof(TupleTableSlot *) * nplans);
mergestate->ms_heap = binaryheap_allocate(nplans, heap_compare_slots, false, mergestate->ms_heap = binaryheap_allocate(nplans, heap_compare_slots,
mergestate); mergestate);
/* /*

View File

@ -258,8 +258,7 @@ PgArchiverMain(char *startup_data, size_t startup_data_len)
/* Initialize our max-heap for prioritizing files to archive. */ /* Initialize our max-heap for prioritizing files to archive. */
arch_files->arch_heap = binaryheap_allocate(NUM_FILES_PER_DIRECTORY_SCAN, arch_files->arch_heap = binaryheap_allocate(NUM_FILES_PER_DIRECTORY_SCAN,
ready_file_comparator, false, ready_file_comparator, NULL);
NULL);
/* Initialize our memory context. */ /* Initialize our memory context. */
archive_context = AllocSetContextCreate(TopMemoryContext, archive_context = AllocSetContextCreate(TopMemoryContext,

View File

@ -1303,7 +1303,6 @@ ReorderBufferIterTXNInit(ReorderBuffer *rb, ReorderBufferTXN *txn,
/* allocate heap */ /* allocate heap */
state->heap = binaryheap_allocate(state->nr_txns, state->heap = binaryheap_allocate(state->nr_txns,
ReorderBufferIterCompare, ReorderBufferIterCompare,
false,
state); state);
/* Now that the state fields are initialized, it is safe to return it. */ /* Now that the state fields are initialized, it is safe to return it. */

View File

@ -3014,7 +3014,6 @@ BufferSync(int flags)
*/ */
ts_heap = binaryheap_allocate(num_spaces, ts_heap = binaryheap_allocate(num_spaces,
ts_ckpt_progress_comparator, ts_ckpt_progress_comparator,
false,
NULL); NULL);
for (i = 0; i < num_spaces; i++) for (i = 0; i < num_spaces; i++)

View File

@ -4200,7 +4200,6 @@ restore_toc_entries_parallel(ArchiveHandle *AH, ParallelState *pstate,
/* Set up ready_heap with enough room for all known TocEntrys */ /* Set up ready_heap with enough room for all known TocEntrys */
ready_heap = binaryheap_allocate(AH->tocCount, ready_heap = binaryheap_allocate(AH->tocCount,
TocEntrySizeCompareBinaryheap, TocEntrySizeCompareBinaryheap,
false,
NULL); NULL);
/* /*

View File

@ -405,7 +405,7 @@ TopoSort(DumpableObject **objs,
return true; return true;
/* Create workspace for the above-described heap */ /* Create workspace for the above-described heap */
pendingHeap = binaryheap_allocate(numObjs, int_cmp, false, NULL); pendingHeap = binaryheap_allocate(numObjs, int_cmp, NULL);
/* /*
* Scan the constraints, and for each item in the input, generate a count * Scan the constraints, and for each item in the input, generate a count

View File

@ -22,70 +22,33 @@
#ifdef FRONTEND #ifdef FRONTEND
#include "common/logging.h" #include "common/logging.h"
#endif #endif
#include "common/hashfn.h"
#include "lib/binaryheap.h" #include "lib/binaryheap.h"
/*
* Define parameters for hash table code generation. The interface is *also*
* declared in binaryheap.h (to generate the types, which are externally
* visible).
*/
#define SH_PREFIX bh_nodeidx
#define SH_ELEMENT_TYPE bh_nodeidx_entry
#define SH_KEY_TYPE bh_node_type
#define SH_KEY key
#define SH_HASH_KEY(tb, key) \
hash_bytes((const unsigned char *) &key, sizeof(bh_node_type))
#define SH_EQUAL(tb, a, b) (memcmp(&a, &b, sizeof(bh_node_type)) == 0)
#define SH_SCOPE extern
#ifdef FRONTEND
#define SH_RAW_ALLOCATOR pg_malloc0
#endif
#define SH_STORE_HASH
#define SH_GET_HASH(tb, a) a->hash
#define SH_DEFINE
#include "lib/simplehash.h"
static void sift_down(binaryheap *heap, int node_off); static void sift_down(binaryheap *heap, int node_off);
static void sift_up(binaryheap *heap, int node_off); static void sift_up(binaryheap *heap, int node_off);
/* /*
* binaryheap_allocate * binaryheap_allocate
* *
* Returns a pointer to a newly-allocated heap with the given initial number * Returns a pointer to a newly-allocated heap that has the capacity to
* of nodes, and with the heap property defined by the given comparator * store the given number of nodes, with the heap property defined by
* function, which will be invoked with the additional argument specified by * the given comparator function, which will be invoked with the additional
* 'arg'. * argument specified by 'arg'.
*
* If 'indexed' is true, we create a hash table to track each node's
* index in the heap, enabling to perform some operations such as
* binaryheap_remove_node_ptr() etc.
*/ */
binaryheap * binaryheap *
binaryheap_allocate(int num_nodes, binaryheap_comparator compare, binaryheap_allocate(int capacity, binaryheap_comparator compare, void *arg)
bool indexed, void *arg)
{ {
int sz;
binaryheap *heap; binaryheap *heap;
heap = (binaryheap *) palloc(sizeof(binaryheap)); sz = offsetof(binaryheap, bh_nodes) + sizeof(bh_node_type) * capacity;
heap->bh_space = num_nodes; heap = (binaryheap *) palloc(sz);
heap->bh_space = capacity;
heap->bh_compare = compare; heap->bh_compare = compare;
heap->bh_arg = arg; heap->bh_arg = arg;
heap->bh_size = 0; heap->bh_size = 0;
heap->bh_has_heap_property = true; heap->bh_has_heap_property = true;
heap->bh_nodes = (bh_node_type *) palloc(sizeof(bh_node_type) * num_nodes);
heap->bh_nodeidx = NULL;
if (indexed)
{
#ifdef FRONTEND
heap->bh_nodeidx = bh_nodeidx_create(num_nodes, NULL);
#else
heap->bh_nodeidx = bh_nodeidx_create(CurrentMemoryContext, num_nodes,
NULL);
#endif
}
return heap; return heap;
} }
@ -101,9 +64,6 @@ binaryheap_reset(binaryheap *heap)
{ {
heap->bh_size = 0; heap->bh_size = 0;
heap->bh_has_heap_property = true; heap->bh_has_heap_property = true;
if (binaryheap_indexed(heap))
bh_nodeidx_reset(heap->bh_nodeidx);
} }
/* /*
@ -114,10 +74,6 @@ binaryheap_reset(binaryheap *heap)
void void
binaryheap_free(binaryheap *heap) binaryheap_free(binaryheap *heap)
{ {
if (binaryheap_indexed(heap))
bh_nodeidx_destroy(heap->bh_nodeidx);
pfree(heap->bh_nodes);
pfree(heap); pfree(heap);
} }
@ -148,78 +104,6 @@ parent_offset(int i)
return (i - 1) / 2; return (i - 1) / 2;
} }
/*
* Double the space allocated for nodes.
*/
static void
enlarge_node_array(binaryheap *heap)
{
heap->bh_space *= 2;
heap->bh_nodes = repalloc(heap->bh_nodes,
sizeof(bh_node_type) * heap->bh_space);
}
/*
* Set the given node at the 'index' and track it if required.
*
* Return true if the node's index is already tracked.
*/
static bool
set_node(binaryheap *heap, bh_node_type node, int index)
{
bool found = false;
/* Set the node to the nodes array */
heap->bh_nodes[index] = node;
if (binaryheap_indexed(heap))
{
bh_nodeidx_entry *ent;
/* Keep track of the node index */
ent = bh_nodeidx_insert(heap->bh_nodeidx, node, &found);
ent->index = index;
}
return found;
}
/*
* Remove the node's index from the hash table if the heap is indexed.
*/
static inline void
delete_nodeidx(binaryheap *heap, bh_node_type node)
{
if (binaryheap_indexed(heap))
bh_nodeidx_delete(heap->bh_nodeidx, node);
}
/*
* Replace the existing node at 'idx' with the given 'new_node'. Also
* update their positions accordingly. Note that we assume the new_node's
* position is already tracked if enabled, i.e. the new_node is already
* present in the heap.
*/
static void
replace_node(binaryheap *heap, int index, bh_node_type new_node)
{
bool found PG_USED_FOR_ASSERTS_ONLY;
/* Quick return if not necessary to move */
if (heap->bh_nodes[index] == new_node)
return;
/* Remove the overwritten node's index */
delete_nodeidx(heap, heap->bh_nodes[index]);
/*
* Replace it with the given new node. This node's position must also be
* tracked as we assume to replace the node with the existing node.
*/
found = set_node(heap, new_node, index);
Assert(!binaryheap_indexed(heap) || found);
}
/* /*
* binaryheap_add_unordered * binaryheap_add_unordered
* *
@ -231,12 +115,16 @@ replace_node(binaryheap *heap, int index, bh_node_type new_node)
void void
binaryheap_add_unordered(binaryheap *heap, bh_node_type d) binaryheap_add_unordered(binaryheap *heap, bh_node_type d)
{ {
/* make sure enough space for a new node */
if (heap->bh_size >= heap->bh_space) if (heap->bh_size >= heap->bh_space)
enlarge_node_array(heap); {
#ifdef FRONTEND
pg_fatal("out of binary heap slots");
#else
elog(ERROR, "out of binary heap slots");
#endif
}
heap->bh_has_heap_property = false; heap->bh_has_heap_property = false;
set_node(heap, d, heap->bh_size); heap->bh_nodes[heap->bh_size] = d;
heap->bh_size++; heap->bh_size++;
} }
@ -265,11 +153,15 @@ binaryheap_build(binaryheap *heap)
void void
binaryheap_add(binaryheap *heap, bh_node_type d) binaryheap_add(binaryheap *heap, bh_node_type d)
{ {
/* make sure enough space for a new node */
if (heap->bh_size >= heap->bh_space) if (heap->bh_size >= heap->bh_space)
enlarge_node_array(heap); {
#ifdef FRONTEND
set_node(heap, d, heap->bh_size); pg_fatal("out of binary heap slots");
#else
elog(ERROR, "out of binary heap slots");
#endif
}
heap->bh_nodes[heap->bh_size] = d;
heap->bh_size++; heap->bh_size++;
sift_up(heap, heap->bh_size - 1); sift_up(heap, heap->bh_size - 1);
} }
@ -310,8 +202,6 @@ binaryheap_remove_first(binaryheap *heap)
if (heap->bh_size == 1) if (heap->bh_size == 1)
{ {
heap->bh_size--; heap->bh_size--;
delete_nodeidx(heap, result);
return result; return result;
} }
@ -319,7 +209,7 @@ binaryheap_remove_first(binaryheap *heap)
* Remove the last node, placing it in the vacated root entry, and sift * Remove the last node, placing it in the vacated root entry, and sift
* the new root node down to its correct position. * the new root node down to its correct position.
*/ */
replace_node(heap, 0, heap->bh_nodes[--heap->bh_size]); heap->bh_nodes[0] = heap->bh_nodes[--heap->bh_size];
sift_down(heap, 0); sift_down(heap, 0);
return result; return result;
@ -345,7 +235,7 @@ binaryheap_remove_node(binaryheap *heap, int n)
heap->bh_arg); heap->bh_arg);
/* remove the last node, placing it in the vacated entry */ /* remove the last node, placing it in the vacated entry */
replace_node(heap, n, heap->bh_nodes[heap->bh_size]); heap->bh_nodes[n] = heap->bh_nodes[heap->bh_size];
/* sift as needed to preserve the heap property */ /* sift as needed to preserve the heap property */
if (cmp > 0) if (cmp > 0)
@ -354,77 +244,6 @@ binaryheap_remove_node(binaryheap *heap, int n)
sift_down(heap, n); sift_down(heap, n);
} }
/*
* binaryheap_remove_node_ptr
*
* Similar to binaryheap_remove_node() but removes the given node. The caller
* must ensure that the given node is in the heap. O(log n) worst case.
*
* This function can be used only if the heap is indexed.
*/
void
binaryheap_remove_node_ptr(binaryheap *heap, bh_node_type d)
{
bh_nodeidx_entry *ent;
Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property);
Assert(binaryheap_indexed(heap));
ent = bh_nodeidx_lookup(heap->bh_nodeidx, d);
Assert(ent);
binaryheap_remove_node(heap, ent->index);
}
/*
* Workhorse for binaryheap_update_up and binaryheap_update_down.
*/
static void
resift_node(binaryheap *heap, bh_node_type node, bool sift_dir_up)
{
bh_nodeidx_entry *ent;
Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property);
Assert(binaryheap_indexed(heap));
ent = bh_nodeidx_lookup(heap->bh_nodeidx, node);
Assert(ent);
Assert(ent->index >= 0 && ent->index < heap->bh_size);
if (sift_dir_up)
sift_up(heap, ent->index);
else
sift_down(heap, ent->index);
}
/*
* binaryheap_update_up
*
* Sift the given node up after the node's key is updated. The caller must
* ensure that the given node is in the heap. O(log n) worst case.
*
* This function can be used only if the heap is indexed.
*/
void
binaryheap_update_up(binaryheap *heap, bh_node_type d)
{
resift_node(heap, d, true);
}
/*
* binaryheap_update_down
*
* Sift the given node down after the node's key is updated. The caller must
* ensure that the given node is in the heap. O(log n) worst case.
*
* This function can be used only if the heap is indexed.
*/
void
binaryheap_update_down(binaryheap *heap, bh_node_type d)
{
resift_node(heap, d, false);
}
/* /*
* binaryheap_replace_first * binaryheap_replace_first
* *
@ -437,7 +256,7 @@ binaryheap_replace_first(binaryheap *heap, bh_node_type d)
{ {
Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property); Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property);
replace_node(heap, 0, d); heap->bh_nodes[0] = d;
if (heap->bh_size > 1) if (heap->bh_size > 1)
sift_down(heap, 0); sift_down(heap, 0);
@ -479,11 +298,11 @@ sift_up(binaryheap *heap, int node_off)
* Otherwise, swap the parent value with the hole, and go on to check * Otherwise, swap the parent value with the hole, and go on to check
* the node's new parent. * the node's new parent.
*/ */
set_node(heap, parent_val, node_off); heap->bh_nodes[node_off] = parent_val;
node_off = parent_off; node_off = parent_off;
} }
/* Re-fill the hole */ /* Re-fill the hole */
set_node(heap, node_val, node_off); heap->bh_nodes[node_off] = node_val;
} }
/* /*
@ -538,9 +357,9 @@ sift_down(binaryheap *heap, int node_off)
* Otherwise, swap the hole with the child that violates the heap * Otherwise, swap the hole with the child that violates the heap
* property; then go on to check its children. * property; then go on to check its children.
*/ */
set_node(heap, heap->bh_nodes[swap_off], node_off); heap->bh_nodes[node_off] = heap->bh_nodes[swap_off];
node_off = swap_off; node_off = swap_off;
} }
/* Re-fill the hole */ /* Re-fill the hole */
set_node(heap, node_val, node_off); heap->bh_nodes[node_off] = node_val;
} }

View File

@ -29,29 +29,6 @@ typedef Datum bh_node_type;
*/ */
typedef int (*binaryheap_comparator) (bh_node_type a, bh_node_type b, void *arg); typedef int (*binaryheap_comparator) (bh_node_type a, bh_node_type b, void *arg);
/*
* Struct for a hash table element to store the node's index in the bh_nodes
* array.
*/
typedef struct bh_nodeidx_entry
{
bh_node_type key;
int index; /* entry's index within the node array */
char status; /* hash status */
uint32 hash; /* hash values (cached) */
} bh_nodeidx_entry;
/* Define parameters necessary to generate the hash table interface. */
#define SH_PREFIX bh_nodeidx
#define SH_ELEMENT_TYPE bh_nodeidx_entry
#define SH_KEY_TYPE bh_node_type
#define SH_SCOPE extern
#ifdef FRONTEND
#define SH_RAW_ALLOCATOR pg_malloc0
#endif
#define SH_DECLARE
#include "lib/simplehash.h"
/* /*
* binaryheap * binaryheap
* *
@ -69,19 +46,12 @@ typedef struct binaryheap
bool bh_has_heap_property; /* debugging cross-check */ bool bh_has_heap_property; /* debugging cross-check */
binaryheap_comparator bh_compare; binaryheap_comparator bh_compare;
void *bh_arg; void *bh_arg;
bh_node_type *bh_nodes; bh_node_type bh_nodes[FLEXIBLE_ARRAY_MEMBER];
/*
* If bh_nodeidx is not NULL, the bh_nodeidx is used to track of each
* node's index in bh_nodes. This enables the caller to perform
* binaryheap_remove_node_ptr(), binaryheap_update_up/down in O(log n).
*/
bh_nodeidx_hash *bh_nodeidx;
} binaryheap; } binaryheap;
extern binaryheap *binaryheap_allocate(int num_nodes, extern binaryheap *binaryheap_allocate(int capacity,
binaryheap_comparator compare, binaryheap_comparator compare,
bool indexed, void *arg); void *arg);
extern void binaryheap_reset(binaryheap *heap); extern void binaryheap_reset(binaryheap *heap);
extern void binaryheap_free(binaryheap *heap); extern void binaryheap_free(binaryheap *heap);
extern void binaryheap_add_unordered(binaryheap *heap, bh_node_type d); extern void binaryheap_add_unordered(binaryheap *heap, bh_node_type d);
@ -90,14 +60,10 @@ extern void binaryheap_add(binaryheap *heap, bh_node_type d);
extern bh_node_type binaryheap_first(binaryheap *heap); extern bh_node_type binaryheap_first(binaryheap *heap);
extern bh_node_type binaryheap_remove_first(binaryheap *heap); extern bh_node_type binaryheap_remove_first(binaryheap *heap);
extern void binaryheap_remove_node(binaryheap *heap, int n); extern void binaryheap_remove_node(binaryheap *heap, int n);
extern void binaryheap_remove_node_ptr(binaryheap *heap, bh_node_type d);
extern void binaryheap_replace_first(binaryheap *heap, bh_node_type d); extern void binaryheap_replace_first(binaryheap *heap, bh_node_type d);
extern void binaryheap_update_up(binaryheap *heap, bh_node_type d);
extern void binaryheap_update_down(binaryheap *heap, bh_node_type d);
#define binaryheap_empty(h) ((h)->bh_size == 0) #define binaryheap_empty(h) ((h)->bh_size == 0)
#define binaryheap_size(h) ((h)->bh_size) #define binaryheap_size(h) ((h)->bh_size)
#define binaryheap_get_node(h, n) ((h)->bh_nodes[n]) #define binaryheap_get_node(h, n) ((h)->bh_nodes[n])
#define binaryheap_indexed(h) ((h)->bh_nodeidx != NULL)
#endif /* BINARYHEAP_H */ #endif /* BINARYHEAP_H */

View File

@ -4125,4 +4125,3 @@ TidStoreIter
TidStoreIterResult TidStoreIterResult
BlocktableEntry BlocktableEntry
ItemArray ItemArray
bh_nodeidx_entry