Support ordered-set (WITHIN GROUP) aggregates.

This patch introduces generic support for ordered-set and hypothetical-set
aggregate functions, as well as implementations of the instances defined in
SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(),
percent_rank(), cume_dist()).  We also added mode() though it is not in the
spec, as well as versions of percentile_cont() and percentile_disc() that
can compute multiple percentile values in one pass over the data.

Unlike the original submission, this patch puts full control of the sorting
process in the hands of the aggregate's support functions.  To allow the
support functions to find out how they're supposed to sort, a new API
function AggGetAggref() is added to nodeAgg.c.  This allows retrieval of
the aggregate call's Aggref node, which may have other uses beyond the
immediate need.  There is also support for ordered-set aggregates to
install cleanup callback functions, so that they can be sure that
infrastructure such as tuplesort objects gets cleaned up.

In passing, make some fixes in the recently-added support for variadic
aggregates, and make some editorial adjustments in the recent FILTER
additions for aggregates.  Also, simplify use of IsBinaryCoercible() by
allowing it to succeed whenever the target type is ANY or ANYELEMENT.
It was inconsistent that it dealt with other polymorphic target types
but not these.

Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing,
and rather heavily editorialized upon by Tom Lane
This commit is contained in:
Tom Lane 2013-12-23 16:11:35 -05:00
parent 37484ad2aa
commit 8d65da1f01
64 changed files with 4686 additions and 755 deletions

View File

@ -1586,6 +1586,7 @@ JumbleExpr(pgssJumbleState *jstate, Node *node)
Aggref *expr = (Aggref *) node;
APP_JUMB(expr->aggfnoid);
JumbleExpr(jstate, (Node *) expr->aggdirectargs);
JumbleExpr(jstate, (Node *) expr->args);
JumbleExpr(jstate, (Node *) expr->aggorder);
JumbleExpr(jstate, (Node *) expr->aggdistinct);

View File

@ -348,6 +348,27 @@
<entry><literal><link linkend="catalog-pg-proc"><structname>pg_proc</structname></link>.oid</literal></entry>
<entry><structname>pg_proc</structname> OID of the aggregate function</entry>
</row>
<row>
<entry><structfield>aggkind</structfield></entry>
<entry><type>char</type></entry>
<entry></entry>
<entry>Aggregate kind:
<literal>n</literal> for <quote>normal</> aggregates,
<literal>o</literal> for <quote>ordered-set</> aggregates, or
<literal>h</literal> for <quote>hypothetical-set</> aggregates
</entry>
</row>
<row>
<entry><structfield>aggnumdirectargs</structfield></entry>
<entry><type>int2</type></entry>
<entry></entry>
<entry>Number of direct (non-aggregated) arguments of an ordered-set or
hypothetical-set aggregate, counting a variadic array as one argument.
If equal to <structfield>pronargs</>, the aggregate must be variadic
and the variadic array describes the aggregated arguments as well as
the final direct arguments.
Always zero for normal aggregates.</entry>
</row>
<row>
<entry><structfield>aggtransfn</structfield></entry>
<entry><type>regproc</type></entry>

View File

@ -11560,10 +11560,13 @@ NULL baz</literallayout>(3 rows)</entry>
<para>
<firstterm>Aggregate functions</firstterm> compute a single result
from a set of input values. The built-in aggregate functions
from a set of input values. The built-in normal aggregate functions
are listed in
<xref linkend="functions-aggregate-table"> and
<xref linkend="functions-aggregate-statistics-table">.
The built-in ordered-set aggregate functions
are listed in <xref linkend="functions-orderedset-table"> and
<xref linkend="functions-hypothetical-table">.
The special syntax considerations for aggregate
functions are explained in <xref linkend="syntax-aggregates">.
Consult <xref linkend="tutorial-agg"> for additional introductory
@ -12307,6 +12310,290 @@ SELECT xmlagg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;
</tgroup>
</table>
<para>
<xref linkend="functions-orderedset-table"> shows some
aggregate functions that use the <firstterm>ordered-set aggregate</>
syntax. These functions are sometimes referred to as <quote>inverse
distribution</> functions.
</para>
<indexterm>
<primary>ordered-set aggregate</primary>
<secondary>built-in</secondary>
</indexterm>
<indexterm>
<primary>inverse distribution</primary>
</indexterm>
<table id="functions-orderedset-table">
<title>Ordered-Set Aggregate Functions</title>
<tgroup cols="5">
<thead>
<row>
<entry>Function</entry>
<entry>Direct Argument Type(s)</entry>
<entry>Aggregated Argument Type(s)</entry>
<entry>Return Type</entry>
<entry>Description</entry>
</row>
</thead>
<tbody>
<row>
<entry>
<indexterm>
<primary>mode</primary>
<secondary>statistical</secondary>
</indexterm>
<function>mode() WITHIN GROUP (ORDER BY <replaceable class="parameter">sort_expression</replaceable>)</function>
</entry>
<entry>
</entry>
<entry>
any sortable type
</entry>
<entry>
same as sort expression
</entry>
<entry>
returns the most frequent input value (arbitrarily choosing the first
one if there are multiple equally-frequent results)
</entry>
</row>
<row>
<entry>
<indexterm>
<primary>percentile</primary>
<secondary>continuous</secondary>
</indexterm>
<indexterm>
<primary>median</primary>
</indexterm>
<function>percentile_cont(<replaceable class="parameter">fraction</replaceable>) WITHIN GROUP (ORDER BY <replaceable class="parameter">sort_expression</replaceable>)</function>
</entry>
<entry>
<type>double precision</type>
</entry>
<entry>
<type>double precision</type> or <type>interval</type>
</entry>
<entry>
same as sort expression
</entry>
<entry>
continuous percentile: returns a value corresponding to the specified
fraction in the ordering, interpolating between adjacent input items if
needed
</entry>
</row>
<row>
<entry>
<function>percentile_cont(<replaceable class="parameter">fractions</replaceable>) WITHIN GROUP (ORDER BY <replaceable class="parameter">sort_expression</replaceable>)</function>
</entry>
<entry>
<type>double precision[]</type>
</entry>
<entry>
<type>double precision</type> or <type>interval</type>
</entry>
<entry>
array of sort expression's type
</entry>
<entry>
multiple continuous percentile: returns an array of results matching
the shape of the <literal>fractions</literal> parameter, with each
non-null element replaced by the value corresponding to that percentile
</entry>
</row>
<row>
<entry>
<indexterm>
<primary>percentile</primary>
<secondary>discrete</secondary>
</indexterm>
<function>percentile_disc(<replaceable class="parameter">fraction</replaceable>) WITHIN GROUP (ORDER BY <replaceable class="parameter">sort_expression</replaceable>)</function>
</entry>
<entry>
<type>double precision</type>
</entry>
<entry>
any sortable type
</entry>
<entry>
same as sort expression
</entry>
<entry>
discrete percentile: returns the first input value whose position in
the ordering equals or exceeds the specified fraction
</entry>
</row>
<row>
<entry>
<function>percentile_disc(<replaceable class="parameter">fractions</replaceable>) WITHIN GROUP (ORDER BY <replaceable class="parameter">sort_expression</replaceable>)</function>
</entry>
<entry>
<type>double precision[]</type>
</entry>
<entry>
any sortable type
</entry>
<entry>
array of sort expression's type
</entry>
<entry>
multiple discrete percentile: returns an array of results matching the
shape of the <literal>fractions</literal> parameter, with each non-null
element replaced by the input value corresponding to that percentile
</entry>
</row>
</tbody>
</tgroup>
</table>
<para>
All the aggregates listed in <xref linkend="functions-orderedset-table">
ignore null values in their sorted input. For those that take
a <replaceable>fraction</replaceable> parameter, the fraction value must be
between 0 and 1; an error is thrown if not. However, a null fraction value
simply produces a null result.
</para>
<para>
Each of the aggregates listed in
<xref linkend="functions-hypothetical-table"> is associated with a
window function of the same name defined in
<xref linkend="functions-window">. In each case, the aggregate result
is the value that the associated window function would have
returned for the <quote>hypothetical</> row constructed from
<replaceable>args</replaceable>, if such a row had been added to the sorted
group of rows computed from the <replaceable>sorted_args</replaceable>.
</para>
<table id="functions-hypothetical-table">
<title>Hypothetical-Set Aggregate Functions</title>
<tgroup cols="5">
<thead>
<row>
<entry>Function</entry>
<entry>Direct Argument Type(s)</entry>
<entry>Aggregated Argument Type(s)</entry>
<entry>Return Type</entry>
<entry>Description</entry>
</row>
</thead>
<tbody>
<row>
<entry>
<indexterm>
<primary>rank</primary>
<secondary>hypothetical</secondary>
</indexterm>
<function>rank(<replaceable class="parameter">args</replaceable>) WITHIN GROUP (ORDER BY <replaceable class="parameter">sorted_args</replaceable>)</function>
</entry>
<entry>
<literal>VARIADIC</> <type>"any"</type>
</entry>
<entry>
<literal>VARIADIC</> <type>"any"</type>
</entry>
<entry>
<type>bigint</type>
</entry>
<entry>
rank of the hypothetical row, with gaps for duplicate rows
</entry>
</row>
<row>
<entry>
<indexterm>
<primary>dense_rank</primary>
<secondary>hypothetical</secondary>
</indexterm>
<function>dense_rank(<replaceable class="parameter">args</replaceable>) WITHIN GROUP (ORDER BY <replaceable class="parameter">sorted_args</replaceable>)</function>
</entry>
<entry>
<literal>VARIADIC</> <type>"any"</type>
</entry>
<entry>
<literal>VARIADIC</> <type>"any"</type>
</entry>
<entry>
<type>bigint</type>
</entry>
<entry>
rank of the hypothetical row, without gaps
</entry>
</row>
<row>
<entry>
<indexterm>
<primary>percent_rank</primary>
<secondary>hypothetical</secondary>
</indexterm>
<function>percent_rank(<replaceable class="parameter">args</replaceable>) WITHIN GROUP (ORDER BY <replaceable class="parameter">sorted_args</replaceable>)</function>
</entry>
<entry>
<literal>VARIADIC</> <type>"any"</type>
</entry>
<entry>
<literal>VARIADIC</> <type>"any"</type>
</entry>
<entry>
<type>double precision</type>
</entry>
<entry>
relative rank of the hypothetical row, ranging from 0 to 1
</entry>
</row>
<row>
<entry>
<indexterm>
<primary>cume_dist</primary>
<secondary>hypothetical</secondary>
</indexterm>
<function>cume_dist(<replaceable class="parameter">args</replaceable>) WITHIN GROUP (ORDER BY <replaceable class="parameter">sorted_args</replaceable>)</function>
</entry>
<entry>
<literal>VARIADIC</> <type>"any"</type>
</entry>
<entry>
<literal>VARIADIC</> <type>"any"</type>
</entry>
<entry>
<type>double precision</type>
</entry>
<entry>
relative rank of the hypothetical row, ranging from
1/<replaceable>N</> to 1
</entry>
</row>
</tbody>
</tgroup>
</table>
<para>
For each of these hypothetical-set aggregates, the list of direct arguments
given in <replaceable>args</replaceable> must match the number and types of
the aggregated arguments given in <replaceable>sorted_args</replaceable>.
Unlike most built-in aggregates, these aggregates are not strict, that is
they do not drop input rows containing nulls. Null values sort according
to the rule specified in the <literal>ORDER BY</> clause.
</para>
</sect1>
<sect1 id="functions-window">
@ -12332,9 +12619,10 @@ SELECT xmlagg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;
</para>
<para>
In addition to these functions, any built-in or user-defined aggregate
function can be used as a window function (see
<xref linkend="functions-aggregate"> for a list of the built-in aggregates).
In addition to these functions, any built-in or user-defined normal
aggregate function (but not ordered-set or hypothetical-set aggregates)
can be used as a window function; see
<xref linkend="functions-aggregate"> for a list of the built-in aggregates.
Aggregate functions act as window functions only when an <literal>OVER</>
clause follows the call; otherwise they act as regular aggregates.
</para>

View File

@ -21,12 +21,15 @@ PostgreSQL documentation
<refsynopsisdiv>
<synopsis>
ALTER AGGREGATE <replaceable>name</replaceable> ( [ <replaceable>argmode</replaceable> ] [ <replaceable>arg_name</replaceable> ] <replaceable>arg_data_type</replaceable> [ , ... ] )
RENAME TO <replaceable>new_name</replaceable>
ALTER AGGREGATE <replaceable>name</replaceable> ( [ <replaceable>argmode</replaceable> ] [ <replaceable>arg_name</replaceable> ] <replaceable>arg_data_type</replaceable> [ , ... ] )
OWNER TO <replaceable>new_owner</replaceable>
ALTER AGGREGATE <replaceable>name</replaceable> ( [ <replaceable>argmode</replaceable> ] [ <replaceable>arg_name</replaceable> ] <replaceable>arg_data_type</replaceable> [ , ... ] )
SET SCHEMA <replaceable>new_schema</replaceable>
ALTER AGGREGATE <replaceable>name</replaceable> ( <replaceable>aggregate_signature</replaceable> ) RENAME TO <replaceable>new_name</replaceable>
ALTER AGGREGATE <replaceable>name</replaceable> ( <replaceable>aggregate_signature</replaceable> ) OWNER TO <replaceable>new_owner</replaceable>
ALTER AGGREGATE <replaceable>name</replaceable> ( <replaceable>aggregate_signature</replaceable> ) SET SCHEMA <replaceable>new_schema</replaceable>
<phrase>where <replaceable>aggregate_signature</replaceable> is:</phrase>
* |
[ <replaceable>argmode</replaceable> ] [ <replaceable>argname</replaceable> ] <replaceable>argtype</replaceable> [ , ... ] |
[ [ <replaceable>argmode</replaceable> ] [ <replaceable>argname</replaceable> ] <replaceable>argtype</replaceable> [ , ... ] ] ORDER BY [ <replaceable>argmode</replaceable> ] [ <replaceable>argname</replaceable> ] <replaceable>argtype</replaceable> [ , ... ]
</synopsis>
</refsynopsisdiv>
@ -76,7 +79,7 @@ ALTER AGGREGATE <replaceable>name</replaceable> ( [ <replaceable>argmode</replac
</varlistentry>
<varlistentry>
<term><replaceable class="parameter">arg_name</replaceable></term>
<term><replaceable class="parameter">argname</replaceable></term>
<listitem>
<para>
@ -89,12 +92,15 @@ ALTER AGGREGATE <replaceable>name</replaceable> ( [ <replaceable>argmode</replac
</varlistentry>
<varlistentry>
<term><replaceable class="parameter">arg_data_type</replaceable></term>
<term><replaceable class="parameter">argtype</replaceable></term>
<listitem>
<para>
An input data type on which the aggregate function operates.
To reference a zero-argument aggregate function, write <literal>*</>
in place of the list of argument specifications.
To reference an ordered-set aggregate function, write
<literal>ORDER BY</> between the direct and aggregated argument
specifications.
</para>
</listitem>
</varlistentry>
@ -128,6 +134,21 @@ ALTER AGGREGATE <replaceable>name</replaceable> ( [ <replaceable>argmode</replac
</variablelist>
</refsect1>
<refsect1>
<title>Notes</title>
<para>
The recommended syntax for referencing an ordered-set aggregate
is to write <literal>ORDER BY</> between the direct and aggregated
argument specifications, in the same style as in
<xref linkend="sql-createaggregate">. However, it will also work to
omit <literal>ORDER BY</> and just run the direct and aggregated
argument specifications into a single list. In this abbreviated form,
if <literal>VARIADIC "any"</> was used in both the direct and
aggregated argument lists, write <literal>VARIADIC "any"</> only once.
</para>
</refsect1>
<refsect1>
<title>Examples</title>
@ -148,11 +169,17 @@ ALTER AGGREGATE myavg(integer) OWNER TO joe;
</para>
<para>
To move the aggregate function <literal>myavg</literal> for type
<type>integer</type> into schema <literal>myschema</literal>:
To move the ordered-set aggregate <literal>mypercentile</literal> with
direct argument of type <type>float8</type> and aggregated argument
of type <type>integer</type> into schema <literal>myschema</literal>:
<programlisting>
ALTER AGGREGATE myavg(integer) SET SCHEMA myschema;
</programlisting></para>
ALTER AGGREGATE mypercentile(float8 ORDER BY integer) SET SCHEMA myschema;
</programlisting>
This will work too:
<programlisting>
ALTER AGGREGATE mypercentile(float8, integer) SET SCHEMA myschema;
</programlisting>
</para>
</refsect1>
<refsect1>

View File

@ -30,7 +30,7 @@ ALTER EXTENSION <replaceable class="PARAMETER">name</replaceable> DROP <replacea
<phrase>where <replaceable class="PARAMETER">member_object</replaceable> is:</phrase>
AGGREGATE <replaceable class="PARAMETER">agg_name</replaceable> ( [ <replaceable class="parameter">argmode</replaceable> ] [ <replaceable class="parameter">argname</replaceable> ] <replaceable class="parameter">agg_type</replaceable> [, ...] ) |
AGGREGATE <replaceable class="PARAMETER">aggregate_name</replaceable> ( <replaceable>aggregate_signature</replaceable> ) |
CAST (<replaceable>source_type</replaceable> AS <replaceable>target_type</replaceable>) |
COLLATION <replaceable class="PARAMETER">object_name</replaceable> |
CONVERSION <replaceable class="PARAMETER">object_name</replaceable> |
@ -54,6 +54,12 @@ ALTER EXTENSION <replaceable class="PARAMETER">name</replaceable> DROP <replacea
TEXT SEARCH TEMPLATE <replaceable class="PARAMETER">object_name</replaceable> |
TYPE <replaceable class="PARAMETER">object_name</replaceable> |
VIEW <replaceable class="PARAMETER">object_name</replaceable>
<phrase>and <replaceable>aggregate_signature</replaceable> is:</phrase>
* |
[ <replaceable>argmode</replaceable> ] [ <replaceable>argname</replaceable> ] <replaceable>argtype</replaceable> [ , ... ] |
[ [ <replaceable>argmode</replaceable> ] [ <replaceable>argname</replaceable> ] <replaceable>argtype</replaceable> [ , ... ] ] ORDER BY [ <replaceable>argmode</replaceable> ] [ <replaceable>argname</replaceable> ] <replaceable>argtype</replaceable> [ , ... ]
</synopsis>
</refsynopsisdiv>
@ -159,7 +165,7 @@ ALTER EXTENSION <replaceable class="PARAMETER">name</replaceable> DROP <replacea
<varlistentry>
<term><replaceable class="parameter">object_name</replaceable></term>
<term><replaceable class="parameter">agg_name</replaceable></term>
<term><replaceable class="parameter">aggregate_name</replaceable></term>
<term><replaceable class="parameter">function_name</replaceable></term>
<term><replaceable class="parameter">operator_name</replaceable></term>
<listitem>
@ -173,17 +179,6 @@ ALTER EXTENSION <replaceable class="PARAMETER">name</replaceable> DROP <replacea
</listitem>
</varlistentry>
<varlistentry>
<term><replaceable class="parameter">agg_type</replaceable></term>
<listitem>
<para>
An input data type on which the aggregate function operates.
To reference a zero-argument aggregate function, write <literal>*</>
in place of the list of argument specifications.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><replaceable>source_type</replaceable></term>
<listitem>
@ -207,7 +202,8 @@ ALTER EXTENSION <replaceable class="PARAMETER">name</replaceable> DROP <replacea
<listitem>
<para>
The mode of a function argument: <literal>IN</>, <literal>OUT</>,
The mode of a function or aggregate
argument: <literal>IN</>, <literal>OUT</>,
<literal>INOUT</>, or <literal>VARIADIC</>.
If omitted, the default is <literal>IN</>.
Note that <command>ALTER EXTENSION</command> does not actually pay
@ -224,7 +220,7 @@ ALTER EXTENSION <replaceable class="PARAMETER">name</replaceable> DROP <replacea
<listitem>
<para>
The name of a function argument.
The name of a function or aggregate argument.
Note that <command>ALTER EXTENSION</command> does not actually pay
any attention to argument names, since only the argument data
types are needed to determine the function's identity.
@ -237,8 +233,7 @@ ALTER EXTENSION <replaceable class="PARAMETER">name</replaceable> DROP <replacea
<listitem>
<para>
The data type(s) of the function's arguments (optionally
schema-qualified), if any.
The data type of a function or aggregate argument.
</para>
</listitem>
</varlistentry>

View File

@ -23,7 +23,7 @@ PostgreSQL documentation
<synopsis>
COMMENT ON
{
AGGREGATE <replaceable class="PARAMETER">agg_name</replaceable> ( [ <replaceable class="parameter">argmode</replaceable> ] [ <replaceable class="parameter">argname</replaceable> ] <replaceable class="parameter">agg_type</replaceable> [, ...] ) |
AGGREGATE <replaceable class="PARAMETER">aggregate_name</replaceable> ( <replaceable>aggregate_signature</replaceable> ) |
CAST (<replaceable>source_type</replaceable> AS <replaceable>target_type</replaceable>) |
COLLATION <replaceable class="PARAMETER">object_name</replaceable> |
COLUMN <replaceable class="PARAMETER">relation_name</replaceable>.<replaceable class="PARAMETER">column_name</replaceable> |
@ -58,6 +58,12 @@ COMMENT ON
TYPE <replaceable class="PARAMETER">object_name</replaceable> |
VIEW <replaceable class="PARAMETER">object_name</replaceable>
} IS '<replaceable class="PARAMETER">text</replaceable>'
<phrase>where <replaceable>aggregate_signature</replaceable> is:</phrase>
* |
[ <replaceable>argmode</replaceable> ] [ <replaceable>argname</replaceable> ] <replaceable>argtype</replaceable> [ , ... ] |
[ [ <replaceable>argmode</replaceable> ] [ <replaceable>argname</replaceable> ] <replaceable>argtype</replaceable> [ , ... ] ] ORDER BY [ <replaceable>argmode</replaceable> ] [ <replaceable>argname</replaceable> ] <replaceable>argtype</replaceable> [ , ... ]
</synopsis>
</refsynopsisdiv>
@ -101,7 +107,7 @@ COMMENT ON
<varlistentry>
<term><replaceable class="parameter">object_name</replaceable></term>
<term><replaceable class="parameter">relation_name</replaceable>.<replaceable>column_name</replaceable></term>
<term><replaceable class="parameter">agg_name</replaceable></term>
<term><replaceable class="parameter">aggregate_name</replaceable></term>
<term><replaceable class="parameter">constraint_name</replaceable></term>
<term><replaceable class="parameter">function_name</replaceable></term>
<term><replaceable class="parameter">operator_name</replaceable></term>
@ -120,17 +126,6 @@ COMMENT ON
</listitem>
</varlistentry>
<varlistentry>
<term><replaceable class="parameter">agg_type</replaceable></term>
<listitem>
<para>
An input data type on which the aggregate function operates.
To reference a zero-argument aggregate function, write <literal>*</>
in place of the list of argument specifications.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><replaceable>source_type</replaceable></term>
<listitem>
@ -153,7 +148,8 @@ COMMENT ON
<term><replaceable class="parameter">argmode</replaceable></term>
<listitem>
<para>
The mode of a function argument: <literal>IN</>, <literal>OUT</>,
The mode of a function or aggregate
argument: <literal>IN</>, <literal>OUT</>,
<literal>INOUT</>, or <literal>VARIADIC</>.
If omitted, the default is <literal>IN</>.
Note that <command>COMMENT</command> does not actually pay
@ -169,7 +165,7 @@ COMMENT ON
<term><replaceable class="parameter">argname</replaceable></term>
<listitem>
<para>
The name of a function argument.
The name of a function or aggregate argument.
Note that <command>COMMENT</command> does not actually pay
any attention to argument names, since only the argument data
types are needed to determine the function's identity.
@ -181,8 +177,7 @@ COMMENT ON
<term><replaceable class="parameter">argtype</replaceable></term>
<listitem>
<para>
The data type(s) of the function's arguments (optionally
schema-qualified), if any.
The data type of a function or aggregate argument.
</para>
</listitem>
</varlistentry>

View File

@ -21,7 +21,7 @@ PostgreSQL documentation
<refsynopsisdiv>
<synopsis>
CREATE AGGREGATE <replaceable class="parameter">name</replaceable> ( [ <replaceable class="parameter">argmode</replaceable> ] [ <replaceable class="parameter">arg_name</replaceable> ] <replaceable class="parameter">arg_data_type</replaceable> [ , ... ] ) (
CREATE AGGREGATE <replaceable class="parameter">name</replaceable> ( [ <replaceable class="parameter">argmode</replaceable> ] [ <replaceable class="parameter">argname</replaceable> ] <replaceable class="parameter">arg_data_type</replaceable> [ , ... ] ) (
SFUNC = <replaceable class="PARAMETER">sfunc</replaceable>,
STYPE = <replaceable class="PARAMETER">state_data_type</replaceable>
[ , SSPACE = <replaceable class="PARAMETER">state_data_size</replaceable> ]
@ -30,6 +30,16 @@ CREATE AGGREGATE <replaceable class="parameter">name</replaceable> ( [ <replacea
[ , SORTOP = <replaceable class="PARAMETER">sort_operator</replaceable> ]
)
CREATE AGGREGATE <replaceable class="parameter">name</replaceable> ( [ [ <replaceable class="parameter">argmode</replaceable> ] [ <replaceable class="parameter">argname</replaceable> ] <replaceable class="parameter">arg_data_type</replaceable> [ , ... ] ]
ORDER BY [ <replaceable class="parameter">argmode</replaceable> ] [ <replaceable class="parameter">argname</replaceable> ] <replaceable class="parameter">arg_data_type</replaceable> [ , ... ] ) (
SFUNC = <replaceable class="PARAMETER">sfunc</replaceable>,
STYPE = <replaceable class="PARAMETER">state_data_type</replaceable>
[ , SSPACE = <replaceable class="PARAMETER">state_data_size</replaceable> ]
[ , FINALFUNC = <replaceable class="PARAMETER">ffunc</replaceable> ]
[ , INITCOND = <replaceable class="PARAMETER">initial_condition</replaceable> ]
[ , HYPOTHETICAL ]
)
<phrase>or the old syntax</phrase>
CREATE AGGREGATE <replaceable class="PARAMETER">name</replaceable> (
@ -69,6 +79,8 @@ CREATE AGGREGATE <replaceable class="PARAMETER">name</replaceable> (
name and input data type(s) of an aggregate must also be distinct from
the name and input data type(s) of every ordinary function in the same
schema.
This behavior is identical to overloading of ordinary function names
(see <xref linkend="sql-createfunction">).
</para>
<para>
@ -128,7 +140,7 @@ CREATE AGGREGATE <replaceable class="PARAMETER">name</replaceable> (
<para>
If the state transition function is not strict, then it will be called
unconditionally at each input row, and must deal with null inputs
and null transition values for itself. This allows the aggregate
and null state values for itself. This allows the aggregate
author to have full control over the aggregate's handling of null values.
</para>
@ -142,6 +154,22 @@ CREATE AGGREGATE <replaceable class="PARAMETER">name</replaceable> (
input rows.
</para>
<para>
The syntax with <literal>ORDER BY</literal> in the parameter list creates
a special type of aggregate called an <firstterm>ordered-set
aggregate</firstterm>; or if <literal>HYPOTHETICAL</> is specified, then
a <firstterm>hypothetical-set aggregate</firstterm> is created. These
aggregates operate over groups of sorted values in order-dependent ways,
so that specification of an input sort order is an essential part of a
call. Also, they can have <firstterm>direct</> arguments, which are
arguments that are evaluated only once per aggregation rather than once
per input row. Hypothetical-set aggregates are a subclass of ordered-set
aggregates in which some of the direct arguments are required to match,
in number and datatypes, the aggregated argument columns. This allows
the values of those direct arguments to be added to the collection of
aggregate-input rows as an additional <quote>hypothetical</> row.
</para>
<para>
Aggregates that behave like <function>MIN</> or <function>MAX</> can
sometimes be optimized by looking into an index instead of scanning every
@ -202,7 +230,7 @@ SELECT col FROM tab ORDER BY col USING sortop LIMIT 1;
</varlistentry>
<varlistentry>
<term><replaceable class="parameter">arg_name</replaceable></term>
<term><replaceable class="parameter">argname</replaceable></term>
<listitem>
<para>
@ -234,6 +262,7 @@ SELECT col FROM tab ORDER BY col USING sortop LIMIT 1;
only one input parameter. To define a zero-argument aggregate function
with this syntax, specify the <literal>basetype</> as
<literal>"ANY"</> (not <literal>*</>).
Ordered-set aggregates cannot be defined with the old syntax.
</para>
</listitem>
</varlistentry>
@ -243,7 +272,7 @@ SELECT col FROM tab ORDER BY col USING sortop LIMIT 1;
<listitem>
<para>
The name of the state transition function to be called for each
input row. For an <replaceable class="PARAMETER">N</>-argument
input row. For a normal <replaceable class="PARAMETER">N</>-argument
aggregate function, the <replaceable class="PARAMETER">sfunc</>
must take <replaceable class="PARAMETER">N</>+1 arguments,
the first being of type <replaceable
@ -254,6 +283,13 @@ SELECT col FROM tab ORDER BY col USING sortop LIMIT 1;
takes the current state value and the current input data value(s),
and returns the next state value.
</para>
<para>
For ordered-set (including hypothetical-set) aggregates, the state
transition function receives only the current state value and the
aggregated arguments, not the direct arguments. Otherwise it is the
same.
</para>
</listitem>
</varlistentry>
@ -287,7 +323,8 @@ SELECT col FROM tab ORDER BY col USING sortop LIMIT 1;
<listitem>
<para>
The name of the final function called to compute the aggregate's
result after all input rows have been traversed. The function
result after all input rows have been traversed.
For a normal aggregate, this function
must take a single argument of type <replaceable
class="PARAMETER">state_data_type</replaceable>. The return
data type of the aggregate is defined as the return type of this
@ -296,6 +333,17 @@ SELECT col FROM tab ORDER BY col USING sortop LIMIT 1;
aggregate's result, and the return type is <replaceable
class="PARAMETER">state_data_type</replaceable>.
</para>
<para>
For ordered-set (including hypothetical-set) aggregates, the
final function receives not only the final state value,
but also the values of all the direct arguments, followed by
null values corresponding to each aggregated argument.
(The reason for including the aggregated arguments in the function
signature is that this may be necessary to allow correct resolution
of the aggregate result type, when a polymorphic aggregate is
being defined.)
</para>
</listitem>
</varlistentry>
@ -319,7 +367,22 @@ SELECT col FROM tab ORDER BY col USING sortop LIMIT 1;
<function>MAX</>-like aggregate.
This is just an operator name (possibly schema-qualified).
The operator is assumed to have the same input data types as
the aggregate (which must be a single-argument aggregate).
the aggregate (which must be a single-argument normal aggregate).
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><literal>HYPOTHETICAL</literal></term>
<listitem>
<para>
For ordered-set aggregates only, this flag specifies that the aggregate
arguments are to be processed according to the requirements for
hypothetical-set aggregates: that is, the last few direct arguments must
match the data types of the aggregated (<literal>WITHIN GROUP</>)
arguments. The <literal>HYPOTHETICAL</literal> flag has no effect on
run-time behavior, only on parse-time resolution of the data types and
collations of the aggregate's arguments.
</para>
</listitem>
</varlistentry>
@ -331,6 +394,29 @@ SELECT col FROM tab ORDER BY col USING sortop LIMIT 1;
</para>
</refsect1>
<refsect1>
<title>Notes</title>
<para>
The syntax for ordered-set aggregates allows <literal>VARIADIC</>
to be specified for both the last direct parameter and the last
aggregated (<literal>WITHIN GROUP</>) parameter. However, the
current implementation restricts use of <literal>VARIADIC</>
in two ways. First, ordered-set aggregates can only use
<literal>VARIADIC "any"</>, not other variadic array types.
Second, if the last direct parameter is <literal>VARIADIC "any"</>,
then there can be only one aggregated parameter and it must also
be <literal>VARIADIC "any"</>. (In the representation used in the
system catalogs, these two parameters are merged into a single
<literal>VARIADIC "any"</> item, since <structname>pg_proc</> cannot
represent functions with more than one <literal>VARIADIC</> parameter.)
If the aggregate is a hypothetical-set aggregate, the direct arguments
that match the <literal>VARIADIC "any"</> parameter are the hypothetical
ones; any preceding parameters represent additional direct arguments
that are not constrained to match the aggregated arguments.
</para>
</refsect1>
<refsect1>
<title>Examples</title>

View File

@ -21,9 +21,13 @@ PostgreSQL documentation
<refsynopsisdiv>
<synopsis>
DROP AGGREGATE [ IF EXISTS ]
<replaceable class="parameter">name</replaceable> ( [ <replaceable class="parameter">argmode</replaceable> ] [ <replaceable class="parameter">arg_name</replaceable> ] <replaceable class="parameter">arg_data_type</replaceable> [ , ... ] )
[ CASCADE | RESTRICT ]
DROP AGGREGATE [ IF EXISTS ] <replaceable>name</replaceable> ( <replaceable>aggregate_signature</replaceable> ) [ CASCADE | RESTRICT ]
<phrase>where <replaceable>aggregate_signature</replaceable> is:</phrase>
* |
[ <replaceable>argmode</replaceable> ] [ <replaceable>argname</replaceable> ] <replaceable>argtype</replaceable> [ , ... ] |
[ [ <replaceable>argmode</replaceable> ] [ <replaceable>argname</replaceable> ] <replaceable>argtype</replaceable> [ , ... ] ] ORDER BY [ <replaceable>argmode</replaceable> ] [ <replaceable>argname</replaceable> ] <replaceable>argtype</replaceable> [ , ... ]
</synopsis>
</refsynopsisdiv>
@ -73,7 +77,7 @@ DROP AGGREGATE [ IF EXISTS ]
</varlistentry>
<varlistentry>
<term><replaceable class="parameter">arg_name</replaceable></term>
<term><replaceable class="parameter">argname</replaceable></term>
<listitem>
<para>
@ -86,12 +90,15 @@ DROP AGGREGATE [ IF EXISTS ]
</varlistentry>
<varlistentry>
<term><replaceable class="parameter">arg_data_type</replaceable></term>
<term><replaceable class="parameter">argtype</replaceable></term>
<listitem>
<para>
An input data type on which the aggregate function operates.
To reference a zero-argument aggregate function, write <literal>*</>
in place of the list of argument specifications.
To reference an ordered-set aggregate function, write
<literal>ORDER BY</> between the direct and aggregated argument
specifications.
</para>
</listitem>
</varlistentry>
@ -117,6 +124,15 @@ DROP AGGREGATE [ IF EXISTS ]
</variablelist>
</refsect1>
<refsect1>
<title>Notes</title>
<para>
Alternative syntaxes for referencing ordered-set aggregates
are described under <xref linkend="sql-alteraggregate">.
</para>
</refsect1>
<refsect1>
<title>Examples</title>
@ -125,7 +141,17 @@ DROP AGGREGATE [ IF EXISTS ]
<type>integer</type>:
<programlisting>
DROP AGGREGATE myavg(integer);
</programlisting></para>
</programlisting>
</para>
<para>
To remove the hypothetical-set aggregate function <literal>myrank</>,
which takes an arbitrary list of ordering columns and a matching list
of direct arguments:
<programlisting>
DROP AGGREGATE myrank(VARIADIC "any" ORDER BY VARIADIC "any");
</programlisting>
</para>
</refsect1>
<refsect1>

View File

@ -25,7 +25,7 @@ SECURITY LABEL [ FOR <replaceable class="PARAMETER">provider</replaceable> ] ON
{
TABLE <replaceable class="PARAMETER">object_name</replaceable> |
COLUMN <replaceable class="PARAMETER">table_name</replaceable>.<replaceable class="PARAMETER">column_name</replaceable> |
AGGREGATE <replaceable class="PARAMETER">agg_name</replaceable> ( [ <replaceable class="parameter">argmode</replaceable> ] [ <replaceable class="parameter">argname</replaceable> ] <replaceable class="parameter">agg_type</replaceable> [, ...] ) |
AGGREGATE <replaceable class="PARAMETER">aggregate_name</replaceable> ( <replaceable>aggregate_signature</replaceable> ) |
DATABASE <replaceable class="PARAMETER">object_name</replaceable> |
DOMAIN <replaceable class="PARAMETER">object_name</replaceable> |
EVENT TRIGGER <replaceable class="PARAMETER">object_name</replaceable> |
@ -41,6 +41,12 @@ SECURITY LABEL [ FOR <replaceable class="PARAMETER">provider</replaceable> ] ON
TYPE <replaceable class="PARAMETER">object_name</replaceable> |
VIEW <replaceable class="PARAMETER">object_name</replaceable>
} IS '<replaceable class="PARAMETER">label</replaceable>'
<phrase>where <replaceable>aggregate_signature</replaceable> is:</phrase>
* |
[ <replaceable>argmode</replaceable> ] [ <replaceable>argname</replaceable> ] <replaceable>argtype</replaceable> [ , ... ] |
[ [ <replaceable>argmode</replaceable> ] [ <replaceable>argname</replaceable> ] <replaceable>argtype</replaceable> [ , ... ] ] ORDER BY [ <replaceable>argmode</replaceable> ] [ <replaceable>argname</replaceable> ] <replaceable>argtype</replaceable> [ , ... ]
</synopsis>
</refsynopsisdiv>
@ -83,7 +89,7 @@ SECURITY LABEL [ FOR <replaceable class="PARAMETER">provider</replaceable> ] ON
<varlistentry>
<term><replaceable class="parameter">object_name</replaceable></term>
<term><replaceable class="parameter">table_name.column_name</replaceable></term>
<term><replaceable class="parameter">agg_name</replaceable></term>
<term><replaceable class="parameter">aggregate_name</replaceable></term>
<term><replaceable class="parameter">function_name</replaceable></term>
<listitem>
<para>
@ -106,23 +112,13 @@ SECURITY LABEL [ FOR <replaceable class="PARAMETER">provider</replaceable> ] ON
</listitem>
</varlistentry>
<varlistentry>
<term><replaceable class="parameter">agg_type</replaceable></term>
<listitem>
<para>
An input data type on which the aggregate function operates.
To reference a zero-argument aggregate function, write <literal>*</>
in place of the list of argument specifications.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><replaceable class="parameter">argmode</replaceable></term>
<listitem>
<para>
The mode of a function argument: <literal>IN</>, <literal>OUT</>,
The mode of a function or aggregate
argument: <literal>IN</>, <literal>OUT</>,
<literal>INOUT</>, or <literal>VARIADIC</>.
If omitted, the default is <literal>IN</>.
Note that <command>SECURITY LABEL</command> does not actually
@ -139,7 +135,7 @@ SECURITY LABEL [ FOR <replaceable class="PARAMETER">provider</replaceable> ] ON
<listitem>
<para>
The name of a function argument.
The name of a function or aggregate argument.
Note that <command>SECURITY LABEL</command> does not actually
pay any attention to argument names, since only the argument data
types are needed to determine the function's identity.
@ -152,8 +148,7 @@ SECURITY LABEL [ FOR <replaceable class="PARAMETER">provider</replaceable> ] ON
<listitem>
<para>
The data type(s) of the function's arguments (optionally
schema-qualified), if any.
The data type of a function or aggregate argument.
</para>
</listitem>
</varlistentry>

View File

@ -1555,7 +1555,15 @@ sqrt(2)
</indexterm>
<indexterm zone="syntax-aggregates">
<primary>filter</primary>
<primary>ordered-set aggregate</primary>
</indexterm>
<indexterm zone="syntax-aggregates">
<primary>WITHIN GROUP</primary>
</indexterm>
<indexterm zone="syntax-aggregates">
<primary>FILTER</primary>
</indexterm>
<para>
@ -1570,6 +1578,7 @@ sqrt(2)
<replaceable>aggregate_name</replaceable> (ALL <replaceable>expression</replaceable> [ , ... ] [ <replaceable>order_by_clause</replaceable> ] ) [ FILTER ( WHERE <replaceable>filter_clause</replaceable> ) ]
<replaceable>aggregate_name</replaceable> (DISTINCT <replaceable>expression</replaceable> [ , ... ] [ <replaceable>order_by_clause</replaceable> ] ) [ FILTER ( WHERE <replaceable>filter_clause</replaceable> ) ]
<replaceable>aggregate_name</replaceable> ( * ) [ FILTER ( WHERE <replaceable>filter_clause</replaceable> ) ]
<replaceable>aggregate_name</replaceable> ( [ <replaceable>expression</replaceable> [ , ... ] ] ) WITHIN GROUP ( <replaceable>order_by_clause</replaceable> ) [ FILTER ( WHERE <replaceable>filter_clause</replaceable> ) ]
</synopsis>
where <replaceable>aggregate_name</replaceable> is a previously
@ -1589,9 +1598,11 @@ sqrt(2)
The third form invokes the aggregate once for each distinct value
of the expression (or distinct set of values, for multiple expressions)
found in the input rows.
The last form invokes the aggregate once for each input row; since no
The fourth form invokes the aggregate once for each input row; since no
particular input value is specified, it is generally only useful
for the <function>count(*)</function> aggregate function.
The last form is used with <firstterm>ordered-set</> aggregate
functions, which are described below.
</para>
<para>
@ -1610,23 +1621,6 @@ sqrt(2)
distinct non-null values of <literal>f1</literal>.
</para>
<para>
If <literal>FILTER</literal> is specified, then only the input
rows for which the <replaceable>filter_clause</replaceable>
evaluates to true are fed to the aggregate function; other rows
are discarded. For example:
<programlisting>
SELECT
count(*) AS unfiltered,
count(*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered
------------+----------
10 | 4
(1 row)
</programlisting>
</para>
<para>
Ordinarily, the input rows are fed to the aggregate function in an
unspecified order. In many cases this does not matter; for example,
@ -1676,6 +1670,71 @@ SELECT string_agg(a ORDER BY a, ',') FROM table; -- incorrect
</para>
</note>
<para>
Placing <literal>ORDER BY</> within the aggregate's regular argument
list, as described so far, is used when ordering the input rows for
a <quote>normal</> aggregate for which ordering is optional. There is a
subclass of aggregate functions called <firstterm>ordered-set
aggregates</> for which an <replaceable>order_by_clause</replaceable>
is <emphasis>required</>, usually because the aggregate's computation is
only sensible in terms of a specific ordering of its input rows.
Typical examples of ordered-set aggregates include rank and percentile
calculations. For an ordered-set aggregate,
the <replaceable>order_by_clause</replaceable> is written
inside <literal>WITHIN GROUP (...)</>, as shown in the final syntax
alternative above. The expressions in
the <replaceable>order_by_clause</replaceable> are evaluated once per
input row just like normal aggregate arguments, sorted as per
the <replaceable>order_by_clause</replaceable>'s requirements, and fed
to the aggregate function as input arguments. (This is unlike the case
for a non-<literal>WITHIN GROUP</> <replaceable>order_by_clause</>,
which is not treated as argument(s) to the aggregate function.) The
argument expressions preceding <literal>WITHIN GROUP</>, if any, are
called <firstterm>direct arguments</> to distinguish them from
the <firstterm>aggregated arguments</> listed in
the <replaceable>order_by_clause</replaceable>. Unlike normal aggregate
arguments, direct arguments are evaluated only once per aggregate call,
not once per input row. This means that they can contain variables only
if those variables are grouped by <literal>GROUP BY</>; this restriction
is the same as if the direct arguments were not inside an aggregate
expression at all. Direct arguments are typically used for things like
percentile fractions, which only make sense as a single value per
aggregation calculation. The direct argument list can be empty; in this
case, write just <literal>()</> not <literal>(*)</>.
(<productname>PostgreSQL</> will actually accept either spelling, but
only the first way conforms to the SQL standard.)
An example of an ordered-set aggregate call is:
<programlisting>
SELECT percentile_disc(0.5) WITHIN GROUP (ORDER BY income) FROM households;
percentile_disc
-----------------
50489
</programlisting>
which obtains the 50th percentile, or median, value of
the <structfield>income</> column from table <structname>households</>.
Here, <literal>0.5</> is a direct argument; it would make no sense
for the percentile fraction to be a value varying across rows.
</para>
<para>
If <literal>FILTER</literal> is specified, then only the input
rows for which the <replaceable>filter_clause</replaceable>
evaluates to true are fed to the aggregate function; other rows
are discarded. For example:
<programlisting>
SELECT
count(*) AS unfiltered,
count(*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered
------------+----------
10 | 4
(1 row)
</programlisting>
</para>
<para>
The predefined aggregate functions are described in <xref
linkend="functions-aggregate">. Other aggregate functions can be added
@ -1695,7 +1754,8 @@ SELECT string_agg(a ORDER BY a, ',') FROM table; -- incorrect
<xref linkend="sql-syntax-scalar-subqueries"> and
<xref linkend="functions-subquery">), the aggregate is normally
evaluated over the rows of the subquery. But an exception occurs
if the aggregate's arguments contain only outer-level variables:
if the aggregate's arguments (and <replaceable>filter_clause</replaceable>
if any) contain only outer-level variables:
the aggregate then belongs to the nearest such outer level, and is
evaluated over the rows of that query. The aggregate expression
as a whole is then an outer reference for the subquery it appears in,
@ -1856,15 +1916,16 @@ UNBOUNDED FOLLOWING
If <literal>FILTER</literal> is specified, then only the input
rows for which the <replaceable>filter_clause</replaceable>
evaluates to true are fed to the window function; other rows
are discarded. Only aggregate window functions accept
are discarded. Only window functions that are aggregates accept
a <literal>FILTER</literal> clause.
</para>
<para>
The built-in window functions are described in <xref
linkend="functions-window-table">. Other window functions can be added by
the user. Also, any built-in or user-defined aggregate function can be
used as a window function.
the user. Also, any built-in or user-defined normal aggregate function
can be used as a window function. Ordered-set aggregates presently
cannot be used as window functions, however.
</para>
<para>
@ -1885,7 +1946,7 @@ UNBOUNDED FOLLOWING
<para>
More information about window functions can be found in
<xref linkend="tutorial-window">,
<xref linkend="functions-window">,
<xref linkend="functions-window">, and
<xref linkend="queries-window">.
</para>
</sect2>

View File

@ -9,20 +9,27 @@
</indexterm>
<para>
Aggregate functions in <productname>PostgreSQL</productname>
are expressed in terms of <firstterm>state values</firstterm>
Aggregate functions in <productname>PostgreSQL</productname>
are defined in terms of <firstterm>state values</firstterm>
and <firstterm>state transition functions</firstterm>.
That is, an aggregate operates using a state value that is updated
as each successive input row is processed.
To define a new aggregate
function, one selects a data type for the state value,
an initial value for the state, and a state transition
function. The state transition function is just an
ordinary function that could also be used outside the
context of the aggregate. A <firstterm>final function</firstterm>
function. The state transition function takes the previous state
value and the aggregate's input value(s) for the current row, and
returns a new state value.
A <firstterm>final function</firstterm>
can also be specified, in case the desired result of the aggregate
is different from the data that needs to be kept in the running
state value.
state value. The final function takes the last state value
and returns whatever is wanted as the aggregate result.
In principle, the transition and final functions are just ordinary
functions that could also be used outside the context of the
aggregate. (In practice, it's often helpful for performance reasons
to create specialized transition functions that can only work when
called as part of an aggregate.)
</para>
<para>
@ -42,20 +49,24 @@
we only need the addition function for that data type.
The aggregate definition would be:
<screen>
<programlisting>
CREATE AGGREGATE sum (complex)
(
sfunc = complex_add,
stype = complex,
initcond = '(0,0)'
);
</programlisting>
which we might use like this:
<programlisting>
SELECT sum(a) FROM test_complex;
sum
-----------
(34,53.9)
</screen>
</programlisting>
(Notice that we are relying on function overloading: there is more than
one aggregate named <function>sum</>, but
@ -64,19 +75,19 @@ SELECT sum(a) FROM test_complex;
</para>
<para>
The above definition of <function>sum</function> will return zero (the initial
state condition) if there are no nonnull input values.
The above definition of <function>sum</function> will return zero
(the initial state value) if there are no nonnull input values.
Perhaps we want to return null in that case instead &mdash; the SQL standard
expects <function>sum</function> to behave that way. We can do this simply by
omitting the <literal>initcond</literal> phrase, so that the initial state
condition is null. Ordinarily this would mean that the <literal>sfunc</literal>
would need to check for a null state-condition input. But for
value is null. Ordinarily this would mean that the <literal>sfunc</literal>
would need to check for a null state-value input. But for
<function>sum</function> and some other simple aggregates like
<function>max</> and <function>min</>,
it is sufficient to insert the first nonnull input value into
the state variable and then start applying the transition function
at the second nonnull input value. <productname>PostgreSQL</productname>
will do that automatically if the initial condition is null and
will do that automatically if the initial state value is null and
the transition function is marked <quote>strict</> (i.e., not to be called
for null inputs).
</para>
@ -109,12 +120,16 @@ CREATE AGGREGATE avg (float8)
initcond = '{0,0,0}'
);
</programlisting>
</para>
(<function>float8_accum</> requires a three-element array, not just
<note>
<para>
<function>float8_accum</> requires a three-element array, not just
two elements, because it accumulates the sum of squares as well as
the sum and count of the inputs. This is so that it can be used for
some other aggregates besides <function>avg</>.)
</para>
some other aggregates besides <function>avg</>.
</para>
</note>
<para>
Aggregate functions can use polymorphic
@ -136,7 +151,7 @@ CREATE AGGREGATE array_accum (anyelement)
);
</programlisting>
Here, the actual state type for any aggregate call is the array type
Here, the actual state type for any given aggregate call is the array type
having the actual input type as elements. The behavior of the aggregate
is to concatenate all the inputs into an array of that type.
(Note: the built-in aggregate <function>array_agg</> provides similar
@ -205,6 +220,97 @@ SELECT myaggregate(a, b, c ORDER BY a) FROM ...
</para>
</note>
<para>
Aggregate function calls in SQL allow <literal>DISTINCT</>
and <literal>ORDER BY</> options that control which rows are fed
to the aggregate's transition function and in what order. These
options are implemented behind the scenes and are not the concern
of the aggregate's support functions.
</para>
<para>
The aggregates we have been describing so far are <quote>normal</>
aggregates. <productname>PostgreSQL</> also
supports <firstterm>ordered-set aggregates</>, which differ from
normal aggregates in two key ways. First, in addition to ordinary
aggregated arguments that are evaluated once per input row, an
ordered-set aggregate can have <quote>direct</> arguments that are
evaluated only once per aggregation operation. Second, the syntax
for the ordinary aggregated arguments specifies a sort ordering
for them explicitly. An ordered-set aggregate is usually
used to implement a computation that depends on a specific row
ordering, for instance rank or percentile, so that the sort ordering
is a required aspect of any call. For example, the built-in
definition of <function>percentile_disc</> is equivalent to:
<programlisting>
CREATE AGGREGATE percentile_disc (float8 ORDER BY anyelement)
(
sfunc = ordered_set_transition,
stype = internal,
finalfunc = percentile_disc_final
);
</programlisting>
which could be used to obtain a median household income like this:
<programlisting>
SELECT percentile_disc(0.5) WITHIN GROUP (ORDER BY income) FROM households;
percentile_disc
-----------------
50489
</programlisting>
Here, <literal>0.5</> is a direct argument; it would make no sense
for the percentile fraction to be a value varying across rows.
</para>
<para>
Unlike the case for normal aggregates, the sorting of input rows for
an ordered-set aggregate is <emphasis>not</> done behind the scenes,
but is the responsibility of the aggregate's support functions.
The typical implementation approach is to keep a reference to
a <quote>tuplesort</> object in the aggregate's state value, feed the
incoming rows into that object, and then complete the sorting and
read out the data in the final function. This design allows the
final function to perform special operations such as injecting
additional <quote>hypothetical</> rows into the data to be sorted.
While normal aggregates can often be implemented with support
functions written in <application>PL/pgSQL</application> or another
PL language, ordered-set aggregates generally have to be written in
C, since their state values aren't definable as any SQL datatype.
(In the above example, notice that the state value is declared as
type <type>internal</> &mdash; this is typical.)
</para>
<para>
The state transition function for an ordered-set aggregate receives
the current state value plus the aggregated input values for
each row, and returns the updated state value. This is the
same definition as for normal aggregates, but note that the direct
arguments (if any) are not provided. The final function receives
the last state value, the values of the direct arguments if any,
and null values corresponding to the aggregated input(s). While the
null values seem useless at first sight, they are important because
they make it possible to include the data types of the aggregated
input(s) in the final function's signature, which may be necessary
to resolve the output type of a polymorphic aggregate. For example,
the built-in <function>mode()</> ordered-set aggregate takes a
single aggregated column of any sortable data type and returns a
value of that same type. This is possible because the final function
is declared as <literal>mode_final(internal, anyelement) returns
anyelement</>, with the <type>anyelement</> parameter corresponding
to the dummy null argument that represents the aggregated column.
The actual data is conveyed in the <type>internal</>-type state
value, but type resolution needs a parse-time indication of what the
result data type will be, and the dummy argument provides that.
In the example of <function>percentile_disc</>, the support functions
are respectively declared as
<literal>ordered_set_transition(internal, "any") returns internal</>
and <literal>percentile_disc_final(internal, float8, anyelement)
returns anyelement</>.
</para>
<para>
A function written in C can detect that it is being called as an
aggregate transition or final function by calling
@ -214,14 +320,25 @@ if (AggCheckCallContext(fcinfo, NULL))
</programlisting>
One reason for checking this is that when it is true for a transition
function, the first input
must be a temporary transition value and can therefore safely be modified
must be a temporary state value and can therefore safely be modified
in-place rather than allocating a new copy.
See <literal>int8inc()</> for an example.
(This is the <emphasis>only</>
case where it is safe for a function to modify a pass-by-reference input.
In particular, aggregate final functions should not modify their inputs in
any case, because in some cases they will be re-executed on the same
final transition value.)
In particular, final functions for normal aggregates must not
modify their inputs in any case, because in some cases they will be
re-executed on the same final state value.)
</para>
<para>
Another support routine available to aggregate functions written in C
is <function>AggGetAggref</>, which returns the <literal>Aggref</>
parse node that defines the aggregate call. This is mainly useful
for ordered-set aggregates, which can inspect the substructure of
the <literal>Aggref</> node to find out what sort ordering they are
supposed to implement. Examples can be found
in <filename>orderedsetaggs.c</> in the <productname>PostgreSQL</>
source code.
</para>
<para>

View File

@ -36,6 +36,7 @@
static Oid lookup_agg_function(List *fnName, int nargs, Oid *input_types,
Oid variadicArgType,
Oid *rettype);
@ -45,12 +46,15 @@ static Oid lookup_agg_function(List *fnName, int nargs, Oid *input_types,
Oid
AggregateCreate(const char *aggName,
Oid aggNamespace,
char aggKind,
int numArgs,
int numDirectArgs,
oidvector *parameterTypes,
Datum allParameterTypes,
Datum parameterModes,
Datum parameterNames,
List *parameterDefaults,
Oid variadicArgType,
List *aggtransfnName,
List *aggfinalfnName,
List *aggsortopName,
@ -71,7 +75,7 @@ AggregateCreate(const char *aggName,
bool hasInternalArg;
Oid rettype;
Oid finaltype;
Oid *fnArgs;
Oid fnArgs[FUNC_MAX_ARGS];
int nargs_transfn;
Oid procOid;
TupleDesc tupDesc;
@ -87,6 +91,22 @@ AggregateCreate(const char *aggName,
if (!aggtransfnName)
elog(ERROR, "aggregate must have a transition function");
if (numDirectArgs < 0 || numDirectArgs > numArgs)
elog(ERROR, "incorrect number of direct args for aggregate");
/*
* Aggregates can have at most FUNC_MAX_ARGS-1 args, else the transfn
* and/or finalfn will be unrepresentable in pg_proc. We must check now
* to protect fixed-size arrays here and possibly in called functions.
*/
if (numArgs < 0 || numArgs > FUNC_MAX_ARGS - 1)
ereport(ERROR,
(errcode(ERRCODE_TOO_MANY_ARGUMENTS),
errmsg_plural("aggregates cannot have more than %d argument",
"aggregates cannot have more than %d arguments",
FUNC_MAX_ARGS - 1,
FUNC_MAX_ARGS - 1)));
/* check for polymorphic and INTERNAL arguments */
hasPolyArg = false;
hasInternalArg = false;
@ -108,12 +128,75 @@ AggregateCreate(const char *aggName,
errmsg("cannot determine transition data type"),
errdetail("An aggregate using a polymorphic transition type must have at least one polymorphic argument.")));
/* find the transfn */
nargs_transfn = numArgs + 1;
fnArgs = (Oid *) palloc(nargs_transfn * sizeof(Oid));
fnArgs[0] = aggTransType;
memcpy(fnArgs + 1, aggArgTypes, numArgs * sizeof(Oid));
transfn = lookup_agg_function(aggtransfnName, nargs_transfn, fnArgs,
/*
* An ordered-set aggregate that is VARIADIC must be VARIADIC ANY. In
* principle we could support regular variadic types, but it would make
* things much more complicated because we'd have to assemble the correct
* subsets of arguments into array values. Since no standard aggregates
* have use for such a case, we aren't bothering for now.
*/
if (AGGKIND_IS_ORDERED_SET(aggKind) && OidIsValid(variadicArgType) &&
variadicArgType != ANYOID)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("a variadic ordered-set aggregate must use VARIADIC type ANY")));
/*
* If it's a hypothetical-set aggregate, there must be at least as many
* direct arguments as aggregated ones, and the last N direct arguments
* must match the aggregated ones in type. (We have to check this again
* when the aggregate is called, in case ANY is involved, but it makes
* sense to reject the aggregate definition now if the declared arg types
* don't match up.) It's unconditionally OK if numDirectArgs == numArgs,
* indicating that the grammar merged identical VARIADIC entries from both
* lists. Otherwise, if the agg is VARIADIC, then we had VARIADIC only on
* the aggregated side, which is not OK. Otherwise, insist on the last N
* parameter types on each side matching exactly.
*/
if (aggKind == AGGKIND_HYPOTHETICAL &&
numDirectArgs < numArgs)
{
int numAggregatedArgs = numArgs - numDirectArgs;
if (OidIsValid(variadicArgType) ||
numDirectArgs < numAggregatedArgs ||
memcmp(aggArgTypes + (numDirectArgs - numAggregatedArgs),
aggArgTypes + numDirectArgs,
numAggregatedArgs * sizeof(Oid)) != 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("a hypothetical-set aggregate must have direct arguments matching its aggregated arguments")));
}
/*
* Find the transfn. For ordinary aggs, it takes the transtype plus all
* aggregate arguments. For ordered-set aggs, it takes the transtype plus
* all aggregated args, but not direct args. However, we have to treat
* specially the case where a trailing VARIADIC item is considered to
* cover both direct and aggregated args.
*/
if (AGGKIND_IS_ORDERED_SET(aggKind))
{
if (numDirectArgs < numArgs)
nargs_transfn = numArgs - numDirectArgs + 1;
else
{
/* special case with VARIADIC last arg */
Assert(variadicArgType != InvalidOid);
nargs_transfn = 2;
}
fnArgs[0] = aggTransType;
memcpy(fnArgs + 1, aggArgTypes + (numArgs - (nargs_transfn - 1)),
(nargs_transfn - 1) * sizeof(Oid));
}
else
{
nargs_transfn = numArgs + 1;
fnArgs[0] = aggTransType;
memcpy(fnArgs + 1, aggArgTypes, numArgs * sizeof(Oid));
}
transfn = lookup_agg_function(aggtransfnName, nargs_transfn,
fnArgs, variadicArgType,
&rettype);
/*
@ -156,9 +239,44 @@ AggregateCreate(const char *aggName,
/* handle finalfn, if supplied */
if (aggfinalfnName)
{
int nargs_finalfn;
/*
* For ordinary aggs, the finalfn just takes the transtype. For
* ordered-set aggs, it takes the transtype plus all args. (The
* aggregated args are useless at runtime, and are actually passed as
* NULLs, but we may need them in the function signature to allow
* resolution of a polymorphic agg's result type.)
*/
fnArgs[0] = aggTransType;
finalfn = lookup_agg_function(aggfinalfnName, 1, fnArgs,
if (AGGKIND_IS_ORDERED_SET(aggKind))
{
nargs_finalfn = numArgs + 1;
memcpy(fnArgs + 1, aggArgTypes, numArgs * sizeof(Oid));
}
else
{
nargs_finalfn = 1;
/* variadic-ness of the aggregate doesn't affect finalfn */
variadicArgType = InvalidOid;
}
finalfn = lookup_agg_function(aggfinalfnName, nargs_finalfn,
fnArgs, variadicArgType,
&finaltype);
/*
* The finalfn of an ordered-set agg will certainly be passed at least
* one null argument, so complain if it's strict. Nothing bad would
* happen at runtime (you'd just get a null result), but it's surely
* not what the user wants, so let's complain now.
*
* Note: it's likely that a strict transfn would also be a mistake,
* but the case isn't quite so airtight, so we let that pass.
*/
if (AGGKIND_IS_ORDERED_SET(aggKind) && func_strict(finalfn))
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("final function of an ordered-set aggregate must not be declared STRICT")));
}
else
{
@ -270,6 +388,8 @@ AggregateCreate(const char *aggName,
values[i] = (Datum) NULL;
}
values[Anum_pg_aggregate_aggfnoid - 1] = ObjectIdGetDatum(procOid);
values[Anum_pg_aggregate_aggkind - 1] = CharGetDatum(aggKind);
values[Anum_pg_aggregate_aggnumdirectargs - 1] = Int16GetDatum(numDirectArgs);
values[Anum_pg_aggregate_aggtransfn - 1] = ObjectIdGetDatum(transfn);
values[Anum_pg_aggregate_aggfinalfn - 1] = ObjectIdGetDatum(finalfn);
values[Anum_pg_aggregate_aggsortop - 1] = ObjectIdGetDatum(sortop);
@ -333,6 +453,7 @@ static Oid
lookup_agg_function(List *fnName,
int nargs,
Oid *input_types,
Oid variadicArgType,
Oid *rettype)
{
Oid fnOid;
@ -371,6 +492,21 @@ lookup_agg_function(List *fnName,
func_signature_string(fnName, nargs,
NIL, input_types))));
/*
* If the agg is declared to take VARIADIC ANY, the underlying functions
* had better be declared that way too, else they may receive too many
* parameters; but func_get_detail would have been happy with plain ANY.
* (Probably nothing very bad would happen, but it wouldn't work as the
* user expects.) Other combinations should work without any special
* pushups, given that we told func_get_detail not to expand VARIADIC.
*/
if (variadicArgType == ANYOID && vatype != ANYOID)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("function %s must accept VARIADIC ANY to be used in this aggregate",
func_signature_string(fnName, nargs,
NIL, input_types))));
/*
* If there are any polymorphic types involved, enforce consistency, and
* possibly refine the result type. It's OK if the result is still
@ -388,8 +524,7 @@ lookup_agg_function(List *fnName,
*/
for (i = 0; i < nargs; i++)
{
if (!IsPolymorphicType(true_oid_array[i]) &&
!IsBinaryCoercible(input_types[i], true_oid_array[i]))
if (!IsBinaryCoercible(input_types[i], true_oid_array[i]))
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("function %s requires run-time type coercion",

View File

@ -45,7 +45,10 @@
*
* "oldstyle" signals the old (pre-8.2) style where the aggregate input type
* is specified by a BASETYPE element in the parameters. Otherwise,
* "args" is a list of FunctionParameter structs defining the agg's arguments.
* "args" is a pair, whose first element is a list of FunctionParameter structs
* defining the agg's arguments (both direct and aggregated), and whose second
* element is an Integer node with the number of direct args, or -1 if this
* isn't an ordered-set aggregate.
* "parameters" is a list of DefElem representing the agg's definition clauses.
*/
Oid
@ -55,6 +58,7 @@ DefineAggregate(List *name, List *args, bool oldstyle, List *parameters,
char *aggName;
Oid aggNamespace;
AclResult aclresult;
char aggKind = AGGKIND_NORMAL;
List *transfuncName = NIL;
List *finalfuncName = NIL;
List *sortoperatorName = NIL;
@ -63,11 +67,13 @@ DefineAggregate(List *name, List *args, bool oldstyle, List *parameters,
int32 transSpace = 0;
char *initval = NULL;
int numArgs;
int numDirectArgs = 0;
oidvector *parameterTypes;
ArrayType *allParameterTypes;
ArrayType *parameterModes;
ArrayType *parameterNames;
List *parameterDefaults;
Oid variadicArgType;
Oid transTypeId;
char transTypeType;
ListCell *pl;
@ -81,6 +87,19 @@ DefineAggregate(List *name, List *args, bool oldstyle, List *parameters,
aclcheck_error(aclresult, ACL_KIND_NAMESPACE,
get_namespace_name(aggNamespace));
/* Deconstruct the output of the aggr_args grammar production */
if (!oldstyle)
{
Assert(list_length(args) == 2);
numDirectArgs = intVal(lsecond(args));
if (numDirectArgs >= 0)
aggKind = AGGKIND_ORDERED_SET;
else
numDirectArgs = 0;
args = (List *) linitial(args);
}
/* Examine aggregate's definition clauses */
foreach(pl, parameters)
{
DefElem *defel = (DefElem *) lfirst(pl);
@ -99,6 +118,17 @@ DefineAggregate(List *name, List *args, bool oldstyle, List *parameters,
sortoperatorName = defGetQualifiedName(defel);
else if (pg_strcasecmp(defel->defname, "basetype") == 0)
baseType = defGetTypeName(defel);
else if (pg_strcasecmp(defel->defname, "hypothetical") == 0)
{
if (defGetBoolean(defel))
{
if (aggKind == AGGKIND_NORMAL)
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("only ordered-set aggregates can be hypothetical")));
aggKind = AGGKIND_HYPOTHETICAL;
}
}
else if (pg_strcasecmp(defel->defname, "stype") == 0)
transType = defGetTypeName(defel);
else if (pg_strcasecmp(defel->defname, "stype1") == 0)
@ -162,6 +192,7 @@ DefineAggregate(List *name, List *args, bool oldstyle, List *parameters,
parameterModes = NULL;
parameterNames = NULL;
parameterDefaults = NIL;
variadicArgType = InvalidOid;
}
else
{
@ -186,6 +217,7 @@ DefineAggregate(List *name, List *args, bool oldstyle, List *parameters,
&parameterModes,
&parameterNames,
&parameterDefaults,
&variadicArgType,
&requiredResultType);
/* Parameter defaults are not currently allowed by the grammar */
Assert(parameterDefaults == NIL);
@ -241,12 +273,15 @@ DefineAggregate(List *name, List *args, bool oldstyle, List *parameters,
*/
return AggregateCreate(aggName, /* aggregate name */
aggNamespace, /* namespace */
aggKind,
numArgs,
numDirectArgs,
parameterTypes,
PointerGetDatum(allParameterTypes),
PointerGetDatum(parameterModes),
PointerGetDatum(parameterNames),
parameterDefaults,
variadicArgType,
transfuncName, /* step function name */
finalfuncName, /* final function name */
sortoperatorName, /* sort operator name */

View File

@ -168,6 +168,8 @@ compute_return_type(TypeName *returnType, Oid languageOid,
*
* Results are stored into output parameters. parameterTypes must always
* be created, but the other arrays are set to NULL if not needed.
* variadicArgType is set to the variadic array type if there's a VARIADIC
* parameter (there can be only one); or to InvalidOid if not.
* requiredResultType is set to InvalidOid if there are no OUT parameters,
* else it is set to the OID of the implied result type.
*/
@ -181,6 +183,7 @@ interpret_function_parameter_list(List *parameters,
ArrayType **parameterModes,
ArrayType **parameterNames,
List **parameterDefaults,
Oid *variadicArgType,
Oid *requiredResultType)
{
int parameterCount = list_length(parameters);
@ -197,6 +200,7 @@ interpret_function_parameter_list(List *parameters,
int i;
ParseState *pstate;
*variadicArgType = InvalidOid; /* default result */
*requiredResultType = InvalidOid; /* default result */
inTypes = (Oid *) palloc(parameterCount * sizeof(Oid));
@ -293,6 +297,7 @@ interpret_function_parameter_list(List *parameters,
if (fp->mode == FUNC_PARAM_VARIADIC)
{
*variadicArgType = toid;
varCount++;
/* validate variadic parameter type */
switch (toid)
@ -823,6 +828,7 @@ CreateFunction(CreateFunctionStmt *stmt, const char *queryString)
ArrayType *parameterModes;
ArrayType *parameterNames;
List *parameterDefaults;
Oid variadicArgType;
Oid requiredResultType;
bool isWindowFunc,
isStrict,
@ -920,6 +926,7 @@ CreateFunction(CreateFunctionStmt *stmt, const char *queryString)
&parameterModes,
&parameterNames,
&parameterDefaults,
&variadicArgType,
&requiredResultType);
if (stmt->returnType)

View File

@ -4408,6 +4408,8 @@ ExecInitExpr(Expr *node, PlanState *parent)
aggstate->aggs = lcons(astate, aggstate->aggs);
naggs = ++aggstate->numaggs;
astate->aggdirectargs = (List *) ExecInitExpr((Expr *) aggref->aggdirectargs,
parent);
astate->args = (List *) ExecInitExpr((Expr *) aggref->args,
parent);
astate->aggfilter = ExecInitExpr(aggref->aggfilter,

View File

@ -380,8 +380,8 @@ sql_fn_post_column_ref(ParseState *pstate, ColumnRef *cref, Node *var)
param = ParseFuncOrColumn(pstate,
list_make1(subfield),
list_make1(param),
NIL, NULL, false, false, false,
NULL, true, cref->location);
NULL,
cref->location);
}
return param;

View File

@ -8,14 +8,16 @@
* transvalue = initcond
* foreach input_tuple do
* transvalue = transfunc(transvalue, input_value(s))
* result = finalfunc(transvalue)
* result = finalfunc(transvalue, direct_argument(s))
*
* If a finalfunc is not supplied then the result is just the ending
* value of transvalue.
*
* If an aggregate call specifies DISTINCT or ORDER BY, we sort the input
* tuples and eliminate duplicates (if required) before performing the
* above-depicted process.
* If a normal aggregate call specifies DISTINCT or ORDER BY, we sort the
* input tuples and eliminate duplicates (if required) before performing
* the above-depicted process. (However, we don't do that for ordered-set
* aggregates; their "ORDER BY" inputs are ordinary aggregate arguments
* so far as this module is concerned.)
*
* If transfunc is marked "strict" in pg_proc and initcond is NULL,
* then the first non-NULL input_value is assigned directly to transvalue,
@ -33,6 +35,14 @@
* of course). A non-strict finalfunc can make its own choice of
* what to return for a NULL ending transvalue.
*
* Ordered-set aggregates are treated specially in one other way: we
* evaluate any "direct" arguments and pass them to the finalfunc along
* with the transition value. In addition, NULL placeholders are
* provided to match the remaining finalfunc arguments, which correspond
* to the aggregated expressions. (These arguments have no use at
* runtime, but may be needed to allow resolution of a polymorphic
* aggregate's result type.)
*
* We compute aggregate input expressions and run the transition functions
* in a temporary econtext (aggstate->tmpcontext). This is reset at
* least once per input tuple, so when the transvalue datatype is
@ -40,7 +50,7 @@
* memory context, and free the prior value to avoid memory leakage.
* We store transvalues in the memory context aggstate->aggcontext,
* which is also used for the hashtable structures in AGG_HASHED mode.
* The node's regular econtext (aggstate->csstate.cstate.cs_ExprContext)
* The node's regular econtext (aggstate->ss.ps.ps_ExprContext)
* is used to run finalize functions and compute the output tuple;
* this context can be reset once per output tuple.
*
@ -66,6 +76,13 @@
* AggState is available as context in earlier releases (back to 8.1),
* but direct examination of the node is needed to use it before 9.0.
*
* As of 9.4, aggregate transition functions can also use AggGetAggref()
* to get hold of the Aggref expression node for their aggregate call.
* This is mainly intended for ordered-set aggregates, which are not
* supported as window functions. (A regular aggregate function would
* need some fallback logic to use this, since there's no Aggref node
* for a window function.)
*
*
* Portions Copyright (c) 1996-2013, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
@ -82,7 +99,6 @@
#include "catalog/objectaccess.h"
#include "catalog/pg_aggregate.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "executor/executor.h"
#include "executor/nodeAgg.h"
#include "miscadmin.h"
@ -114,12 +130,27 @@ typedef struct AggStatePerAggData
AggrefExprState *aggrefstate;
Aggref *aggref;
/* number of input arguments for aggregate function proper */
/*
* Nominal number of arguments for aggregate function. For plain aggs,
* this excludes any ORDER BY expressions. For ordered-set aggs, this
* counts both the direct and aggregated (ORDER BY) arguments.
*/
int numArguments;
/* number of inputs including ORDER BY expressions */
/*
* Number of aggregated input columns. This includes ORDER BY expressions
* in both the plain-agg and ordered-set cases. Ordered-set direct args
* are not counted, though.
*/
int numInputs;
/*
* Number of aggregated input columns to pass to the transfn. This
* includes the ORDER BY columns for ordered-set aggs, but not for plain
* aggs. (This doesn't count the transition state value!)
*/
int numTransInputs;
/* Oids of transfer functions */
Oid transfn_oid;
Oid finalfn_oid; /* may be InvalidOid */
@ -379,7 +410,7 @@ advance_transition_function(AggState *aggstate,
AggStatePerGroup pergroupstate,
FunctionCallInfoData *fcinfo)
{
int numArguments = peraggstate->numArguments;
int numTransInputs = peraggstate->numTransInputs;
MemoryContext oldContext;
Datum newVal;
int i;
@ -390,7 +421,7 @@ advance_transition_function(AggState *aggstate,
* For a strict transfn, nothing happens when there's a NULL input; we
* just keep the prior transValue.
*/
for (i = 1; i <= numArguments; i++)
for (i = 1; i <= numTransInputs; i++)
{
if (fcinfo->argnull[i])
return;
@ -430,11 +461,14 @@ advance_transition_function(AggState *aggstate,
/* We run the transition functions in per-input-tuple memory context */
oldContext = MemoryContextSwitchTo(aggstate->tmpcontext->ecxt_per_tuple_memory);
/* set up aggstate->curperagg for AggGetAggref() */
aggstate->curperagg = peraggstate;
/*
* OK to call the transition function
*/
InitFunctionCallInfoData(*fcinfo, &(peraggstate->transfn),
numArguments + 1,
numTransInputs + 1,
peraggstate->aggCollation,
(void *) aggstate, NULL);
fcinfo->arg[0] = pergroupstate->transValue;
@ -442,6 +476,8 @@ advance_transition_function(AggState *aggstate,
newVal = FunctionCallInvoke(fcinfo);
aggstate->curperagg = NULL;
/*
* If pass-by-ref datatype, must copy the new value into aggcontext and
* pfree the prior transValue. But if transfn returned a pointer to its
@ -485,15 +521,15 @@ advance_aggregates(AggState *aggstate, AggStatePerGroup pergroup)
AggStatePerAgg peraggstate = &aggstate->peragg[aggno];
AggStatePerGroup pergroupstate = &pergroup[aggno];
ExprState *filter = peraggstate->aggrefstate->aggfilter;
int nargs = peraggstate->numArguments;
int numTransInputs = peraggstate->numTransInputs;
int i;
TupleTableSlot *slot;
/* Skip anything FILTERed out */
if (filter)
{
bool isnull;
Datum res;
bool isnull;
res = ExecEvalExprSwitchContext(filter, aggstate->tmpcontext,
&isnull, NULL);
@ -512,18 +548,18 @@ advance_aggregates(AggState *aggstate, AggStatePerGroup pergroup)
/*
* If the transfn is strict, we want to check for nullity before
* storing the row in the sorter, to save space if there are a lot
* of nulls. Note that we must only check numArguments columns,
* of nulls. Note that we must only check numTransInputs columns,
* not numInputs, since nullity in columns used only for sorting
* is not relevant here.
*/
if (peraggstate->transfn.fn_strict)
{
for (i = 0; i < nargs; i++)
for (i = 0; i < numTransInputs; i++)
{
if (slot->tts_isnull[i])
break;
}
if (i < nargs)
if (i < numTransInputs)
continue;
}
@ -542,8 +578,8 @@ advance_aggregates(AggState *aggstate, AggStatePerGroup pergroup)
/* Load values into fcinfo */
/* Start from 1, since the 0th arg will be the transition value */
Assert(slot->tts_nvalid >= nargs);
for (i = 0; i < nargs; i++)
Assert(slot->tts_nvalid >= numTransInputs);
for (i = 0; i < numTransInputs; i++)
{
fcinfo.arg[i + 1] = slot->tts_values[i];
fcinfo.argnull[i + 1] = slot->tts_isnull[i];
@ -671,7 +707,7 @@ process_ordered_aggregate_multi(AggState *aggstate,
FunctionCallInfoData fcinfo;
TupleTableSlot *slot1 = peraggstate->evalslot;
TupleTableSlot *slot2 = peraggstate->uniqslot;
int numArguments = peraggstate->numArguments;
int numTransInputs = peraggstate->numTransInputs;
int numDistinctCols = peraggstate->numDistinctCols;
bool haveOldValue = false;
int i;
@ -685,10 +721,11 @@ process_ordered_aggregate_multi(AggState *aggstate,
while (tuplesort_gettupleslot(peraggstate->sortstate, true, slot1))
{
/*
* Extract the first numArguments as datums to pass to the transfn.
* (This will help execTuplesMatch too, so do it immediately.)
* Extract the first numTransInputs columns as datums to pass to the
* transfn. (This will help execTuplesMatch too, so we do it
* immediately.)
*/
slot_getsomeattrs(slot1, numArguments);
slot_getsomeattrs(slot1, numTransInputs);
if (numDistinctCols == 0 ||
!haveOldValue ||
@ -700,7 +737,7 @@ process_ordered_aggregate_multi(AggState *aggstate,
{
/* Load values into fcinfo */
/* Start from 1, since the 0th arg will be the transition value */
for (i = 0; i < numArguments; i++)
for (i = 0; i < numTransInputs; i++)
{
fcinfo.arg[i + 1] = slot1->tts_values[i];
fcinfo.argnull[i + 1] = slot1->tts_isnull[i];
@ -746,23 +783,73 @@ finalize_aggregate(AggState *aggstate,
AggStatePerGroup pergroupstate,
Datum *resultVal, bool *resultIsNull)
{
FunctionCallInfoData fcinfo;
bool anynull = false;
MemoryContext oldContext;
int i;
ListCell *lc;
oldContext = MemoryContextSwitchTo(aggstate->ss.ps.ps_ExprContext->ecxt_per_tuple_memory);
/*
* Evaluate any direct arguments. We do this even if there's no finalfn
* (which is unlikely anyway), so that side-effects happen as expected.
*/
i = 1;
foreach(lc, peraggstate->aggrefstate->aggdirectargs)
{
ExprState *expr = (ExprState *) lfirst(lc);
fcinfo.arg[i] = ExecEvalExpr(expr,
aggstate->ss.ps.ps_ExprContext,
&fcinfo.argnull[i],
NULL);
anynull |= fcinfo.argnull[i];
i++;
}
/*
* Apply the agg's finalfn if one is provided, else return transValue.
*/
if (OidIsValid(peraggstate->finalfn_oid))
{
FunctionCallInfoData fcinfo;
int numFinalArgs;
InitFunctionCallInfoData(fcinfo, &(peraggstate->finalfn), 1,
/*
* Identify number of arguments being passed to the finalfn. For a
* plain agg it's just one (the transition state value). For
* ordered-set aggs we also pass the direct argument(s), plus nulls
* corresponding to the aggregate-input columns.
*/
if (AGGKIND_IS_ORDERED_SET(peraggstate->aggref->aggkind))
numFinalArgs = peraggstate->numArguments + 1;
else
numFinalArgs = 1;
Assert(i <= numFinalArgs);
/* set up aggstate->curperagg for AggGetAggref() */
aggstate->curperagg = peraggstate;
InitFunctionCallInfoData(fcinfo, &(peraggstate->finalfn),
numFinalArgs,
peraggstate->aggCollation,
(void *) aggstate, NULL);
/* Fill in the transition state value */
fcinfo.arg[0] = pergroupstate->transValue;
fcinfo.argnull[0] = pergroupstate->transValueIsNull;
if (fcinfo.flinfo->fn_strict && pergroupstate->transValueIsNull)
anynull |= pergroupstate->transValueIsNull;
/* Fill any remaining argument positions with nulls */
while (i < numFinalArgs)
{
fcinfo.arg[i] = (Datum) 0;
fcinfo.argnull[i] = true;
anynull = true;
i++;
}
if (fcinfo.flinfo->fn_strict && anynull)
{
/* don't call a strict function with NULL inputs */
*resultVal = (Datum) 0;
@ -773,6 +860,7 @@ finalize_aggregate(AggState *aggstate,
*resultVal = FunctionCallInvoke(&fcinfo);
*resultIsNull = fcinfo.isnull;
}
aggstate->curperagg = NULL;
}
else
{
@ -1094,8 +1182,13 @@ agg_retrieve_direct(AggState *aggstate)
* aggcontext (which contains any pass-by-ref transvalues of the old
* group). We also clear any child contexts of the aggcontext; some
* aggregate functions store working state in such contexts.
*
* We use ReScanExprContext not just ResetExprContext because we want
* any registered shutdown callbacks to be called. That allows
* aggregate functions to ensure they've cleaned up any non-memory
* resources.
*/
ResetExprContext(econtext);
ReScanExprContext(econtext);
MemoryContextResetAndDeleteChildren(aggstate->aggcontext);
@ -1163,6 +1256,16 @@ agg_retrieve_direct(AggState *aggstate)
}
}
/*
* Use the representative input tuple for any references to
* non-aggregated input columns in aggregate direct args, the node
* qual, and the tlist. (If we are not grouping, and there are no
* input rows at all, we will come here with an empty firstSlot ...
* but if not grouping, there can't be any references to
* non-aggregated input columns, so no problem.)
*/
econtext->ecxt_outertuple = firstSlot;
/*
* Done scanning input tuple group. Finalize each aggregate
* calculation, and stash results in the per-output-tuple context.
@ -1188,15 +1291,6 @@ agg_retrieve_direct(AggState *aggstate)
&aggvalues[aggno], &aggnulls[aggno]);
}
/*
* Use the representative input tuple for any references to
* non-aggregated input columns in the qual and tlist. (If we are not
* grouping, and there are no input rows at all, we will come here
* with an empty firstSlot ... but if not grouping, there can't be any
* references to non-aggregated input columns, so no problem.)
*/
econtext->ecxt_outertuple = firstSlot;
/*
* Check the qual (HAVING clause); if the group does not match, ignore
* it and loop back to try to process another group.
@ -1316,6 +1410,10 @@ agg_retrieve_hash_table(AggState *aggstate)
/*
* Clear the per-output-tuple context for each group
*
* We intentionally don't use ReScanExprContext here; if any aggs have
* registered shutdown callbacks, they mustn't be called yet, since we
* might not be done with that agg.
*/
ResetExprContext(econtext);
@ -1412,6 +1510,7 @@ ExecInitAgg(Agg *node, EState *estate, int eflags)
aggstate->eqfunctions = NULL;
aggstate->hashfunctions = NULL;
aggstate->peragg = NULL;
aggstate->curperagg = NULL;
aggstate->agg_done = false;
aggstate->pergroup = NULL;
aggstate->grp_firstTuple = NULL;
@ -1565,6 +1664,7 @@ ExecInitAgg(Agg *node, EState *estate, int eflags)
AggStatePerAgg peraggstate;
Oid inputTypes[FUNC_MAX_ARGS];
int numArguments;
int numDirectArgs;
int numInputs;
int numSortCols;
int numDistinctCols;
@ -1604,28 +1704,12 @@ ExecInitAgg(Agg *node, EState *estate, int eflags)
/* Mark Aggref state node with assigned index in the result array */
aggrefstate->aggno = aggno;
/* Fill in the peraggstate data */
/* Begin filling in the peraggstate data */
peraggstate->aggrefstate = aggrefstate;
peraggstate->aggref = aggref;
numInputs = list_length(aggref->args);
peraggstate->numInputs = numInputs;
peraggstate->sortstate = NULL;
/*
* Get actual datatypes of the inputs. These could be different from
* the agg's declared input types, when the agg accepts ANY or a
* polymorphic type.
*/
numArguments = 0;
foreach(lc, aggref->args)
{
TargetEntry *tle = (TargetEntry *) lfirst(lc);
if (!tle->resjunk)
inputTypes[numArguments++] = exprType((Node *) tle->expr);
}
peraggstate->numArguments = numArguments;
/* Fetch the pg_aggregate row */
aggTuple = SearchSysCache1(AGGFNOID,
ObjectIdGetDatum(aggref->aggfnoid));
if (!HeapTupleIsValid(aggTuple))
@ -1674,28 +1758,38 @@ ExecInitAgg(Agg *node, EState *estate, int eflags)
}
}
/* resolve actual type of transition state, if polymorphic */
aggtranstype = aggform->aggtranstype;
if (IsPolymorphicType(aggtranstype))
{
/* have to fetch the agg's declared input types... */
Oid *declaredArgTypes;
int agg_nargs;
/*
* Get actual datatypes of the (nominal) aggregate inputs. These
* could be different from the agg's declared input types, when the
* agg accepts ANY or a polymorphic type.
*/
numArguments = get_aggregate_argtypes(aggref, inputTypes);
peraggstate->numArguments = numArguments;
(void) get_func_signature(aggref->aggfnoid,
&declaredArgTypes, &agg_nargs);
Assert(agg_nargs == numArguments);
aggtranstype = enforce_generic_type_consistency(inputTypes,
declaredArgTypes,
agg_nargs,
aggtranstype,
false);
pfree(declaredArgTypes);
}
/* Count the "direct" arguments, if any */
numDirectArgs = list_length(aggref->aggdirectargs);
/* Count the number of aggregated input columns */
numInputs = list_length(aggref->args);
peraggstate->numInputs = numInputs;
/* Detect how many columns to pass to the transfn */
if (AGGKIND_IS_ORDERED_SET(aggref->aggkind))
peraggstate->numTransInputs = numInputs;
else
peraggstate->numTransInputs = numArguments;
/* resolve actual type of transition state, if polymorphic */
aggtranstype = resolve_aggregate_transtype(aggref->aggfnoid,
aggform->aggtranstype,
inputTypes,
numArguments);
/* build expression trees using actual argument & result types */
build_aggregate_fnexprs(inputTypes,
numArguments,
numDirectArgs,
AGGKIND_IS_ORDERED_SET(aggref->aggkind),
aggref->aggvariadic,
aggtranstype,
aggref->aggtype,
@ -1740,14 +1834,14 @@ ExecInitAgg(Agg *node, EState *estate, int eflags)
/*
* If the transfn is strict and the initval is NULL, make sure input
* type and transtype are the same (or at least binary-compatible), so
* that it's OK to use the first input value as the initial
* that it's OK to use the first aggregated input value as the initial
* transValue. This should have been checked at agg definition time,
* but just in case...
*/
if (peraggstate->transfn.fn_strict && peraggstate->initValueIsNull)
{
if (numArguments < 1 ||
!IsBinaryCoercible(inputTypes[0], aggtranstype))
if (numArguments <= numDirectArgs ||
!IsBinaryCoercible(inputTypes[numDirectArgs], aggtranstype))
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("aggregate %u needs to have compatible input type and transition type",
@ -1755,8 +1849,8 @@ ExecInitAgg(Agg *node, EState *estate, int eflags)
}
/*
* Get a tupledesc corresponding to the inputs (including sort
* expressions) of the agg.
* Get a tupledesc corresponding to the aggregated inputs (including
* sort expressions) of the agg.
*/
peraggstate->evaldesc = ExecTypeFromTL(aggref->args, false);
@ -1771,14 +1865,20 @@ ExecInitAgg(Agg *node, EState *estate, int eflags)
NULL);
/*
* If we're doing either DISTINCT or ORDER BY, then we have a list of
* SortGroupClause nodes; fish out the data in them and stick them
* into arrays.
* If we're doing either DISTINCT or ORDER BY for a plain agg, then we
* have a list of SortGroupClause nodes; fish out the data in them and
* stick them into arrays. We ignore ORDER BY for an ordered-set agg,
* however; the agg's transfn and finalfn are responsible for that.
*
* Note that by construction, if there is a DISTINCT clause then the
* ORDER BY clause is a prefix of it (see transformDistinctClause).
*/
if (aggref->aggdistinct)
if (AGGKIND_IS_ORDERED_SET(aggref->aggkind))
{
sortlist = NIL;
numSortCols = numDistinctCols = 0;
}
else if (aggref->aggdistinct)
{
sortlist = aggref->aggdistinct;
numSortCols = numDistinctCols = list_length(sortlist);
@ -1805,7 +1905,7 @@ ExecInitAgg(Agg *node, EState *estate, int eflags)
/* If we have only one input, we need its len/byval info. */
if (numInputs == 1)
{
get_typlenbyval(inputTypes[0],
get_typlenbyval(inputTypes[numDirectArgs],
&peraggstate->inputtypeLen,
&peraggstate->inputtypeByVal);
}
@ -1908,6 +2008,9 @@ ExecEndAgg(AggState *node)
tuplesort_end(peraggstate->sortstate);
}
/* And ensure any agg shutdown callbacks have been called */
ReScanExprContext(node->ss.ps.ps_ExprContext);
/*
* Free both the expr contexts.
*/
@ -1967,6 +2070,8 @@ ExecReScanAgg(AggState *node)
peraggstate->sortstate = NULL;
}
/* We don't need to ReScanExprContext here; ExecReScan already did it */
/* Release first tuple of group, if we have made a copy */
if (node->grp_firstTuple != NULL)
{
@ -2046,6 +2151,71 @@ AggCheckCallContext(FunctionCallInfo fcinfo, MemoryContext *aggcontext)
return 0;
}
/*
* AggGetAggref - allow an aggregate support function to get its Aggref
*
* If the function is being called as an aggregate support function,
* return the Aggref node for the aggregate call. Otherwise, return NULL.
*
* Note that if an aggregate is being used as a window function, this will
* return NULL. We could provide a similar function to return the relevant
* WindowFunc node in such cases, but it's not needed yet.
*/
Aggref *
AggGetAggref(FunctionCallInfo fcinfo)
{
if (fcinfo->context && IsA(fcinfo->context, AggState))
{
AggStatePerAgg curperagg = ((AggState *) fcinfo->context)->curperagg;
if (curperagg)
return curperagg->aggref;
}
return NULL;
}
/*
* AggGetPerTupleEContext - fetch per-input-tuple ExprContext
*
* This is useful in agg final functions; the econtext returned is the
* same per-tuple context that the transfn was called in (which can
* safely get reset during the final function).
*
* As above, this is currently not useful for aggs called as window functions.
*/
ExprContext *
AggGetPerTupleEContext(FunctionCallInfo fcinfo)
{
if (fcinfo->context && IsA(fcinfo->context, AggState))
{
AggState *aggstate = (AggState *) fcinfo->context;
return aggstate->tmpcontext;
}
return NULL;
}
/*
* AggGetPerAggEContext - fetch per-output-tuple ExprContext
*
* This is useful for aggs to register shutdown callbacks, which will ensure
* that non-memory resources are freed.
*
* As above, this is currently not useful for aggs called as window functions.
*/
ExprContext *
AggGetPerAggEContext(FunctionCallInfo fcinfo)
{
if (fcinfo->context && IsA(fcinfo->context, AggState))
{
AggState *aggstate = (AggState *) fcinfo->context;
return aggstate->ss.ps.ps_ExprContext;
}
return NULL;
}
/*
* aggregate_dummy - dummy execution routine for aggregate functions
*

View File

@ -37,7 +37,6 @@
#include "catalog/objectaccess.h"
#include "catalog/pg_aggregate.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "executor/executor.h"
#include "executor/nodeWindowAgg.h"
#include "miscadmin.h"
@ -1796,27 +1795,16 @@ initialize_peragg(WindowAggState *winstate, WindowFunc *wfunc,
}
/* resolve actual type of transition state, if polymorphic */
aggtranstype = aggform->aggtranstype;
if (IsPolymorphicType(aggtranstype))
{
/* have to fetch the agg's declared input types... */
Oid *declaredArgTypes;
int agg_nargs;
get_func_signature(wfunc->winfnoid,
&declaredArgTypes, &agg_nargs);
Assert(agg_nargs == numArguments);
aggtranstype = enforce_generic_type_consistency(inputTypes,
declaredArgTypes,
agg_nargs,
aggtranstype,
false);
pfree(declaredArgTypes);
}
aggtranstype = resolve_aggregate_transtype(wfunc->winfnoid,
aggform->aggtranstype,
inputTypes,
numArguments);
/* build expression trees using actual argument & result types */
build_aggregate_fnexprs(inputTypes,
numArguments,
0, /* no ordered-set window functions yet */
false,
false, /* no variadic window functions yet */
aggtranstype,
wfunc->wintype,

View File

@ -1132,12 +1132,14 @@ _copyAggref(const Aggref *from)
COPY_SCALAR_FIELD(aggtype);
COPY_SCALAR_FIELD(aggcollid);
COPY_SCALAR_FIELD(inputcollid);
COPY_NODE_FIELD(aggdirectargs);
COPY_NODE_FIELD(args);
COPY_NODE_FIELD(aggorder);
COPY_NODE_FIELD(aggdistinct);
COPY_NODE_FIELD(aggfilter);
COPY_SCALAR_FIELD(aggstar);
COPY_SCALAR_FIELD(aggvariadic);
COPY_SCALAR_FIELD(aggkind);
COPY_SCALAR_FIELD(agglevelsup);
COPY_LOCATION_FIELD(location);
@ -2180,6 +2182,7 @@ _copyFuncCall(const FuncCall *from)
COPY_NODE_FIELD(args);
COPY_NODE_FIELD(agg_order);
COPY_NODE_FIELD(agg_filter);
COPY_SCALAR_FIELD(agg_within_group);
COPY_SCALAR_FIELD(agg_star);
COPY_SCALAR_FIELD(agg_distinct);
COPY_SCALAR_FIELD(func_variadic);

View File

@ -193,12 +193,14 @@ _equalAggref(const Aggref *a, const Aggref *b)
COMPARE_SCALAR_FIELD(aggtype);
COMPARE_SCALAR_FIELD(aggcollid);
COMPARE_SCALAR_FIELD(inputcollid);
COMPARE_NODE_FIELD(aggdirectargs);
COMPARE_NODE_FIELD(args);
COMPARE_NODE_FIELD(aggorder);
COMPARE_NODE_FIELD(aggdistinct);
COMPARE_NODE_FIELD(aggfilter);
COMPARE_SCALAR_FIELD(aggstar);
COMPARE_SCALAR_FIELD(aggvariadic);
COMPARE_SCALAR_FIELD(aggkind);
COMPARE_SCALAR_FIELD(agglevelsup);
COMPARE_LOCATION_FIELD(location);
@ -2021,6 +2023,7 @@ _equalFuncCall(const FuncCall *a, const FuncCall *b)
COMPARE_NODE_FIELD(args);
COMPARE_NODE_FIELD(agg_order);
COMPARE_NODE_FIELD(agg_filter);
COMPARE_SCALAR_FIELD(agg_within_group);
COMPARE_SCALAR_FIELD(agg_star);
COMPARE_SCALAR_FIELD(agg_distinct);
COMPARE_SCALAR_FIELD(func_variadic);

View File

@ -546,9 +546,10 @@ makeFuncCall(List *name, List *args, int location)
n->args = args;
n->agg_order = NIL;
n->agg_filter = NULL;
n->agg_star = FALSE;
n->agg_distinct = FALSE;
n->func_variadic = FALSE;
n->agg_within_group = false;
n->agg_star = false;
n->agg_distinct = false;
n->func_variadic = false;
n->over = NULL;
n->location = location;
return n;

View File

@ -1453,6 +1453,10 @@ exprLocation(const Node *expr)
case T_Constraint:
loc = ((const Constraint *) expr)->location;
break;
case T_FunctionParameter:
/* just use typename's location */
loc = exprLocation((Node *) ((const FunctionParameter *) expr)->argType);
break;
case T_XmlSerialize:
/* XMLSERIALIZE keyword should always be the first thing */
loc = ((const XmlSerialize *) expr)->location;
@ -1625,6 +1629,9 @@ expression_tree_walker(Node *node,
Aggref *expr = (Aggref *) node;
/* recurse directly on List */
if (expression_tree_walker((Node *) expr->aggdirectargs,
walker, context))
return true;
if (expression_tree_walker((Node *) expr->args,
walker, context))
return true;
@ -2157,6 +2164,7 @@ expression_tree_mutator(Node *node,
Aggref *newnode;
FLATCOPY(newnode, aggref, Aggref);
MUTATE(newnode->aggdirectargs, aggref->aggdirectargs, List *);
MUTATE(newnode->args, aggref->args, List *);
MUTATE(newnode->aggorder, aggref->aggorder, List *);
MUTATE(newnode->aggdistinct, aggref->aggdistinct, List *);

View File

@ -953,12 +953,14 @@ _outAggref(StringInfo str, const Aggref *node)
WRITE_OID_FIELD(aggtype);
WRITE_OID_FIELD(aggcollid);
WRITE_OID_FIELD(inputcollid);
WRITE_NODE_FIELD(aggdirectargs);
WRITE_NODE_FIELD(args);
WRITE_NODE_FIELD(aggorder);
WRITE_NODE_FIELD(aggdistinct);
WRITE_NODE_FIELD(aggfilter);
WRITE_BOOL_FIELD(aggstar);
WRITE_BOOL_FIELD(aggvariadic);
WRITE_CHAR_FIELD(aggkind);
WRITE_UINT_FIELD(agglevelsup);
WRITE_LOCATION_FIELD(location);
}
@ -2084,6 +2086,7 @@ _outFuncCall(StringInfo str, const FuncCall *node)
WRITE_NODE_FIELD(args);
WRITE_NODE_FIELD(agg_order);
WRITE_NODE_FIELD(agg_filter);
WRITE_BOOL_FIELD(agg_within_group);
WRITE_BOOL_FIELD(agg_star);
WRITE_BOOL_FIELD(agg_distinct);
WRITE_BOOL_FIELD(func_variadic);

View File

@ -492,12 +492,14 @@ _readAggref(void)
READ_OID_FIELD(aggtype);
READ_OID_FIELD(aggcollid);
READ_OID_FIELD(inputcollid);
READ_NODE_FIELD(aggdirectargs);
READ_NODE_FIELD(args);
READ_NODE_FIELD(aggorder);
READ_NODE_FIELD(aggdistinct);
READ_NODE_FIELD(aggfilter);
READ_BOOL_FIELD(aggstar);
READ_BOOL_FIELD(aggvariadic);
READ_CHAR_FIELD(aggkind);
READ_UINT_FIELD(agglevelsup);
READ_LOCATION_FIELD(location);

View File

@ -328,17 +328,20 @@ find_minmax_aggs_walker(Node *node, List **context)
* that differs for each of those equal values of the argument
* expression makes the result predictable once again. This is a
* niche requirement, and we do not implement it with subquery paths.
* In any case, this test lets us reject ordered-set aggregates
* quickly.
*/
if (aggref->aggorder != NIL)
return true;
/* note: we do not care if DISTINCT is mentioned ... */
/*
* We might implement the optimization when a FILTER clause is present
* by adding the filter to the quals of the generated subquery.
* by adding the filter to the quals of the generated subquery. For
* now, just punt.
*/
if (aggref->aggfilter != NULL)
return true;
/* note: we do not care if DISTINCT is mentioned ... */
aggsortop = fetch_agg_sort_op(aggref->aggfnoid);
if (!OidIsValid(aggsortop))

View File

@ -2659,7 +2659,9 @@ choose_hashed_grouping(PlannerInfo *root,
* Executor doesn't support hashed aggregation with DISTINCT or ORDER BY
* aggregates. (Doing so would imply storing *all* the input values in
* the hash table, and/or running many sorts in parallel, either of which
* seems like a certain loser.)
* seems like a certain loser.) We similarly don't support ordered-set
* aggregates in hashed aggregation, but that case is included in the
* numOrderedAggs count.
*/
can_hash = (agg_costs->numOrderedAggs == 0 &&
grouping_is_hashable(parse->groupClause));

View File

@ -37,6 +37,7 @@
#include "optimizer/prep.h"
#include "optimizer/var.h"
#include "parser/analyze.h"
#include "parser/parse_agg.h"
#include "parser/parse_coerce.h"
#include "parser/parse_func.h"
#include "rewrite/rewriteManip.h"
@ -463,9 +464,8 @@ count_agg_clauses_walker(Node *node, count_agg_clauses_context *context)
Oid aggtranstype;
int32 aggtransspace;
QualCost argcosts;
Oid *inputTypes;
Oid inputTypes[FUNC_MAX_ARGS];
int numArguments;
ListCell *l;
Assert(aggref->agglevelsup == 0);
@ -482,7 +482,7 @@ count_agg_clauses_walker(Node *node, count_agg_clauses_context *context)
aggtransspace = aggform->aggtransspace;
ReleaseSysCache(aggTuple);
/* count it */
/* count it; note ordered-set aggs always have nonempty aggorder */
costs->numAggs++;
if (aggref->aggorder != NIL || aggref->aggdistinct != NIL)
costs->numOrderedAggs++;
@ -498,42 +498,39 @@ count_agg_clauses_walker(Node *node, count_agg_clauses_context *context)
costs->transCost.per_tuple += argcosts.per_tuple;
/*
* Add the filter's cost to per-input-row costs. XXX We should reduce
* input expression costs according to filter selectivity.
* Add any filter's cost to per-input-row costs.
*
* XXX Ideally we should reduce input expression costs according to
* filter selectivity, but it's not clear it's worth the trouble.
*/
cost_qual_eval_node(&argcosts, (Node *) aggref->aggfilter,
context->root);
costs->transCost.startup += argcosts.startup;
costs->transCost.per_tuple += argcosts.per_tuple;
if (aggref->aggfilter)
{
cost_qual_eval_node(&argcosts, (Node *) aggref->aggfilter,
context->root);
costs->transCost.startup += argcosts.startup;
costs->transCost.per_tuple += argcosts.per_tuple;
}
/*
* If there are direct arguments, treat their evaluation cost like the
* cost of the finalfn.
*/
if (aggref->aggdirectargs)
{
cost_qual_eval_node(&argcosts, (Node *) aggref->aggdirectargs,
context->root);
costs->transCost.startup += argcosts.startup;
costs->finalCost += argcosts.per_tuple;
}
/* extract argument types (ignoring any ORDER BY expressions) */
inputTypes = (Oid *) palloc(sizeof(Oid) * list_length(aggref->args));
numArguments = 0;
foreach(l, aggref->args)
{
TargetEntry *tle = (TargetEntry *) lfirst(l);
if (!tle->resjunk)
inputTypes[numArguments++] = exprType((Node *) tle->expr);
}
numArguments = get_aggregate_argtypes(aggref, inputTypes);
/* resolve actual type of transition state, if polymorphic */
if (IsPolymorphicType(aggtranstype))
{
/* have to fetch the agg's declared input types... */
Oid *declaredArgTypes;
int agg_nargs;
(void) get_func_signature(aggref->aggfnoid,
&declaredArgTypes, &agg_nargs);
Assert(agg_nargs == numArguments);
aggtranstype = enforce_generic_type_consistency(inputTypes,
declaredArgTypes,
agg_nargs,
aggtranstype,
false);
pfree(declaredArgTypes);
}
aggtranstype = resolve_aggregate_transtype(aggref->aggfnoid,
aggtranstype,
inputTypes,
numArguments);
/*
* If the transition type is pass-by-value then it doesn't add
@ -551,14 +548,16 @@ count_agg_clauses_walker(Node *node, count_agg_clauses_context *context)
else
{
/*
* If transition state is of same type as first input, assume
* it's the same typmod (same width) as well. This works for
* cases like MAX/MIN and is probably somewhat reasonable
* otherwise.
* If transition state is of same type as first aggregated
* input, assume it's the same typmod (same width) as well.
* This works for cases like MAX/MIN and is probably somewhat
* reasonable otherwise.
*/
int numdirectargs = list_length(aggref->aggdirectargs);
int32 aggtranstypmod;
if (numArguments > 0 && aggtranstype == inputTypes[0])
if (numArguments > numdirectargs &&
aggtranstype == inputTypes[numdirectargs])
aggtranstypmod = exprTypmod((Node *) linitial(aggref->args));
else
aggtranstypmod = -1;
@ -587,17 +586,11 @@ count_agg_clauses_walker(Node *node, count_agg_clauses_context *context)
}
/*
* Complain if the aggregate's arguments contain any aggregates;
* nested agg functions are semantically nonsensical. Aggregates in
* the FILTER clause are detected in transformAggregateCall().
*/
if (contain_agg_clause((Node *) aggref->args))
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("aggregate function calls cannot be nested")));
/*
* Having checked that, we need not recurse into the argument.
* We assume that the parser checked that there are no aggregates (of
* this level anyway) in the aggregated arguments, direct arguments,
* or filter clause. Hence, we need not recurse into any of them. (If
* either the parser or the planner screws up on this point, the
* executor will still catch it; see ExecInitExpr.)
*/
return false;
}
@ -662,17 +655,10 @@ find_window_functions_walker(Node *node, WindowFuncLists *lists)
lists->numWindowFuncs++;
/*
* Complain if the window function's arguments contain window
* functions. Window functions in the FILTER clause are detected in
* transformAggregateCall().
*/
if (contain_window_function((Node *) wfunc->args))
ereport(ERROR,
(errcode(ERRCODE_WINDOWING_ERROR),
errmsg("window function calls cannot be nested")));
/*
* Having checked that, we need not recurse into the argument.
* We assume that the parser checked that there are no window
* functions in the arguments or filter clause. Hence, we need not
* recurse into them. (If either the parser or the planner screws up
* on this point, the executor will still catch it; see ExecInitExpr.)
*/
return false;
}

View File

@ -142,6 +142,9 @@ static void check_qualified_name(List *names, core_yyscan_t yyscanner);
static List *check_func_name(List *names, core_yyscan_t yyscanner);
static List *check_indirection(List *indirection, core_yyscan_t yyscanner);
static List *extractArgTypes(List *parameters);
static List *extractAggrArgTypes(List *aggrargs);
static List *makeOrderedSetArgs(List *directargs, List *orderedargs,
core_yyscan_t yyscanner);
static void insertSelectOptions(SelectStmt *stmt,
List *sortClause, List *lockingClause,
Node *limitOffset, Node *limitCount,
@ -491,12 +494,13 @@ static Node *makeRecursiveViewSelect(char *relname, List *aliases, Node *query);
%type <with> with_clause opt_with_clause
%type <list> cte_list
%type <list> within_group_clause
%type <node> filter_clause
%type <list> window_clause window_definition_list opt_partition_clause
%type <windef> window_definition over_clause window_specification
opt_frame_clause frame_extent frame_bound
%type <str> opt_existing_window_name
%type <boolean> opt_if_not_exists
%type <node> filter_clause
/*
* Non-keyword token types. These are hard-wired into the "flex" lexer.
@ -599,7 +603,7 @@ static Node *makeRecursiveViewSelect(char *relname, List *aliases, Node *query);
VACUUM VALID VALIDATE VALIDATOR VALUE_P VALUES VARCHAR VARIADIC VARYING
VERBOSE VERSION_P VIEW VOLATILE
WHEN WHERE WHITESPACE_P WINDOW WITH WITHOUT WORK WRAPPER WRITE
WHEN WHERE WHITESPACE_P WINDOW WITH WITHIN WITHOUT WORK WRAPPER WRITE
XML_P XMLATTRIBUTES XMLCONCAT XMLELEMENT XMLEXISTS XMLFOREST XMLPARSE
XMLPI XMLROOT XMLSERIALIZE
@ -3715,7 +3719,7 @@ AlterExtensionContentsStmt:
n->action = $4;
n->objtype = OBJECT_AGGREGATE;
n->objname = $6;
n->objargs = extractArgTypes($7);
n->objargs = extractAggrArgTypes($7);
$$ = (Node *)n;
}
| ALTER EXTENSION name add_drop CAST '(' Typename AS Typename ')'
@ -5294,7 +5298,7 @@ CommentStmt:
CommentStmt *n = makeNode(CommentStmt);
n->objtype = OBJECT_AGGREGATE;
n->objname = $4;
n->objargs = extractArgTypes($5);
n->objargs = extractAggrArgTypes($5);
n->comment = $7;
$$ = (Node *) n;
}
@ -5460,7 +5464,7 @@ SecLabelStmt:
n->provider = $3;
n->objtype = OBJECT_AGGREGATE;
n->objname = $6;
n->objargs = extractArgTypes($7);
n->objargs = extractAggrArgTypes($7);
n->label = $9;
$$ = (Node *) n;
}
@ -6460,9 +6464,52 @@ aggr_arg: func_arg
}
;
/* Zero-argument aggregates are named with * for consistency with COUNT(*) */
aggr_args: '(' aggr_args_list ')' { $$ = $2; }
| '(' '*' ')' { $$ = NIL; }
/*
* The SQL standard offers no guidance on how to declare aggregate argument
* lists, since it doesn't have CREATE AGGREGATE etc. We accept these cases:
*
* (*) - normal agg with no args
* (aggr_arg,...) - normal agg with args
* (ORDER BY aggr_arg,...) - ordered-set agg with no direct args
* (aggr_arg,... ORDER BY aggr_arg,...) - ordered-set agg with direct args
*
* The zero-argument case is spelled with '*' for consistency with COUNT(*).
*
* An additional restriction is that if the direct-args list ends in a
* VARIADIC item, the ordered-args list must contain exactly one item that
* is also VARIADIC with the same type. This allows us to collapse the two
* VARIADIC items into one, which is necessary to represent the aggregate in
* pg_proc. We check this at the grammar stage so that we can return a list
* in which the second VARIADIC item is already discarded, avoiding extra work
* in cases such as DROP AGGREGATE.
*
* The return value of this production is a two-element list, in which the
* first item is a sublist of FunctionParameter nodes (with any duplicate
* VARIADIC item already dropped, as per above) and the second is an integer
* Value node, containing -1 if there was no ORDER BY and otherwise the number
* of argument declarations before the ORDER BY. (If this number is equal
* to the first sublist's length, then we dropped a duplicate VARIADIC item.)
* This representation is passed as-is to CREATE AGGREGATE; for operations
* on existing aggregates, we can just apply extractArgTypes to the first
* sublist.
*/
aggr_args: '(' '*' ')'
{
$$ = list_make2(NIL, makeInteger(-1));
}
| '(' aggr_args_list ')'
{
$$ = list_make2($2, makeInteger(-1));
}
| '(' ORDER BY aggr_args_list ')'
{
$$ = list_make2($4, makeInteger(0));
}
| '(' aggr_args_list ORDER BY aggr_args_list ')'
{
/* this is the only case requiring consistency checking */
$$ = makeOrderedSetArgs($2, $5, yyscanner);
}
;
aggr_args_list:
@ -6668,7 +6715,7 @@ RemoveAggrStmt:
DropStmt *n = makeNode(DropStmt);
n->removeType = OBJECT_AGGREGATE;
n->objects = list_make1($3);
n->arguments = list_make1(extractArgTypes($4));
n->arguments = list_make1(extractAggrArgTypes($4));
n->behavior = $5;
n->missing_ok = false;
n->concurrent = false;
@ -6679,7 +6726,7 @@ RemoveAggrStmt:
DropStmt *n = makeNode(DropStmt);
n->removeType = OBJECT_AGGREGATE;
n->objects = list_make1($5);
n->arguments = list_make1(extractArgTypes($6));
n->arguments = list_make1(extractAggrArgTypes($6));
n->behavior = $7;
n->missing_ok = true;
n->concurrent = false;
@ -6895,7 +6942,7 @@ RenameStmt: ALTER AGGREGATE func_name aggr_args RENAME TO name
RenameStmt *n = makeNode(RenameStmt);
n->renameType = OBJECT_AGGREGATE;
n->object = $3;
n->objarg = extractArgTypes($4);
n->objarg = extractAggrArgTypes($4);
n->newname = $7;
n->missing_ok = false;
$$ = (Node *)n;
@ -7369,7 +7416,7 @@ AlterObjectSchemaStmt:
AlterObjectSchemaStmt *n = makeNode(AlterObjectSchemaStmt);
n->objectType = OBJECT_AGGREGATE;
n->object = $3;
n->objarg = extractArgTypes($4);
n->objarg = extractAggrArgTypes($4);
n->newschema = $7;
n->missing_ok = false;
$$ = (Node *)n;
@ -7598,7 +7645,7 @@ AlterOwnerStmt: ALTER AGGREGATE func_name aggr_args OWNER TO RoleId
AlterOwnerStmt *n = makeNode(AlterOwnerStmt);
n->objectType = OBJECT_AGGREGATE;
n->object = $3;
n->objarg = extractArgTypes($4);
n->objarg = extractAggrArgTypes($4);
n->newowner = $7;
$$ = (Node *)n;
}
@ -11165,28 +11212,26 @@ func_application: func_name '(' ')'
{
$$ = (Node *) makeFuncCall($1, NIL, @1);
}
| func_name '(' func_arg_list ')'
{
$$ = (Node *) makeFuncCall($1, $3, @1);
}
| func_name '(' VARIADIC func_arg_expr ')'
{
FuncCall *n = makeFuncCall($1, list_make1($4), @1);
n->func_variadic = TRUE;
$$ = (Node *)n;
}
| func_name '(' func_arg_list ',' VARIADIC func_arg_expr ')'
{
FuncCall *n = makeFuncCall($1, lappend($3, $6), @1);
n->func_variadic = TRUE;
$$ = (Node *)n;
}
| func_name '(' func_arg_list sort_clause ')'
| func_name '(' func_arg_list opt_sort_clause ')'
{
FuncCall *n = makeFuncCall($1, $3, @1);
n->agg_order = $4;
$$ = (Node *)n;
}
| func_name '(' VARIADIC func_arg_expr opt_sort_clause ')'
{
FuncCall *n = makeFuncCall($1, list_make1($4), @1);
n->func_variadic = TRUE;
n->agg_order = $5;
$$ = (Node *)n;
}
| func_name '(' func_arg_list ',' VARIADIC func_arg_expr opt_sort_clause ')'
{
FuncCall *n = makeFuncCall($1, lappend($3, $6), @1);
n->func_variadic = TRUE;
n->agg_order = $7;
$$ = (Node *)n;
}
| func_name '(' ALL func_arg_list opt_sort_clause ')'
{
FuncCall *n = makeFuncCall($1, $4, @1);
@ -11232,12 +11277,40 @@ func_application: func_name '(' ')'
* (Note that many of the special SQL functions wouldn't actually make any
* sense as functional index entries, but we ignore that consideration here.)
*/
func_expr: func_application filter_clause over_clause
func_expr: func_application within_group_clause filter_clause over_clause
{
FuncCall *n = (FuncCall*)$1;
n->agg_filter = $2;
n->over = $3;
$$ = (Node*)n;
FuncCall *n = (FuncCall *) $1;
/*
* The order clause for WITHIN GROUP and the one for
* plain-aggregate ORDER BY share a field, so we have to
* check here that at most one is present. We also check
* for DISTINCT and VARIADIC here to give a better error
* location. Other consistency checks are deferred to
* parse analysis.
*/
if ($2 != NIL)
{
if (n->agg_order != NIL)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("cannot use multiple ORDER BY clauses with WITHIN GROUP"),
parser_errposition(@2)));
if (n->agg_distinct)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("cannot use DISTINCT with WITHIN GROUP"),
parser_errposition(@2)));
if (n->func_variadic)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("cannot use VARIADIC with WITHIN GROUP"),
parser_errposition(@2)));
n->agg_order = $2;
n->agg_within_group = TRUE;
}
n->agg_filter = $3;
n->over = $4;
$$ = (Node *) n;
}
| func_expr_common_subexpr
{ $$ = $1; }
@ -11624,6 +11697,20 @@ xmlexists_argument:
;
/*
* Aggregate decoration clauses
*/
within_group_clause:
WITHIN GROUP_P '(' sort_clause ')' { $$ = $4; }
| /*EMPTY*/ { $$ = NIL; }
;
filter_clause:
FILTER '(' WHERE a_expr ')' { $$ = $4; }
| /*EMPTY*/ { $$ = NULL; }
;
/*
* Window Definitions
*/
@ -11647,11 +11734,6 @@ window_definition:
}
;
filter_clause:
FILTER '(' WHERE a_expr ')' { $$ = $4; }
| /*EMPTY*/ { $$ = NULL; }
;
over_clause: OVER window_specification
{ $$ = $2; }
| OVER ColId
@ -12416,16 +12498,17 @@ AexprConst: Iconst
t->location = @1;
$$ = makeStringConstCast($2, @2, t);
}
| func_name '(' func_arg_list ')' Sconst
| func_name '(' func_arg_list opt_sort_clause ')' Sconst
{
/* generic syntax with a type modifier */
TypeName *t = makeTypeNameFromNameList($1);
ListCell *lc;
/*
* We must use func_arg_list in the production to avoid
* reduce/reduce conflicts, but we don't actually wish
* to allow NamedArgExpr in this context.
* We must use func_arg_list and opt_sort_clause in the
* production to avoid reduce/reduce conflicts, but we
* don't actually wish to allow NamedArgExpr in this
* context, nor ORDER BY.
*/
foreach(lc, $3)
{
@ -12437,9 +12520,15 @@ AexprConst: Iconst
errmsg("type modifier cannot have parameter name"),
parser_errposition(arg->location)));
}
if ($4 != NIL)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("type modifier cannot have ORDER BY"),
parser_errposition(@4)));
t->typmods = $3;
t->location = @1;
$$ = makeStringConstCast($5, @5, t);
$$ = makeStringConstCast($6, @6, t);
}
| ConstTypename Sconst
{
@ -12800,6 +12889,7 @@ unreserved_keyword:
| VIEW
| VOLATILE
| WHITESPACE_P
| WITHIN
| WITHOUT
| WORK
| WRAPPER
@ -13275,6 +13365,52 @@ extractArgTypes(List *parameters)
return result;
}
/* extractAggrArgTypes()
* As above, but work from the output of the aggr_args production.
*/
static List *
extractAggrArgTypes(List *aggrargs)
{
Assert(list_length(aggrargs) == 2);
return extractArgTypes((List *) linitial(aggrargs));
}
/* makeOrderedSetArgs()
* Build the result of the aggr_args production (which see the comments for).
* This handles only the case where both given lists are nonempty, so that
* we have to deal with multiple VARIADIC arguments.
*/
static List *
makeOrderedSetArgs(List *directargs, List *orderedargs,
core_yyscan_t yyscanner)
{
FunctionParameter *lastd = (FunctionParameter *) llast(directargs);
/* No restriction unless last direct arg is VARIADIC */
if (lastd->mode == FUNC_PARAM_VARIADIC)
{
FunctionParameter *firsto = (FunctionParameter *) linitial(orderedargs);
/*
* We ignore the names, though the aggr_arg production allows them;
* it doesn't allow default values, so those need not be checked.
*/
if (list_length(orderedargs) != 1 ||
firsto->mode != FUNC_PARAM_VARIADIC ||
!equal(lastd->argType, firsto->argType))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("an ordered-set aggregate with a VARIADIC direct argument must have one VARIADIC aggregated argument of the same data type"),
parser_errposition(exprLocation((Node *) firsto))));
/* OK, drop the duplicate VARIADIC argument from the internal form */
orderedargs = NIL;
}
return list_make2(list_concat(directargs, orderedargs),
makeInteger(list_length(directargs)));
}
/* insertSelectOptions()
* Insert ORDER BY, etc into an already-constructed SelectStmt.
*

View File

@ -14,16 +14,20 @@
*/
#include "postgres.h"
#include "catalog/pg_aggregate.h"
#include "catalog/pg_constraint.h"
#include "catalog/pg_type.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/tlist.h"
#include "parser/parse_agg.h"
#include "parser/parse_clause.h"
#include "parser/parse_coerce.h"
#include "parser/parse_expr.h"
#include "parser/parsetree.h"
#include "rewrite/rewriteManip.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
typedef struct
@ -42,9 +46,13 @@ typedef struct
bool have_non_var_grouping;
List **func_grouped_rels;
int sublevels_up;
bool in_agg_direct_args;
} check_ungrouped_columns_context;
static int check_agg_arguments(ParseState *pstate, List *args, Expr *filter);
static int check_agg_arguments(ParseState *pstate,
List *directargs,
List *args,
Expr *filter);
static bool check_agg_arguments_walker(Node *node,
check_agg_arguments_context *context);
static void check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry,
@ -59,15 +67,21 @@ static bool check_ungrouped_columns_walker(Node *node,
* Finish initial transformation of an aggregate call
*
* parse_func.c has recognized the function as an aggregate, and has set up
* all the fields of the Aggref except args, aggorder, aggdistinct and
* agglevelsup. The passed-in args list has been through standard expression
* transformation, while the passed-in aggorder list hasn't been transformed
* at all.
* all the fields of the Aggref except aggdirectargs, args, aggorder,
* aggdistinct and agglevelsup. The passed-in args list has been through
* standard expression transformation and type coercion to match the agg's
* declared arg types, while the passed-in aggorder list hasn't been
* transformed at all.
*
* Here we convert the args list into a targetlist by inserting TargetEntry
* nodes, and then transform the aggorder and agg_distinct specifications to
* produce lists of SortGroupClause nodes. (That might also result in adding
* resjunk expressions to the targetlist.)
* Here we separate the args list into direct and aggregated args, storing the
* former in agg->aggdirectargs and the latter in agg->args. The regular
* args, but not the direct args, are converted into a targetlist by inserting
* TargetEntry nodes. We then transform the aggorder and agg_distinct
* specifications to produce lists of SortGroupClause nodes for agg->aggorder
* and agg->aggdistinct. (For a regular aggregate, this might result in
* adding resjunk expressions to the targetlist; but for ordered-set
* aggregates the aggorder list will always be one-to-one with the aggregated
* args.)
*
* We must also determine which query level the aggregate actually belongs to,
* set agglevelsup accordingly, and mark p_hasAggs true in the corresponding
@ -77,76 +91,122 @@ void
transformAggregateCall(ParseState *pstate, Aggref *agg,
List *args, List *aggorder, bool agg_distinct)
{
List *tlist;
List *torder;
List *tlist = NIL;
List *torder = NIL;
List *tdistinct = NIL;
AttrNumber attno;
AttrNumber attno = 1;
int save_next_resno;
int min_varlevel;
ListCell *lc;
const char *err;
bool errkind;
/*
* Transform the plain list of Exprs into a targetlist. We don't bother
* to assign column names to the entries.
*/
tlist = NIL;
attno = 1;
foreach(lc, args)
if (AGGKIND_IS_ORDERED_SET(agg->aggkind))
{
Expr *arg = (Expr *) lfirst(lc);
TargetEntry *tle = makeTargetEntry(arg, attno++, NULL, false);
/*
* For an ordered-set agg, the args list includes direct args and
* aggregated args; we must split them apart.
*/
int numDirectArgs = list_length(args) - list_length(aggorder);
List *aargs;
ListCell *lc2;
tlist = lappend(tlist, tle);
}
Assert(numDirectArgs >= 0);
/*
* If we have an ORDER BY, transform it. This will add columns to the
* tlist if they appear in ORDER BY but weren't already in the arg list.
* They will be marked resjunk = true so we can tell them apart from
* regular aggregate arguments later.
*
* We need to mess with p_next_resno since it will be used to number any
* new targetlist entries.
*/
save_next_resno = pstate->p_next_resno;
pstate->p_next_resno = attno;
torder = transformSortClause(pstate,
aggorder,
&tlist,
EXPR_KIND_ORDER_BY,
true /* fix unknowns */ ,
true /* force SQL99 rules */ );
/*
* If we have DISTINCT, transform that to produce a distinctList.
*/
if (agg_distinct)
{
tdistinct = transformDistinctClause(pstate, &tlist, torder, true);
aargs = list_copy_tail(args, numDirectArgs);
agg->aggdirectargs = list_truncate(args, numDirectArgs);
/*
* Remove this check if executor support for hashed distinct for
* aggregates is ever added.
* Build a tlist from the aggregated args, and make a sortlist entry
* for each one. Note that the expressions in the SortBy nodes are
* ignored (they are the raw versions of the transformed args); we are
* just looking at the sort information in the SortBy nodes.
*/
foreach(lc, tdistinct)
forboth(lc, aargs, lc2, aggorder)
{
SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc);
Expr *arg = (Expr *) lfirst(lc);
SortBy *sortby = (SortBy *) lfirst(lc2);
TargetEntry *tle;
if (!OidIsValid(sortcl->sortop))
/* We don't bother to assign column names to the entries */
tle = makeTargetEntry(arg, attno++, NULL, false);
tlist = lappend(tlist, tle);
torder = addTargetToSortList(pstate, tle,
torder, tlist, sortby,
true /* fix unknowns */ );
}
/* Never any DISTINCT in an ordered-set agg */
Assert(!agg_distinct);
}
else
{
/* Regular aggregate, so it has no direct args */
agg->aggdirectargs = NIL;
/*
* Transform the plain list of Exprs into a targetlist.
*/
foreach(lc, args)
{
Expr *arg = (Expr *) lfirst(lc);
TargetEntry *tle;
/* We don't bother to assign column names to the entries */
tle = makeTargetEntry(arg, attno++, NULL, false);
tlist = lappend(tlist, tle);
}
/*
* If we have an ORDER BY, transform it. This will add columns to the
* tlist if they appear in ORDER BY but weren't already in the arg
* list. They will be marked resjunk = true so we can tell them apart
* from regular aggregate arguments later.
*
* We need to mess with p_next_resno since it will be used to number
* any new targetlist entries.
*/
save_next_resno = pstate->p_next_resno;
pstate->p_next_resno = attno;
torder = transformSortClause(pstate,
aggorder,
&tlist,
EXPR_KIND_ORDER_BY,
true /* fix unknowns */ ,
true /* force SQL99 rules */ );
/*
* If we have DISTINCT, transform that to produce a distinctList.
*/
if (agg_distinct)
{
tdistinct = transformDistinctClause(pstate, &tlist, torder, true);
/*
* Remove this check if executor support for hashed distinct for
* aggregates is ever added.
*/
foreach(lc, tdistinct)
{
Node *expr = get_sortgroupclause_expr(sortcl, tlist);
SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc);
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("could not identify an ordering operator for type %s",
format_type_be(exprType(expr))),
errdetail("Aggregates with DISTINCT must be able to sort their inputs."),
parser_errposition(pstate, exprLocation(expr))));
if (!OidIsValid(sortcl->sortop))
{
Node *expr = get_sortgroupclause_expr(sortcl, tlist);
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("could not identify an ordering operator for type %s",
format_type_be(exprType(expr))),
errdetail("Aggregates with DISTINCT must be able to sort their inputs."),
parser_errposition(pstate, exprLocation(expr))));
}
}
}
pstate->p_next_resno = save_next_resno;
}
/* Update the Aggref with the transformation results */
@ -154,13 +214,14 @@ transformAggregateCall(ParseState *pstate, Aggref *agg,
agg->aggorder = torder;
agg->aggdistinct = tdistinct;
pstate->p_next_resno = save_next_resno;
/*
* Check the arguments to compute the aggregate's level and detect
* improper nesting.
*/
min_varlevel = check_agg_arguments(pstate, agg->args, agg->aggfilter);
min_varlevel = check_agg_arguments(pstate,
agg->aggdirectargs,
agg->args,
agg->aggfilter);
agg->agglevelsup = min_varlevel;
/* Mark the correct pstate level as having aggregates */
@ -302,8 +363,17 @@ transformAggregateCall(ParseState *pstate, Aggref *agg,
* one is its parent, etc).
*
* The aggregate's level is the same as the level of the lowest-level variable
* or aggregate in its arguments or filter expression; or if it contains no
* variables at all, we presume it to be local.
* or aggregate in its aggregated arguments (including any ORDER BY columns)
* or filter expression; or if it contains no variables at all, we presume it
* to be local.
*
* Vars/Aggs in direct arguments are *not* counted towards determining the
* agg's level, as those arguments aren't evaluated per-row but only
* per-group, and so in some sense aren't really agg arguments. However,
* this can mean that we decide an agg is upper-level even when its direct
* args contain lower-level Vars/Aggs, and that case has to be disallowed.
* (This is a little strange, but the SQL standard seems pretty definite that
* direct args are not to be considered when setting the agg's level.)
*
* We also take this opportunity to detect any aggregates or window functions
* nested within the arguments. We can throw error immediately if we find
@ -312,7 +382,10 @@ transformAggregateCall(ParseState *pstate, Aggref *agg,
* which we can't know until we finish scanning the arguments.
*/
static int
check_agg_arguments(ParseState *pstate, List *args, Expr *filter)
check_agg_arguments(ParseState *pstate,
List *directargs,
List *args,
Expr *filter)
{
int agglevel;
check_agg_arguments_context context;
@ -337,8 +410,9 @@ check_agg_arguments(ParseState *pstate, List *args, Expr *filter)
if (context.min_varlevel < 0)
{
if (context.min_agglevel < 0)
return 0;
agglevel = context.min_agglevel;
agglevel = 0;
else
agglevel = context.min_agglevel;
}
else if (context.min_agglevel < 0)
agglevel = context.min_varlevel;
@ -349,12 +423,49 @@ check_agg_arguments(ParseState *pstate, List *args, Expr *filter)
* If there's a nested aggregate of the same semantic level, complain.
*/
if (agglevel == context.min_agglevel)
{
int aggloc;
aggloc = locate_agg_of_level((Node *) args, agglevel);
if (aggloc < 0)
aggloc = locate_agg_of_level((Node *) filter, agglevel);
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("aggregate function calls cannot be nested"),
parser_errposition(pstate,
locate_agg_of_level((Node *) args,
agglevel))));
parser_errposition(pstate, aggloc)));
}
/*
* Now check for vars/aggs in the direct arguments, and throw error if
* needed. Note that we allow a Var of the agg's semantic level, but not
* an Agg of that level. In principle such Aggs could probably be
* supported, but it would create an ordering dependency among the
* aggregates at execution time. Since the case appears neither to be
* required by spec nor particularly useful, we just treat it as a
* nested-aggregate situation.
*/
if (directargs)
{
context.min_varlevel = -1;
context.min_agglevel = -1;
(void) expression_tree_walker((Node *) directargs,
check_agg_arguments_walker,
(void *) &context);
if (context.min_varlevel >= 0 && context.min_varlevel < agglevel)
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("outer-level aggregate cannot contain a lower-level variable in its direct arguments"),
parser_errposition(pstate,
locate_var_of_level((Node *) directargs,
context.min_varlevel))));
if (context.min_agglevel >= 0 && context.min_agglevel <= agglevel)
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("aggregate function calls cannot be nested"),
parser_errposition(pstate,
locate_agg_of_level((Node *) directargs,
context.min_agglevel))));
}
return agglevel;
}
@ -442,6 +553,10 @@ transformWindowFuncCall(ParseState *pstate, WindowFunc *wfunc,
/*
* A window function call can't contain another one (but aggs are OK). XXX
* is this required by spec, or just an unimplemented feature?
*
* Note: we don't need to check the filter expression here, because the
* context checks done below and in transformAggregateCall would have
* already rejected any window funcs or aggs within the filter.
*/
if (pstate->p_hasWindowFuncs &&
contain_windowfuncs((Node *) wfunc->args))
@ -800,6 +915,7 @@ check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry,
context.have_non_var_grouping = have_non_var_grouping;
context.func_grouped_rels = func_grouped_rels;
context.sublevels_up = 0;
context.in_agg_direct_args = false;
check_ungrouped_columns_walker(node, &context);
}
@ -815,16 +931,39 @@ check_ungrouped_columns_walker(Node *node,
IsA(node, Param))
return false; /* constants are always acceptable */
/*
* If we find an aggregate call of the original level, do not recurse into
* its arguments or filter; ungrouped vars there are not an error. We can
* also skip looking at aggregates of higher levels, since they could not
* possibly contain Vars of concern to us (see transformAggregateCall).
* We do need to look at aggregates of lower levels, however.
*/
if (IsA(node, Aggref) &&
(int) ((Aggref *) node)->agglevelsup >= context->sublevels_up)
return false;
if (IsA(node, Aggref))
{
Aggref *agg = (Aggref *) node;
if ((int) agg->agglevelsup == context->sublevels_up)
{
/*
* If we find an aggregate call of the original level, do not
* recurse into its normal arguments, ORDER BY arguments, or
* filter; ungrouped vars there are not an error. But we should
* check direct arguments as though they weren't in an aggregate.
* We set a special flag in the context to help produce a useful
* error message for ungrouped vars in direct arguments.
*/
bool result;
Assert(!context->in_agg_direct_args);
context->in_agg_direct_args = true;
result = check_ungrouped_columns_walker((Node *) agg->aggdirectargs,
context);
context->in_agg_direct_args = false;
return result;
}
/*
* We can skip recursing into aggregates of higher levels altogether,
* since they could not possibly contain Vars of concern to us (see
* transformAggregateCall). We do need to look at aggregates of lower
* levels, however.
*/
if ((int) agg->agglevelsup > context->sublevels_up)
return false;
}
/*
* If we have any GROUP BY items that are not simple Vars, check to see if
@ -917,6 +1056,8 @@ check_ungrouped_columns_walker(Node *node,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("column \"%s.%s\" must appear in the GROUP BY clause or be used in an aggregate function",
rte->eref->aliasname, attname),
context->in_agg_direct_args ?
errdetail("Direct arguments of an ordered-set aggregate must use only grouped columns.") : 0,
parser_errposition(context->pstate, var->location)));
else
ereport(ERROR,
@ -943,6 +1084,93 @@ check_ungrouped_columns_walker(Node *node,
(void *) context);
}
/*
* get_aggregate_argtypes
* Identify the specific datatypes passed to an aggregate call.
*
* Given an Aggref, extract the actual datatypes of the input arguments.
* The input datatypes are reported in a way that matches up with the
* aggregate's declaration, ie, any ORDER BY columns attached to a plain
* aggregate are ignored, but we report both direct and aggregated args of
* an ordered-set aggregate.
*
* Datatypes are returned into inputTypes[], which must reference an array
* of length FUNC_MAX_ARGS.
*
* The function result is the number of actual arguments.
*/
int
get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes)
{
int numArguments = 0;
ListCell *lc;
/* Any direct arguments of an ordered-set aggregate come first */
foreach(lc, aggref->aggdirectargs)
{
Node *expr = (Node *) lfirst(lc);
inputTypes[numArguments] = exprType(expr);
numArguments++;
}
/* Now get the regular (aggregated) arguments */
foreach(lc, aggref->args)
{
TargetEntry *tle = (TargetEntry *) lfirst(lc);
/* Ignore ordering columns of a plain aggregate */
if (tle->resjunk)
continue;
inputTypes[numArguments] = exprType((Node *) tle->expr);
numArguments++;
}
return numArguments;
}
/*
* resolve_aggregate_transtype
* Identify the transition state value's datatype for an aggregate call.
*
* This function resolves a polymorphic aggregate's state datatype.
* It must be passed the aggtranstype from the aggregate's catalog entry,
* as well as the actual argument types extracted by get_aggregate_argtypes.
* (We could fetch these values internally, but for all existing callers that
* would just duplicate work the caller has to do too, so we pass them in.)
*/
Oid
resolve_aggregate_transtype(Oid aggfuncid,
Oid aggtranstype,
Oid *inputTypes,
int numArguments)
{
/* resolve actual type of transition state, if polymorphic */
if (IsPolymorphicType(aggtranstype))
{
/* have to fetch the agg's declared input types... */
Oid *declaredArgTypes;
int agg_nargs;
(void) get_func_signature(aggfuncid, &declaredArgTypes, &agg_nargs);
/*
* VARIADIC ANY aggs could have more actual than declared args, but
* such extra args can't affect polymorphic type resolution.
*/
Assert(agg_nargs <= numArguments);
aggtranstype = enforce_generic_type_consistency(inputTypes,
declaredArgTypes,
agg_nargs,
aggtranstype,
false);
pfree(declaredArgTypes);
}
return aggtranstype;
}
/*
* Create expression trees for the transition and final functions
* of an aggregate. These are needed so that polymorphic functions
@ -956,6 +1184,9 @@ check_ungrouped_columns_walker(Node *node,
* resolved to actual types (ie, none should ever be ANYELEMENT etc).
* agg_input_collation is the aggregate function's input collation.
*
* For an ordered-set aggregate, remember that agg_input_types describes
* the direct arguments followed by the aggregated arguments.
*
* transfn_oid and finalfn_oid identify the funcs to be called; the latter
* may be InvalidOid.
*
@ -965,6 +1196,8 @@ check_ungrouped_columns_walker(Node *node,
void
build_aggregate_fnexprs(Oid *agg_input_types,
int agg_num_inputs,
int agg_num_direct_inputs,
bool agg_ordered_set,
bool agg_variadic,
Oid agg_state_type,
Oid agg_result_type,
@ -995,7 +1228,7 @@ build_aggregate_fnexprs(Oid *agg_input_types,
args = list_make1(argp);
for (i = 0; i < agg_num_inputs; i++)
for (i = agg_num_direct_inputs; i < agg_num_inputs; i++)
{
argp = makeNode(Param);
argp->paramkind = PARAM_EXEC;
@ -1035,10 +1268,26 @@ build_aggregate_fnexprs(Oid *agg_input_types,
argp->location = -1;
args = list_make1(argp);
if (agg_ordered_set)
{
for (i = 0; i < agg_num_inputs; i++)
{
argp = makeNode(Param);
argp->paramkind = PARAM_EXEC;
argp->paramid = -1;
argp->paramtype = agg_input_types[i];
argp->paramtypmod = -1;
argp->paramcollid = agg_input_collation;
argp->location = -1;
args = lappend(args, argp);
}
}
*finalfnexpr = (Expr *) makeFuncExpr(finalfn_oid,
agg_result_type,
args,
InvalidOid,
agg_input_collation,
COERCE_EXPLICIT_CALL);
/* finalfn is currently never treated as variadic */
}

View File

@ -75,9 +75,6 @@ static TargetEntry *findTargetlistEntrySQL99(ParseState *pstate, Node *node,
List **tlist, ParseExprKind exprKind);
static int get_matching_location(int sortgroupref,
List *sortgrouprefs, List *exprs);
static List *addTargetToSortList(ParseState *pstate, TargetEntry *tle,
List *sortlist, List *targetlist, SortBy *sortby,
bool resolveUnknown);
static List *addTargetToGroupList(ParseState *pstate, TargetEntry *tle,
List *grouplist, List *targetlist, int location,
bool resolveUnknown);
@ -2177,7 +2174,7 @@ get_matching_location(int sortgroupref, List *sortgrouprefs, List *exprs)
*
* Returns the updated SortGroupClause list.
*/
static List *
List *
addTargetToSortList(ParseState *pstate, TargetEntry *tle,
List *sortlist, List *targetlist, SortBy *sortby,
bool resolveUnknown)

View File

@ -2009,6 +2009,10 @@ IsBinaryCoercible(Oid srctype, Oid targettype)
if (srctype == targettype)
return true;
/* Anything is coercible to ANY or ANYELEMENT */
if (targettype == ANYOID || targettype == ANYELEMENTOID)
return true;
/* If srctype is a domain, reduce to its base type */
if (OidIsValid(srctype))
srctype = getBaseType(srctype);

View File

@ -40,7 +40,9 @@
*/
#include "postgres.h"
#include "catalog/pg_aggregate.h"
#include "catalog/pg_collation.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "parser/parse_collate.h"
#include "utils/lsyscache.h"
@ -73,6 +75,18 @@ typedef struct
static bool assign_query_collations_walker(Node *node, ParseState *pstate);
static bool assign_collations_walker(Node *node,
assign_collations_context *context);
static void merge_collation_state(Oid collation,
CollateStrength strength,
int location,
Oid collation2,
int location2,
assign_collations_context *context);
static void assign_aggregate_collations(Aggref *aggref,
assign_collations_context *loccontext);
static void assign_ordered_set_collations(Aggref *aggref,
assign_collations_context *loccontext);
static void assign_hypothetical_collations(Aggref *aggref,
assign_collations_context *loccontext);
/*
@ -258,6 +272,9 @@ assign_collations_walker(Node *node, assign_collations_context *context)
loccontext.collation = InvalidOid;
loccontext.strength = COLLATE_NONE;
loccontext.location = -1;
/* Set these fields just to suppress uninitialized-value warnings: */
loccontext.collation2 = InvalidOid;
loccontext.location2 = -1;
/*
* Recurse if appropriate, then determine the collation for this node.
@ -570,40 +587,31 @@ assign_collations_walker(Node *node, assign_collations_context *context)
case T_Aggref:
{
/*
* Aggref is a special case because expressions
* used only for ordering shouldn't be taken to
* conflict with each other or with regular args.
* So we apply assign_expr_collations() to them
* rather than passing down our loccontext.
*
* Note that we recurse to each TargetEntry, not
* directly to its contained expression, so that
* the case above for T_TargetEntry will apply
* appropriate checks to agg ORDER BY items.
*
* Likewise, we assign collations for the (bool)
* expression in aggfilter, independently of any
* other args.
*
* We need not recurse into the aggorder or
* aggdistinct lists, because those contain only
* SortGroupClause nodes which we need not
* process.
* Aggref is messy enough that we give it its own
* function, in fact three of them. The FILTER
* clause is independent of the rest of the
* aggregate, however, so it can be processed
* separately.
*/
Aggref *aggref = (Aggref *) node;
ListCell *lc;
foreach(lc, aggref->args)
switch (aggref->aggkind)
{
TargetEntry *tle = (TargetEntry *) lfirst(lc);
Assert(IsA(tle, TargetEntry));
if (tle->resjunk)
assign_expr_collations(context->pstate,
(Node *) tle);
else
(void) assign_collations_walker((Node *) tle,
case AGGKIND_NORMAL:
assign_aggregate_collations(aggref,
&loccontext);
break;
case AGGKIND_ORDERED_SET:
assign_ordered_set_collations(aggref,
&loccontext);
break;
case AGGKIND_HYPOTHETICAL:
assign_hypothetical_collations(aggref,
&loccontext);
break;
default:
elog(ERROR, "unrecognized aggkind: %d",
(int) aggref->aggkind);
}
assign_expr_collations(context->pstate,
@ -730,9 +738,33 @@ assign_collations_walker(Node *node, assign_collations_context *context)
}
/*
* Now, merge my information into my parent's state. If the collation
* strength for this node is different from what's already in *context,
* then this node either dominates or is dominated by earlier siblings.
* Now, merge my information into my parent's state.
*/
merge_collation_state(collation,
strength,
location,
loccontext.collation2,
loccontext.location2,
context);
return false;
}
/*
* Merge collation state of a subexpression into the context for its parent.
*/
static void
merge_collation_state(Oid collation,
CollateStrength strength,
int location,
Oid collation2,
int location2,
assign_collations_context *context)
{
/*
* If the collation strength for this node is different from what's
* already in *context, then this node either dominates or is dominated by
* earlier siblings.
*/
if (strength > context->strength)
{
@ -743,8 +775,8 @@ assign_collations_walker(Node *node, assign_collations_context *context)
/* Bubble up error info if applicable */
if (strength == COLLATE_CONFLICT)
{
context->collation2 = loccontext.collation2;
context->location2 = loccontext.location2;
context->collation2 = collation2;
context->location2 = location2;
}
}
else if (strength == context->strength)
@ -805,6 +837,201 @@ assign_collations_walker(Node *node, assign_collations_context *context)
break;
}
}
return false;
}
/*
* Aggref is a special case because expressions used only for ordering
* shouldn't be taken to conflict with each other or with regular args,
* indeed shouldn't affect the aggregate's result collation at all.
* We handle this by applying assign_expr_collations() to them rather than
* passing down our loccontext.
*
* Note that we recurse to each TargetEntry, not directly to its contained
* expression, so that the case above for T_TargetEntry will complain if we
* can't resolve a collation for an ORDER BY item (whether or not it is also
* a normal aggregate arg).
*
* We need not recurse into the aggorder or aggdistinct lists, because those
* contain only SortGroupClause nodes which we need not process.
*/
static void
assign_aggregate_collations(Aggref *aggref,
assign_collations_context *loccontext)
{
ListCell *lc;
/* Plain aggregates have no direct args */
Assert(aggref->aggdirectargs == NIL);
/* Process aggregated args, holding resjunk ones at arm's length */
foreach(lc, aggref->args)
{
TargetEntry *tle = (TargetEntry *) lfirst(lc);
Assert(IsA(tle, TargetEntry));
if (tle->resjunk)
assign_expr_collations(loccontext->pstate, (Node *) tle);
else
(void) assign_collations_walker((Node *) tle, loccontext);
}
}
/*
* For ordered-set aggregates, it's somewhat unclear how best to proceed.
* The spec-defined inverse distribution functions have only one sort column
* and don't return collatable types, but this is clearly too restrictive in
* the general case. Our solution is to consider that the aggregate's direct
* arguments contribute normally to determination of the aggregate's own
* collation, while aggregated arguments contribute only when the aggregate
* is designed to have exactly one aggregated argument (i.e., it has a single
* aggregated argument and is non-variadic). If it can have more than one
* aggregated argument, we process the aggregated arguments as independent
* sort columns. This avoids throwing error for something like
* agg(...) within group (order by x collate "foo", y collate "bar")
* while also guaranteeing that variadic aggregates don't change in behavior
* depending on how many sort columns a particular call happens to have.
*
* Otherwise this is much like the plain-aggregate case.
*/
static void
assign_ordered_set_collations(Aggref *aggref,
assign_collations_context *loccontext)
{
bool merge_sort_collations;
ListCell *lc;
/* Merge sort collations to parent only if there can be only one */
merge_sort_collations = (list_length(aggref->args) == 1 &&
get_func_variadictype(aggref->aggfnoid) == InvalidOid);
/* Direct args, if any, are normal children of the Aggref node */
(void) assign_collations_walker((Node *) aggref->aggdirectargs,
loccontext);
/* Process aggregated args appropriately */
foreach(lc, aggref->args)
{
TargetEntry *tle = (TargetEntry *) lfirst(lc);
Assert(IsA(tle, TargetEntry));
if (merge_sort_collations)
(void) assign_collations_walker((Node *) tle, loccontext);
else
assign_expr_collations(loccontext->pstate, (Node *) tle);
}
}
/*
* Hypothetical-set aggregates are even more special: per spec, we need to
* unify the collations of each pair of hypothetical and aggregated args.
* And we need to force the choice of collation down into the sort column
* to ensure that the sort happens with the chosen collation. Other than
* that, the behavior is like regular ordered-set aggregates. Note that
* hypothetical direct arguments contribute to the aggregate collation
* only when their partner aggregated arguments do.
*/
static void
assign_hypothetical_collations(Aggref *aggref,
assign_collations_context *loccontext)
{
ListCell *h_cell = list_head(aggref->aggdirectargs);
ListCell *s_cell = list_head(aggref->args);
bool merge_sort_collations;
int extra_args;
/* Merge sort collations to parent only if there can be only one */
merge_sort_collations = (list_length(aggref->args) == 1 &&
get_func_variadictype(aggref->aggfnoid) == InvalidOid);
/* Process any non-hypothetical direct args */
extra_args = list_length(aggref->aggdirectargs) - list_length(aggref->args);
Assert(extra_args >= 0);
while (extra_args-- > 0)
{
(void) assign_collations_walker((Node *) lfirst(h_cell), loccontext);
h_cell = lnext(h_cell);
}
/* Scan hypothetical args and aggregated args in parallel */
while (h_cell && s_cell)
{
Node *h_arg = (Node *) lfirst(h_cell);
TargetEntry *s_tle = (TargetEntry *) lfirst(s_cell);
assign_collations_context paircontext;
/*
* Assign collations internally in this pair of expressions, then
* choose a common collation for them. This should match
* select_common_collation(), but we can't use that function as-is
* because we need access to the whole collation state so we can
* bubble it up to the aggregate function's level.
*/
paircontext.pstate = loccontext->pstate;
paircontext.collation = InvalidOid;
paircontext.strength = COLLATE_NONE;
paircontext.location = -1;
/* Set these fields just to suppress uninitialized-value warnings: */
paircontext.collation2 = InvalidOid;
paircontext.location2 = -1;
(void) assign_collations_walker(h_arg, &paircontext);
(void) assign_collations_walker((Node *) s_tle->expr, &paircontext);
/* deal with collation conflict */
if (paircontext.strength == COLLATE_CONFLICT)
ereport(ERROR,
(errcode(ERRCODE_COLLATION_MISMATCH),
errmsg("collation mismatch between implicit collations \"%s\" and \"%s\"",
get_collation_name(paircontext.collation),
get_collation_name(paircontext.collation2)),
errhint("You can choose the collation by applying the COLLATE clause to one or both expressions."),
parser_errposition(paircontext.pstate,
paircontext.location2)));
/*
* At this point paircontext.collation can be InvalidOid only if the
* type is not collatable; no need to do anything in that case. If we
* do have to change the sort column's collation, do it by inserting a
* RelabelType node into the sort column TLE.
*
* XXX This is pretty grotty for a couple of reasons:
* assign_collations_walker isn't supposed to be changing the
* expression structure like this, and a parse-time change of
* collation ought to be signaled by a CollateExpr not a RelabelType
* (the use of RelabelType for collation marking is supposed to be a
* planner/executor thing only). But we have no better alternative.
* In particular, injecting a CollateExpr could result in the
* expression being interpreted differently after dump/reload, since
* we might be effectively promoting an implicit collation to
* explicit. This kluge is relying on ruleutils.c not printing a
* COLLATE clause for a RelabelType, and probably on some other
* fragile behaviors.
*/
if (OidIsValid(paircontext.collation) &&
paircontext.collation != exprCollation((Node *) s_tle->expr))
{
s_tle->expr = (Expr *)
makeRelabelType(s_tle->expr,
exprType((Node *) s_tle->expr),
exprTypmod((Node *) s_tle->expr),
paircontext.collation,
COERCE_IMPLICIT_CAST);
}
/*
* If appropriate, merge this column's collation state up to the
* aggregate function.
*/
if (merge_sort_collations)
merge_collation_state(paircontext.collation,
paircontext.strength,
paircontext.location,
paircontext.collation2,
paircontext.location2,
loccontext);
h_cell = lnext(h_cell);
s_cell = lnext(s_cell);
}
Assert(h_cell == NULL && s_cell == NULL);
}

View File

@ -463,8 +463,8 @@ transformIndirection(ParseState *pstate, Node *basenode, List *indirection)
newresult = ParseFuncOrColumn(pstate,
list_make1(n),
list_make1(result),
NIL, NULL, false, false, false,
NULL, true, location);
NULL,
location);
if (newresult == NULL)
unknown_attribute(pstate, result, strVal(n), location);
result = newresult;
@ -631,8 +631,8 @@ transformColumnRef(ParseState *pstate, ColumnRef *cref)
node = ParseFuncOrColumn(pstate,
list_make1(makeString(colname)),
list_make1(node),
NIL, NULL, false, false, false,
NULL, true, cref->location);
NULL,
cref->location);
}
break;
}
@ -676,8 +676,8 @@ transformColumnRef(ParseState *pstate, ColumnRef *cref)
node = ParseFuncOrColumn(pstate,
list_make1(makeString(colname)),
list_make1(node),
NIL, NULL, false, false, false,
NULL, true, cref->location);
NULL,
cref->location);
}
break;
}
@ -734,8 +734,8 @@ transformColumnRef(ParseState *pstate, ColumnRef *cref)
node = ParseFuncOrColumn(pstate,
list_make1(makeString(colname)),
list_make1(node),
NIL, NULL, false, false, false,
NULL, true, cref->location);
NULL,
cref->location);
}
break;
}
@ -1242,7 +1242,6 @@ transformFuncCall(ParseState *pstate, FuncCall *fn)
{
List *targs;
ListCell *args;
Expr *tagg_filter;
/* Transform the list of arguments ... */
targs = NIL;
@ -1253,26 +1252,30 @@ transformFuncCall(ParseState *pstate, FuncCall *fn)
}
/*
* Transform the aggregate filter using transformWhereClause(), to which
* FILTER is virtually identical...
* When WITHIN GROUP is used, we treat its ORDER BY expressions as
* additional arguments to the function, for purposes of function lookup
* and argument type coercion. So, transform each such expression and add
* them to the targs list. We don't explicitly mark where each argument
* came from, but ParseFuncOrColumn can tell what's what by reference to
* list_length(fn->agg_order).
*/
tagg_filter = NULL;
if (fn->agg_filter != NULL)
tagg_filter = (Expr *)
transformWhereClause(pstate, (Node *) fn->agg_filter,
EXPR_KIND_FILTER, "FILTER");
if (fn->agg_within_group)
{
Assert(fn->agg_order != NIL);
foreach(args, fn->agg_order)
{
SortBy *arg = (SortBy *) lfirst(args);
targs = lappend(targs, transformExpr(pstate, arg->node,
EXPR_KIND_ORDER_BY));
}
}
/* ... and hand off to ParseFuncOrColumn */
return ParseFuncOrColumn(pstate,
fn->funcname,
targs,
fn->agg_order,
tagg_filter,
fn->agg_star,
fn->agg_distinct,
fn->func_variadic,
fn->over,
false,
fn,
fn->location);
}

View File

@ -15,6 +15,7 @@
#include "postgres.h"
#include "access/htup_details.h"
#include "catalog/pg_aggregate.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "funcapi.h"
@ -22,6 +23,7 @@
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "parser/parse_agg.h"
#include "parser/parse_clause.h"
#include "parser/parse_coerce.h"
#include "parser/parse_func.h"
#include "parser/parse_relation.h"
@ -32,6 +34,9 @@
#include "utils/syscache.h"
static void unify_hypothetical_args(ParseState *pstate,
List *fargs, int numAggregatedArgs,
Oid *actual_arg_types, Oid *declared_arg_types);
static Oid FuncNameAsType(List *funcname);
static Node *ParseComplexProjection(ParseState *pstate, char *funcname,
Node *first_arg, int location);
@ -47,24 +52,30 @@ static Node *ParseComplexProjection(ParseState *pstate, char *funcname,
* a function of a single complex-type argument can be written like a
* column reference, allowing functions to act like computed columns.
*
* Hence, both cases come through here. The is_column parameter tells us
* which syntactic construct is actually being dealt with, but this is
* intended to be used only to deliver an appropriate error message,
* not to affect the semantics. When is_column is true, we should have
* a single argument (the putative table), unqualified function name
* equal to the column name, and no aggregate or variadic decoration.
* Also, when is_column is true, we return NULL on failure rather than
* Hence, both cases come through here. If fn is null, we're dealing with
* column syntax not function syntax, but in principle that should not
* affect the lookup behavior, only which error messages we deliver.
* The FuncCall struct is needed however to carry various decoration that
* applies to aggregate and window functions.
*
* Also, when fn is null, we return NULL on failure rather than
* reporting a no-such-function error.
*
* The argument expressions (in fargs) and filter must have been transformed
* already. But the agg_order expressions, if any, have not been.
* The argument expressions (in fargs) must have been transformed
* already. However, nothing in *fn has been transformed.
*/
Node *
ParseFuncOrColumn(ParseState *pstate, List *funcname, List *fargs,
List *agg_order, Expr *agg_filter,
bool agg_star, bool agg_distinct, bool func_variadic,
WindowDef *over, bool is_column, int location)
FuncCall *fn, int location)
{
bool is_column = (fn == NULL);
List *agg_order = (fn ? fn->agg_order : NIL);
Expr *agg_filter = NULL;
bool agg_within_group = (fn ? fn->agg_within_group : false);
bool agg_star = (fn ? fn->agg_star : false);
bool agg_distinct = (fn ? fn->agg_distinct : false);
bool func_variadic = (fn ? fn->func_variadic : false);
WindowDef *over = (fn ? fn->over : NULL);
Oid rettype;
Oid funcid;
ListCell *l;
@ -81,6 +92,15 @@ ParseFuncOrColumn(ParseState *pstate, List *funcname, List *fargs,
int nvargs;
Oid vatype;
FuncDetailCode fdresult;
char aggkind = 0;
/*
* If there's an aggregate filter, transform it using transformWhereClause
*/
if (fn && fn->agg_filter != NULL)
agg_filter = (Expr *) transformWhereClause(pstate, fn->agg_filter,
EXPR_KIND_FILTER,
"FILTER");
/*
* Most of the rest of the parser just assumes that functions do not have
@ -101,10 +121,12 @@ ParseFuncOrColumn(ParseState *pstate, List *funcname, List *fargs,
* Extract arg type info in preparation for function lookup.
*
* If any arguments are Param markers of type VOID, we discard them from
* the parameter list. This is a hack to allow the JDBC driver to not
* have to distinguish "input" and "output" parameter symbols while
* parsing function-call constructs. We can't use foreach() because we
* may modify the list ...
* the parameter list. This is a hack to allow the JDBC driver to not have
* to distinguish "input" and "output" parameter symbols while parsing
* function-call constructs. Don't do this if dealing with column syntax,
* nor if we had WITHIN GROUP (because in that case it's critical to keep
* the argument count unchanged). We can't use foreach() because we may
* modify the list ...
*/
nargs = 0;
for (l = list_head(fargs); l != NULL; l = nextl)
@ -114,7 +136,8 @@ ParseFuncOrColumn(ParseState *pstate, List *funcname, List *fargs,
nextl = lnext(l);
if (argtype == VOIDOID && IsA(arg, Param) &&!is_column)
if (argtype == VOIDOID && IsA(arg, Param) &&
!is_column && !agg_within_group)
{
fargs = list_delete_ptr(fargs, arg);
continue;
@ -247,6 +270,12 @@ ParseFuncOrColumn(ParseState *pstate, List *funcname, List *fargs,
errmsg("DISTINCT specified, but %s is not an aggregate function",
NameListToString(funcname)),
parser_errposition(pstate, location)));
if (agg_within_group)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("WITHIN GROUP specified, but %s is not an aggregate function",
NameListToString(funcname)),
parser_errposition(pstate, location)));
if (agg_order != NIL)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
@ -266,8 +295,181 @@ ParseFuncOrColumn(ParseState *pstate, List *funcname, List *fargs,
NameListToString(funcname)),
parser_errposition(pstate, location)));
}
else if (!(fdresult == FUNCDETAIL_AGGREGATE ||
fdresult == FUNCDETAIL_WINDOWFUNC))
else if (fdresult == FUNCDETAIL_AGGREGATE)
{
/*
* It's an aggregate; fetch needed info from the pg_aggregate entry.
*/
HeapTuple tup;
Form_pg_aggregate classForm;
int catDirectArgs;
tup = SearchSysCache1(AGGFNOID, ObjectIdGetDatum(funcid));
if (!HeapTupleIsValid(tup)) /* should not happen */
elog(ERROR, "cache lookup failed for aggregate %u", funcid);
classForm = (Form_pg_aggregate) GETSTRUCT(tup);
aggkind = classForm->aggkind;
catDirectArgs = classForm->aggnumdirectargs;
ReleaseSysCache(tup);
/* Now check various disallowed cases. */
if (AGGKIND_IS_ORDERED_SET(aggkind))
{
int numAggregatedArgs;
int numDirectArgs;
if (!agg_within_group)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("WITHIN GROUP is required for ordered-set aggregate %s",
NameListToString(funcname)),
parser_errposition(pstate, location)));
if (over)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("OVER is not supported for ordered-set aggregate %s",
NameListToString(funcname)),
parser_errposition(pstate, location)));
/* gram.y rejects DISTINCT + WITHIN GROUP */
Assert(!agg_distinct);
/* gram.y rejects VARIADIC + WITHIN GROUP */
Assert(!func_variadic);
/*
* Since func_get_detail was working with an undifferentiated list
* of arguments, it might have selected an aggregate that doesn't
* really match because it requires a different division of direct
* and aggregated arguments. Check that the number of direct
* arguments is actually OK; if not, throw an "undefined function"
* error, similarly to the case where a misplaced ORDER BY is used
* in a regular aggregate call.
*/
numAggregatedArgs = list_length(agg_order);
numDirectArgs = nargs - numAggregatedArgs;
Assert(numDirectArgs >= 0);
if (!OidIsValid(vatype))
{
/* Test is simple if aggregate isn't variadic */
if (numDirectArgs != catDirectArgs)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("function %s does not exist",
func_signature_string(funcname, nargs,
argnames,
actual_arg_types)),
errhint("There is an ordered-set aggregate %s, but it requires %d direct arguments, not %d.",
NameListToString(funcname),
catDirectArgs, numDirectArgs),
parser_errposition(pstate, location)));
}
else
{
/*
* If it's variadic, we have two cases depending on whether
* the agg was "... ORDER BY VARIADIC" or "..., VARIADIC ORDER
* BY VARIADIC". It's the latter if catDirectArgs equals
* pronargs; to save a catalog lookup, we reverse-engineer
* pronargs from the info we got from func_get_detail.
*/
int pronargs;
pronargs = nargs;
if (nvargs > 1)
pronargs -= nvargs - 1;
if (catDirectArgs < pronargs)
{
/* VARIADIC isn't part of direct args, so still easy */
if (numDirectArgs != catDirectArgs)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("function %s does not exist",
func_signature_string(funcname, nargs,
argnames,
actual_arg_types)),
errhint("There is an ordered-set aggregate %s, but it requires %d direct arguments, not %d.",
NameListToString(funcname),
catDirectArgs, numDirectArgs),
parser_errposition(pstate, location)));
}
else
{
/*
* Both direct and aggregated args were declared variadic.
* For a standard ordered-set aggregate, it's okay as long
* as there aren't too few direct args. For a
* hypothetical-set aggregate, we assume that the
* hypothetical arguments are those that matched the
* variadic parameter; there must be just as many of them
* as there are aggregated arguments.
*/
if (aggkind == AGGKIND_HYPOTHETICAL)
{
if (nvargs != 2 * numAggregatedArgs)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("function %s does not exist",
func_signature_string(funcname, nargs,
argnames,
actual_arg_types)),
errhint("To use the hypothetical-set aggregate %s, the number of hypothetical direct arguments (here %d) must match the number of ordering columns (here %d).",
NameListToString(funcname),
nvargs - numAggregatedArgs, numAggregatedArgs),
parser_errposition(pstate, location)));
}
else
{
if (nvargs <= numAggregatedArgs)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("function %s does not exist",
func_signature_string(funcname, nargs,
argnames,
actual_arg_types)),
errhint("There is an ordered-set aggregate %s, but it requires at least %d direct arguments.",
NameListToString(funcname),
catDirectArgs),
parser_errposition(pstate, location)));
}
}
}
/* Check type matching of hypothetical arguments */
if (aggkind == AGGKIND_HYPOTHETICAL)
unify_hypothetical_args(pstate, fargs, numAggregatedArgs,
actual_arg_types, declared_arg_types);
}
else
{
/* Normal aggregate, so it can't have WITHIN GROUP */
if (agg_within_group)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("%s is not an ordered-set aggregate, so it cannot have WITHIN GROUP",
NameListToString(funcname)),
parser_errposition(pstate, location)));
}
}
else if (fdresult == FUNCDETAIL_WINDOWFUNC)
{
/*
* True window functions must be called with a window definition.
*/
if (!over)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("window function %s requires an OVER clause",
NameListToString(funcname)),
parser_errposition(pstate, location)));
/* And, per spec, WITHIN GROUP isn't allowed */
if (agg_within_group)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("window function %s cannot have WITHIN GROUP",
NameListToString(funcname)),
parser_errposition(pstate, location)));
}
else
{
/*
* Oops. Time to die.
@ -290,7 +492,7 @@ ParseFuncOrColumn(ParseState *pstate, List *funcname, List *fargs,
errhint("Could not choose a best candidate function. "
"You might need to add explicit type casts."),
parser_errposition(pstate, location)));
else if (list_length(agg_order) > 1)
else if (list_length(agg_order) > 1 && !agg_within_group)
{
/* It's agg(x, ORDER BY y,z) ... perhaps misplaced ORDER BY */
ereport(ERROR,
@ -424,10 +626,12 @@ ParseFuncOrColumn(ParseState *pstate, List *funcname, List *fargs,
aggref->aggfnoid = funcid;
aggref->aggtype = rettype;
/* aggcollid and inputcollid will be set by parse_collate.c */
/* args, aggorder, aggdistinct will be set by transformAggregateCall */
/* aggdirectargs and args will be set by transformAggregateCall */
/* aggorder and aggdistinct will be set by transformAggregateCall */
aggref->aggfilter = agg_filter;
aggref->aggstar = agg_star;
aggref->aggvariadic = func_variadic;
aggref->aggkind = aggkind;
/* agglevelsup will be set by transformAggregateCall */
aggref->location = location;
@ -435,7 +639,7 @@ ParseFuncOrColumn(ParseState *pstate, List *funcname, List *fargs,
* Reject attempt to call a parameterless aggregate without (*)
* syntax. This is mere pedantry but some folks insisted ...
*/
if (fargs == NIL && !agg_star)
if (fargs == NIL && !agg_star && !agg_within_group)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("%s(*) must be used to call a parameterless aggregate function",
@ -473,14 +677,8 @@ ParseFuncOrColumn(ParseState *pstate, List *funcname, List *fargs,
/* window function */
WindowFunc *wfunc = makeNode(WindowFunc);
/*
* True window functions must be called with a window definition.
*/
if (!over)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("window function call requires an OVER clause"),
parser_errposition(pstate, location)));
Assert(over); /* lack of this was checked above */
Assert(!agg_within_group); /* also checked above */
wfunc->winfnoid = funcid;
wfunc->wintype = rettype;
@ -512,16 +710,6 @@ ParseFuncOrColumn(ParseState *pstate, List *funcname, List *fargs,
NameListToString(funcname)),
parser_errposition(pstate, location)));
/*
* Reject window functions which are not aggregates in the case of
* FILTER.
*/
if (!wfunc->winagg && agg_filter)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("FILTER is not implemented in non-aggregate window functions"),
parser_errposition(pstate, location)));
/*
* ordered aggs not allowed in windows yet
*/
@ -531,6 +719,15 @@ ParseFuncOrColumn(ParseState *pstate, List *funcname, List *fargs,
errmsg("aggregate ORDER BY is not implemented for window functions"),
parser_errposition(pstate, location)));
/*
* FILTER is not yet supported with true window functions
*/
if (!wfunc->winagg && agg_filter)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("FILTER is not implemented for non-aggregate window functions"),
parser_errposition(pstate, location)));
if (retset)
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
@ -1347,6 +1544,101 @@ func_get_detail(List *funcname,
}
/*
* unify_hypothetical_args()
*
* Ensure that each hypothetical direct argument of a hypothetical-set
* aggregate has the same type as the corresponding aggregated argument.
* Modify the expressions in the fargs list, if necessary, and update
* actual_arg_types[].
*
* If the agg declared its args non-ANY (even ANYELEMENT), we need only a
* sanity check that the declared types match; make_fn_arguments will coerce
* the actual arguments to match the declared ones. But if the declaration
* is ANY, nothing will happen in make_fn_arguments, so we need to fix any
* mismatch here. We use the same type resolution logic as UNION etc.
*/
static void
unify_hypothetical_args(ParseState *pstate,
List *fargs,
int numAggregatedArgs,
Oid *actual_arg_types,
Oid *declared_arg_types)
{
Node *args[FUNC_MAX_ARGS];
int numDirectArgs,
numNonHypotheticalArgs;
int i;
ListCell *lc;
numDirectArgs = list_length(fargs) - numAggregatedArgs;
numNonHypotheticalArgs = numDirectArgs - numAggregatedArgs;
/* safety check (should only trigger with a misdeclared agg) */
if (numNonHypotheticalArgs < 0)
elog(ERROR, "incorrect number of arguments to hypothetical-set aggregate");
/* Deconstruct fargs into an array for ease of subscripting */
i = 0;
foreach(lc, fargs)
{
args[i++] = (Node *) lfirst(lc);
}
/* Check each hypothetical arg and corresponding aggregated arg */
for (i = numNonHypotheticalArgs; i < numDirectArgs; i++)
{
int aargpos = numDirectArgs + (i - numNonHypotheticalArgs);
Oid commontype;
/* A mismatch means AggregateCreate didn't check properly ... */
if (declared_arg_types[i] != declared_arg_types[aargpos])
elog(ERROR, "hypothetical-set aggregate has inconsistent declared argument types");
/* No need to unify if make_fn_arguments will coerce */
if (declared_arg_types[i] != ANYOID)
continue;
/*
* Select common type, giving preference to the aggregated argument's
* type (we'd rather coerce the direct argument once than coerce all
* the aggregated values).
*/
commontype = select_common_type(pstate,
list_make2(args[aargpos], args[i]),
"WITHIN GROUP",
NULL);
/*
* Perform the coercions. We don't need to worry about NamedArgExprs
* here because they aren't supported with aggregates.
*/
args[i] = coerce_type(pstate,
args[i],
actual_arg_types[i],
commontype, -1,
COERCION_IMPLICIT,
COERCE_IMPLICIT_CAST,
-1);
actual_arg_types[i] = commontype;
args[aargpos] = coerce_type(pstate,
args[aargpos],
actual_arg_types[aargpos],
commontype, -1,
COERCION_IMPLICIT,
COERCE_IMPLICIT_CAST,
-1);
actual_arg_types[aargpos] = commontype;
}
/* Reconstruct fargs from array */
i = 0;
foreach(lc, fargs)
{
lfirst(lc) = args[i++];
}
}
/*
* make_fn_arguments()
*

View File

@ -21,7 +21,8 @@ OBJS = acl.o arrayfuncs.o array_selfuncs.o array_typanalyze.o \
enum.o float.o format_type.o \
geo_ops.o geo_selfuncs.o int.o int8.o json.o jsonfuncs.o like.o \
lockfuncs.o misc.o nabstime.o name.o numeric.o numutils.o \
oid.o oracle_compat.o pseudotypes.o rangetypes.o rangetypes_gist.o \
oid.o oracle_compat.o orderedsetaggs.o \
pseudotypes.o rangetypes.o rangetypes_gist.o \
rowtypes.o regexp.o regproc.o ruleutils.o selfuncs.o \
tid.o timestamp.o varbit.o varchar.o varlena.o version.o xid.o \
network.o mac.o inet_cidr_ntop.o inet_net_pton.o \

File diff suppressed because it is too large Load Diff

View File

@ -3586,8 +3586,7 @@ ri_HashCompareOp(Oid eq_opr, Oid typeid)
* special cases such as RECORD; find_coercion_pathway
* currently doesn't subsume these special cases.
*/
if (!IsPolymorphicType(lefttype) &&
!IsBinaryCoercible(typeid, lefttype))
if (!IsBinaryCoercible(typeid, lefttype))
elog(ERROR, "no conversion function from %s to %s",
format_type_be(typeid),
format_type_be(lefttype));

View File

@ -22,6 +22,7 @@
#include "access/sysattr.h"
#include "catalog/dependency.h"
#include "catalog/indexing.h"
#include "catalog/pg_aggregate.h"
#include "catalog/pg_authid.h"
#include "catalog/pg_collation.h"
#include "catalog/pg_constraint.h"
@ -40,6 +41,7 @@
#include "nodes/nodeFuncs.h"
#include "optimizer/tlist.h"
#include "parser/keywords.h"
#include "parser/parse_agg.h"
#include "parser/parse_func.h"
#include "parser/parse_oper.h"
#include "parser/parser.h"
@ -2166,6 +2168,7 @@ print_function_arguments(StringInfo buf, HeapTuple proctup,
Oid *argtypes;
char **argnames;
char *argmodes;
int insertorderbyat = -1;
int argsprinted;
int inputargno;
int nlackdefaults;
@ -2199,6 +2202,23 @@ print_function_arguments(StringInfo buf, HeapTuple proctup,
}
}
/* Check for special treatment of ordered-set aggregates */
if (proc->proisagg)
{
HeapTuple aggtup;
Form_pg_aggregate agg;
aggtup = SearchSysCache1(AGGFNOID,
ObjectIdGetDatum(HeapTupleGetOid(proctup)));
if (!HeapTupleIsValid(aggtup))
elog(ERROR, "cache lookup failed for aggregate %u",
HeapTupleGetOid(proctup));
agg = (Form_pg_aggregate) GETSTRUCT(aggtup);
if (AGGKIND_IS_ORDERED_SET(agg->aggkind))
insertorderbyat = agg->aggnumdirectargs;
ReleaseSysCache(aggtup);
}
argsprinted = 0;
inputargno = 0;
for (i = 0; i < numargs; i++)
@ -2243,8 +2263,15 @@ print_function_arguments(StringInfo buf, HeapTuple proctup,
if (print_table_args != (argmode == PROARGMODE_TABLE))
continue;
if (argsprinted)
if (argsprinted == insertorderbyat)
{
if (argsprinted)
appendStringInfoChar(buf, ' ');
appendStringInfoString(buf, "ORDER BY ");
}
else if (argsprinted)
appendStringInfoString(buf, ", ");
appendStringInfoString(buf, modename);
if (argname && argname[0])
appendStringInfo(buf, "%s ", quote_identifier(argname));
@ -2261,6 +2288,14 @@ print_function_arguments(StringInfo buf, HeapTuple proctup,
deparse_expression(expr, NIL, false, false));
}
argsprinted++;
/* nasty hack: print the last arg twice for variadic ordered-set agg */
if (argsprinted == insertorderbyat && i == numargs - 1)
{
i--;
/* aggs shouldn't have defaults anyway, but just to be sure ... */
print_defaults = false;
}
}
return argsprinted;
@ -7493,31 +7528,13 @@ get_agg_expr(Aggref *aggref, deparse_context *context)
{
StringInfo buf = context->buf;
Oid argtypes[FUNC_MAX_ARGS];
List *arglist;
int nargs;
bool use_variadic;
ListCell *l;
/* Extract the regular arguments, ignoring resjunk stuff for the moment */
arglist = NIL;
nargs = 0;
foreach(l, aggref->args)
{
TargetEntry *tle = (TargetEntry *) lfirst(l);
Node *arg = (Node *) tle->expr;
Assert(!IsA(arg, NamedArgExpr));
if (tle->resjunk)
continue;
if (nargs >= FUNC_MAX_ARGS) /* paranoia */
ereport(ERROR,
(errcode(ERRCODE_TOO_MANY_ARGUMENTS),
errmsg("too many arguments")));
argtypes[nargs] = exprType(arg);
arglist = lappend(arglist, arg);
nargs++;
}
/* Extract the argument types as seen by the parser */
nargs = get_aggregate_argtypes(aggref, argtypes);
/* Print the aggregate name, schema-qualified if needed */
appendStringInfo(buf, "%s(%s",
generate_function_name(aggref->aggfnoid, nargs,
NIL, argtypes,
@ -7525,26 +7542,51 @@ get_agg_expr(Aggref *aggref, deparse_context *context)
&use_variadic),
(aggref->aggdistinct != NIL) ? "DISTINCT " : "");
/* aggstar can be set only in zero-argument aggregates */
if (aggref->aggstar)
appendStringInfoChar(buf, '*');
if (AGGKIND_IS_ORDERED_SET(aggref->aggkind))
{
/*
* Ordered-set aggregates do not use "*" syntax. Also, we needn't
* worry about inserting VARIADIC. So we can just dump the direct
* args as-is.
*/
Assert(!aggref->aggvariadic);
get_rule_expr((Node *) aggref->aggdirectargs, context, true);
Assert(aggref->aggorder != NIL);
appendStringInfoString(buf, ") WITHIN GROUP (ORDER BY ");
get_rule_orderby(aggref->aggorder, aggref->args, false, context);
}
else
{
nargs = 0;
foreach(l, arglist)
/* aggstar can be set only in zero-argument aggregates */
if (aggref->aggstar)
appendStringInfoChar(buf, '*');
else
{
if (nargs++ > 0)
appendStringInfoString(buf, ", ");
if (use_variadic && lnext(l) == NULL)
appendStringInfoString(buf, "VARIADIC ");
get_rule_expr((Node *) lfirst(l), context, true);
}
}
ListCell *l;
int i;
if (aggref->aggorder != NIL)
{
appendStringInfoString(buf, " ORDER BY ");
get_rule_orderby(aggref->aggorder, aggref->args, false, context);
i = 0;
foreach(l, aggref->args)
{
TargetEntry *tle = (TargetEntry *) lfirst(l);
Node *arg = (Node *) tle->expr;
Assert(!IsA(arg, NamedArgExpr));
if (tle->resjunk)
continue;
if (i++ > 0)
appendStringInfoString(buf, ", ");
if (use_variadic && i == nargs)
appendStringInfoString(buf, "VARIADIC ");
get_rule_expr(arg, context, true);
}
}
if (aggref->aggorder != NIL)
{
appendStringInfoString(buf, " ORDER BY ");
get_rule_orderby(aggref->aggorder, aggref->args, false, context);
}
}
if (aggref->aggfilter != NULL)

View File

@ -1492,6 +1492,25 @@ get_func_signature(Oid funcid, Oid **argtypes, int *nargs)
return result;
}
/*
* get_func_variadictype
* Given procedure id, return the function's provariadic field.
*/
Oid
get_func_variadictype(Oid funcid)
{
HeapTuple tp;
Oid result;
tp = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
if (!HeapTupleIsValid(tp))
elog(ERROR, "cache lookup failed for function %u", funcid);
result = ((Form_pg_proc) GETSTRUCT(tp))->provariadic;
ReleaseSysCache(tp);
return result;
}
/*
* get_func_retset
* Given procedure id, return the function's proretset flag.

View File

@ -1717,6 +1717,69 @@ tuplesort_getdatum(Tuplesortstate *state, bool forward,
return true;
}
/*
* Advance over N tuples in either forward or back direction,
* without returning any data. N==0 is a no-op.
* Returns TRUE if successful, FALSE if ran out of tuples.
*/
bool
tuplesort_skiptuples(Tuplesortstate *state, int64 ntuples, bool forward)
{
/*
* We don't actually support backwards skip yet, because no callers need
* it. The API is designed to allow for that later, though.
*/
Assert(forward);
Assert(ntuples >= 0);
switch (state->status)
{
case TSS_SORTEDINMEM:
if (state->memtupcount - state->current >= ntuples)
{
state->current += ntuples;
return true;
}
state->current = state->memtupcount;
state->eof_reached = true;
/*
* Complain if caller tries to retrieve more tuples than
* originally asked for in a bounded sort. This is because
* returning EOF here might be the wrong thing.
*/
if (state->bounded && state->current >= state->bound)
elog(ERROR, "retrieved too many tuples in a bounded sort");
return false;
case TSS_SORTEDONTAPE:
case TSS_FINALMERGE:
/*
* We could probably optimize these cases better, but for now it's
* not worth the trouble.
*/
while (ntuples-- > 0)
{
SortTuple stup;
bool should_free;
if (!tuplesort_gettuple_common(state, forward,
&stup, &should_free))
return false;
if (should_free)
pfree(stup.tuple);
CHECK_FOR_INTERRUPTS();
}
return true;
default:
elog(ERROR, "invalid tuplesort state");
return false; /* keep compiler quiet */
}
}
/*
* tuplesort_merge_order - report merge order we'll use for given memory
* (note: "merge order" just means the number of input tapes in the merge).

View File

@ -11512,6 +11512,7 @@ dumpAgg(Archive *fout, AggInfo *agginfo)
int i_aggtransfn;
int i_aggfinalfn;
int i_aggsortop;
int i_hypothetical;
int i_aggtranstype;
int i_aggtransspace;
int i_agginitval;
@ -11519,6 +11520,7 @@ dumpAgg(Archive *fout, AggInfo *agginfo)
const char *aggtransfn;
const char *aggfinalfn;
const char *aggsortop;
bool hypothetical;
const char *aggtranstype;
const char *aggtransspace;
const char *agginitval;
@ -11543,6 +11545,7 @@ dumpAgg(Archive *fout, AggInfo *agginfo)
appendPQExpBuffer(query, "SELECT aggtransfn, "
"aggfinalfn, aggtranstype::pg_catalog.regtype, "
"aggsortop::pg_catalog.regoperator, "
"(aggkind = 'h') as hypothetical, "
"aggtransspace, agginitval, "
"'t'::boolean AS convertok, "
"pg_catalog.pg_get_function_arguments(p.oid) AS funcargs, "
@ -11557,6 +11560,7 @@ dumpAgg(Archive *fout, AggInfo *agginfo)
appendPQExpBuffer(query, "SELECT aggtransfn, "
"aggfinalfn, aggtranstype::pg_catalog.regtype, "
"aggsortop::pg_catalog.regoperator, "
"false as hypothetical, "
"0 AS aggtransspace, agginitval, "
"'t'::boolean AS convertok, "
"pg_catalog.pg_get_function_arguments(p.oid) AS funcargs, "
@ -11571,6 +11575,7 @@ dumpAgg(Archive *fout, AggInfo *agginfo)
appendPQExpBuffer(query, "SELECT aggtransfn, "
"aggfinalfn, aggtranstype::pg_catalog.regtype, "
"aggsortop::pg_catalog.regoperator, "
"false as hypothetical, "
"0 AS aggtransspace, agginitval, "
"'t'::boolean AS convertok "
"FROM pg_catalog.pg_aggregate a, pg_catalog.pg_proc p "
@ -11583,6 +11588,7 @@ dumpAgg(Archive *fout, AggInfo *agginfo)
appendPQExpBuffer(query, "SELECT aggtransfn, "
"aggfinalfn, aggtranstype::pg_catalog.regtype, "
"0 AS aggsortop, "
"'f'::boolean as hypothetical, "
"0 AS aggtransspace, agginitval, "
"'t'::boolean AS convertok "
"FROM pg_catalog.pg_aggregate a, pg_catalog.pg_proc p "
@ -11595,6 +11601,7 @@ dumpAgg(Archive *fout, AggInfo *agginfo)
appendPQExpBuffer(query, "SELECT aggtransfn, aggfinalfn, "
"format_type(aggtranstype, NULL) AS aggtranstype, "
"0 AS aggsortop, "
"'f'::boolean as hypothetical, "
"0 AS aggtransspace, agginitval, "
"'t'::boolean AS convertok "
"FROM pg_aggregate "
@ -11607,6 +11614,7 @@ dumpAgg(Archive *fout, AggInfo *agginfo)
"aggfinalfn, "
"(SELECT typname FROM pg_type WHERE oid = aggtranstype1) AS aggtranstype, "
"0 AS aggsortop, "
"'f'::boolean as hypothetical, "
"0 AS aggtransspace, agginitval1 AS agginitval, "
"(aggtransfn2 = 0 and aggtranstype2 = 0 and agginitval2 is null) AS convertok "
"FROM pg_aggregate "
@ -11619,6 +11627,7 @@ dumpAgg(Archive *fout, AggInfo *agginfo)
i_aggtransfn = PQfnumber(res, "aggtransfn");
i_aggfinalfn = PQfnumber(res, "aggfinalfn");
i_aggsortop = PQfnumber(res, "aggsortop");
i_hypothetical = PQfnumber(res, "hypothetical");
i_aggtranstype = PQfnumber(res, "aggtranstype");
i_aggtransspace = PQfnumber(res, "aggtransspace");
i_agginitval = PQfnumber(res, "agginitval");
@ -11627,6 +11636,7 @@ dumpAgg(Archive *fout, AggInfo *agginfo)
aggtransfn = PQgetvalue(res, 0, i_aggtransfn);
aggfinalfn = PQgetvalue(res, 0, i_aggfinalfn);
aggsortop = PQgetvalue(res, 0, i_aggsortop);
hypothetical = (PQgetvalue(res, 0, i_hypothetical)[0] == 't');
aggtranstype = PQgetvalue(res, 0, i_aggtranstype);
aggtransspace = PQgetvalue(res, 0, i_aggtransspace);
agginitval = PQgetvalue(res, 0, i_agginitval);
@ -11707,6 +11717,9 @@ dumpAgg(Archive *fout, AggInfo *agginfo)
aggsortop);
}
if (hypothetical)
appendPQExpBufferStr(details, ",\n HYPOTHETICAL");
/*
* DROP must be fully qualified in case same name appears in pg_catalog
*/
@ -11743,7 +11756,7 @@ dumpAgg(Archive *fout, AggInfo *agginfo)
/*
* Since there is no GRANT ON AGGREGATE syntax, we have to make the ACL
* command look like a function's GRANT; in particular this affects the
* syntax for zero-argument aggregates.
* syntax for zero-argument aggregates and ordered-set aggregates.
*/
free(aggsig);
free(aggsig_tag);

View File

@ -53,6 +53,6 @@
*/
/* yyyymmddN */
#define CATALOG_VERSION_NO 201312131
#define CATALOG_VERSION_NO 201312231
#endif

View File

@ -28,6 +28,8 @@
* cpp turns this into typedef struct FormData_pg_aggregate
*
* aggfnoid pg_proc OID of the aggregate itself
* aggkind aggregate kind, see AGGKIND_ categories below
* aggnumdirectargs number of arguments that are "direct" arguments
* aggtransfn transition function
* aggfinalfn final function (0 if none)
* aggsortop associated sort operator (0 if none)
@ -41,6 +43,8 @@
CATALOG(pg_aggregate,2600) BKI_WITHOUT_OIDS
{
regproc aggfnoid;
char aggkind;
int16 aggnumdirectargs;
regproc aggtransfn;
regproc aggfinalfn;
Oid aggsortop;
@ -64,14 +68,31 @@ typedef FormData_pg_aggregate *Form_pg_aggregate;
* ----------------
*/
#define Natts_pg_aggregate 7
#define Anum_pg_aggregate_aggfnoid 1
#define Anum_pg_aggregate_aggtransfn 2
#define Anum_pg_aggregate_aggfinalfn 3
#define Anum_pg_aggregate_aggsortop 4
#define Anum_pg_aggregate_aggtranstype 5
#define Anum_pg_aggregate_aggtransspace 6
#define Anum_pg_aggregate_agginitval 7
#define Natts_pg_aggregate 9
#define Anum_pg_aggregate_aggfnoid 1
#define Anum_pg_aggregate_aggkind 2
#define Anum_pg_aggregate_aggnumdirectargs 3
#define Anum_pg_aggregate_aggtransfn 4
#define Anum_pg_aggregate_aggfinalfn 5
#define Anum_pg_aggregate_aggsortop 6
#define Anum_pg_aggregate_aggtranstype 7
#define Anum_pg_aggregate_aggtransspace 8
#define Anum_pg_aggregate_agginitval 9
/*
* Symbolic values for aggkind column. We distinguish normal aggregates
* from ordered-set aggregates (which have two sets of arguments, namely
* direct and aggregated arguments) and from hypothetical-set aggregates
* (which are a subclass of ordered-set aggregates in which the last
* direct arguments have to match up in number and datatypes with the
* aggregated arguments).
*/
#define AGGKIND_NORMAL 'n'
#define AGGKIND_ORDERED_SET 'o'
#define AGGKIND_HYPOTHETICAL 'h'
/* Use this macro to test for "ordered-set agg including hypothetical case" */
#define AGGKIND_IS_ORDERED_SET(kind) ((kind) != AGGKIND_NORMAL)
/* ----------------
@ -80,175 +101,192 @@ typedef FormData_pg_aggregate *Form_pg_aggregate;
*/
/* avg */
DATA(insert ( 2100 int8_avg_accum numeric_avg 0 2281 128 _null_ ));
DATA(insert ( 2101 int4_avg_accum int8_avg 0 1016 0 "{0,0}" ));
DATA(insert ( 2102 int2_avg_accum int8_avg 0 1016 0 "{0,0}" ));
DATA(insert ( 2103 numeric_avg_accum numeric_avg 0 2281 128 _null_ ));
DATA(insert ( 2104 float4_accum float8_avg 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2105 float8_accum float8_avg 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2106 interval_accum interval_avg 0 1187 0 "{0 second,0 second}" ));
DATA(insert ( 2100 n 0 int8_avg_accum numeric_avg 0 2281 128 _null_ ));
DATA(insert ( 2101 n 0 int4_avg_accum int8_avg 0 1016 0 "{0,0}" ));
DATA(insert ( 2102 n 0 int2_avg_accum int8_avg 0 1016 0 "{0,0}" ));
DATA(insert ( 2103 n 0 numeric_avg_accum numeric_avg 0 2281 128 _null_ ));
DATA(insert ( 2104 n 0 float4_accum float8_avg 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2105 n 0 float8_accum float8_avg 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2106 n 0 interval_accum interval_avg 0 1187 0 "{0 second,0 second}" ));
/* sum */
DATA(insert ( 2107 int8_avg_accum numeric_sum 0 2281 128 _null_ ));
DATA(insert ( 2108 int4_sum - 0 20 0 _null_ ));
DATA(insert ( 2109 int2_sum - 0 20 0 _null_ ));
DATA(insert ( 2110 float4pl - 0 700 0 _null_ ));
DATA(insert ( 2111 float8pl - 0 701 0 _null_ ));
DATA(insert ( 2112 cash_pl - 0 790 0 _null_ ));
DATA(insert ( 2113 interval_pl - 0 1186 0 _null_ ));
DATA(insert ( 2114 numeric_avg_accum numeric_sum 0 2281 128 _null_ ));
DATA(insert ( 2107 n 0 int8_avg_accum numeric_sum 0 2281 128 _null_ ));
DATA(insert ( 2108 n 0 int4_sum - 0 20 0 _null_ ));
DATA(insert ( 2109 n 0 int2_sum - 0 20 0 _null_ ));
DATA(insert ( 2110 n 0 float4pl - 0 700 0 _null_ ));
DATA(insert ( 2111 n 0 float8pl - 0 701 0 _null_ ));
DATA(insert ( 2112 n 0 cash_pl - 0 790 0 _null_ ));
DATA(insert ( 2113 n 0 interval_pl - 0 1186 0 _null_ ));
DATA(insert ( 2114 n 0 numeric_avg_accum numeric_sum 0 2281 128 _null_ ));
/* max */
DATA(insert ( 2115 int8larger - 413 20 0 _null_ ));
DATA(insert ( 2116 int4larger - 521 23 0 _null_ ));
DATA(insert ( 2117 int2larger - 520 21 0 _null_ ));
DATA(insert ( 2118 oidlarger - 610 26 0 _null_ ));
DATA(insert ( 2119 float4larger - 623 700 0 _null_ ));
DATA(insert ( 2120 float8larger - 674 701 0 _null_ ));
DATA(insert ( 2121 int4larger - 563 702 0 _null_ ));
DATA(insert ( 2122 date_larger - 1097 1082 0 _null_ ));
DATA(insert ( 2123 time_larger - 1112 1083 0 _null_ ));
DATA(insert ( 2124 timetz_larger - 1554 1266 0 _null_ ));
DATA(insert ( 2125 cashlarger - 903 790 0 _null_ ));
DATA(insert ( 2126 timestamp_larger - 2064 1114 0 _null_ ));
DATA(insert ( 2127 timestamptz_larger - 1324 1184 0 _null_ ));
DATA(insert ( 2128 interval_larger - 1334 1186 0 _null_ ));
DATA(insert ( 2129 text_larger - 666 25 0 _null_ ));
DATA(insert ( 2130 numeric_larger - 1756 1700 0 _null_ ));
DATA(insert ( 2050 array_larger - 1073 2277 0 _null_ ));
DATA(insert ( 2244 bpchar_larger - 1060 1042 0 _null_ ));
DATA(insert ( 2797 tidlarger - 2800 27 0 _null_ ));
DATA(insert ( 3526 enum_larger - 3519 3500 0 _null_ ));
DATA(insert ( 2115 n 0 int8larger - 413 20 0 _null_ ));
DATA(insert ( 2116 n 0 int4larger - 521 23 0 _null_ ));
DATA(insert ( 2117 n 0 int2larger - 520 21 0 _null_ ));
DATA(insert ( 2118 n 0 oidlarger - 610 26 0 _null_ ));
DATA(insert ( 2119 n 0 float4larger - 623 700 0 _null_ ));
DATA(insert ( 2120 n 0 float8larger - 674 701 0 _null_ ));
DATA(insert ( 2121 n 0 int4larger - 563 702 0 _null_ ));
DATA(insert ( 2122 n 0 date_larger - 1097 1082 0 _null_ ));
DATA(insert ( 2123 n 0 time_larger - 1112 1083 0 _null_ ));
DATA(insert ( 2124 n 0 timetz_larger - 1554 1266 0 _null_ ));
DATA(insert ( 2125 n 0 cashlarger - 903 790 0 _null_ ));
DATA(insert ( 2126 n 0 timestamp_larger - 2064 1114 0 _null_ ));
DATA(insert ( 2127 n 0 timestamptz_larger - 1324 1184 0 _null_ ));
DATA(insert ( 2128 n 0 interval_larger - 1334 1186 0 _null_ ));
DATA(insert ( 2129 n 0 text_larger - 666 25 0 _null_ ));
DATA(insert ( 2130 n 0 numeric_larger - 1756 1700 0 _null_ ));
DATA(insert ( 2050 n 0 array_larger - 1073 2277 0 _null_ ));
DATA(insert ( 2244 n 0 bpchar_larger - 1060 1042 0 _null_ ));
DATA(insert ( 2797 n 0 tidlarger - 2800 27 0 _null_ ));
DATA(insert ( 3526 n 0 enum_larger - 3519 3500 0 _null_ ));
/* min */
DATA(insert ( 2131 int8smaller - 412 20 0 _null_ ));
DATA(insert ( 2132 int4smaller - 97 23 0 _null_ ));
DATA(insert ( 2133 int2smaller - 95 21 0 _null_ ));
DATA(insert ( 2134 oidsmaller - 609 26 0 _null_ ));
DATA(insert ( 2135 float4smaller - 622 700 0 _null_ ));
DATA(insert ( 2136 float8smaller - 672 701 0 _null_ ));
DATA(insert ( 2137 int4smaller - 562 702 0 _null_ ));
DATA(insert ( 2138 date_smaller - 1095 1082 0 _null_ ));
DATA(insert ( 2139 time_smaller - 1110 1083 0 _null_ ));
DATA(insert ( 2140 timetz_smaller - 1552 1266 0 _null_ ));
DATA(insert ( 2141 cashsmaller - 902 790 0 _null_ ));
DATA(insert ( 2142 timestamp_smaller - 2062 1114 0 _null_ ));
DATA(insert ( 2143 timestamptz_smaller - 1322 1184 0 _null_ ));
DATA(insert ( 2144 interval_smaller - 1332 1186 0 _null_ ));
DATA(insert ( 2145 text_smaller - 664 25 0 _null_ ));
DATA(insert ( 2146 numeric_smaller - 1754 1700 0 _null_ ));
DATA(insert ( 2051 array_smaller - 1072 2277 0 _null_ ));
DATA(insert ( 2245 bpchar_smaller - 1058 1042 0 _null_ ));
DATA(insert ( 2798 tidsmaller - 2799 27 0 _null_ ));
DATA(insert ( 3527 enum_smaller - 3518 3500 0 _null_ ));
DATA(insert ( 2131 n 0 int8smaller - 412 20 0 _null_ ));
DATA(insert ( 2132 n 0 int4smaller - 97 23 0 _null_ ));
DATA(insert ( 2133 n 0 int2smaller - 95 21 0 _null_ ));
DATA(insert ( 2134 n 0 oidsmaller - 609 26 0 _null_ ));
DATA(insert ( 2135 n 0 float4smaller - 622 700 0 _null_ ));
DATA(insert ( 2136 n 0 float8smaller - 672 701 0 _null_ ));
DATA(insert ( 2137 n 0 int4smaller - 562 702 0 _null_ ));
DATA(insert ( 2138 n 0 date_smaller - 1095 1082 0 _null_ ));
DATA(insert ( 2139 n 0 time_smaller - 1110 1083 0 _null_ ));
DATA(insert ( 2140 n 0 timetz_smaller - 1552 1266 0 _null_ ));
DATA(insert ( 2141 n 0 cashsmaller - 902 790 0 _null_ ));
DATA(insert ( 2142 n 0 timestamp_smaller - 2062 1114 0 _null_ ));
DATA(insert ( 2143 n 0 timestamptz_smaller - 1322 1184 0 _null_ ));
DATA(insert ( 2144 n 0 interval_smaller - 1332 1186 0 _null_ ));
DATA(insert ( 2145 n 0 text_smaller - 664 25 0 _null_ ));
DATA(insert ( 2146 n 0 numeric_smaller - 1754 1700 0 _null_ ));
DATA(insert ( 2051 n 0 array_smaller - 1072 2277 0 _null_ ));
DATA(insert ( 2245 n 0 bpchar_smaller - 1058 1042 0 _null_ ));
DATA(insert ( 2798 n 0 tidsmaller - 2799 27 0 _null_ ));
DATA(insert ( 3527 n 0 enum_smaller - 3518 3500 0 _null_ ));
/* count */
DATA(insert ( 2147 int8inc_any - 0 20 0 "0" ));
DATA(insert ( 2803 int8inc - 0 20 0 "0" ));
DATA(insert ( 2147 n 0 int8inc_any - 0 20 0 "0" ));
DATA(insert ( 2803 n 0 int8inc - 0 20 0 "0" ));
/* var_pop */
DATA(insert ( 2718 int8_accum numeric_var_pop 0 2281 128 _null_ ));
DATA(insert ( 2719 int4_accum numeric_var_pop 0 2281 128 _null_ ));
DATA(insert ( 2720 int2_accum numeric_var_pop 0 2281 128 _null_ ));
DATA(insert ( 2721 float4_accum float8_var_pop 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2722 float8_accum float8_var_pop 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2723 numeric_accum numeric_var_pop 0 2281 128 _null_ ));
DATA(insert ( 2718 n 0 int8_accum numeric_var_pop 0 2281 128 _null_ ));
DATA(insert ( 2719 n 0 int4_accum numeric_var_pop 0 2281 128 _null_ ));
DATA(insert ( 2720 n 0 int2_accum numeric_var_pop 0 2281 128 _null_ ));
DATA(insert ( 2721 n 0 float4_accum float8_var_pop 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2722 n 0 float8_accum float8_var_pop 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2723 n 0 numeric_accum numeric_var_pop 0 2281 128 _null_ ));
/* var_samp */
DATA(insert ( 2641 int8_accum numeric_var_samp 0 2281 128 _null_ ));
DATA(insert ( 2642 int4_accum numeric_var_samp 0 2281 128 _null_ ));
DATA(insert ( 2643 int2_accum numeric_var_samp 0 2281 128 _null_ ));
DATA(insert ( 2644 float4_accum float8_var_samp 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2645 float8_accum float8_var_samp 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2646 numeric_accum numeric_var_samp 0 2281 128 _null_ ));
DATA(insert ( 2641 n 0 int8_accum numeric_var_samp 0 2281 128 _null_ ));
DATA(insert ( 2642 n 0 int4_accum numeric_var_samp 0 2281 128 _null_ ));
DATA(insert ( 2643 n 0 int2_accum numeric_var_samp 0 2281 128 _null_ ));
DATA(insert ( 2644 n 0 float4_accum float8_var_samp 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2645 n 0 float8_accum float8_var_samp 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2646 n 0 numeric_accum numeric_var_samp 0 2281 128 _null_ ));
/* variance: historical Postgres syntax for var_samp */
DATA(insert ( 2148 int8_accum numeric_var_samp 0 2281 128 _null_ ));
DATA(insert ( 2149 int4_accum numeric_var_samp 0 2281 128 _null_ ));
DATA(insert ( 2150 int2_accum numeric_var_samp 0 2281 128 _null_ ));
DATA(insert ( 2151 float4_accum float8_var_samp 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2152 float8_accum float8_var_samp 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2153 numeric_accum numeric_var_samp 0 2281 128 _null_ ));
DATA(insert ( 2148 n 0 int8_accum numeric_var_samp 0 2281 128 _null_ ));
DATA(insert ( 2149 n 0 int4_accum numeric_var_samp 0 2281 128 _null_ ));
DATA(insert ( 2150 n 0 int2_accum numeric_var_samp 0 2281 128 _null_ ));
DATA(insert ( 2151 n 0 float4_accum float8_var_samp 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2152 n 0 float8_accum float8_var_samp 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2153 n 0 numeric_accum numeric_var_samp 0 2281 128 _null_ ));
/* stddev_pop */
DATA(insert ( 2724 int8_accum numeric_stddev_pop 0 2281 128 _null_ ));
DATA(insert ( 2725 int4_accum numeric_stddev_pop 0 2281 128 _null_ ));
DATA(insert ( 2726 int2_accum numeric_stddev_pop 0 2281 128 _null_ ));
DATA(insert ( 2727 float4_accum float8_stddev_pop 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2728 float8_accum float8_stddev_pop 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2729 numeric_accum numeric_stddev_pop 0 2281 128 _null_ ));
DATA(insert ( 2724 n 0 int8_accum numeric_stddev_pop 0 2281 128 _null_ ));
DATA(insert ( 2725 n 0 int4_accum numeric_stddev_pop 0 2281 128 _null_ ));
DATA(insert ( 2726 n 0 int2_accum numeric_stddev_pop 0 2281 128 _null_ ));
DATA(insert ( 2727 n 0 float4_accum float8_stddev_pop 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2728 n 0 float8_accum float8_stddev_pop 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2729 n 0 numeric_accum numeric_stddev_pop 0 2281 128 _null_ ));
/* stddev_samp */
DATA(insert ( 2712 int8_accum numeric_stddev_samp 0 2281 128 _null_ ));
DATA(insert ( 2713 int4_accum numeric_stddev_samp 0 2281 128 _null_ ));
DATA(insert ( 2714 int2_accum numeric_stddev_samp 0 2281 128 _null_ ));
DATA(insert ( 2715 float4_accum float8_stddev_samp 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2716 float8_accum float8_stddev_samp 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2717 numeric_accum numeric_stddev_samp 0 2281 128 _null_ ));
DATA(insert ( 2712 n 0 int8_accum numeric_stddev_samp 0 2281 128 _null_ ));
DATA(insert ( 2713 n 0 int4_accum numeric_stddev_samp 0 2281 128 _null_ ));
DATA(insert ( 2714 n 0 int2_accum numeric_stddev_samp 0 2281 128 _null_ ));
DATA(insert ( 2715 n 0 float4_accum float8_stddev_samp 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2716 n 0 float8_accum float8_stddev_samp 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2717 n 0 numeric_accum numeric_stddev_samp 0 2281 128 _null_ ));
/* stddev: historical Postgres syntax for stddev_samp */
DATA(insert ( 2154 int8_accum numeric_stddev_samp 0 2281 128 _null_ ));
DATA(insert ( 2155 int4_accum numeric_stddev_samp 0 2281 128 _null_ ));
DATA(insert ( 2156 int2_accum numeric_stddev_samp 0 2281 128 _null_ ));
DATA(insert ( 2157 float4_accum float8_stddev_samp 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2158 float8_accum float8_stddev_samp 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2159 numeric_accum numeric_stddev_samp 0 2281 128 _null_ ));
DATA(insert ( 2154 n 0 int8_accum numeric_stddev_samp 0 2281 128 _null_ ));
DATA(insert ( 2155 n 0 int4_accum numeric_stddev_samp 0 2281 128 _null_ ));
DATA(insert ( 2156 n 0 int2_accum numeric_stddev_samp 0 2281 128 _null_ ));
DATA(insert ( 2157 n 0 float4_accum float8_stddev_samp 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2158 n 0 float8_accum float8_stddev_samp 0 1022 0 "{0,0,0}" ));
DATA(insert ( 2159 n 0 numeric_accum numeric_stddev_samp 0 2281 128 _null_ ));
/* SQL2003 binary regression aggregates */
DATA(insert ( 2818 int8inc_float8_float8 - 0 20 0 "0" ));
DATA(insert ( 2819 float8_regr_accum float8_regr_sxx 0 1022 0 "{0,0,0,0,0,0}" ));
DATA(insert ( 2820 float8_regr_accum float8_regr_syy 0 1022 0 "{0,0,0,0,0,0}" ));
DATA(insert ( 2821 float8_regr_accum float8_regr_sxy 0 1022 0 "{0,0,0,0,0,0}" ));
DATA(insert ( 2822 float8_regr_accum float8_regr_avgx 0 1022 0 "{0,0,0,0,0,0}" ));
DATA(insert ( 2823 float8_regr_accum float8_regr_avgy 0 1022 0 "{0,0,0,0,0,0}" ));
DATA(insert ( 2824 float8_regr_accum float8_regr_r2 0 1022 0 "{0,0,0,0,0,0}" ));
DATA(insert ( 2825 float8_regr_accum float8_regr_slope 0 1022 0 "{0,0,0,0,0,0}" ));
DATA(insert ( 2826 float8_regr_accum float8_regr_intercept 0 1022 0 "{0,0,0,0,0,0}" ));
DATA(insert ( 2827 float8_regr_accum float8_covar_pop 0 1022 0 "{0,0,0,0,0,0}" ));
DATA(insert ( 2828 float8_regr_accum float8_covar_samp 0 1022 0 "{0,0,0,0,0,0}" ));
DATA(insert ( 2829 float8_regr_accum float8_corr 0 1022 0 "{0,0,0,0,0,0}" ));
DATA(insert ( 2818 n 0 int8inc_float8_float8 - 0 20 0 "0" ));
DATA(insert ( 2819 n 0 float8_regr_accum float8_regr_sxx 0 1022 0 "{0,0,0,0,0,0}" ));
DATA(insert ( 2820 n 0 float8_regr_accum float8_regr_syy 0 1022 0 "{0,0,0,0,0,0}" ));
DATA(insert ( 2821 n 0 float8_regr_accum float8_regr_sxy 0 1022 0 "{0,0,0,0,0,0}" ));
DATA(insert ( 2822 n 0 float8_regr_accum float8_regr_avgx 0 1022 0 "{0,0,0,0,0,0}" ));
DATA(insert ( 2823 n 0 float8_regr_accum float8_regr_avgy 0 1022 0 "{0,0,0,0,0,0}" ));
DATA(insert ( 2824 n 0 float8_regr_accum float8_regr_r2 0 1022 0 "{0,0,0,0,0,0}" ));
DATA(insert ( 2825 n 0 float8_regr_accum float8_regr_slope 0 1022 0 "{0,0,0,0,0,0}" ));
DATA(insert ( 2826 n 0 float8_regr_accum float8_regr_intercept 0 1022 0 "{0,0,0,0,0,0}" ));
DATA(insert ( 2827 n 0 float8_regr_accum float8_covar_pop 0 1022 0 "{0,0,0,0,0,0}" ));
DATA(insert ( 2828 n 0 float8_regr_accum float8_covar_samp 0 1022 0 "{0,0,0,0,0,0}" ));
DATA(insert ( 2829 n 0 float8_regr_accum float8_corr 0 1022 0 "{0,0,0,0,0,0}" ));
/* boolean-and and boolean-or */
DATA(insert ( 2517 booland_statefunc - 58 16 0 _null_ ));
DATA(insert ( 2518 boolor_statefunc - 59 16 0 _null_ ));
DATA(insert ( 2519 booland_statefunc - 58 16 0 _null_ ));
DATA(insert ( 2517 n 0 booland_statefunc - 58 16 0 _null_ ));
DATA(insert ( 2518 n 0 boolor_statefunc - 59 16 0 _null_ ));
DATA(insert ( 2519 n 0 booland_statefunc - 58 16 0 _null_ ));
/* bitwise integer */
DATA(insert ( 2236 int2and - 0 21 0 _null_ ));
DATA(insert ( 2237 int2or - 0 21 0 _null_ ));
DATA(insert ( 2238 int4and - 0 23 0 _null_ ));
DATA(insert ( 2239 int4or - 0 23 0 _null_ ));
DATA(insert ( 2240 int8and - 0 20 0 _null_ ));
DATA(insert ( 2241 int8or - 0 20 0 _null_ ));
DATA(insert ( 2242 bitand - 0 1560 0 _null_ ));
DATA(insert ( 2243 bitor - 0 1560 0 _null_ ));
DATA(insert ( 2236 n 0 int2and - 0 21 0 _null_ ));
DATA(insert ( 2237 n 0 int2or - 0 21 0 _null_ ));
DATA(insert ( 2238 n 0 int4and - 0 23 0 _null_ ));
DATA(insert ( 2239 n 0 int4or - 0 23 0 _null_ ));
DATA(insert ( 2240 n 0 int8and - 0 20 0 _null_ ));
DATA(insert ( 2241 n 0 int8or - 0 20 0 _null_ ));
DATA(insert ( 2242 n 0 bitand - 0 1560 0 _null_ ));
DATA(insert ( 2243 n 0 bitor - 0 1560 0 _null_ ));
/* xml */
DATA(insert ( 2901 xmlconcat2 - 0 142 0 _null_ ));
DATA(insert ( 2901 n 0 xmlconcat2 - 0 142 0 _null_ ));
/* array */
DATA(insert ( 2335 array_agg_transfn array_agg_finalfn 0 2281 0 _null_ ));
DATA(insert ( 2335 n 0 array_agg_transfn array_agg_finalfn 0 2281 0 _null_ ));
/* text */
DATA(insert ( 3538 string_agg_transfn string_agg_finalfn 0 2281 0 _null_ ));
DATA(insert ( 3538 n 0 string_agg_transfn string_agg_finalfn 0 2281 0 _null_ ));
/* bytea */
DATA(insert ( 3545 bytea_string_agg_transfn bytea_string_agg_finalfn 0 2281 0 _null_ ));
DATA(insert ( 3545 n 0 bytea_string_agg_transfn bytea_string_agg_finalfn 0 2281 0 _null_ ));
/* json */
DATA(insert ( 3175 json_agg_transfn json_agg_finalfn 0 2281 0 _null_ ));
DATA(insert ( 3175 n 0 json_agg_transfn json_agg_finalfn 0 2281 0 _null_ ));
/* ordered-set and hypothetical-set aggregates */
DATA(insert ( 3972 o 1 ordered_set_transition percentile_disc_final 0 2281 0 _null_ ));
DATA(insert ( 3974 o 1 ordered_set_transition percentile_cont_float8_final 0 2281 0 _null_ ));
DATA(insert ( 3976 o 1 ordered_set_transition percentile_cont_interval_final 0 2281 0 _null_ ));
DATA(insert ( 3978 o 1 ordered_set_transition percentile_disc_multi_final 0 2281 0 _null_ ));
DATA(insert ( 3980 o 1 ordered_set_transition percentile_cont_float8_multi_final 0 2281 0 _null_ ));
DATA(insert ( 3982 o 1 ordered_set_transition percentile_cont_interval_multi_final 0 2281 0 _null_ ));
DATA(insert ( 3984 o 0 ordered_set_transition mode_final 0 2281 0 _null_ ));
DATA(insert ( 3986 h 1 ordered_set_transition_multi rank_final 0 2281 0 _null_ ));
DATA(insert ( 3988 h 1 ordered_set_transition_multi percent_rank_final 0 2281 0 _null_ ));
DATA(insert ( 3990 h 1 ordered_set_transition_multi cume_dist_final 0 2281 0 _null_ ));
DATA(insert ( 3992 h 1 ordered_set_transition_multi dense_rank_final 0 2281 0 _null_ ));
/*
* prototypes for functions in pg_aggregate.c
*/
extern Oid AggregateCreate(const char *aggName,
Oid aggNamespace,
char aggKind,
int numArgs,
int numDirectArgs,
oidvector *parameterTypes,
Datum allParameterTypes,
Datum parameterModes,
Datum parameterNames,
List *parameterDefaults,
Oid variadicArgType,
List *aggtransfnName,
List *aggfinalfnName,
List *aggsortopName,

View File

@ -130,6 +130,7 @@ DATA(insert OID = 96 ( "=" PGNSP PGUID b t t 23 23 16 96 518 int4eq eqsel e
DESCR("equal");
DATA(insert OID = 97 ( "<" PGNSP PGUID b f f 23 23 16 521 525 int4lt scalarltsel scalarltjoinsel ));
DESCR("less than");
#define Int4LessOperator 97
DATA(insert OID = 98 ( "=" PGNSP PGUID b t t 25 25 16 98 531 texteq eqsel eqjoinsel ));
DESCR("equal");
#define TextEqualOperator 98

View File

@ -4756,10 +4756,65 @@ DESCR("SP-GiST support for quad tree over range");
DATA(insert OID = 3473 ( spg_range_quad_leaf_consistent PGNSP PGUID 12 1 0 0 0 f f f f t f i 2 0 16 "2281 2281" _null_ _null_ _null_ _null_ spg_range_quad_leaf_consistent _null_ _null_ _null_ ));
DESCR("SP-GiST support for quad tree over range");
/* event triggers */
DATA(insert OID = 3566 ( pg_event_trigger_dropped_objects PGNSP PGUID 12 10 100 0 0 f f f f t t s 0 0 2249 "" "{26,26,23,25,25,25,25}" "{o,o,o,o,o,o,o}" "{classid, objid, objsubid, object_type, schema_name, object_name, object_identity}" _null_ pg_event_trigger_dropped_objects _null_ _null_ _null_ ));
DESCR("list objects dropped by the current command");
/* generic transition functions for ordered-set aggregates */
DATA(insert OID = 3970 ( ordered_set_transition PGNSP PGUID 12 1 0 0 0 f f f f f f i 2 0 2281 "2281 2276" _null_ _null_ _null_ _null_ ordered_set_transition _null_ _null_ _null_ ));
DESCR("aggregate transition function");
DATA(insert OID = 3971 ( ordered_set_transition_multi PGNSP PGUID 12 1 0 2276 0 f f f f f f i 2 0 2281 "2281 2276" "{2281,2276}" "{i,v}" _null_ _null_ ordered_set_transition_multi _null_ _null_ _null_ ));
DESCR("aggregate transition function");
/* inverse distribution aggregates (and their support functions) */
DATA(insert OID = 3972 ( percentile_disc PGNSP PGUID 12 1 0 0 0 t f f f f f i 2 0 2283 "701 2283" _null_ _null_ _null_ _null_ aggregate_dummy _null_ _null_ _null_ ));
DESCR("discrete percentile");
DATA(insert OID = 3973 ( percentile_disc_final PGNSP PGUID 12 1 0 0 0 f f f f f f i 3 0 2283 "2281 701 2283" _null_ _null_ _null_ _null_ percentile_disc_final _null_ _null_ _null_ ));
DESCR("aggregate final function");
DATA(insert OID = 3974 ( percentile_cont PGNSP PGUID 12 1 0 0 0 t f f f f f i 2 0 701 "701 701" _null_ _null_ _null_ _null_ aggregate_dummy _null_ _null_ _null_ ));
DESCR("continuous distribution percentile");
DATA(insert OID = 3975 ( percentile_cont_float8_final PGNSP PGUID 12 1 0 0 0 f f f f f f i 3 0 701 "2281 701 701" _null_ _null_ _null_ _null_ percentile_cont_float8_final _null_ _null_ _null_ ));
DESCR("aggregate final function");
DATA(insert OID = 3976 ( percentile_cont PGNSP PGUID 12 1 0 0 0 t f f f f f i 2 0 1186 "701 1186" _null_ _null_ _null_ _null_ aggregate_dummy _null_ _null_ _null_ ));
DESCR("continuous distribution percentile");
DATA(insert OID = 3977 ( percentile_cont_interval_final PGNSP PGUID 12 1 0 0 0 f f f f f f i 3 0 1186 "2281 701 1186" _null_ _null_ _null_ _null_ percentile_cont_interval_final _null_ _null_ _null_ ));
DESCR("aggregate final function");
DATA(insert OID = 3978 ( percentile_disc PGNSP PGUID 12 1 0 0 0 t f f f f f i 2 0 2277 "1022 2283" _null_ _null_ _null_ _null_ aggregate_dummy _null_ _null_ _null_ ));
DESCR("multiple discrete percentiles");
DATA(insert OID = 3979 ( percentile_disc_multi_final PGNSP PGUID 12 1 0 0 0 f f f f f f i 3 0 2277 "2281 1022 2283" _null_ _null_ _null_ _null_ percentile_disc_multi_final _null_ _null_ _null_ ));
DESCR("aggregate final function");
DATA(insert OID = 3980 ( percentile_cont PGNSP PGUID 12 1 0 0 0 t f f f f f i 2 0 1022 "1022 701" _null_ _null_ _null_ _null_ aggregate_dummy _null_ _null_ _null_ ));
DESCR("multiple continuous percentiles");
DATA(insert OID = 3981 ( percentile_cont_float8_multi_final PGNSP PGUID 12 1 0 0 0 f f f f f f i 3 0 1022 "2281 1022 701" _null_ _null_ _null_ _null_ percentile_cont_float8_multi_final _null_ _null_ _null_ ));
DESCR("aggregate final function");
DATA(insert OID = 3982 ( percentile_cont PGNSP PGUID 12 1 0 0 0 t f f f f f i 2 0 1187 "1022 1186" _null_ _null_ _null_ _null_ aggregate_dummy _null_ _null_ _null_ ));
DESCR("multiple continuous percentiles");
DATA(insert OID = 3983 ( percentile_cont_interval_multi_final PGNSP PGUID 12 1 0 0 0 f f f f f f i 3 0 1187 "2281 1022 1186" _null_ _null_ _null_ _null_ percentile_cont_interval_multi_final _null_ _null_ _null_ ));
DESCR("aggregate final function");
DATA(insert OID = 3984 ( mode PGNSP PGUID 12 1 0 0 0 t f f f f f i 1 0 2283 "2283" _null_ _null_ _null_ _null_ aggregate_dummy _null_ _null_ _null_ ));
DESCR("most common value");
DATA(insert OID = 3985 ( mode_final PGNSP PGUID 12 1 0 0 0 f f f f f f i 2 0 2283 "2281 2283" _null_ _null_ _null_ _null_ mode_final _null_ _null_ _null_ ));
DESCR("aggregate final function");
/* hypothetical-set aggregates (and their support functions) */
DATA(insert OID = 3986 ( rank PGNSP PGUID 12 1 0 2276 0 t f f f f f i 1 0 20 "2276" "{2276}" "{v}" _null_ _null_ aggregate_dummy _null_ _null_ _null_ ));
DESCR("rank of hypothetical row");
DATA(insert OID = 3987 ( rank_final PGNSP PGUID 12 1 0 2276 0 f f f f f f i 2 0 20 "2281 2276" "{2281,2276}" "{i,v}" _null_ _null_ hypothetical_rank_final _null_ _null_ _null_ ));
DESCR("aggregate final function");
DATA(insert OID = 3988 ( percent_rank PGNSP PGUID 12 1 0 2276 0 t f f f f f i 1 0 701 "2276" "{2276}" "{v}" _null_ _null_ aggregate_dummy _null_ _null_ _null_ ));
DESCR("fractional rank of hypothetical row");
DATA(insert OID = 3989 ( percent_rank_final PGNSP PGUID 12 1 0 2276 0 f f f f f f i 2 0 701 "2281 2276" "{2281,2276}" "{i,v}" _null_ _null_ hypothetical_percent_rank_final _null_ _null_ _null_ ));
DESCR("aggregate final function");
DATA(insert OID = 3990 ( cume_dist PGNSP PGUID 12 1 0 2276 0 t f f f f f i 1 0 701 "2276" "{2276}" "{v}" _null_ _null_ aggregate_dummy _null_ _null_ _null_ ));
DESCR("cumulative distribution of hypothetical row");
DATA(insert OID = 3991 ( cume_dist_final PGNSP PGUID 12 1 0 2276 0 f f f f f f i 2 0 701 "2281 2276" "{2281,2276}" "{i,v}" _null_ _null_ hypothetical_cume_dist_final _null_ _null_ _null_ ));
DESCR("aggregate final function");
DATA(insert OID = 3992 ( dense_rank PGNSP PGUID 12 1 0 2276 0 t f f f f f i 1 0 20 "2276" "{2276}" "{v}" _null_ _null_ aggregate_dummy _null_ _null_ _null_ ));
DESCR("rank of hypothetical row without gaps");
DATA(insert OID = 3993 ( dense_rank_final PGNSP PGUID 12 1 0 2276 0 f f f f f f i 2 0 20 "2281 2276" "{2281,2276}" "{i,v}" _null_ _null_ hypothetical_dense_rank_final _null_ _null_ _null_ ));
DESCR("aggregate final function");
/*
* Symbolic values for provolatile column: these indicate whether the result
* of a function is dependent *only* on the values of its explicit arguments,

View File

@ -63,6 +63,7 @@ extern void interpret_function_parameter_list(List *parameters,
ArrayType **parameterModes,
ArrayType **parameterNames,
List **parameterDefaults,
Oid *variadicArgType,
Oid *requiredResultType);
/* commands/operatorcmds.c */

View File

@ -18,8 +18,12 @@
#ifndef FMGR_H
#define FMGR_H
/* We don't want to include primnodes.h here, so make a stub reference */
/* We don't want to include primnodes.h here, so make some stub references */
typedef struct Node *fmNodePtr;
typedef struct Aggref *fmAggrefPtr;
/* Likewise, avoid including execnodes.h here */
typedef struct ExprContext *fmExprContextPtr;
/* Likewise, avoid including stringinfo.h here */
typedef struct StringInfoData *fmStringInfo;
@ -640,8 +644,8 @@ extern void **find_rendezvous_variable(const char *varName);
/*
* Support for aggregate functions
*
* This is actually in executor/nodeAgg.c, but we declare it here since the
* whole point is for callers of it to not be overly friendly with nodeAgg.
* These are actually in executor/nodeAgg.c, but we declare them here since
* the whole point is for callers to not be overly friendly with nodeAgg.
*/
/* AggCheckCallContext can return one of the following codes, or 0: */
@ -650,6 +654,9 @@ extern void **find_rendezvous_variable(const char *varName);
extern int AggCheckCallContext(FunctionCallInfo fcinfo,
MemoryContext *aggcontext);
extern fmAggrefPtr AggGetAggref(FunctionCallInfo fcinfo);
extern fmExprContextPtr AggGetPerTupleEContext(FunctionCallInfo fcinfo);
extern fmExprContextPtr AggGetPerAggEContext(FunctionCallInfo fcinfo);
/*
* We allow plugin modules to hook function entry/exit. This is intended

View File

@ -141,7 +141,7 @@ typedef struct ExprContext
/* Link to containing EState (NULL if a standalone ExprContext) */
struct EState *ecxt_estate;
/* Functions to call back when ExprContext is shut down */
/* Functions to call back when ExprContext is shut down or rescanned */
ExprContext_CB *ecxt_callbacks;
} ExprContext;
@ -587,8 +587,9 @@ typedef struct WholeRowVarExprState
typedef struct AggrefExprState
{
ExprState xprstate;
List *args; /* states of argument expressions */
ExprState *aggfilter; /* FILTER expression */
List *aggdirectargs; /* states of direct-argument expressions */
List *args; /* states of aggregated-argument expressions */
ExprState *aggfilter; /* state of FILTER expression, if any */
int aggno; /* ID number for agg within its plan node */
} AggrefExprState;
@ -1704,6 +1705,7 @@ typedef struct AggState
AggStatePerAgg peragg; /* per-Aggref information */
MemoryContext aggcontext; /* memory context for long-lived data */
ExprContext *tmpcontext; /* econtext for input expressions */
AggStatePerAgg curperagg; /* identifies currently active aggregate */
bool agg_done; /* indicates completion of Agg scan */
/* these fields are used in AGG_PLAIN and AGG_SORTED modes: */
AggStatePerGroup pergroup; /* per-Aggref-per-group working state */

View File

@ -281,7 +281,8 @@ typedef struct CollateClause
/*
* FuncCall - a function or aggregate invocation
*
* agg_order (if not NIL) indicates we saw 'foo(... ORDER BY ...)'.
* agg_order (if not NIL) indicates we saw 'foo(... ORDER BY ...)', or if
* agg_within_group is true, it was 'foo(...) WITHIN GROUP (ORDER BY ...)'.
* agg_star indicates we saw a 'foo(*)' construct, while agg_distinct
* indicates we saw 'foo(DISTINCT ...)'. In any of these cases, the
* construct *must* be an aggregate call. Otherwise, it might be either an
@ -298,6 +299,7 @@ typedef struct FuncCall
List *args; /* the arguments (list of exprs) */
List *agg_order; /* ORDER BY (list of SortBy) */
Node *agg_filter; /* FILTER clause, if any */
bool agg_within_group; /* ORDER BY appeared in WITHIN GROUP */
bool agg_star; /* argument was really '*' */
bool agg_distinct; /* arguments were labeled DISTINCT */
bool func_variadic; /* last argument was labeled VARIADIC */

View File

@ -225,8 +225,9 @@ typedef struct Param
/*
* Aggref
*
* The aggregate's args list is a targetlist, ie, a list of TargetEntry nodes
* (before Postgres 9.0 it was just bare expressions). The non-resjunk TLEs
* The aggregate's args list is a targetlist, ie, a list of TargetEntry nodes.
*
* For a normal (non-ordered-set) aggregate, the non-resjunk TargetEntries
* represent the aggregate's regular arguments (if any) and resjunk TLEs can
* be added at the end to represent ORDER BY expressions that are not also
* arguments. As in a top-level Query, the TLEs can be marked with
@ -236,6 +237,12 @@ typedef struct Param
* they are passed to the transition function. The grammar only allows a
* simple "DISTINCT" specifier for the arguments, but we use the full
* query-level representation to allow more code sharing.
*
* For an ordered-set aggregate, the args list represents the WITHIN GROUP
* (aggregated) arguments, all of which will be listed in the aggorder list.
* DISTINCT is not supported in this case, so aggdistinct will be NIL.
* The direct arguments appear in aggdirectargs (as a list of plain
* expressions, not TargetEntry nodes).
*/
typedef struct Aggref
{
@ -244,12 +251,14 @@ typedef struct Aggref
Oid aggtype; /* type Oid of result of the aggregate */
Oid aggcollid; /* OID of collation of result */
Oid inputcollid; /* OID of collation that function should use */
List *args; /* arguments and sort expressions */
List *aggdirectargs; /* direct arguments, if an ordered-set agg */
List *args; /* aggregated arguments and sort expressions */
List *aggorder; /* ORDER BY (list of SortGroupClause) */
List *aggdistinct; /* DISTINCT (list of SortGroupClause) */
Expr *aggfilter; /* FILTER expression */
Expr *aggfilter; /* FILTER expression, if any */
bool aggstar; /* TRUE if argument list was really '*' */
bool aggvariadic; /* TRUE if VARIADIC was used in call */
char aggkind; /* aggregate kind (see pg_aggregate.h) */
Index agglevelsup; /* > 0 if agg belongs to outer query */
int location; /* token location, or -1 if unknown */
} Aggref;
@ -265,7 +274,7 @@ typedef struct WindowFunc
Oid wincollid; /* OID of collation of result */
Oid inputcollid; /* OID of collation that function should use */
List *args; /* arguments to the window function */
Expr *aggfilter; /* FILTER expression */
Expr *aggfilter; /* FILTER expression, if any */
Index winref; /* index of associated WindowClause */
bool winstar; /* TRUE if argument list was really '*' */
bool winagg; /* is function a simple aggregate? */

View File

@ -47,15 +47,16 @@ typedef struct QualCost
/*
* Costing aggregate function execution requires these statistics about
* the aggregates to be executed by a given Agg node. Note that transCost
* includes the execution costs of the aggregates' input expressions.
* the aggregates to be executed by a given Agg node. Note that the costs
* include the execution costs of the aggregates' argument expressions as
* well as the aggregate functions themselves.
*/
typedef struct AggClauseCosts
{
int numAggs; /* total number of aggregate functions */
int numOrderedAggs; /* number that use DISTINCT or ORDER BY */
int numOrderedAggs; /* number w/ DISTINCT/ORDER BY/WITHIN GROUP */
QualCost transCost; /* total per-input-row execution costs */
Cost finalCost; /* total costs of agg final functions */
Cost finalCost; /* total per-aggregated-row costs */
Size transitionSpace; /* space for pass-by-ref transition data */
} AggClauseCosts;

View File

@ -412,6 +412,7 @@ PG_KEYWORD("where", WHERE, RESERVED_KEYWORD)
PG_KEYWORD("whitespace", WHITESPACE_P, UNRESERVED_KEYWORD)
PG_KEYWORD("window", WINDOW, RESERVED_KEYWORD)
PG_KEYWORD("with", WITH, RESERVED_KEYWORD)
PG_KEYWORD("within", WITHIN, UNRESERVED_KEYWORD)
PG_KEYWORD("without", WITHOUT, UNRESERVED_KEYWORD)
PG_KEYWORD("work", WORK, UNRESERVED_KEYWORD)
PG_KEYWORD("wrapper", WRAPPER, UNRESERVED_KEYWORD)

View File

@ -23,8 +23,17 @@ extern void transformWindowFuncCall(ParseState *pstate, WindowFunc *wfunc,
extern void parseCheckAggregates(ParseState *pstate, Query *qry);
extern int get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes);
extern Oid resolve_aggregate_transtype(Oid aggfuncid,
Oid aggtranstype,
Oid *inputTypes,
int numArguments);
extern void build_aggregate_fnexprs(Oid *agg_input_types,
int agg_num_inputs,
int agg_num_direct_inputs,
bool agg_ordered_set,
bool agg_variadic,
Oid agg_state_type,
Oid agg_result_type,

View File

@ -42,6 +42,9 @@ extern List *transformDistinctClause(ParseState *pstate,
extern List *transformDistinctOnClause(ParseState *pstate, List *distinctlist,
List **targetlist, List *sortClause);
extern List *addTargetToSortList(ParseState *pstate, TargetEntry *tle,
List *sortlist, List *targetlist, SortBy *sortby,
bool resolveUnknown);
extern Index assignSortGroupRef(TargetEntry *tle, List *tlist);
extern bool targetIsInSortList(TargetEntry *tle, Oid sortop, List *sortList);

View File

@ -43,9 +43,7 @@ typedef enum
extern Node *ParseFuncOrColumn(ParseState *pstate, List *funcname, List *fargs,
List *agg_order, Expr *agg_filter,
bool agg_star, bool agg_distinct, bool func_variadic,
WindowDef *over, bool is_column, int location);
FuncCall *fn, int location);
extern FuncDetailCode func_get_detail(List *funcname,
List *fargs, List *fargnames,

View File

@ -515,6 +515,21 @@ extern Datum oidvectorgt(PG_FUNCTION_ARGS);
extern oidvector *buildoidvector(const Oid *oids, int n);
extern Oid oidparse(Node *node);
/* orderedsetaggs.c */
extern Datum ordered_set_transition(PG_FUNCTION_ARGS);
extern Datum ordered_set_transition_multi(PG_FUNCTION_ARGS);
extern Datum percentile_disc_final(PG_FUNCTION_ARGS);
extern Datum percentile_cont_float8_final(PG_FUNCTION_ARGS);
extern Datum percentile_cont_interval_final(PG_FUNCTION_ARGS);
extern Datum percentile_disc_multi_final(PG_FUNCTION_ARGS);
extern Datum percentile_cont_float8_multi_final(PG_FUNCTION_ARGS);
extern Datum percentile_cont_interval_multi_final(PG_FUNCTION_ARGS);
extern Datum mode_final(PG_FUNCTION_ARGS);
extern Datum hypothetical_rank_final(PG_FUNCTION_ARGS);
extern Datum hypothetical_percent_rank_final(PG_FUNCTION_ARGS);
extern Datum hypothetical_cume_dist_final(PG_FUNCTION_ARGS);
extern Datum hypothetical_dense_rank_final(PG_FUNCTION_ARGS);
/* pseudotypes.c */
extern Datum cstring_in(PG_FUNCTION_ARGS);
extern Datum cstring_out(PG_FUNCTION_ARGS);

View File

@ -90,6 +90,7 @@ extern Oid get_func_namespace(Oid funcid);
extern Oid get_func_rettype(Oid funcid);
extern int get_func_nargs(Oid funcid);
extern Oid get_func_signature(Oid funcid, Oid **argtypes, int *nargs);
extern Oid get_func_variadictype(Oid funcid);
extern bool get_func_retset(Oid funcid);
extern bool func_strict(Oid funcid);
extern char func_volatile(Oid funcid);

View File

@ -99,6 +99,9 @@ extern IndexTuple tuplesort_getindextuple(Tuplesortstate *state, bool forward,
extern bool tuplesort_getdatum(Tuplesortstate *state, bool forward,
Datum *val, bool *isNull);
extern bool tuplesort_skiptuples(Tuplesortstate *state, int64 ntuples,
bool forward);
extern void tuplesort_end(Tuplesortstate *state);
extern void tuplesort_get_stats(Tuplesortstate *state,

View File

@ -1311,6 +1311,262 @@ select aggfns(distinct a,b,c order by a,c using ~<~,b) filter (where a > 1)
{"(2,2,bar)","(3,1,baz)"}
(1 row)
-- ordered-set aggregates
select p, percentile_cont(p) within group (order by x::float8)
from generate_series(1,5) x,
(values (0::float8),(0.1),(0.25),(0.4),(0.5),(0.6),(0.75),(0.9),(1)) v(p)
group by p order by p;
p | percentile_cont
------+-----------------
0 | 1
0.1 | 1.4
0.25 | 2
0.4 | 2.6
0.5 | 3
0.6 | 3.4
0.75 | 4
0.9 | 4.6
1 | 5
(9 rows)
select p, percentile_cont(p order by p) within group (order by x) -- error
from generate_series(1,5) x,
(values (0::float8),(0.1),(0.25),(0.4),(0.5),(0.6),(0.75),(0.9),(1)) v(p)
group by p order by p;
ERROR: cannot use multiple ORDER BY clauses with WITHIN GROUP
LINE 1: select p, percentile_cont(p order by p) within group (order ...
^
select p, sum() within group (order by x::float8) -- error
from generate_series(1,5) x,
(values (0::float8),(0.1),(0.25),(0.4),(0.5),(0.6),(0.75),(0.9),(1)) v(p)
group by p order by p;
ERROR: sum is not an ordered-set aggregate, so it cannot have WITHIN GROUP
LINE 1: select p, sum() within group (order by x::float8)
^
select p, percentile_cont(p,p) -- error
from generate_series(1,5) x,
(values (0::float8),(0.1),(0.25),(0.4),(0.5),(0.6),(0.75),(0.9),(1)) v(p)
group by p order by p;
ERROR: WITHIN GROUP is required for ordered-set aggregate percentile_cont
LINE 1: select p, percentile_cont(p,p)
^
select percentile_cont(0.5) within group (order by b) from aggtest;
percentile_cont
------------------
53.4485001564026
(1 row)
select percentile_cont(0.5) within group (order by b), sum(b) from aggtest;
percentile_cont | sum
------------------+---------
53.4485001564026 | 431.773
(1 row)
select percentile_cont(0.5) within group (order by thousand) from tenk1;
percentile_cont
-----------------
499.5
(1 row)
select percentile_disc(0.5) within group (order by thousand) from tenk1;
percentile_disc
-----------------
499
(1 row)
select rank(3) within group (order by x)
from (values (1),(1),(2),(2),(3),(3),(4)) v(x);
rank
------
5
(1 row)
select cume_dist(3) within group (order by x)
from (values (1),(1),(2),(2),(3),(3),(4)) v(x);
cume_dist
-----------
0.875
(1 row)
select percent_rank(3) within group (order by x)
from (values (1),(1),(2),(2),(3),(3),(4),(5)) v(x);
percent_rank
--------------
0.5
(1 row)
select dense_rank(3) within group (order by x)
from (values (1),(1),(2),(2),(3),(3),(4)) v(x);
dense_rank
------------
3
(1 row)
select percentile_disc(array[0,0.1,0.25,0.5,0.75,0.9,1]) within group (order by thousand)
from tenk1;
percentile_disc
----------------------------
{0,99,249,499,749,899,999}
(1 row)
select percentile_cont(array[0,0.25,0.5,0.75,1]) within group (order by thousand)
from tenk1;
percentile_cont
-----------------------------
{0,249.75,499.5,749.25,999}
(1 row)
select percentile_disc(array[[null,1,0.5],[0.75,0.25,null]]) within group (order by thousand)
from tenk1;
percentile_disc
---------------------------------
{{NULL,999,499},{749,249,NULL}}
(1 row)
select percentile_cont(array[0,1,0.25,0.75,0.5,1]) within group (order by x)
from generate_series(1,6) x;
percentile_cont
-----------------------
{1,6,2.25,4.75,3.5,6}
(1 row)
select ten, mode() within group (order by string4) from tenk1 group by ten;
ten | mode
-----+--------
0 | HHHHxx
1 | OOOOxx
2 | VVVVxx
3 | OOOOxx
4 | HHHHxx
5 | HHHHxx
6 | OOOOxx
7 | AAAAxx
8 | VVVVxx
9 | VVVVxx
(10 rows)
select percentile_disc(array[0.25,0.5,0.75]) within group (order by x)
from unnest('{fred,jim,fred,jack,jill,fred,jill,jim,jim,sheila,jim,sheila}'::text[]) u(x);
percentile_disc
-----------------
{fred,jill,jim}
(1 row)
-- check collation propagates up in suitable cases:
select pg_collation_for(percentile_disc(1) within group (order by x collate "POSIX"))
from (values ('fred'),('jim')) v(x);
pg_collation_for
------------------
"POSIX"
(1 row)
-- ordered-set aggs created with CREATE AGGREGATE
select test_rank(3) within group (order by x)
from (values (1),(1),(2),(2),(3),(3),(4)) v(x);
test_rank
-----------
5
(1 row)
select test_percentile_disc(0.5) within group (order by thousand) from tenk1;
test_percentile_disc
----------------------
499
(1 row)
-- ordered-set aggs can't use ungrouped vars in direct args:
select rank(x) within group (order by x) from generate_series(1,5) x;
ERROR: column "x.x" must appear in the GROUP BY clause or be used in an aggregate function
LINE 1: select rank(x) within group (order by x) from generate_serie...
^
DETAIL: Direct arguments of an ordered-set aggregate must use only grouped columns.
-- outer-level agg can't use a grouped arg of a lower level, either:
select array(select percentile_disc(a) within group (order by x)
from (values (0.3),(0.7)) v(a) group by a)
from generate_series(1,5) g(x);
ERROR: outer-level aggregate cannot contain a lower-level variable in its direct arguments
LINE 1: select array(select percentile_disc(a) within group (order b...
^
-- agg in the direct args is a grouping violation, too:
select rank(sum(x)) within group (order by x) from generate_series(1,5) x;
ERROR: aggregate function calls cannot be nested
LINE 1: select rank(sum(x)) within group (order by x) from generate_...
^
-- hypothetical-set type unification and argument-count failures:
select rank(3) within group (order by x) from (values ('fred'),('jim')) v(x);
ERROR: WITHIN GROUP types text and integer cannot be matched
LINE 1: select rank(3) within group (order by x) from (values ('fred...
^
select rank(3) within group (order by stringu1,stringu2) from tenk1;
ERROR: function rank(integer, name, name) does not exist
LINE 1: select rank(3) within group (order by stringu1,stringu2) fro...
^
HINT: To use the hypothetical-set aggregate rank, the number of hypothetical direct arguments (here 1) must match the number of ordering columns (here 2).
select rank('fred') within group (order by x) from generate_series(1,5) x;
ERROR: invalid input syntax for integer: "fred"
LINE 1: select rank('fred') within group (order by x) from generate_...
^
select rank('adam'::text collate "C") within group (order by x collate "POSIX")
from (values ('fred'),('jim')) v(x);
ERROR: collation mismatch between explicit collations "C" and "POSIX"
LINE 1: ...adam'::text collate "C") within group (order by x collate "P...
^
-- hypothetical-set type unification successes:
select rank('adam'::varchar) within group (order by x) from (values ('fred'),('jim')) v(x);
rank
------
1
(1 row)
select rank('3') within group (order by x) from generate_series(1,5) x;
rank
------
3
(1 row)
-- divide by zero check
select percent_rank(0) within group (order by x) from generate_series(1,0) x;
percent_rank
--------------
0
(1 row)
-- deparse and multiple features:
create view aggordview1 as
select ten,
percentile_disc(0.5) within group (order by thousand) as p50,
percentile_disc(0.5) within group (order by thousand) filter (where hundred=1) as px,
rank(5,'AZZZZ',50) within group (order by hundred, string4 desc, hundred)
from tenk1
group by ten order by ten;
select pg_get_viewdef('aggordview1');
pg_get_viewdef
-------------------------------------------------------------------------------------------------------------------------------
SELECT tenk1.ten, +
percentile_disc((0.5)::double precision) WITHIN GROUP (ORDER BY tenk1.thousand) AS p50, +
percentile_disc((0.5)::double precision) WITHIN GROUP (ORDER BY tenk1.thousand) FILTER (WHERE (tenk1.hundred = 1)) AS px,+
rank(5, 'AZZZZ'::name, 50) WITHIN GROUP (ORDER BY tenk1.hundred, tenk1.string4 DESC, tenk1.hundred) AS rank +
FROM tenk1 +
GROUP BY tenk1.ten +
ORDER BY tenk1.ten;
(1 row)
select * from aggordview1 order by ten;
ten | p50 | px | rank
-----+-----+-----+------
0 | 490 | | 101
1 | 491 | 401 | 101
2 | 492 | | 101
3 | 493 | | 101
4 | 494 | | 101
5 | 495 | | 67
6 | 496 | | 1
7 | 497 | | 1
8 | 498 | | 1
9 | 499 | | 1
(10 rows)
drop view aggordview1;
-- variadic aggregates
select least_agg(q1,q2) from int8_tbl;
least_agg

View File

@ -66,3 +66,27 @@ returns anyelement language sql as
create aggregate least_agg(variadic items anyarray) (
stype = anyelement, sfunc = least_accum
);
-- test ordered-set aggs using built-in support functions
create aggregate my_percentile_disc(float8 ORDER BY anyelement) (
stype = internal,
sfunc = ordered_set_transition,
finalfunc = percentile_disc_final
);
create aggregate my_rank(VARIADIC "any" ORDER BY VARIADIC "any") (
stype = internal,
sfunc = ordered_set_transition_multi,
finalfunc = rank_final,
hypothetical
);
alter aggregate my_percentile_disc(float8 ORDER BY anyelement)
rename to test_percentile_disc;
alter aggregate my_rank(VARIADIC "any" ORDER BY VARIADIC "any")
rename to test_rank;
\da test_*
List of aggregate functions
Schema | Name | Result data type | Argument data types | Description
--------+----------------------+------------------+----------------------------------------+-------------
public | test_percentile_disc | anyelement | double precision ORDER BY anyelement |
public | test_rank | bigint | VARIADIC "any" ORDER BY VARIADIC "any" |
(2 rows)

View File

@ -23,6 +23,7 @@ SELECT ($1 = $2) OR
EXISTS(select 1 from pg_catalog.pg_cast where
castsource = $1 and casttarget = $2 and
castmethod = 'b' and castcontext = 'i') OR
($2 = 'pg_catalog.any'::pg_catalog.regtype) OR
($2 = 'pg_catalog.anyarray'::pg_catalog.regtype AND
EXISTS(select 1 from pg_catalog.pg_type where
oid = $1 and typelem != 0 and typlen = -1))
@ -34,6 +35,7 @@ SELECT ($1 = $2) OR
EXISTS(select 1 from pg_catalog.pg_cast where
castsource = $1 and casttarget = $2 and
castmethod = 'b') OR
($2 = 'pg_catalog.any'::pg_catalog.regtype) OR
($2 = 'pg_catalog.anyarray'::pg_catalog.regtype AND
EXISTS(select 1 from pg_catalog.pg_type where
oid = $1 and typelem != 0 and typlen = -1))
@ -702,7 +704,11 @@ SELECT * FROM funcdescs
-- Look for illegal values in pg_aggregate fields.
SELECT ctid, aggfnoid::oid
FROM pg_aggregate as p1
WHERE aggfnoid = 0 OR aggtransfn = 0 OR aggtranstype = 0 OR aggtransspace < 0;
WHERE aggfnoid = 0 OR aggtransfn = 0 OR
aggkind NOT IN ('n', 'o', 'h') OR
aggnumdirectargs < 0 OR
(aggkind = 'n' AND aggnumdirectargs > 0) OR
aggtranstype = 0 OR aggtransspace < 0;
ctid | aggfnoid
------+----------
(0 rows)
@ -711,7 +717,7 @@ WHERE aggfnoid = 0 OR aggtransfn = 0 OR aggtranstype = 0 OR aggtransspace < 0;
SELECT a.aggfnoid::oid, p.proname
FROM pg_aggregate as a, pg_proc as p
WHERE a.aggfnoid = p.oid AND
(NOT p.proisagg OR p.proretset);
(NOT p.proisagg OR p.proretset OR p.pronargs < a.aggnumdirectargs);
aggfnoid | proname
----------+---------
(0 rows)
@ -742,7 +748,9 @@ FROM pg_aggregate AS a, pg_proc AS p, pg_proc AS ptr
WHERE a.aggfnoid = p.oid AND
a.aggtransfn = ptr.oid AND
(ptr.proretset
OR NOT (ptr.pronargs = p.pronargs + 1)
OR NOT (ptr.pronargs =
CASE WHEN a.aggkind = 'n' THEN p.pronargs + 1
ELSE greatest(p.pronargs - a.aggnumdirectargs, 1) + 1 END)
OR NOT physically_coercible(ptr.prorettype, a.aggtranstype)
OR NOT physically_coercible(a.aggtranstype, ptr.proargtypes[0])
OR (p.pronargs > 0 AND
@ -751,7 +759,7 @@ WHERE a.aggfnoid = p.oid AND
NOT physically_coercible(p.proargtypes[1], ptr.proargtypes[2]))
OR (p.pronargs > 2 AND
NOT physically_coercible(p.proargtypes[2], ptr.proargtypes[3]))
-- we could carry the check further, but that's enough for now
-- we could carry the check further, but 3 args is enough for now
);
aggfnoid | proname | oid | proname
----------+---------+-----+---------
@ -762,10 +770,19 @@ SELECT a.aggfnoid::oid, p.proname, pfn.oid, pfn.proname
FROM pg_aggregate AS a, pg_proc AS p, pg_proc AS pfn
WHERE a.aggfnoid = p.oid AND
a.aggfinalfn = pfn.oid AND
(pfn.proretset
OR NOT binary_coercible(pfn.prorettype, p.prorettype)
OR pfn.pronargs != 1
OR NOT binary_coercible(a.aggtranstype, pfn.proargtypes[0]));
(pfn.proretset OR
NOT binary_coercible(pfn.prorettype, p.prorettype) OR
NOT binary_coercible(a.aggtranstype, pfn.proargtypes[0]) OR
CASE WHEN a.aggkind = 'n' THEN pfn.pronargs != 1
ELSE pfn.pronargs != p.pronargs + 1
OR (p.pronargs > 0 AND
NOT binary_coercible(p.proargtypes[0], pfn.proargtypes[1]))
OR (p.pronargs > 1 AND
NOT binary_coercible(p.proargtypes[1], pfn.proargtypes[2]))
OR (p.pronargs > 2 AND
NOT binary_coercible(p.proargtypes[2], pfn.proargtypes[3]))
-- we could carry the check further, but 3 args is enough for now
END);
aggfnoid | proname | oid | proname
----------+---------+-----+---------
(0 rows)
@ -857,14 +874,6 @@ ORDER BY 1;
count("any") | count()
(1 row)
-- For the same reason, we avoid creating built-in variadic aggregates.
SELECT oid, proname
FROM pg_proc AS p
WHERE proisagg AND provariadic != 0;
oid | proname
-----+---------
(0 rows)
-- For the same reason, built-in aggregates with default arguments are no good.
SELECT oid, proname
FROM pg_proc AS p
@ -873,6 +882,16 @@ WHERE proisagg AND proargdefaults IS NOT NULL;
-----+---------
(0 rows)
-- For the same reason, we avoid creating built-in variadic aggregates, except
-- that variadic ordered-set aggregates are OK (since they have special syntax
-- that is not subject to the misplaced ORDER BY issue).
SELECT p.oid, proname
FROM pg_proc AS p JOIN pg_aggregate AS a ON a.aggfnoid = p.oid
WHERE proisagg AND provariadic != 0 AND a.aggkind = 'n';
oid | proname
-----+---------
(0 rows)
-- **************** pg_opfamily ****************
-- Look for illegal values in pg_opfamily fields
SELECT p1.oid

View File

@ -492,6 +492,101 @@ select aggfns(distinct a,b,c order by a,c using ~<~,b) filter (where a > 1)
from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c),
generate_series(1,2) i;
-- ordered-set aggregates
select p, percentile_cont(p) within group (order by x::float8)
from generate_series(1,5) x,
(values (0::float8),(0.1),(0.25),(0.4),(0.5),(0.6),(0.75),(0.9),(1)) v(p)
group by p order by p;
select p, percentile_cont(p order by p) within group (order by x) -- error
from generate_series(1,5) x,
(values (0::float8),(0.1),(0.25),(0.4),(0.5),(0.6),(0.75),(0.9),(1)) v(p)
group by p order by p;
select p, sum() within group (order by x::float8) -- error
from generate_series(1,5) x,
(values (0::float8),(0.1),(0.25),(0.4),(0.5),(0.6),(0.75),(0.9),(1)) v(p)
group by p order by p;
select p, percentile_cont(p,p) -- error
from generate_series(1,5) x,
(values (0::float8),(0.1),(0.25),(0.4),(0.5),(0.6),(0.75),(0.9),(1)) v(p)
group by p order by p;
select percentile_cont(0.5) within group (order by b) from aggtest;
select percentile_cont(0.5) within group (order by b), sum(b) from aggtest;
select percentile_cont(0.5) within group (order by thousand) from tenk1;
select percentile_disc(0.5) within group (order by thousand) from tenk1;
select rank(3) within group (order by x)
from (values (1),(1),(2),(2),(3),(3),(4)) v(x);
select cume_dist(3) within group (order by x)
from (values (1),(1),(2),(2),(3),(3),(4)) v(x);
select percent_rank(3) within group (order by x)
from (values (1),(1),(2),(2),(3),(3),(4),(5)) v(x);
select dense_rank(3) within group (order by x)
from (values (1),(1),(2),(2),(3),(3),(4)) v(x);
select percentile_disc(array[0,0.1,0.25,0.5,0.75,0.9,1]) within group (order by thousand)
from tenk1;
select percentile_cont(array[0,0.25,0.5,0.75,1]) within group (order by thousand)
from tenk1;
select percentile_disc(array[[null,1,0.5],[0.75,0.25,null]]) within group (order by thousand)
from tenk1;
select percentile_cont(array[0,1,0.25,0.75,0.5,1]) within group (order by x)
from generate_series(1,6) x;
select ten, mode() within group (order by string4) from tenk1 group by ten;
select percentile_disc(array[0.25,0.5,0.75]) within group (order by x)
from unnest('{fred,jim,fred,jack,jill,fred,jill,jim,jim,sheila,jim,sheila}'::text[]) u(x);
-- check collation propagates up in suitable cases:
select pg_collation_for(percentile_disc(1) within group (order by x collate "POSIX"))
from (values ('fred'),('jim')) v(x);
-- ordered-set aggs created with CREATE AGGREGATE
select test_rank(3) within group (order by x)
from (values (1),(1),(2),(2),(3),(3),(4)) v(x);
select test_percentile_disc(0.5) within group (order by thousand) from tenk1;
-- ordered-set aggs can't use ungrouped vars in direct args:
select rank(x) within group (order by x) from generate_series(1,5) x;
-- outer-level agg can't use a grouped arg of a lower level, either:
select array(select percentile_disc(a) within group (order by x)
from (values (0.3),(0.7)) v(a) group by a)
from generate_series(1,5) g(x);
-- agg in the direct args is a grouping violation, too:
select rank(sum(x)) within group (order by x) from generate_series(1,5) x;
-- hypothetical-set type unification and argument-count failures:
select rank(3) within group (order by x) from (values ('fred'),('jim')) v(x);
select rank(3) within group (order by stringu1,stringu2) from tenk1;
select rank('fred') within group (order by x) from generate_series(1,5) x;
select rank('adam'::text collate "C") within group (order by x collate "POSIX")
from (values ('fred'),('jim')) v(x);
-- hypothetical-set type unification successes:
select rank('adam'::varchar) within group (order by x) from (values ('fred'),('jim')) v(x);
select rank('3') within group (order by x) from generate_series(1,5) x;
-- divide by zero check
select percent_rank(0) within group (order by x) from generate_series(1,0) x;
-- deparse and multiple features:
create view aggordview1 as
select ten,
percentile_disc(0.5) within group (order by thousand) as p50,
percentile_disc(0.5) within group (order by thousand) filter (where hundred=1) as px,
rank(5,'AZZZZ',50) within group (order by hundred, string4 desc, hundred)
from tenk1
group by ten order by ten;
select pg_get_viewdef('aggordview1');
select * from aggordview1 order by ten;
drop view aggordview1;
-- variadic aggregates
select least_agg(q1,q2) from int8_tbl;
select least_agg(variadic array[q1,q2]) from int8_tbl;

View File

@ -80,3 +80,24 @@ returns anyelement language sql as
create aggregate least_agg(variadic items anyarray) (
stype = anyelement, sfunc = least_accum
);
-- test ordered-set aggs using built-in support functions
create aggregate my_percentile_disc(float8 ORDER BY anyelement) (
stype = internal,
sfunc = ordered_set_transition,
finalfunc = percentile_disc_final
);
create aggregate my_rank(VARIADIC "any" ORDER BY VARIADIC "any") (
stype = internal,
sfunc = ordered_set_transition_multi,
finalfunc = rank_final,
hypothetical
);
alter aggregate my_percentile_disc(float8 ORDER BY anyelement)
rename to test_percentile_disc;
alter aggregate my_rank(VARIADIC "any" ORDER BY VARIADIC "any")
rename to test_rank;
\da test_*

View File

@ -26,6 +26,7 @@ SELECT ($1 = $2) OR
EXISTS(select 1 from pg_catalog.pg_cast where
castsource = $1 and casttarget = $2 and
castmethod = 'b' and castcontext = 'i') OR
($2 = 'pg_catalog.any'::pg_catalog.regtype) OR
($2 = 'pg_catalog.anyarray'::pg_catalog.regtype AND
EXISTS(select 1 from pg_catalog.pg_type where
oid = $1 and typelem != 0 and typlen = -1))
@ -38,6 +39,7 @@ SELECT ($1 = $2) OR
EXISTS(select 1 from pg_catalog.pg_cast where
castsource = $1 and casttarget = $2 and
castmethod = 'b') OR
($2 = 'pg_catalog.any'::pg_catalog.regtype) OR
($2 = 'pg_catalog.anyarray'::pg_catalog.regtype AND
EXISTS(select 1 from pg_catalog.pg_type where
oid = $1 and typelem != 0 and typlen = -1))
@ -567,14 +569,18 @@ SELECT * FROM funcdescs
SELECT ctid, aggfnoid::oid
FROM pg_aggregate as p1
WHERE aggfnoid = 0 OR aggtransfn = 0 OR aggtranstype = 0 OR aggtransspace < 0;
WHERE aggfnoid = 0 OR aggtransfn = 0 OR
aggkind NOT IN ('n', 'o', 'h') OR
aggnumdirectargs < 0 OR
(aggkind = 'n' AND aggnumdirectargs > 0) OR
aggtranstype = 0 OR aggtransspace < 0;
-- Make sure the matching pg_proc entry is sensible, too.
SELECT a.aggfnoid::oid, p.proname
FROM pg_aggregate as a, pg_proc as p
WHERE a.aggfnoid = p.oid AND
(NOT p.proisagg OR p.proretset);
(NOT p.proisagg OR p.proretset OR p.pronargs < a.aggnumdirectargs);
-- Make sure there are no proisagg pg_proc entries without matches.
@ -598,7 +604,9 @@ FROM pg_aggregate AS a, pg_proc AS p, pg_proc AS ptr
WHERE a.aggfnoid = p.oid AND
a.aggtransfn = ptr.oid AND
(ptr.proretset
OR NOT (ptr.pronargs = p.pronargs + 1)
OR NOT (ptr.pronargs =
CASE WHEN a.aggkind = 'n' THEN p.pronargs + 1
ELSE greatest(p.pronargs - a.aggnumdirectargs, 1) + 1 END)
OR NOT physically_coercible(ptr.prorettype, a.aggtranstype)
OR NOT physically_coercible(a.aggtranstype, ptr.proargtypes[0])
OR (p.pronargs > 0 AND
@ -607,7 +615,7 @@ WHERE a.aggfnoid = p.oid AND
NOT physically_coercible(p.proargtypes[1], ptr.proargtypes[2]))
OR (p.pronargs > 2 AND
NOT physically_coercible(p.proargtypes[2], ptr.proargtypes[3]))
-- we could carry the check further, but that's enough for now
-- we could carry the check further, but 3 args is enough for now
);
-- Cross-check finalfn (if present) against its entry in pg_proc.
@ -616,10 +624,19 @@ SELECT a.aggfnoid::oid, p.proname, pfn.oid, pfn.proname
FROM pg_aggregate AS a, pg_proc AS p, pg_proc AS pfn
WHERE a.aggfnoid = p.oid AND
a.aggfinalfn = pfn.oid AND
(pfn.proretset
OR NOT binary_coercible(pfn.prorettype, p.prorettype)
OR pfn.pronargs != 1
OR NOT binary_coercible(a.aggtranstype, pfn.proargtypes[0]));
(pfn.proretset OR
NOT binary_coercible(pfn.prorettype, p.prorettype) OR
NOT binary_coercible(a.aggtranstype, pfn.proargtypes[0]) OR
CASE WHEN a.aggkind = 'n' THEN pfn.pronargs != 1
ELSE pfn.pronargs != p.pronargs + 1
OR (p.pronargs > 0 AND
NOT binary_coercible(p.proargtypes[0], pfn.proargtypes[1]))
OR (p.pronargs > 1 AND
NOT binary_coercible(p.proargtypes[1], pfn.proargtypes[2]))
OR (p.pronargs > 2 AND
NOT binary_coercible(p.proargtypes[2], pfn.proargtypes[3]))
-- we could carry the check further, but 3 args is enough for now
END);
-- If transfn is strict then either initval should be non-NULL, or
-- input type should match transtype so that the first non-null input
@ -685,18 +702,20 @@ WHERE p1.oid < p2.oid AND p1.proname = p2.proname AND
array_dims(p1.proargtypes) != array_dims(p2.proargtypes)
ORDER BY 1;
-- For the same reason, we avoid creating built-in variadic aggregates.
SELECT oid, proname
FROM pg_proc AS p
WHERE proisagg AND provariadic != 0;
-- For the same reason, built-in aggregates with default arguments are no good.
SELECT oid, proname
FROM pg_proc AS p
WHERE proisagg AND proargdefaults IS NOT NULL;
-- For the same reason, we avoid creating built-in variadic aggregates, except
-- that variadic ordered-set aggregates are OK (since they have special syntax
-- that is not subject to the misplaced ORDER BY issue).
SELECT p.oid, proname
FROM pg_proc AS p JOIN pg_aggregate AS a ON a.aggfnoid = p.oid
WHERE proisagg AND provariadic != 0 AND a.aggkind = 'n';
-- **************** pg_opfamily ****************
-- Look for illegal values in pg_opfamily fields