Add SP-GiST (space-partitioned GiST) index access method.

SP-GiST is comparable to GiST in flexibility, but supports non-balanced
partitioned search structures rather than balanced trees.  As described at
PGCon 2011, this new indexing structure can beat GiST in both index build
time and query speed for search problems that it is well matched to.

There are a number of areas that could still use improvement, but at this
point the code seems committable.

Teodor Sigaev and Oleg Bartunov, with considerable revisions by Tom Lane
This commit is contained in:
Tom Lane 2011-12-17 16:41:16 -05:00
parent 19fc0fe3ae
commit 8daeb5ddd6
46 changed files with 10395 additions and 101 deletions

View File

@ -569,6 +569,15 @@
</listitem>
</varlistentry>
<varlistentry>
<term><acronym>SP-GiST</acronym></term>
<listitem>
<para>
<link linkend="SPGiST">Space-Partitioned Generalized Search Tree</link>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><acronym>SQL</acronym></term>
<listitem>

View File

@ -82,6 +82,7 @@
<!ENTITY catalogs SYSTEM "catalogs.sgml">
<!ENTITY geqo SYSTEM "geqo.sgml">
<!ENTITY gist SYSTEM "gist.sgml">
<!ENTITY spgist SYSTEM "spgist.sgml">
<!ENTITY gin SYSTEM "gin.sgml">
<!ENTITY planstats SYSTEM "planstats.sgml">
<!ENTITY indexam SYSTEM "indexam.sgml">

View File

@ -116,7 +116,7 @@ CREATE INDEX test1_id_index ON test1 (id);
<para>
<productname>PostgreSQL</productname> provides several index types:
B-tree, Hash, GiST and GIN. Each index type uses a different
B-tree, Hash, GiST, SP-GiST and GIN. Each index type uses a different
algorithm that is best suited to different types of queries.
By default, the <command>CREATE INDEX</command> command creates
B-tree indexes, which fit the most common situations.
@ -253,6 +253,37 @@ SELECT * FROM places ORDER BY location <-> point '(101,456)' LIMIT 10;
to do this is again dependent on the particular operator class being used.
</para>
<para>
<indexterm>
<primary>index</primary>
<secondary>SP-GiST</secondary>
</indexterm>
<indexterm>
<primary>SP-GiST</primary>
<see>index</see>
</indexterm>
SP-GiST indexes, like GiST indexes, offer an infrastructure that supports
various kinds of searches. SP-GiST permits implementation of a wide range
of different non-balanced disk-based data structures, such as quadtrees,
k-d trees, and suffix trees (tries). As an example, the standard distribution of
<productname>PostgreSQL</productname> includes SP-GiST operator classes
for two-dimensional points, which support indexed
queries using these operators:
<simplelist>
<member><literal>&lt;&lt;</literal></member>
<member><literal>&gt;&gt;</literal></member>
<member><literal>~=</literal></member>
<member><literal>&lt;@</literal></member>
<member><literal>&lt;^</literal></member>
<member><literal>&gt;^</literal></member>
</simplelist>
(See <xref linkend="functions-geometry"> for the meaning of
these operators.)
For more information see <xref linkend="SPGiST">.
</para>
<para>
<indexterm>
<primary>index</primary>
@ -263,7 +294,7 @@ SELECT * FROM places ORDER BY location <-> point '(101,456)' LIMIT 10;
<see>index</see>
</indexterm>
GIN indexes are inverted indexes which can handle values that contain more
than one key, arrays for example. Like GiST, GIN can support
than one key, arrays for example. Like GiST and SP-GiST, GIN can support
many different user-defined indexing strategies and the particular
operators with which a GIN index can be used vary depending on the
indexing strategy.

View File

@ -525,7 +525,7 @@ ERROR: could not serialize access due to concurrent update
As an example,
consider a table <structname>mytab</>, initially containing:
<screen>
class | value
class | value
-------+-------
1 | 10
1 | 20
@ -1460,7 +1460,7 @@ SELECT pg_advisory_lock(q.id) FROM
<variablelist>
<varlistentry>
<term>
B-tree and <acronym>GiST</acronym> indexes
B-tree, <acronym>GiST</acronym> and <acronym>SP-GiST</acronym> indexes
</term>
<listitem>
<para>
@ -1510,8 +1510,8 @@ SELECT pg_advisory_lock(q.id) FROM
applications; since they also have more features than hash
indexes, they are the recommended index type for concurrent
applications that need to index scalar data. When dealing with
non-scalar data, B-trees are not useful, and GiST or GIN indexes should
be used instead.
non-scalar data, B-trees are not useful, and GiST, SP-GiST or GIN
indexes should be used instead.
</para>
</sect1>
</chapter>

View File

@ -242,6 +242,7 @@
&geqo;
&indexam;
&gist;
&spgist;
&gin;
&storage;
&bki;

View File

@ -144,8 +144,8 @@ ALTER OPERATOR FAMILY <replaceable>name</replaceable> USING <replaceable class="
and hash functions it is not necessary to specify <replaceable
class="parameter">op_type</replaceable> since the function's input
data type(s) are always the correct ones to use. For B-tree sort
support functions and all functions in GiST and GIN operator classes,
it is necessary to specify the operand data type(s) the function
support functions and all functions in GiST, SP-GiST and GIN operator
classes, it is necessary to specify the operand data type(s) the function
is to be used with.
</para>
@ -245,8 +245,8 @@ ALTER OPERATOR FAMILY <replaceable>name</replaceable> USING <replaceable class="
type(s). The name of the operator or function occupying the slot is not
mentioned. Also, for <literal>DROP FUNCTION</> the type(s) to specify
are the input data type(s) the function is intended to support; for
GIN and GiST indexes this might have nothing to do with the actual input
argument types of the function.
GiST, SP-GiST and GIN indexes this might have nothing to do with the actual
input argument types of the function.
</para>
<para>

View File

@ -57,7 +57,7 @@ CREATE [ UNIQUE ] INDEX [ CONCURRENTLY ] [ <replaceable class="parameter">name</
<para>
<productname>PostgreSQL</productname> provides the index methods
B-tree, hash, GiST, and GIN. Users can also define their own index
B-tree, hash, GiST, SP-GiST, and GIN. Users can also define their own index
methods, but that is fairly complicated.
</para>
@ -154,8 +154,8 @@ CREATE [ UNIQUE ] INDEX [ CONCURRENTLY ] [ <replaceable class="parameter">name</
<para>
The name of the index method to be used. Choices are
<literal>btree</literal>, <literal>hash</literal>,
<literal>gist</literal>, and <literal>gin</>. The
default method is <literal>btree</literal>.
<literal>gist</literal>, <literal>spgist</> and <literal>gin</>.
The default method is <literal>btree</literal>.
</para>
</listitem>
</varlistentry>
@ -281,12 +281,11 @@ CREATE [ UNIQUE ] INDEX [ CONCURRENTLY ] [ <replaceable class="parameter">name</
<para>
The optional <literal>WITH</> clause specifies <firstterm>storage
parameters</> for the index. Each index method has its own set of allowed
storage parameters. The B-tree, hash and GiST index methods all accept a
single parameter:
storage parameters. The B-tree, hash, GiST and SP-GiST index methods all
accept this parameter:
</para>
<variablelist>
<varlistentry>
<term><literal>FILLFACTOR</></term>
<listitem>
@ -307,7 +306,25 @@ CREATE [ UNIQUE ] INDEX [ CONCURRENTLY ] [ <replaceable class="parameter">name</
</para>
</listitem>
</varlistentry>
</variablelist>
<para>
GiST indexes additionally accept this parameter:
</para>
<variablelist>
<varlistentry>
<term><literal>BUFFERING</></term>
<listitem>
<para>
Determines whether the buffering build technique described in
<xref linkend="gist-buffering-build"> is used to build the index. With
<literal>OFF</> it is disabled, with <literal>ON</> it is enabled, and
with <literal>AUTO</> it is initially disabled, but turned on
on-the-fly once the index size reaches <xref linkend="guc-effective-cache-size">. The default is <literal>AUTO</>.
</para>
</listitem>
</varlistentry>
</variablelist>
<para>
@ -315,7 +332,6 @@ CREATE [ UNIQUE ] INDEX [ CONCURRENTLY ] [ <replaceable class="parameter">name</
</para>
<variablelist>
<varlistentry>
<term><literal>FASTUPDATE</></term>
<listitem>
@ -339,27 +355,6 @@ CREATE [ UNIQUE ] INDEX [ CONCURRENTLY ] [ <replaceable class="parameter">name</
</note>
</listitem>
</varlistentry>
</variablelist>
<para>
GiST indexes additionally accept parameter:
</para>
<variablelist>
<varlistentry>
<term><literal>BUFFERING</></term>
<listitem>
<para>
Determines whether the buffering build technique described in
<xref linkend="gist-buffering-build"> is used to build the index. With
<literal>OFF</> it is disabled, with <literal>ON</> it is enabled, and
with <literal>AUTO</> it is initially disabled, but turned on
on-the-fly once the index size reaches <xref linkend="guc-effective-cache-size">. The default is <literal>AUTO</>.
</para>
</listitem>
</varlistentry>
</variablelist>
</refsect2>

View File

@ -172,7 +172,7 @@ CREATE OPERATOR CLASS <replaceable class="parameter">name</replaceable> [ DEFAUL
the input data type(s) of the function (for B-tree comparison functions
and hash functions)
or the class's data type (for B-tree sort support functions and all
functions in GiST and GIN operator classes). These defaults
functions in GiST, SP-GiST and GIN operator classes). These defaults
are correct, and so <replaceable
class="parameter">op_type</replaceable> need not be specified in
<literal>FUNCTION</> clauses, except for the case of a B-tree sort
@ -232,7 +232,7 @@ CREATE OPERATOR CLASS <replaceable class="parameter">name</replaceable> [ DEFAUL
<para>
The data type actually stored in the index. Normally this is
the same as the column data type, but some index methods
(currently GIN and GiST) allow it to be different. The
(currently GiST and GIN) allow it to be different. The
<literal>STORAGE</> clause must be omitted unless the index
method allows a different type to be used.
</para>

View File

@ -540,7 +540,8 @@ CREATE [ [ GLOBAL | LOCAL ] { TEMPORARY | TEMP } | UNLOGGED ] TABLE [ IF NOT EXI
cannot be used. Although it's allowed, there is little point in using
B-tree or hash indexes with an exclusion constraint, because this
does nothing that an ordinary unique constraint doesn't do better.
So in practice the access method will always be <acronym>GiST</>.
So in practice the access method will always be <acronym>GiST</> or
<acronym>SP-GiST</>.
</para>
<para>

706
doc/src/sgml/spgist.sgml Normal file
View File

@ -0,0 +1,706 @@
<!-- doc/src/sgml/spgist.sgml -->
<chapter id="SPGiST">
<title>SP-GiST Indexes</title>
<indexterm>
<primary>index</primary>
<secondary>SP-GiST</secondary>
</indexterm>
<sect1 id="spgist-intro">
<title>Introduction</title>
<para>
<acronym>SP-GiST</acronym> is an abbreviation for space-partitioned
<acronym>GiST</acronym>. <acronym>SP-GiST</acronym> supports partitioned
search trees, which facilitate development of a wide range of different
non-balanced data structures, such as quad-trees, k-d trees, and suffix
trees (tries). The common feature of these structures is that they
repeatedly divide the search space into partitions that need not be
of equal size. Searches that are well matched to the partitioning rule
can be very fast.
</para>
<para>
These popular data structures were originally developed for in-memory
usage. In main memory, they are usually designed as a set of dynamically
allocated nodes linked by pointers. This is not suitable for direct
storing on disk, since these chains of pointers can be rather long which
would require too many disk accesses. In contrast, disk-based data
structures should have a high fanout to minimize I/O. The challenge
addressed by <acronym>SP-GiST</acronym> is to map search tree nodes to
disk pages in such a way that a search need access only a few disk pages,
even if it traverses many nodes.
</para>
<para>
Like <acronym>GiST</acronym>, <acronym>SP-GiST</acronym> is meant to allow
the development of custom data types with the appropriate access methods,
by an expert in the domain of the data type, rather than a database expert.
</para>
<para>
Some of the information here is derived from Purdue University's
SP-GiST Indexing Project
<ulink url="http://www.cs.purdue.edu/spgist/">web site</ulink>.
The <acronym>SP-GiST</acronym> implementation in
<productname>PostgreSQL</productname> is primarily maintained by Teodor
Sigaev and Oleg Bartunov, and there is more information on their
<!-- URL will be changed -->
<ulink url="http://www.sai.msu.su/~megera/wiki/spgist_dev">web site</ulink>.
</para>
</sect1>
<sect1 id="spgist-extensibility">
<title>Extensibility</title>
<para>
<acronym>SP-GiST</acronym> offers an interface with a high level of
abstraction, requiring the access method developer to implement only
methods specific to a given data type. The <acronym>SP-GiST</acronym> core
is responsible for efficient disk mapping and searching the tree structure.
It also takes care of concurrency and logging considerations.
</para>
<para>
Leaf tuples of an <acronym>SP-GiST</acronym> tree contain values of the
same data type as the indexed column. Leaf tuples at the root level will
always contain the original indexed data value, but leaf tuples at lower
levels might contain only a compressed representation, such as a suffix.
In that case the operator class support functions must be able to
reconstruct the original value using information accumulated from the
inner tuples that are passed through to reach the leaf level.
</para>
<para>
Inner tuples are more complex, since they are branching points in the
search tree. Each inner tuple contains a set of one or more
<firstterm>nodes</>, which represent groups of similar leaf values.
A node contains a downlink that leads to either another, lower-level inner
tuple, or a short list of leaf tuples that all lie on the same index page.
Each node has a <firstterm>label</> that describes it; for example,
in a suffix tree the node label could be the next character of the string
value. Optionally, an inner tuple can have a <firstterm>prefix</> value
that describes all its members. In a suffix tree this could be the common
prefix of the represented strings. The prefix value is not necessarily
really a prefix, but can be any data needed by the operator class;
for example, in a quad-tree it can store the central point that the four
quadrants are measured with respect to. A quad-tree inner tuple would
then also contain four nodes corresponding to the quadrants around this
central point.
</para>
<para>
Some tree algorithms require knowledge of level (or depth) of the current
tuple, so the <acronym>SP-GiST</acronym> core provides the possibility for
operator classes to manage level counting while descending the tree.
There is also support for incrementally reconstructing the represented
value when that is needed.
</para>
<para>
There are five user-defined methods that an index operator class for
<acronym>SP-GiST</acronym> must provide. All five follow the convention
of accepting two <type>internal</> arguments, the first of which is a
pointer to a C struct containing input values for the support method,
while the second argument is a pointer to a C struct where output values
must be placed. Four of the methods just return <type>void</>, since
all their results appear in the output struct; but
<function>leaf_consistent</> additionally returns a <type>boolean</> result.
The methods must not modify any fields of their input structs. In all
cases, the output struct is initialized to zeroes before calling the
user-defined method.
</para>
<para>
The five user-defined methods are:
</para>
<variablelist>
<varlistentry>
<term><function>config</></term>
<listitem>
<para>
Returns static information about the index implementation, including
the datatype OIDs of the prefix and node label data types.
</para>
<para>
The <acronym>SQL</> declaration of the function must look like this:
<programlisting>
CREATE FUNCTION my_config(internal, internal) RETURNS void ...
</programlisting>
The first argument is a pointer to a <structname>spgConfigIn</>
C struct, containing input data for the function.
The second argument is a pointer to a <structname>spgConfigOut</>
C struct, which the function must fill with result data.
<programlisting>
typedef struct spgConfigIn
{
Oid attType; /* Data type to be indexed */
} spgConfigIn;
typedef struct spgConfigOut
{
Oid prefixType; /* Data type of inner-tuple prefixes */
Oid labelType; /* Data type of inner-tuple node labels */
bool longValuesOK; /* Opclass can cope with values &gt; 1 page */
} spgConfigOut;
</programlisting>
<structfield>attType</> is passed in order to support polymorphic
index operator classes; for ordinary fixed-data-type opclasses, it
will always have the same value and so can be ignored.
</para>
<para>
For operator classes that do not use prefixes,
<structfield>prefixType</> can be set to <literal>VOIDOID</>.
Likewise, for operator classes that do not use node labels,
<structfield>labelType</> can be set to <literal>VOIDOID</>.
<structfield>longValuesOK</> should be set true only when the
<structfield>attType</> is of variable length and the operator
class is capable of segmenting long values by repeated suffixing
(see <xref linkend="spgist-limits">).
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><function>choose</></term>
<listitem>
<para>
Chooses a method for inserting a new value into an inner tuple.
</para>
<para>
The <acronym>SQL</> declaration of the function must look like this:
<programlisting>
CREATE FUNCTION my_choose(internal, internal) RETURNS void ...
</programlisting>
The first argument is a pointer to a <structname>spgChooseIn</>
C struct, containing input data for the function.
The second argument is a pointer to a <structname>spgChooseOut</>
C struct, which the function must fill with result data.
<programlisting>
typedef struct spgChooseIn
{
Datum datum; /* original datum to be indexed */
Datum leafDatum; /* current datum to be stored at leaf */
int level; /* current level (counting from zero) */
/* Data from current inner tuple */
bool allTheSame; /* tuple is marked all-the-same? */
bool hasPrefix; /* tuple has a prefix? */
Datum prefixDatum; /* if so, the prefix value */
int nNodes; /* number of nodes in the inner tuple */
Datum *nodeLabels; /* node label values (NULL if none) */
} spgChooseIn;
typedef enum spgChooseResultType
{
spgMatchNode = 1, /* descend into existing node */
spgAddNode, /* add a node to the inner tuple */
spgSplitTuple /* split inner tuple (change its prefix) */
} spgChooseResultType;
typedef struct spgChooseOut
{
spgChooseResultType resultType; /* action code, see above */
union
{
struct /* results for spgMatchNode */
{
int nodeN; /* descend to this node (index from 0) */
int levelAdd; /* increment level by this much */
Datum restDatum; /* new leaf datum */
} matchNode;
struct /* results for spgAddNode */
{
Datum nodeLabel; /* new node's label */
int nodeN; /* where to insert it (index from 0) */
} addNode;
struct /* results for spgSplitTuple */
{
/* Info to form new inner tuple with one node */
bool prefixHasPrefix; /* tuple should have a prefix? */
Datum prefixPrefixDatum; /* if so, its value */
Datum nodeLabel; /* node's label */
/* Info to form new lower-level inner tuple with all old nodes */
bool postfixHasPrefix; /* tuple should have a prefix? */
Datum postfixPrefixDatum; /* if so, its value */
} splitTuple;
} result;
} spgChooseOut;
</programlisting>
<structfield>datum</> is the original datum that was to be inserted
into the index.
<structfield>leafDatum</> is initially the same as
<structfield>datum</>, but can change at lower levels of the tree
if the <function>choose</function> or <function>picksplit</function>
methods change it. When the insertion search reaches a leaf page,
the current value of <structfield>leafDatum</> is what will be stored
in the newly created leaf tuple.
<structfield>level</> is the current inner tuple's level, starting at
zero for the root level.
<structfield>allTheSame</> is true if the current inner tuple is
marked as containing multiple equivalent nodes
(see <xref linkend="spgist-all-the-same">).
<structfield>hasPrefix</> is true if the current inner tuple contains
a prefix; if so,
<structfield>prefixDatum</> is its value.
<structfield>nNodes</> is the number of child nodes contained in the
inner tuple, and
<structfield>nodeLabels</> is an array of their label values, or
NULL if there are no labels.
</para>
<para>
The <function>choose</function> function can determine either that
the new value matches one of the existing child nodes, or that a new
child node must be added, or that the new value is inconsistent with
the tuple prefix and so the inner tuple must be split to create a
less restrictive prefix.
</para>
<para>
If the new value matches one of the existing child nodes,
set <structfield>resultType</> to <literal>spgMatchNode</>.
Set <structfield>nodeN</> to the index (from zero) of that node in
the node array.
Set <structfield>levelAdd</> to the increment in
<structfield>level</> caused by descending through that node,
or leave it as zero if the operator class does not use levels.
Set <structfield>restDatum</> to equal <structfield>datum</>
if the operator class does not modify datums from one level to the
next, or otherwise set it to the modified value to be used as
<structfield>leafDatum</> at the next level.
</para>
<para>
If a new child node must be added,
set <structfield>resultType</> to <literal>spgAddNode</>.
Set <structfield>nodeLabel</> to the label to be used for the new
node, and set <structfield>nodeN</> to the index (from zero) at which
to insert the node in the node array.
After the node has been added, the <function>choose</function>
function will be called again with the modified inner tuple;
that call should result in an <literal>spgMatchNode</> result.
</para>
<para>
If the new value is inconsistent with the tuple prefix,
set <structfield>resultType</> to <literal>spgSplitTuple</>.
This action moves all the existing nodes into a new lower-level
inner tuple, and replaces the existing inner tuple with a tuple
having a single node that links to the new lower-level inner tuple.
Set <structfield>prefixHasPrefix</> to indicate whether the new
upper tuple should have a prefix, and if so set
<structfield>prefixPrefixDatum</> to the prefix value. This new
prefix value must be sufficiently less restrictive than the original
to accept the new value to be indexed, and it should be no longer
than the original prefix.
Set <structfield>nodeLabel</> to the label to be used for the
node that will point to the new lower-level inner tuple.
Set <structfield>postfixHasPrefix</> to indicate whether the new
lower-level inner tuple should have a prefix, and if so set
<structfield>postfixPrefixDatum</> to the prefix value. The
combination of these two prefixes and the additional label must
have the same meaning as the original prefix, because there is
no opportunity to alter the node labels that are moved to the new
lower-level tuple, nor to change any child index entries.
After the node has been split, the <function>choose</function>
function will be called again with the replacement inner tuple.
That call will usually result in an <literal>spgAddNode</> result,
since presumably the node label added in the split step will not
match the new value; so after that, there will be a third call
that finally returns <literal>spgMatchNode</> and allows the
insertion to descend to the leaf level.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><function>picksplit</></term>
<listitem>
<para>
Decides how to create a new inner tuple over a set of leaf tuples.
</para>
<para>
The <acronym>SQL</> declaration of the function must look like this:
<programlisting>
CREATE FUNCTION my_picksplit(internal, internal) RETURNS void ...
</programlisting>
The first argument is a pointer to a <structname>spgPickSplitIn</>
C struct, containing input data for the function.
The second argument is a pointer to a <structname>spgPickSplitOut</>
C struct, which the function must fill with result data.
<programlisting>
typedef struct spgPickSplitIn
{
int nTuples; /* number of leaf tuples */
Datum *datums; /* their datums (array of length nTuples) */
int level; /* current level (counting from zero) */
} spgPickSplitIn;
typedef struct spgPickSplitOut
{
bool hasPrefix; /* new inner tuple should have a prefix? */
Datum prefixDatum; /* if so, its value */
int nNodes; /* number of nodes for new inner tuple */
Datum *nodeLabels; /* their labels (or NULL for no labels) */
int *mapTuplesToNodes; /* node index for each leaf tuple */
Datum *leafTupleDatums; /* datum to store in each new leaf tuple */
} spgPickSplitOut;
</programlisting>
<structfield>nTuples</> is the number of leaf tuples provided.
<structfield>datums</> is an array of their datum values.
<structfield>level</> is the current level that all the leaf tuples
share, which will become the level of the new inner tuple.
</para>
<para>
Set <structfield>hasPrefix</> to indicate whether the new inner
tuple should have a prefix, and if so set
<structfield>prefixDatum</> to the prefix value.
Set <structfield>nNodes</> to indicate the number of nodes that
the new inner tuple will contain, and
set <structfield>nodeLabels</> to an array of their label values.
(If the nodes do not require labels, set <structfield>nodeLabels</>
to NULL; see <xref linkend="spgist-null-labels"> for details.)
Set <structfield>mapTuplesToNodes</> to an array that gives the index
(from zero) of the node that each leaf tuple should be assigned to.
Set <structfield>leafTupleDatums</> to an array of the values to
be stored in the new leaf tuples (these will be the same as the
input <structfield>datums</> if the operator class does not modify
datums from one level to the next).
Note that the <function>picksplit</> function is
responsible for palloc'ing the
<structfield>nodeLabels</>, <structfield>mapTuplesToNodes</> and
<structfield>leafTupleDatums</> arrays.
</para>
<para>
If more than one leaf tuple is supplied, it is expected that the
<function>picksplit</> function will classify them into more than
one node; otherwise it is not possible to split the leaf tuples
across multiple pages, which is the ultimate purpose of this
operation. Therefore, if the <function>picksplit</> function
ends up placing all the leaf tuples in the same node, the core
SP-GiST code will override that decision and generate an inner
tuple in which the leaf tuples are assigned at random to several
identically-labeled nodes. Such a tuple is marked
<literal>allTheSame</> to signify that this has happened. The
<function>choose</> and <function>inner_consistent</> functions
must take suitable care with such inner tuples.
See <xref linkend="spgist-all-the-same"> for more information.
</para>
<para>
<function>picksplit</> can be applied to a single leaf tuple only
in the case that the <function>config</> function set
<structfield>longValuesOK</> to true and a larger-than-a-page input
value has been supplied. In this case the point of the operation is
to strip off a prefix and produce a new, shorter leaf datum value.
The call will be repeated until a leaf datum short enough to fit on
a page has been produced. See <xref linkend="spgist-limits"> for
more information.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><function>inner_consistent</></term>
<listitem>
<para>
Returns set of nodes (branches) to follow during tree search.
</para>
<para>
The <acronym>SQL</> declaration of the function must look like this:
<programlisting>
CREATE FUNCTION my_inner_consistent(internal, internal) RETURNS void ...
</programlisting>
The first argument is a pointer to a <structname>spgInnerConsistentIn</>
C struct, containing input data for the function.
The second argument is a pointer to a <structname>spgInnerConsistentOut</>
C struct, which the function must fill with result data.
<programlisting>
typedef struct spgInnerConsistentIn
{
StrategyNumber strategy; /* operator strategy number */
Datum query; /* operator's RHS value */
Datum reconstructedValue; /* value reconstructed at parent */
int level; /* current level (counting from zero) */
/* Data from current inner tuple */
bool allTheSame; /* tuple is marked all-the-same? */
bool hasPrefix; /* tuple has a prefix? */
Datum prefixDatum; /* if so, the prefix value */
int nNodes; /* number of nodes in the inner tuple */
Datum *nodeLabels; /* node label values (NULL if none) */
} spgInnerConsistentIn;
typedef struct spgInnerConsistentOut
{
int nNodes; /* number of child nodes to be visited */
int *nodeNumbers; /* their indexes in the node array */
int *levelAdds; /* increment level by this much for each */
Datum *reconstructedValues; /* associated reconstructed values */
} spgInnerConsistentOut;
</programlisting>
<structfield>strategy</> and
<structfield>query</> describe the index search condition.
<structfield>reconstructedValue</> is the value reconstructed for the
parent tuple; it is <literal>(Datum) 0</> at the root level or if the
<function>inner_consistent</> function did not provide a value at the
parent level.
<structfield>level</> is the current inner tuple's level, starting at
zero for the root level.
<structfield>allTheSame</> is true if the current inner tuple is
marked <quote>all-the-same</>; in this case all the nodes have the
same label (if any) and so either all or none of them match the query
(see <xref linkend="spgist-all-the-same">).
<structfield>hasPrefix</> is true if the current inner tuple contains
a prefix; if so,
<structfield>prefixDatum</> is its value.
<structfield>nNodes</> is the number of child nodes contained in the
inner tuple, and
<structfield>nodeLabels</> is an array of their label values, or
NULL if the nodes do not have labels.
</para>
<para>
<structfield>nNodes</> must be set to the number of child nodes that
need to be visited by the search, and
<structfield>nodeNumbers</> must be set to an array of their indexes.
If the operator class keeps track of levels, set
<structfield>levelAdds</> to an array of the level increments
required when descending to each node to be visited. (Often these
increments will be the same for all the nodes, but that's not
necessarily so, so an array is used.)
If value reconstruction is needed, set
<structfield>reconstructedValues</> to an array of the values
reconstructed for each child node to be visited; otherwise, leave
<structfield>reconstructedValues</> as NULL.
Note that the <function>inner_consistent</> function is
responsible for palloc'ing the
<structfield>nodeNumbers</>, <structfield>levelAdds</> and
<structfield>reconstructedValues</> arrays.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><function>leaf_consistent</></term>
<listitem>
<para>
Returns true if a leaf tuple satisfies a query.
</para>
<para>
The <acronym>SQL</> declaration of the function must look like this:
<programlisting>
CREATE FUNCTION my_leaf_consistent(internal, internal) RETURNS bool ...
</programlisting>
The first argument is a pointer to a <structname>spgLeafConsistentIn</>
C struct, containing input data for the function.
The second argument is a pointer to a <structname>spgLeafConsistentOut</>
C struct, which the function must fill with result data.
<programlisting>
typedef struct spgLeafConsistentIn
{
StrategyNumber strategy; /* operator strategy number */
Datum query; /* operator's RHS value */
Datum reconstructedValue; /* value reconstructed at parent */
int level; /* current level (counting from zero) */
Datum leafDatum; /* datum in leaf tuple */
} spgLeafConsistentIn;
typedef struct spgLeafConsistentOut
{
bool recheck; /* set true if operator must be rechecked */
} spgLeafConsistentOut;
</programlisting>
<structfield>strategy</> and
<structfield>query</> define the index search condition.
<structfield>reconstructedValue</> is the value reconstructed for the
parent tuple; it is <literal>(Datum) 0</> at the root level or if the
<function>inner_consistent</> function did not provide a value at the
parent level.
<structfield>level</> is the current leaf tuple's level, starting at
zero for the root level.
<structfield>leafDatum</> is the key value stored in the current
leaf tuple.
</para>
<para>
The function must return <literal>true</> if the leaf tuple matches the
query, or <literal>false</> if not. In the <literal>true</> case,
<structfield>recheck</> may be set to <literal>true</> if the match
is uncertain and so the operator must be re-applied to the actual heap
tuple to verify the match.
</para>
</listitem>
</varlistentry>
</variablelist>
<para>
All the SP-GiST support methods are normally called in a short-lived
memory context; that is, <varname>CurrentMemoryContext</> will be reset
after processing of each tuple. It is therefore not very important to
worry about pfree'ing everything you palloc. (The <function>config</>
method is an exception: it should try to avoid leaking memory. But
usually the <function>config</> method need do nothing but assign
constants into the passed parameter struct.)
</para>
<para>
If the indexed column is of a collatable data type, the index collation
will be passed to all the support methods, using the standard
<function>PG_GET_COLLATION()</> mechanism.
</para>
</sect1>
<sect1 id="spgist-implementation">
<title>Implementation</title>
<para>
This section covers implementation details and other tricks that are
useful for implementors of <acronym>SP-GiST</acronym> operator classes to
know.
</para>
<sect2 id="spgist-limits">
<title>SP-GiST Limits</title>
<para>
Individual leaf tuples and inner tuples must fit on a single index page
(8KB by default). Therefore, when indexing values of variable-length
data types, long values can only be supported by methods such as suffix
trees, in which each level of the tree includes a prefix that is short
enough to fit on a page, and the final leaf level includes a suffix also
short enough to fit on a page. The operator class should set
<structfield>longValuesOK</> to TRUE only if it is prepared to arrange for
this to happen. Otherwise, the <acronym>SP-GiST</acronym> core will
reject any request to index a value that is too large to fit
on an index page.
</para>
<para>
Likewise, it is the operator class's responsibility that inner tuples
do not grow too large to fit on an index page; this limits the number
of child nodes that can be used in one inner tuple, as well as the
maximum size of a prefix value.
</para>
<para>
Another limitation is that when an inner tuple's node points to a set
of leaf tuples, those tuples must all be in the same index page.
(This is a design decision to reduce seeking and save space in the
links that chain such tuples together.) If the set of leaf tuples
grows too large for a page, a split is performed and an intermediate
inner tuple is inserted. For this to fix the problem, the new inner
tuple <emphasis>must</> divide the set of leaf values into more than one
node group. If the operator class's <function>picksplit</> function
fails to do that, the <acronym>SP-GiST</acronym> core resorts to
extraordinary measures described in <xref linkend="spgist-all-the-same">.
</para>
</sect2>
<sect2 id="spgist-null-labels">
<title>SP-GiST Without Node Labels</title>
<para>
Some tree algorithms use a fixed set of nodes for each inner tuple;
for example, in a quad-tree there are always exactly four nodes
corresponding to the four quadrants around the inner tuple's centroid
point. In such a case the code typically works with the nodes by
number, and there is no need for explicit node labels. To suppress
node labels (and thereby save some space), the <function>picksplit</>
function can return NULL for the <structfield>nodeLabels</> array.
This will in turn result in <structfield>nodeLabels</> being NULL during
subsequent calls to <function>choose</> and <function>inner_consistent</>.
In principle, node labels could be used for some inner tuples and omitted
for others in the same index.
</para>
<para>
When working with an inner tuple having unlabeled nodes, it is an error
for <function>choose</> to return <literal>spgAddNode</>, since the set
of nodes is supposed to be fixed in such cases. Also, there is no
provision for generating an unlabeled node in <literal>spgSplitTuple</>
actions, since it is expected that an <literal>spgAddNode</> action will
be needed as well.
</para>
</sect2>
<sect2 id="spgist-all-the-same">
<title><quote>All-the-same</> Inner Tuples</title>
<para>
The <acronym>SP-GiST</acronym> core can override the results of the
operator class's <function>picksplit</> function when
<function>picksplit</> fails to divide the supplied leaf values into
at least two node categories. When this happens, the new inner tuple
is created with multiple nodes that each have the same label (if any)
that <function>picksplit</> gave to the one node it did use, and the
leaf values are divided at random among these equivalent nodes.
The <literal>allTheSame</> flag is set on the inner tuple to warn the
<function>choose</> and <function>inner_consistent</> functions that the
tuple does not have the node set that they might otherwise expect.
</para>
<para>
When dealing with an <literal>allTheSame</> tuple, a <function>choose</>
result of <literal>spgMatchNode</> is interpreted to mean that the new
value can be assigned to any of the equivalent nodes; the core code will
ignore the supplied <structfield>nodeN</> value and descend into one
of the nodes at random (so as to keep the tree balanced). It is an
error for <function>choose</> to return <literal>spgAddNode</>, since
that would make the nodes not all equivalent; the
<literal>spgSplitTuple</> action must be used if the value to be inserted
doesn't match the existing nodes.
</para>
<para>
When dealing with an <literal>allTheSame</> tuple, the
<function>inner_consistent</> function should return either all or none
of the nodes as targets for continuing the index search, since they are
all equivalent. This may or may not require any special-case code,
depending on how much the <function>inner_consistent</> function normally
assumes about the meaning of the nodes.
</para>
</sect2>
</sect1>
<sect1 id="spgist-examples">
<title>Examples</title>
<para>
The <productname>PostgreSQL</productname> source distribution includes
several examples of index operator classes for
<acronym>SP-GiST</acronym>. The core system currently provides suffix
trees over text columns and two types of trees over points: quad-tree and
k-d tree. Look into <filename>src/backend/access/spgist/</> to see the
code.
</para>
</sect1>
</chapter>

View File

@ -237,12 +237,59 @@
</table>
<para>
GIN indexes are similar to GiST indexes in flexibility: they don't have a
fixed set of strategies. Instead the support routines of each operator
SP-GiST indexes are similar to GiST indexes in flexibility: they don't have
a fixed set of strategies. Instead the support routines of each operator
class interpret the strategy numbers according to the operator class's
definition. As an example, the strategy numbers used by the built-in
operator classes for arrays are
shown in <xref linkend="xindex-gin-array-strat-table">.
operator classes for points are shown in <xref
linkend="xindex-spgist-point-strat-table">.
</para>
<table tocentry="1" id="xindex-spgist-point-strat-table">
<title>SP-GiST Point Strategies</title>
<tgroup cols="2">
<thead>
<row>
<entry>Operation</entry>
<entry>Strategy Number</entry>
</row>
</thead>
<tbody>
<row>
<entry>strictly left of</entry>
<entry>1</entry>
</row>
<row>
<entry>strictly right of</entry>
<entry>5</entry>
</row>
<row>
<entry>same</entry>
<entry>6</entry>
</row>
<row>
<entry>contained by</entry>
<entry>8</entry>
</row>
<row>
<entry>strictly below</entry>
<entry>10</entry>
</row>
<row>
<entry>strictly above</entry>
<entry>11</entry>
</row>
</tbody>
</tgroup>
</table>
<para>
GIN indexes are similar to GiST and SP-GiST indexes, in that they don't
have a fixed set of strategies either. Instead the support routines of
each operator class interpret the strategy numbers according to the
operator class's definition. As an example, the strategy numbers used by
the built-in operator classes for arrays are shown in
<xref linkend="xindex-gin-array-strat-table">.
</para>
<table tocentry="1" id="xindex-gin-array-strat-table">
@ -434,6 +481,54 @@
</tgroup>
</table>
<para>
SP-GiST indexes require five support functions, as
shown in <xref linkend="xindex-spgist-support-table">.
(For more information see <xref linkend="SPGiST">.)
</para>
<table tocentry="1" id="xindex-spgist-support-table">
<title>SP-GiST Support Functions</title>
<tgroup cols="3">
<thead>
<row>
<entry>Function</entry>
<entry>Description</entry>
<entry>Support Number</entry>
</row>
</thead>
<tbody>
<row>
<entry><function>config</></entry>
<entry>provide basic information about the operator class</entry>
<entry>1</entry>
</row>
<row>
<entry><function>choose</></entry>
<entry>determine how to insert a new value into an inner tuple</entry>
<entry>2</entry>
</row>
<row>
<entry><function>picksplit</></entry>
<entry>determine how to partition a set of values</entry>
<entry>3</entry>
</row>
<row>
<entry><function>inner_consistent</></entry>
<entry>determine which sub-partitions need to be searched for a
query</entry>
<entry>4</entry>
</row>
<row>
<entry><function>leaf_consistent</></entry>
<entry>determine whether key satisfies the
query qualifier</entry>
<entry>5</entry>
</row>
</tbody>
</tgroup>
</table>
<para>
GIN indexes require four support functions, with an optional fifth, as
shown in <xref linkend="xindex-gin-support-table">.
@ -495,9 +590,9 @@
of the comparison function for B-trees, a signed integer. The number
and types of the arguments to each support function are likewise
dependent on the index method. For B-tree and hash the comparison and
hashing support functions
take the same input data types as do the operators included in the operator
class, but this is not the case for most GIN and GiST support functions.
hashing support functions take the same input data types as do the
operators included in the operator class, but this is not the case for
most GiST, SP-GiST, and GIN support functions.
</para>
</sect2>
@ -876,9 +971,10 @@ ALTER OPERATOR FAMILY integer_ops USING btree ADD
</para>
<para>
GIN and GiST indexes do not have any explicit notion of cross-data-type
operations. The set of operators supported is just whatever the primary
support functions for a given operator class can handle.
GiST, SP-GiST, and GIN indexes do not have any explicit notion of
cross-data-type operations. The set of operators supported is just
whatever the primary support functions for a given operator class can
handle.
</para>
<note>
@ -1045,7 +1141,7 @@ SELECT * FROM table WHERE integer_column &lt; 4;
the index is guaranteed to return all the required rows, plus perhaps
some additional rows, which can be eliminated by performing the original
operator invocation. The index methods that support lossy searches
(currently, GiST and GIN) allow the support functions of individual
(currently, GiST, SP-GiST and GIN) allow the support functions of individual
operator classes to set the recheck flag, and so this is essentially an
operator-class feature.
</para>

View File

@ -8,6 +8,6 @@ subdir = src/backend/access
top_builddir = ../../..
include $(top_builddir)/src/Makefile.global
SUBDIRS = common gist hash heap index nbtree transam gin
SUBDIRS = common gist hash heap index nbtree transam gin spgist
include $(top_srcdir)/src/backend/common.mk

View File

@ -19,6 +19,7 @@
#include "access/hash.h"
#include "access/nbtree.h"
#include "access/reloptions.h"
#include "access/spgist.h"
#include "catalog/pg_type.h"
#include "commands/defrem.h"
#include "commands/tablespace.h"
@ -104,6 +105,14 @@ static relopt_int intRelOpts[] =
},
GIST_DEFAULT_FILLFACTOR, GIST_MIN_FILLFACTOR, 100
},
{
{
"fillfactor",
"Packs spgist index pages only to this percentage",
RELOPT_KIND_SPGIST
},
SPGIST_DEFAULT_FILLFACTOR, SPGIST_MIN_FILLFACTOR, 100
},
{
{
"autovacuum_vacuum_threshold",

View File

@ -0,0 +1,19 @@
#-------------------------------------------------------------------------
#
# Makefile--
# Makefile for access/spgist
#
# IDENTIFICATION
# src/backend/access/spgist/Makefile
#
#-------------------------------------------------------------------------
subdir = src/backend/access/spgist
top_builddir = ../../../..
include $(top_builddir)/src/Makefile.global
OBJS = spgutils.o spginsert.o spgscan.o spgvacuum.o \
spgdoinsert.o spgxlog.o \
spgtextproc.o spgquadtreeproc.o spgkdtreeproc.o
include $(top_srcdir)/src/backend/common.mk

View File

@ -0,0 +1,316 @@
src/backend/access/spgist/README
SP-GiST is an abbreviation of space-partitioned GiST. It provides a
generalized infrastructure for implementing space-partitioned data
structures, such as quadtrees, k-d trees, and suffix trees (tries). When
implemented in main memory, these structures are usually designed as a set of
dynamically-allocated nodes linked by pointers. This is not suitable for
direct storing on disk, since the chains of pointers can be rather long and
require too many disk accesses. In contrast, disk based data structures
should have a high fanout to minimize I/O. The challenge is to map tree
nodes to disk pages in such a way that the search algorithm accesses only a
few disk pages, even if it traverses many nodes.
COMMON STRUCTURE DESCRIPTION
Logically, an SP-GiST tree is a set of tuples, each of which can be either
an inner or leaf tuple. Each inner tuple contains "nodes", which are
(label,pointer) pairs, where the pointer (ItemPointerData) is a pointer to
another inner tuple or to the head of a list of leaf tuples. Inner tuples
can have different numbers of nodes (children). Branches can be of different
depth (actually, there is no control or code to support balancing), which
means that the tree is non-balanced. However, leaf and inner tuples cannot
be intermixed at the same level: a downlink from a node of an inner tuple
leads either to one inner tuple, or to a list of leaf tuples.
The SP-GiST core requires that inner and leaf tuples fit on a single index
page, and even more stringently that the list of leaf tuples reached from a
single inner-tuple node all be stored on the same index page. (Restricting
such lists to not cross pages reduces seeks, and allows the list links to be
stored as simple 2-byte OffsetNumbers.) SP-GiST index opclasses should
therefore ensure that not too many nodes can be needed in one inner tuple,
and that inner-tuple prefixes and leaf-node datum values not be too large.
Inner and leaf tuples are stored separately: the former are stored only on
"inner" pages, the latter only on "leaf" pages. Also, there are special
restrictions on the root page. Early in an index's life, when there is only
one page's worth of data, the root page contains an unorganized set of leaf
tuples. After the first page split has occurred, the root is required to
contain exactly one inner tuple.
When the search traversal algorithm reaches an inner tuple, it chooses a set
of nodes to continue tree traverse in depth. If it reaches a leaf page it
scans a list of leaf tuples to find the ones that match the query.
The insertion algorithm descends the tree similarly, except it must choose
just one node to descend to from each inner tuple. Insertion might also have
to modify the inner tuple before it can descend: it could add a new node, or
it could "split" the tuple to obtain a less-specific prefix that can match
the value to be inserted. If it's necessary to append a new leaf tuple to a
list and there is no free space on page, then SP-GiST creates a new inner
tuple and distributes leaf tuples into a set of lists on, perhaps, several
pages.
Inner tuple consists of:
optional prefix value - all successors must be consistent with it.
Example:
suffix tree - prefix value is a common prefix string
quad tree - centroid
k-d tree - one coordinate
list of nodes, where node is a (label, pointer) pair.
Example of a label: a single character for suffix tree
Leaf tuple consists of:
a leaf value
Example:
suffix tree - the rest of string (postfix)
quad and k-d tree - the point itself
ItemPointer to the heap
INSERTION ALGORITHM
Insertion algorithm is designed to keep the tree in a consistent state at
any moment. Here is a simplified insertion algorithm specification
(numbers refer to notes below):
Start with the first tuple on the root page (1)
loop:
if (page is leaf) then
if (enough space)
insert on page and exit (5)
else (7)
call PickSplitFn() (2)
end if
else
switch (chooseFn())
case MatchNode - descend through selected node
case AddNode - add node and then retry chooseFn (3, 6)
case SplitTuple - split inner tuple to prefix and postfix, then
retry chooseFn with the prefix tuple (4, 6)
end if
Notes:
(1) Initially, we just dump leaf tuples into the root page until it is full;
then we split it. Once the root is not a leaf page, it can have only one
inner tuple, so as to keep the amount of free space on the root as large as
possible. Both of these rules are meant to postpone doing PickSplit on the
root for as long as possible, so that the topmost partitioning of the search
space is as good as we can easily make it.
(2) Current implementation allows to do picksplit and insert a new leaf tuple
in one operation, if the new list of leaf tuples fits on one page. It's
always possible for trees with small nodes like quad tree or k-d tree, but
suffix trees may require another picksplit.
(3) Addition of node must keep size of inner tuple small enough to fit on a
page. After addition, inner tuple could become too large to be stored on
current page because of other tuples on page. In this case it will be moved
to another inner page (see notes about page management). When moving tuple to
another page, we can't change the numbers of other tuples on the page, else
we'd make downlink pointers to them invalid. To prevent that, SP-GiST leaves
a "placeholder" tuple, which can be reused later whenever another tuple is
added to the page. See also Concurrency and Vacuum sections below. Right now
only suffix trees could add a node to the tuple; quad trees and k-d trees
make all possible nodes at once in PickSplitFn() call.
(4) Prefix value could only partially match a new value, so the SplitTuple
action allows breaking the current tree branch into upper and lower sections.
Another way to say it is that we can split the current inner tuple into
"prefix" and "postfix" parts, where the prefix part is able to match the
incoming new value. Consider example of insertion into a suffix tree. We use
the following notation, where tuple's id is just for discussion (no such id
is actually stored):
inner tuple: {tuple id}(prefix string)[ comma separated list of node labels ]
leaf tuple: {tuple id}<value>
Suppose we need to insert string 'www.gogo.com' into inner tuple
{1}(www.google.com/)[a, i]
The string does not match the prefix so we cannot descend. We must
split the inner tuple into two tuples:
{2}(www.go)[o] - prefix tuple
|
{3}(gle.com/)[a,i] - postfix tuple
On the next iteration of loop we find that 'www.gogo.com' matches the
prefix, but not any node label, so we add a node [g] to tuple {2}:
NIL (no child exists yet)
|
{2}(www.go)[o, g]
|
{3}(gle.com/)[a,i]
Now we can descend through the [g] node, which will cause us to update
the target string to just 'o.com'. Finally, we'll insert a leaf tuple
bearing that string:
{4}<o.com>
|
{2}(www.go)[o, g]
|
{3}(gle.com/)[a,i]
As we can see, the original tuple's node array moves to postfix tuple without
any changes. Note also that SP-GiST core assumes that prefix tuple is not
larger than old inner tuple. That allows us to store prefix tuple directly
in place of old inner tuple. SP-GiST core will try to store postfix tuple on
the same page if possible, but will use another page if there is not enough
free space (see notes 5 and 6). Currently, quad and k-d trees don't use this
feature, because they have no concept of a prefix being "inconsistent" with
any new value. They grow their depth only by PickSplitFn() call.
(5) If pointer from node of parent is a NIL pointer, algorithm chooses a leaf
page to store on. At first, it tries to use the last-used leaf page with the
largest free space (which we track in each backend) to better utilize disk
space. If that's not large enough, then the algorithm allocates a new page.
(6) Management of inner pages is very similar to management of leaf pages,
described in (5).
(7) Actually, current implementation can move the whole list of leaf tuples
and a new tuple to another page, if the list is short enough. This improves
space utilization, but doesn't change the basis of the algorithm.
CONCURRENCY
While descending the tree, the insertion algorithm holds exclusive lock on
two tree levels at a time, ie both parent and child pages (parent and child
pages can be the same, see notes above). There is a possibility of deadlock
between two insertions if there are cross-referenced pages in different
branches. That is, if inner tuple on page M has a child on page N while
an inner tuple from another branch is on page N and has a child on page M,
then two insertions descending the two branches could deadlock. To prevent
deadlocks we introduce a concept of "triple parity" of pages: if inner tuple
is on page with BlockNumber N, then its child tuples should be placed on the
same page, or else on a page with BlockNumber M where (N+1) mod 3 == M mod 3.
This rule guarantees that tuples on page M will have no children on page N,
since (M+1) mod 3 != N mod 3.
Insertion may also need to take locks on an additional inner and/or leaf page
to add tuples of the right type(s), when there's not enough room on the pages
it descended through. However, we don't care exactly which such page we add
to, so deadlocks can be avoided by conditionally locking the additional
buffers: if we fail to get lock on an additional page, just try another one.
Search traversal algorithm is rather traditional. At each non-leaf level, it
share-locks the page, identifies which node(s) in the current inner tuple
need to be visited, and puts those addresses on a stack of pages to examine
later. It then releases lock on the current buffer before visiting the next
stack item. So only one page is locked at a time, and no deadlock is
possible. But instead, we have to worry about race conditions: by the time
we arrive at a pointed-to page, a concurrent insertion could have replaced
the target inner tuple (or leaf tuple chain) with data placed elsewhere.
To handle that, whenever the insertion algorithm changes a nonempty downlink
in an inner tuple, it places a "redirect tuple" in place of the lower-level
inner tuple or leaf-tuple chain head that the link formerly led to. Scans
(though not insertions) must be prepared to honor such redirects. Only a
scan that had already visited the parent level could possibly reach such a
redirect tuple, so we can remove redirects once all active transactions have
been flushed out of the system.
DEAD TUPLES
Tuples on leaf pages can be in one of four states:
SPGIST_LIVE: normal, live pointer to a heap tuple.
SPGIST_REDIRECT: placeholder that contains a link to another place in the
index. When a chain of leaf tuples has to be moved to another page, a
redirect tuple is inserted in place of the chain's head tuple. The parent
inner tuple's downlink is updated when this happens, but concurrent scans
might be "in flight" from the parent page to the child page (since they
release lock on the parent page before attempting to lock the child).
The redirect pointer serves to tell such a scan where to go. A redirect
pointer is only needed for as long as such concurrent scans could be in
progress. Eventually, it's converted into a PLACEHOLDER dead tuple by
VACUUM, and is then a candidate for replacement. Searches that find such
a tuple (which should never be part of a chain) should immediately proceed
to the other place, forgetting about the redirect tuple. Insertions that
reach such a tuple should raise error, since a valid downlink should never
point to such a tuple.
SPGIST_DEAD: tuple is dead, but it cannot be removed or moved to a
different offset on the page because there is a link leading to it from
some inner tuple elsewhere in the index. (Such a tuple is never part of a
chain, since we don't need one unless there is nothing live left in its
chain.) Searches should ignore such entries. If an insertion action
arrives at such a tuple, it should either replace it in-place (if there's
room on the page to hold the desired new leaf tuple) or replace it with a
redirection pointer to wherever it puts the new leaf tuple.
SPGIST_PLACEHOLDER: tuple is dead, and there are known to be no links to
it from elsewhere. When a live tuple is deleted or moved away, and not
replaced by a redirect pointer, it is replaced by a placeholder to keep
the offsets of later tuples on the same page from changing. Placeholders
can be freely replaced when adding a new tuple to the page, and also
VACUUM will delete any that are at the end of the range of valid tuple
offsets. Both searches and insertions should complain if a link from
elsewhere leads them to a placeholder tuple.
When the root page is also a leaf, all its tuple should be in LIVE state;
there's no need for the others since there are no links and no need to
preserve offset numbers.
Tuples on inner pages can be in LIVE, REDIRECT, or PLACEHOLDER states.
The REDIRECT state has the same function as on leaf pages, to send
concurrent searches to the place where they need to go after an inner
tuple is moved to another page. Expired REDIRECT pointers are converted
to PLACEHOLDER status by VACUUM, and are then candidates for replacement.
DEAD state is not currently possible, since VACUUM does not attempt to
remove unused inner tuples.
VACUUM
VACUUM (or more precisely, spgbulkdelete) performs a single sequential scan
over the entire index. On both leaf and inner pages, we can convert old
REDIRECT tuples into PLACEHOLDER status, and then remove any PLACEHOLDERs
that are at the end of the page (since they aren't needed to preserve the
offsets of any live tuples). On leaf pages, we scan for tuples that need
to be deleted because their heap TIDs match a vacuum target TID.
If we find a deletable tuple that is not at the head of its chain, we
can simply replace it with a PLACEHOLDER, updating the chain links to
remove it from the chain. If it is at the head of its chain, but there's
at least one live tuple remaining in the chain, we move that live tuple
to the head tuple's offset, replacing it with a PLACEHOLDER to preserve
the offsets of other tuples. This keeps the parent inner tuple's downlink
valid. If we find ourselves deleting all live tuples in a chain, we
replace the head tuple with a DEAD tuple and the rest with PLACEHOLDERS.
The parent inner tuple's downlink thus points to the DEAD tuple, and the
rules explained in the previous section keep everything working.
VACUUM doesn't know a-priori which tuples are heads of their chains, but
it can easily figure that out by constructing a predecessor array that's
the reverse map of the nextOffset links (ie, when we see tuple x links to
tuple y, we set predecessor[y] = x). Then head tuples are the ones with
no predecessor.
spgbulkdelete also updates the index's free space map.
Currently, spgvacuumcleanup has nothing to do if spgbulkdelete was
performed; otherwise, it does an spgbulkdelete scan with an empty target
list, so as to clean up redirections and placeholders, update the free
space map, and gather statistics.
LAST USED PAGE MANAGEMENT
List of last used pages contains four pages - a leaf page and three inner
pages, one from each "triple parity" group. This list is stored between
calls on the index meta page, but updates are never WAL-logged to decrease
WAL traffic. Incorrect data on meta page isn't critical, because we could
allocate a new page at any moment.
AUTHORS
Teodor Sigaev <teodor@sigaev.ru>
Oleg Bartunov <oleg@sai.msu.su>

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,219 @@
/*-------------------------------------------------------------------------
*
* spginsert.c
* Externally visible index creation/insertion routines
*
* All the actual insertion logic is in spgdoinsert.c.
*
* Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/access/spgist/spginsert.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/genam.h"
#include "access/spgist_private.h"
#include "catalog/index.h"
#include "miscadmin.h"
#include "storage/bufmgr.h"
#include "storage/smgr.h"
#include "utils/memutils.h"
typedef struct
{
SpGistState spgstate; /* SPGiST's working state */
MemoryContext tmpCtx; /* per-tuple temporary context */
} SpGistBuildState;
/* Callback to process one heap tuple during IndexBuildHeapScan */
static void
spgistBuildCallback(Relation index, HeapTuple htup, Datum *values,
bool *isnull, bool tupleIsAlive, void *state)
{
SpGistBuildState *buildstate = (SpGistBuildState *) state;
/* SPGiST doesn't index nulls */
if (*isnull == false)
{
/* Work in temp context, and reset it after each tuple */
MemoryContext oldCtx = MemoryContextSwitchTo(buildstate->tmpCtx);
spgdoinsert(index, &buildstate->spgstate, &htup->t_self, *values);
MemoryContextSwitchTo(oldCtx);
MemoryContextReset(buildstate->tmpCtx);
}
}
/*
* Build an SP-GiST index.
*/
Datum
spgbuild(PG_FUNCTION_ARGS)
{
Relation heap = (Relation) PG_GETARG_POINTER(0);
Relation index = (Relation) PG_GETARG_POINTER(1);
IndexInfo *indexInfo = (IndexInfo *) PG_GETARG_POINTER(2);
IndexBuildResult *result;
double reltuples;
SpGistBuildState buildstate;
Buffer metabuffer,
rootbuffer;
if (RelationGetNumberOfBlocks(index) != 0)
elog(ERROR, "index \"%s\" already contains data",
RelationGetRelationName(index));
/*
* Initialize the meta page and root page
*/
metabuffer = SpGistNewBuffer(index);
rootbuffer = SpGistNewBuffer(index);
Assert(BufferGetBlockNumber(metabuffer) == SPGIST_METAPAGE_BLKNO);
Assert(BufferGetBlockNumber(rootbuffer) == SPGIST_HEAD_BLKNO);
START_CRIT_SECTION();
SpGistInitMetapage(BufferGetPage(metabuffer));
MarkBufferDirty(metabuffer);
SpGistInitBuffer(rootbuffer, SPGIST_LEAF);
MarkBufferDirty(rootbuffer);
if (RelationNeedsWAL(index))
{
XLogRecPtr recptr;
XLogRecData rdata;
/* WAL data is just the relfilenode */
rdata.data = (char *) &(index->rd_node);
rdata.len = sizeof(RelFileNode);
rdata.buffer = InvalidBuffer;
rdata.next = NULL;
recptr = XLogInsert(RM_SPGIST_ID, XLOG_SPGIST_CREATE_INDEX, &rdata);
PageSetLSN(BufferGetPage(metabuffer), recptr);
PageSetTLI(BufferGetPage(metabuffer), ThisTimeLineID);
PageSetLSN(BufferGetPage(rootbuffer), recptr);
PageSetTLI(BufferGetPage(rootbuffer), ThisTimeLineID);
}
END_CRIT_SECTION();
UnlockReleaseBuffer(metabuffer);
UnlockReleaseBuffer(rootbuffer);
/*
* Now insert all the heap data into the index
*/
initSpGistState(&buildstate.spgstate, index);
buildstate.spgstate.isBuild = true;
buildstate.tmpCtx = AllocSetContextCreate(CurrentMemoryContext,
"SP-GiST build temporary context",
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
reltuples = IndexBuildHeapScan(heap, index, indexInfo, true,
spgistBuildCallback, (void *) &buildstate);
MemoryContextDelete(buildstate.tmpCtx);
SpGistUpdateMetaPage(index);
result = (IndexBuildResult *) palloc0(sizeof(IndexBuildResult));
result->heap_tuples = result->index_tuples = reltuples;
PG_RETURN_POINTER(result);
}
/*
* Build an empty SPGiST index in the initialization fork
*/
Datum
spgbuildempty(PG_FUNCTION_ARGS)
{
Relation index = (Relation) PG_GETARG_POINTER(0);
Page page;
/* Construct metapage. */
page = (Page) palloc(BLCKSZ);
SpGistInitMetapage(page);
/* Write the page. If archiving/streaming, XLOG it. */
smgrwrite(index->rd_smgr, INIT_FORKNUM, SPGIST_METAPAGE_BLKNO,
(char *) page, true);
if (XLogIsNeeded())
log_newpage(&index->rd_smgr->smgr_rnode.node, INIT_FORKNUM,
SPGIST_METAPAGE_BLKNO, page);
/* Likewise for the root page. */
SpGistInitPage(page, SPGIST_LEAF);
smgrwrite(index->rd_smgr, INIT_FORKNUM, SPGIST_HEAD_BLKNO,
(char *) page, true);
if (XLogIsNeeded())
log_newpage(&index->rd_smgr->smgr_rnode.node, INIT_FORKNUM,
SPGIST_HEAD_BLKNO, page);
/*
* An immediate sync is required even if we xlog'd the pages, because the
* writes did not go through shared buffers and therefore a concurrent
* checkpoint may have moved the redo pointer past our xlog record.
*/
smgrimmedsync(index->rd_smgr, INIT_FORKNUM);
PG_RETURN_VOID();
}
/*
* Insert one new tuple into an SPGiST index.
*/
Datum
spginsert(PG_FUNCTION_ARGS)
{
Relation index = (Relation) PG_GETARG_POINTER(0);
Datum *values = (Datum *) PG_GETARG_POINTER(1);
bool *isnull = (bool *) PG_GETARG_POINTER(2);
ItemPointer ht_ctid = (ItemPointer) PG_GETARG_POINTER(3);
#ifdef NOT_USED
Relation heapRel = (Relation) PG_GETARG_POINTER(4);
IndexUniqueCheck checkUnique = (IndexUniqueCheck) PG_GETARG_INT32(5);
#endif
SpGistState spgstate;
MemoryContext oldCtx;
MemoryContext insertCtx;
/* SPGiST doesn't index nulls */
if (*isnull)
PG_RETURN_BOOL(false);
insertCtx = AllocSetContextCreate(CurrentMemoryContext,
"SP-GiST insert temporary context",
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
oldCtx = MemoryContextSwitchTo(insertCtx);
initSpGistState(&spgstate, index);
spgdoinsert(index, &spgstate, ht_ctid, *values);
SpGistUpdateMetaPage(index);
MemoryContextSwitchTo(oldCtx);
MemoryContextDelete(insertCtx);
/* return false since we've not done any unique check */
PG_RETURN_BOOL(false);
}

View File

@ -0,0 +1,298 @@
/*-------------------------------------------------------------------------
*
* spgkdtreeproc.c
* implementation of k-d tree over points for SP-GiST
*
*
* Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/access/spgist/spgkdtreeproc.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/gist.h" /* for RTree strategy numbers */
#include "access/spgist.h"
#include "catalog/pg_type.h"
#include "utils/builtins.h"
#include "utils/geo_decls.h"
Datum
spg_kd_config(PG_FUNCTION_ARGS)
{
/* spgConfigIn *cfgin = (spgConfigIn *) PG_GETARG_POINTER(0); */
spgConfigOut *cfg = (spgConfigOut *) PG_GETARG_POINTER(1);
cfg->prefixType = FLOAT8OID;
cfg->labelType = VOIDOID; /* we don't need node labels */
cfg->longValuesOK = false;
PG_RETURN_VOID();
}
static int
getSide(double coord, bool isX, Point *tst)
{
double tstcoord = (isX) ? tst->x : tst->y;
if (coord == tstcoord)
return 0;
else if (coord > tstcoord)
return 1;
else
return -1;
}
Datum
spg_kd_choose(PG_FUNCTION_ARGS)
{
spgChooseIn *in = (spgChooseIn *) PG_GETARG_POINTER(0);
spgChooseOut *out = (spgChooseOut *) PG_GETARG_POINTER(1);
Point *inPoint = DatumGetPointP(in->datum);
double coord;
if (in->allTheSame)
elog(ERROR, "allTheSame should not occur for k-d trees");
Assert(in->hasPrefix);
coord = DatumGetFloat8(in->prefixDatum);
Assert(in->nNodes == 2);
out->resultType = spgMatchNode;
out->result.matchNode.nodeN =
(getSide(coord, in->level % 2, inPoint) > 0) ? 0 : 1;
out->result.matchNode.levelAdd = 1;
out->result.matchNode.restDatum = PointPGetDatum(inPoint);
PG_RETURN_VOID();
}
typedef struct SortedPoint
{
Point *p;
int i;
} SortedPoint;
static int
x_cmp(const void *a, const void *b)
{
SortedPoint *pa = (SortedPoint *) a;
SortedPoint *pb = (SortedPoint *) b;
if (pa->p->x == pb->p->x)
return 0;
return (pa->p->x > pb->p->x) ? 1 : -1;
}
static int
y_cmp(const void *a, const void *b)
{
SortedPoint *pa = (SortedPoint *) a;
SortedPoint *pb = (SortedPoint *) b;
if (pa->p->y == pb->p->y)
return 0;
return (pa->p->y > pb->p->y) ? 1 : -1;
}
Datum
spg_kd_picksplit(PG_FUNCTION_ARGS)
{
spgPickSplitIn *in = (spgPickSplitIn *) PG_GETARG_POINTER(0);
spgPickSplitOut *out = (spgPickSplitOut *) PG_GETARG_POINTER(1);
int i;
int middle;
SortedPoint *sorted;
double coord;
sorted = palloc(sizeof(*sorted) * in->nTuples);
for (i = 0; i < in->nTuples; i++)
{
sorted[i].p = DatumGetPointP(in->datums[i]);
sorted[i].i = i;
}
qsort(sorted, in->nTuples, sizeof(*sorted),
(in->level % 2) ? x_cmp : y_cmp);
middle = in->nTuples >> 1;
coord = (in->level % 2) ? sorted[middle].p->x : sorted[middle].p->y;
out->hasPrefix = true;
out->prefixDatum = Float8GetDatum(coord);
out->nNodes = 2;
out->nodeLabels = NULL; /* we don't need node labels */
out->mapTuplesToNodes = palloc(sizeof(int) * in->nTuples);
out->leafTupleDatums = palloc(sizeof(Datum) * in->nTuples);
/*
* Note: points that have coordinates exactly equal to coord may get
* classified into either node, depending on where they happen to fall
* in the sorted list. This is okay as long as the inner_consistent
* function descends into both sides for such cases. This is better
* than the alternative of trying to have an exact boundary, because
* it keeps the tree balanced even when we have many instances of the
* same point value. So we should never trigger the allTheSame logic.
*/
for (i = 0; i < in->nTuples; i++)
{
Point *p = sorted[i].p;
int n = sorted[i].i;
out->mapTuplesToNodes[n] = (i < middle) ? 0 : 1;
out->leafTupleDatums[n] = PointPGetDatum(p);
}
PG_RETURN_VOID();
}
Datum
spg_kd_inner_consistent(PG_FUNCTION_ARGS)
{
spgInnerConsistentIn *in = (spgInnerConsistentIn *) PG_GETARG_POINTER(0);
spgInnerConsistentOut *out = (spgInnerConsistentOut *) PG_GETARG_POINTER(1);
Point *query;
BOX *boxQuery;
double coord;
query = DatumGetPointP(in->query);
Assert(in->hasPrefix);
coord = DatumGetFloat8(in->prefixDatum);
if (in->allTheSame)
elog(ERROR, "allTheSame should not occur for k-d trees");
Assert(in->nNodes == 2);
out->nodeNumbers = (int *) palloc(sizeof(int) * 2);
out->levelAdds = (int *) palloc(sizeof(int) * 2);
out->levelAdds[0] = 1;
out->levelAdds[1] = 1;
out->nNodes = 0;
switch (in->strategy)
{
case RTLeftStrategyNumber:
out->nNodes = 1;
out->nodeNumbers[0] = 0;
if ((in->level % 2) == 0 || FPge(query->x, coord))
{
out->nodeNumbers[1] = 1;
out->nNodes++;
}
break;
case RTRightStrategyNumber:
out->nNodes = 1;
out->nodeNumbers[0] = 1;
if ((in->level % 2) == 0 || FPle(query->x, coord))
{
out->nodeNumbers[1] = 0;
out->nNodes++;
}
break;
case RTSameStrategyNumber:
if (in->level % 2)
{
if (FPle(query->x, coord))
{
out->nodeNumbers[out->nNodes] = 0;
out->nNodes++;
}
if (FPge(query->x, coord))
{
out->nodeNumbers[out->nNodes] = 1;
out->nNodes++;
}
}
else
{
if (FPle(query->y, coord))
{
out->nodeNumbers[out->nNodes] = 0;
out->nNodes++;
}
if (FPge(query->y, coord))
{
out->nodeNumbers[out->nNodes] = 1;
out->nNodes++;
}
}
break;
case RTBelowStrategyNumber:
out->nNodes = 1;
out->nodeNumbers[0] = 0;
if ((in->level % 2) == 1 || FPge(query->y, coord))
{
out->nodeNumbers[1] = 1;
out->nNodes++;
}
break;
case RTAboveStrategyNumber:
out->nNodes = 1;
out->nodeNumbers[0] = 1;
if ((in->level % 2) == 1 || FPle(query->y, coord))
{
out->nodeNumbers[1] = 0;
out->nNodes++;
}
break;
case RTContainedByStrategyNumber:
/*
* For this operator, the query is a box not a point. We cheat to
* the extent of assuming that DatumGetPointP won't do anything
* that would be bad for a pointer-to-box.
*/
boxQuery = DatumGetBoxP(in->query);
out->nNodes = 1;
if (in->level % 2)
{
if (FPlt(boxQuery->high.x, coord))
out->nodeNumbers[0] = 0;
else if (FPgt(boxQuery->low.x, coord))
out->nodeNumbers[0] = 1;
else
{
out->nodeNumbers[0] = 0;
out->nodeNumbers[1] = 1;
out->nNodes = 2;
}
}
else
{
if (FPlt(boxQuery->high.y, coord))
out->nodeNumbers[0] = 0;
else if (FPgt(boxQuery->low.y, coord))
out->nodeNumbers[0] = 1;
else
{
out->nodeNumbers[0] = 0;
out->nodeNumbers[1] = 1;
out->nNodes = 2;
}
}
break;
default:
elog(ERROR, "unrecognized strategy number: %d", in->strategy);
break;
}
PG_RETURN_VOID();
}
/*
* spg_kd_leaf_consistent() is the same as spg_quad_leaf_consistent(),
* since we support the same operators and the same leaf data type.
* So we just borrow that function.
*/

View File

@ -0,0 +1,360 @@
/*-------------------------------------------------------------------------
*
* spgquadtreeproc.c
* implementation of quad tree over points for SP-GiST
*
*
* Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/access/spgist/spgquadtreeproc.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/gist.h" /* for RTree strategy numbers */
#include "access/spgist.h"
#include "catalog/pg_type.h"
#include "utils/builtins.h"
#include "utils/geo_decls.h"
Datum
spg_quad_config(PG_FUNCTION_ARGS)
{
/* spgConfigIn *cfgin = (spgConfigIn *) PG_GETARG_POINTER(0); */
spgConfigOut *cfg = (spgConfigOut *) PG_GETARG_POINTER(1);
cfg->prefixType = POINTOID;
cfg->labelType = VOIDOID; /* we don't need node labels */
cfg->longValuesOK = false;
PG_RETURN_VOID();
}
#define SPTEST(f, x, y) \
DatumGetBool(DirectFunctionCall2(f, PointPGetDatum(x), PointPGetDatum(y)))
/*
* Determine which quadrant a point falls into, relative to the centroid.
*
* Quadrants are identified like this:
*
* 4 | 1
* ----+-----
* 3 | 2
*
* Points on one of the axes are taken to lie in the lowest-numbered
* adjacent quadrant.
*/
static int2
getQuadrant(Point *centroid, Point *tst)
{
if ((SPTEST(point_above, tst, centroid) ||
SPTEST(point_horiz, tst, centroid)) &&
(SPTEST(point_right, tst, centroid) ||
SPTEST(point_vert, tst, centroid)))
return 1;
if (SPTEST(point_below, tst, centroid) &&
(SPTEST(point_right, tst, centroid) ||
SPTEST(point_vert, tst, centroid)))
return 2;
if ((SPTEST(point_below, tst, centroid) ||
SPTEST(point_horiz, tst, centroid)) &&
SPTEST(point_left, tst, centroid))
return 3;
if (SPTEST(point_above, tst, centroid) &&
SPTEST(point_left, tst, centroid))
return 4;
elog(ERROR, "getQuadrant: impossible case");
return 0;
}
Datum
spg_quad_choose(PG_FUNCTION_ARGS)
{
spgChooseIn *in = (spgChooseIn *) PG_GETARG_POINTER(0);
spgChooseOut *out = (spgChooseOut *) PG_GETARG_POINTER(1);
Point *inPoint = DatumGetPointP(in->datum),
*centroid;
if (in->allTheSame)
{
out->resultType = spgMatchNode;
/* nodeN will be set by core */
out->result.matchNode.levelAdd = 0;
out->result.matchNode.restDatum = PointPGetDatum(inPoint);
PG_RETURN_VOID();
}
Assert(in->hasPrefix);
centroid = DatumGetPointP(in->prefixDatum);
Assert(in->nNodes == 4);
out->resultType = spgMatchNode;
out->result.matchNode.nodeN = getQuadrant(centroid, inPoint) - 1;
out->result.matchNode.levelAdd = 0;
out->result.matchNode.restDatum = PointPGetDatum(inPoint);
PG_RETURN_VOID();
}
#ifdef USE_MEDIAN
static int
x_cmp(const void *a, const void *b, void *arg)
{
Point *pa = *(Point **) a;
Point *pb = *(Point **) b;
if (pa->x == pb->x)
return 0;
return (pa->x > pb->x) ? 1 : -1;
}
static int
y_cmp(const void *a, const void *b, void *arg)
{
Point *pa = *(Point **) a;
Point *pb = *(Point **) b;
if (pa->y == pb->y)
return 0;
return (pa->y > pb->y) ? 1 : -1;
}
#endif
Datum
spg_quad_picksplit(PG_FUNCTION_ARGS)
{
spgPickSplitIn *in = (spgPickSplitIn *) PG_GETARG_POINTER(0);
spgPickSplitOut *out = (spgPickSplitOut *) PG_GETARG_POINTER(1);
int i;
Point *centroid;
#ifdef USE_MEDIAN
/* Use the median values of x and y as the centroid point */
Point **sorted;
sorted = palloc(sizeof(*sorted) * in->nTuples);
for (i = 0; i < in->nTuples; i++)
sorted[i] = DatumGetPointP(in->datums[i]);
centroid = palloc(sizeof(*centroid));
qsort(sorted, in->nTuples, sizeof(*sorted), x_cmp);
centroid->x = sorted[in->nTuples >> 1]->x;
qsort(sorted, in->nTuples, sizeof(*sorted), y_cmp);
centroid->y = sorted[in->nTuples >> 1]->y;
#else
/* Use the average values of x and y as the centroid point */
centroid = palloc0(sizeof(*centroid));
for (i = 0; i < in->nTuples; i++)
{
centroid->x += DatumGetPointP(in->datums[i])->x;
centroid->y += DatumGetPointP(in->datums[i])->y;
}
centroid->x /= in->nTuples;
centroid->y /= in->nTuples;
#endif
out->hasPrefix = true;
out->prefixDatum = PointPGetDatum(centroid);
out->nNodes = 4;
out->nodeLabels = NULL; /* we don't need node labels */
out->mapTuplesToNodes = palloc(sizeof(int) * in->nTuples);
out->leafTupleDatums = palloc(sizeof(Datum) * in->nTuples);
for (i = 0; i < in->nTuples; i++)
{
Point *p = DatumGetPointP(in->datums[i]);
int quadrant = getQuadrant(centroid, p) - 1;
out->leafTupleDatums[i] = PointPGetDatum(p);
out->mapTuplesToNodes[i] = quadrant;
}
PG_RETURN_VOID();
}
/* Subroutine to fill out->nodeNumbers[] for spg_quad_inner_consistent */
static void
setNodes(spgInnerConsistentOut *out, bool isAll, int first, int second)
{
if (isAll)
{
out->nNodes = 4;
out->nodeNumbers[0] = 0;
out->nodeNumbers[1] = 1;
out->nodeNumbers[2] = 2;
out->nodeNumbers[3] = 3;
}
else
{
out->nNodes = 2;
out->nodeNumbers[0] = first - 1;
out->nodeNumbers[1] = second - 1;
}
}
Datum
spg_quad_inner_consistent(PG_FUNCTION_ARGS)
{
spgInnerConsistentIn *in = (spgInnerConsistentIn *) PG_GETARG_POINTER(0);
spgInnerConsistentOut *out = (spgInnerConsistentOut *) PG_GETARG_POINTER(1);
Point *query,
*centroid;
BOX *boxQuery;
query = DatumGetPointP(in->query);
Assert(in->hasPrefix);
centroid = DatumGetPointP(in->prefixDatum);
if (in->allTheSame)
{
/* Report that all nodes should be visited */
int i;
out->nNodes = in->nNodes;
out->nodeNumbers = (int *) palloc(sizeof(int) * in->nNodes);
for (i = 0; i < in->nNodes; i++)
out->nodeNumbers[i] = i;
PG_RETURN_VOID();
}
Assert(in->nNodes == 4);
out->nodeNumbers = (int *) palloc(sizeof(int) * 4);
switch (in->strategy)
{
case RTLeftStrategyNumber:
setNodes(out, SPTEST(point_left, centroid, query), 3, 4);
break;
case RTRightStrategyNumber:
setNodes(out, SPTEST(point_right, centroid, query), 1, 2);
break;
case RTSameStrategyNumber:
out->nNodes = 1;
out->nodeNumbers[0] = getQuadrant(centroid, query) - 1;
break;
case RTBelowStrategyNumber:
setNodes(out, SPTEST(point_below, centroid, query), 2, 3);
break;
case RTAboveStrategyNumber:
setNodes(out, SPTEST(point_above, centroid, query), 1, 4);
break;
case RTContainedByStrategyNumber:
/*
* For this operator, the query is a box not a point. We cheat to
* the extent of assuming that DatumGetPointP won't do anything
* that would be bad for a pointer-to-box.
*/
boxQuery = DatumGetBoxP(in->query);
if (DatumGetBool(DirectFunctionCall2(box_contain_pt,
PointerGetDatum(boxQuery),
PointerGetDatum(centroid))))
{
/* centroid is in box, so descend to all quadrants */
setNodes(out, true, 0, 0);
}
else
{
/* identify quadrant(s) containing all corners of box */
Point p;
int i,
r = 0;
p = boxQuery->low;
r |= 1 << (getQuadrant(centroid, &p) - 1);
p.y = boxQuery->high.y;
r |= 1 << (getQuadrant(centroid, &p) - 1);
p = boxQuery->high;
r |= 1 << (getQuadrant(centroid, &p) - 1);
p.x = boxQuery->low.x;
r |= 1 << (getQuadrant(centroid, &p) - 1);
/* we must descend into those quadrant(s) */
out->nNodes = 0;
for (i = 0; i < 4; i++)
{
if (r & (1 << i))
{
out->nodeNumbers[out->nNodes] = i;
out->nNodes++;
}
}
}
break;
default:
elog(ERROR, "unrecognized strategy number: %d", in->strategy);
break;
}
PG_RETURN_VOID();
}
Datum
spg_quad_leaf_consistent(PG_FUNCTION_ARGS)
{
spgLeafConsistentIn *in = (spgLeafConsistentIn *) PG_GETARG_POINTER(0);
spgLeafConsistentOut *out = (spgLeafConsistentOut *) PG_GETARG_POINTER(1);
Point *query = DatumGetPointP(in->query);
Point *datum = DatumGetPointP(in->leafDatum);
bool res;
/* all tests are exact */
out->recheck = false;
switch (in->strategy)
{
case RTLeftStrategyNumber:
res = SPTEST(point_left, datum, query);
break;
case RTRightStrategyNumber:
res = SPTEST(point_right, datum, query);
break;
case RTSameStrategyNumber:
res = SPTEST(point_eq, datum, query);
break;
case RTBelowStrategyNumber:
res = SPTEST(point_below, datum, query);
break;
case RTAboveStrategyNumber:
res = SPTEST(point_above, datum, query);
break;
case RTContainedByStrategyNumber:
/*
* For this operator, the query is a box not a point. We cheat to
* the extent of assuming that DatumGetPointP won't do anything
* that would be bad for a pointer-to-box.
*/
res = SPTEST(box_contain_pt, query, datum);
break;
default:
elog(ERROR, "unrecognized strategy number: %d", in->strategy);
res = false;
break;
}
PG_RETURN_BOOL(res);
}

View File

@ -0,0 +1,543 @@
/*-------------------------------------------------------------------------
*
* spgscan.c
* routines for scanning SP-GiST indexes
*
*
* Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/access/spgist/spgscan.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/relscan.h"
#include "access/spgist_private.h"
#include "miscadmin.h"
#include "storage/bufmgr.h"
#include "utils/datum.h"
#include "utils/memutils.h"
typedef struct ScanStackEntry
{
Datum reconstructedValue; /* value reconstructed from parent */
int level; /* level of items on this page */
ItemPointerData ptr; /* block and offset to scan from */
} ScanStackEntry;
/* Free a ScanStackEntry */
static void
freeScanStackEntry(SpGistScanOpaque so, ScanStackEntry *stackEntry)
{
if (!so->state.attType.attbyval &&
DatumGetPointer(stackEntry->reconstructedValue) != NULL)
pfree(DatumGetPointer(stackEntry->reconstructedValue));
pfree(stackEntry);
}
/* Free the entire stack */
static void
freeScanStack(SpGistScanOpaque so)
{
ListCell *lc;
foreach(lc, so->scanStack)
{
freeScanStackEntry(so, (ScanStackEntry *) lfirst(lc));
}
list_free(so->scanStack);
so->scanStack = NIL;
}
/* Initialize scanStack with a single entry for the root page */
static void
resetSpGistScanOpaque(SpGistScanOpaque so)
{
ScanStackEntry *startEntry = palloc0(sizeof(ScanStackEntry));
ItemPointerSet(&startEntry->ptr, SPGIST_HEAD_BLKNO, FirstOffsetNumber);
freeScanStack(so);
so->scanStack = list_make1(startEntry);
so->nPtrs = so->iPtr = 0;
}
Datum
spgbeginscan(PG_FUNCTION_ARGS)
{
Relation rel = (Relation) PG_GETARG_POINTER(0);
int keysz = PG_GETARG_INT32(1);
/* ScanKey scankey = (ScanKey) PG_GETARG_POINTER(2); */
IndexScanDesc scan;
SpGistScanOpaque so;
scan = RelationGetIndexScan(rel, keysz, 0);
so = (SpGistScanOpaque) palloc0(sizeof(SpGistScanOpaqueData));
initSpGistState(&so->state, scan->indexRelation);
so->tempCxt = AllocSetContextCreate(CurrentMemoryContext,
"SP-GiST search temporary context",
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
resetSpGistScanOpaque(so);
scan->opaque = so;
PG_RETURN_POINTER(scan);
}
Datum
spgrescan(PG_FUNCTION_ARGS)
{
IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
SpGistScanOpaque so = (SpGistScanOpaque) scan->opaque;
ScanKey scankey = (ScanKey) PG_GETARG_POINTER(1);
if (scankey && scan->numberOfKeys > 0)
{
memmove(scan->keyData, scankey,
scan->numberOfKeys * sizeof(ScanKeyData));
}
resetSpGistScanOpaque(so);
PG_RETURN_VOID();
}
Datum
spgendscan(PG_FUNCTION_ARGS)
{
IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
SpGistScanOpaque so = (SpGistScanOpaque) scan->opaque;
MemoryContextDelete(so->tempCxt);
PG_RETURN_VOID();
}
Datum
spgmarkpos(PG_FUNCTION_ARGS)
{
elog(ERROR, "SPGiST does not support mark/restore");
PG_RETURN_VOID();
}
Datum
spgrestrpos(PG_FUNCTION_ARGS)
{
elog(ERROR, "SPGiST does not support mark/restore");
PG_RETURN_VOID();
}
/*
* Test whether a leaf datum satisfies all the scan keys
*
* *recheck is set true if any of the operators are lossy
*/
static bool
spgLeafTest(SpGistScanOpaque so, Datum leafDatum,
int level, Datum reconstructedValue,
bool *recheck)
{
bool result = true;
spgLeafConsistentIn in;
spgLeafConsistentOut out;
MemoryContext oldCtx;
int i;
*recheck = false;
/* set up values that are the same for all quals */
in.reconstructedValue = reconstructedValue;
in.level = level;
in.leafDatum = leafDatum;
/* Apply each leaf consistent function, working in the temp context */
oldCtx = MemoryContextSwitchTo(so->tempCxt);
for (i = 0; i < so->numberOfKeys; i++)
{
in.strategy = so->keyData[i].sk_strategy;
in.query = so->keyData[i].sk_argument;
out.recheck = false;
result = DatumGetBool(FunctionCall2Coll(&so->state.leafConsistentFn,
so->keyData[i].sk_collation,
PointerGetDatum(&in),
PointerGetDatum(&out)));
*recheck |= out.recheck;
if (!result)
break;
}
MemoryContextSwitchTo(oldCtx);
return result;
}
/*
* Walk the tree and report all tuples passing the scan quals to the storeRes
* subroutine.
*
* If scanWholeIndex is true, we'll do just that. If not, we'll stop at the
* next page boundary once we have reported at least one tuple.
*/
static void
spgWalk(Relation index, SpGistScanOpaque so, bool scanWholeIndex,
void (*storeRes) (SpGistScanOpaque, ItemPointer, bool))
{
Buffer buffer = InvalidBuffer;
bool reportedSome = false;
while (scanWholeIndex || !reportedSome)
{
ScanStackEntry *stackEntry;
BlockNumber blkno;
OffsetNumber offset;
Page page;
/* Pull next to-do item from the list */
if (so->scanStack == NIL)
break; /* there are no more pages to scan */
stackEntry = (ScanStackEntry *) linitial(so->scanStack);
so->scanStack = list_delete_first(so->scanStack);
redirect:
/* Check for interrupts, just in case of infinite loop */
CHECK_FOR_INTERRUPTS();
blkno = ItemPointerGetBlockNumber(&stackEntry->ptr);
offset = ItemPointerGetOffsetNumber(&stackEntry->ptr);
if (buffer == InvalidBuffer)
{
buffer = ReadBuffer(index, blkno);
LockBuffer(buffer, BUFFER_LOCK_SHARE);
}
else if (blkno != BufferGetBlockNumber(buffer))
{
UnlockReleaseBuffer(buffer);
buffer = ReadBuffer(index, blkno);
LockBuffer(buffer, BUFFER_LOCK_SHARE);
}
/* else new pointer points to the same page, no work needed */
page = BufferGetPage(buffer);
if (SpGistPageIsLeaf(page))
{
SpGistLeafTuple leafTuple;
OffsetNumber max = PageGetMaxOffsetNumber(page);
bool recheck = false;
if (blkno == SPGIST_HEAD_BLKNO)
{
/* When root is a leaf, examine all its tuples */
for (offset = FirstOffsetNumber; offset <= max; offset++)
{
leafTuple = (SpGistLeafTuple)
PageGetItem(page, PageGetItemId(page, offset));
if (leafTuple->tupstate != SPGIST_LIVE)
{
/* all tuples on root should be live */
elog(ERROR, "unexpected SPGiST tuple state: %d",
leafTuple->tupstate);
}
Assert(ItemPointerIsValid(&leafTuple->heapPtr));
if (spgLeafTest(so,
SGLTDATUM(leafTuple, &so->state),
stackEntry->level,
stackEntry->reconstructedValue,
&recheck))
{
storeRes(so, &leafTuple->heapPtr, recheck);
reportedSome = true;
}
}
}
else
{
/* Normal case: just examine the chain we arrived at */
while (offset != InvalidOffsetNumber)
{
Assert(offset >= FirstOffsetNumber && offset <= max);
leafTuple = (SpGistLeafTuple)
PageGetItem(page, PageGetItemId(page, offset));
if (leafTuple->tupstate != SPGIST_LIVE)
{
if (leafTuple->tupstate == SPGIST_REDIRECT)
{
/* redirection tuple should be first in chain */
Assert(offset == ItemPointerGetOffsetNumber(&stackEntry->ptr));
/* transfer attention to redirect point */
stackEntry->ptr = ((SpGistDeadTuple) leafTuple)->pointer;
Assert(ItemPointerGetBlockNumber(&stackEntry->ptr) != SPGIST_METAPAGE_BLKNO);
goto redirect;
}
if (leafTuple->tupstate == SPGIST_DEAD)
{
/* dead tuple should be first in chain */
Assert(offset == ItemPointerGetOffsetNumber(&stackEntry->ptr));
/* No live entries on this page */
Assert(leafTuple->nextOffset == InvalidOffsetNumber);
break;
}
/* We should not arrive at a placeholder */
elog(ERROR, "unexpected SPGiST tuple state: %d",
leafTuple->tupstate);
}
Assert(ItemPointerIsValid(&leafTuple->heapPtr));
if (spgLeafTest(so,
SGLTDATUM(leafTuple, &so->state),
stackEntry->level,
stackEntry->reconstructedValue,
&recheck))
{
storeRes(so, &leafTuple->heapPtr, recheck);
reportedSome = true;
}
offset = leafTuple->nextOffset;
}
}
}
else /* page is inner */
{
SpGistInnerTuple innerTuple;
SpGistNodeTuple node;
int i;
innerTuple = (SpGistInnerTuple) PageGetItem(page,
PageGetItemId(page, offset));
if (innerTuple->tupstate != SPGIST_LIVE)
{
if (innerTuple->tupstate == SPGIST_REDIRECT)
{
/* transfer attention to redirect point */
stackEntry->ptr = ((SpGistDeadTuple) innerTuple)->pointer;
Assert(ItemPointerGetBlockNumber(&stackEntry->ptr) != SPGIST_METAPAGE_BLKNO);
goto redirect;
}
elog(ERROR, "unexpected SPGiST tuple state: %d",
innerTuple->tupstate);
}
if (so->numberOfKeys == 0)
{
/*
* This case cannot happen at the moment, because we don't
* set pg_am.amoptionalkey for SP-GiST. In order for full
* index scans to produce correct answers, we'd need to
* index nulls, which we don't.
*/
Assert(false);
#ifdef NOT_USED
/*
* A full index scan could be done approximately like this,
* but note that reconstruction of indexed values would be
* impossible unless the API for inner_consistent is changed.
*/
SGITITERATE(innerTuple, i, node)
{
if (ItemPointerIsValid(&node->t_tid))
{
ScanStackEntry *newEntry = palloc(sizeof(ScanStackEntry));
newEntry->ptr = node->t_tid;
newEntry->level = -1;
newEntry->reconstructedValue = (Datum) 0;
so->scanStack = lcons(newEntry, so->scanStack);
}
}
#endif
}
else
{
spgInnerConsistentIn in;
spgInnerConsistentOut out;
SpGistNodeTuple *nodes;
int *andMap;
int *levelAdds;
Datum *reconstructedValues;
int j,
nMatches = 0;
MemoryContext oldCtx;
/* use temp context for calling inner_consistent */
oldCtx = MemoryContextSwitchTo(so->tempCxt);
/* set up values that are the same for all scankeys */
in.reconstructedValue = stackEntry->reconstructedValue;
in.level = stackEntry->level;
in.allTheSame = innerTuple->allTheSame;
in.hasPrefix = (innerTuple->prefixSize > 0);
in.prefixDatum = SGITDATUM(innerTuple, &so->state);
in.nNodes = innerTuple->nNodes;
in.nodeLabels = spgExtractNodeLabels(&so->state, innerTuple);
/* collect node pointers */
nodes = (SpGistNodeTuple *) palloc(sizeof(SpGistNodeTuple) * in.nNodes);
SGITITERATE(innerTuple, i, node)
{
nodes[i] = node;
}
andMap = (int *) palloc0(sizeof(int) * in.nNodes);
levelAdds = (int *) palloc0(sizeof(int) * in.nNodes);
reconstructedValues = (Datum *) palloc0(sizeof(Datum) * in.nNodes);
for (j = 0; j < so->numberOfKeys; j++)
{
in.strategy = so->keyData[j].sk_strategy;
in.query = so->keyData[j].sk_argument;
memset(&out, 0, sizeof(out));
FunctionCall2Coll(&so->state.innerConsistentFn,
so->keyData[j].sk_collation,
PointerGetDatum(&in),
PointerGetDatum(&out));
/* If allTheSame, they should all or none of 'em match */
if (innerTuple->allTheSame)
if (out.nNodes != 0 && out.nNodes != in.nNodes)
elog(ERROR, "inconsistent inner_consistent results for allTheSame inner tuple");
nMatches = 0;
for (i = 0; i < out.nNodes; i++)
{
int nodeN = out.nodeNumbers[i];
andMap[nodeN]++;
if (andMap[nodeN] == j + 1)
nMatches++;
if (out.levelAdds)
levelAdds[nodeN] = out.levelAdds[i];
if (out.reconstructedValues)
reconstructedValues[nodeN] = out.reconstructedValues[i];
}
/* quit as soon as all nodes have failed some qual */
if (nMatches == 0)
break;
}
MemoryContextSwitchTo(oldCtx);
if (nMatches > 0)
{
for (i = 0; i < in.nNodes; i++)
{
if (andMap[i] == so->numberOfKeys &&
ItemPointerIsValid(&nodes[i]->t_tid))
{
ScanStackEntry *newEntry;
/* Create new work item for this node */
newEntry = palloc(sizeof(ScanStackEntry));
newEntry->ptr = nodes[i]->t_tid;
newEntry->level = stackEntry->level + levelAdds[i];
/* Must copy value out of temp context */
newEntry->reconstructedValue =
datumCopy(reconstructedValues[i],
so->state.attType.attbyval,
so->state.attType.attlen);
so->scanStack = lcons(newEntry, so->scanStack);
}
}
}
}
}
/* done with this scan stack entry */
freeScanStackEntry(so, stackEntry);
/* clear temp context before proceeding to the next one */
MemoryContextReset(so->tempCxt);
}
if (buffer != InvalidBuffer)
UnlockReleaseBuffer(buffer);
}
/* storeRes subroutine for getbitmap case */
static void
storeBitmap(SpGistScanOpaque so, ItemPointer heapPtr, bool recheck)
{
tbm_add_tuples(so->tbm, heapPtr, 1, recheck);
so->ntids++;
}
Datum
spggetbitmap(PG_FUNCTION_ARGS)
{
IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
TIDBitmap *tbm = (TIDBitmap *) PG_GETARG_POINTER(1);
SpGistScanOpaque so = (SpGistScanOpaque) scan->opaque;
/* Copy scankey to *so so we don't need to pass it around separately */
so->numberOfKeys = scan->numberOfKeys;
so->keyData = scan->keyData;
so->tbm = tbm;
so->ntids = 0;
spgWalk(scan->indexRelation, so, true, storeBitmap);
PG_RETURN_INT64(so->ntids);
}
/* storeRes subroutine for gettuple case */
static void
storeGettuple(SpGistScanOpaque so, ItemPointer heapPtr, bool recheck)
{
Assert(so->nPtrs < MaxIndexTuplesPerPage);
so->heapPtrs[so->nPtrs] = *heapPtr;
so->recheck[so->nPtrs] = recheck;
so->nPtrs++;
}
Datum
spggettuple(PG_FUNCTION_ARGS)
{
IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
ScanDirection dir = (ScanDirection) PG_GETARG_INT32(1);
SpGistScanOpaque so = (SpGistScanOpaque) scan->opaque;
if (dir != ForwardScanDirection)
elog(ERROR, "SP-GiST only supports forward scan direction");
/* Copy scankey to *so so we don't need to pass it around separately */
so->numberOfKeys = scan->numberOfKeys;
so->keyData = scan->keyData;
for (;;)
{
if (so->iPtr < so->nPtrs)
{
/* continuing to return tuples from a leaf page */
scan->xs_ctup.t_self = so->heapPtrs[so->iPtr];
scan->xs_recheck = so->recheck[so->iPtr];
so->iPtr++;
PG_RETURN_BOOL(true);
}
so->iPtr = so->nPtrs = 0;
spgWalk(scan->indexRelation, so, false, storeGettuple);
if (so->nPtrs == 0)
break; /* must have completed scan */
}
PG_RETURN_BOOL(false);
}

View File

@ -0,0 +1,594 @@
/*-------------------------------------------------------------------------
*
* spgtextproc.c
* implementation of compressed-suffix tree over text
*
*
* Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/access/spgist/spgtextproc.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/spgist.h"
#include "catalog/pg_type.h"
#include "mb/pg_wchar.h"
#include "utils/builtins.h"
#include "utils/datum.h"
#include "utils/pg_locale.h"
/*
* In the worst case, a inner tuple in a text suffix tree could have as many
* as 256 nodes (one for each possible byte value). Each node can take 16
* bytes on MAXALIGN=8 machines. The inner tuple must fit on an index page
* of size BLCKSZ. Rather than assuming we know the exact amount of overhead
* imposed by page headers, tuple headers, etc, we leave 100 bytes for that
* (the actual overhead should be no more than 56 bytes at this writing, so
* there is slop in this number). The upshot is that the maximum safe prefix
* length is this:
*/
#define SPGIST_MAX_PREFIX_LENGTH (BLCKSZ - 256 * 16 - 100)
/* Struct for sorting values in picksplit */
typedef struct spgNodePtr
{
Datum d;
int i;
uint8 c;
} spgNodePtr;
Datum
spg_text_config(PG_FUNCTION_ARGS)
{
/* spgConfigIn *cfgin = (spgConfigIn *) PG_GETARG_POINTER(0); */
spgConfigOut *cfg = (spgConfigOut *) PG_GETARG_POINTER(1);
cfg->prefixType = TEXTOID;
cfg->labelType = CHAROID;
cfg->longValuesOK = true; /* suffixing will shorten long values */
PG_RETURN_VOID();
}
/*
* Form a text datum from the given not-necessarily-null-terminated string,
* using short varlena header format if possible
*/
static Datum
formTextDatum(const char *data, int datalen)
{
char *p;
p = (char *) palloc(datalen + VARHDRSZ);
if (datalen + VARHDRSZ_SHORT <= VARATT_SHORT_MAX)
{
SET_VARSIZE_SHORT(p, datalen + VARHDRSZ_SHORT);
if (datalen)
memcpy(p + VARHDRSZ_SHORT, data, datalen);
}
else
{
SET_VARSIZE(p, datalen + VARHDRSZ);
memcpy(p + VARHDRSZ, data, datalen);
}
return PointerGetDatum(p);
}
/*
* Find the length of the common prefix of a and b
*/
static int
commonPrefix(const char *a, const char *b, int lena, int lenb)
{
int i = 0;
while (i < lena && i < lenb && *a == *b)
{
a++;
b++;
i++;
}
return i;
}
/*
* Binary search an array of uint8 datums for a match to c
*
* On success, *i gets the match location; on failure, it gets where to insert
*/
static bool
searchChar(Datum *nodeLabels, int nNodes, uint8 c, int *i)
{
int StopLow = 0,
StopHigh = nNodes;
while (StopLow < StopHigh)
{
int StopMiddle = (StopLow + StopHigh) >> 1;
uint8 middle = DatumGetUInt8(nodeLabels[StopMiddle]);
if (c < middle)
StopHigh = StopMiddle;
else if (c > middle)
StopLow = StopMiddle + 1;
else
{
*i = StopMiddle;
return true;
}
}
*i = StopHigh;
return false;
}
Datum
spg_text_choose(PG_FUNCTION_ARGS)
{
spgChooseIn *in = (spgChooseIn *) PG_GETARG_POINTER(0);
spgChooseOut *out = (spgChooseOut *) PG_GETARG_POINTER(1);
text *inText = DatumGetTextPP(in->datum);
char *inStr = VARDATA_ANY(inText);
int inSize = VARSIZE_ANY_EXHDR(inText);
uint8 nodeChar = '\0';
int i = 0;
int commonLen = 0;
/* Check for prefix match, set nodeChar to first byte after prefix */
if (in->hasPrefix)
{
text *prefixText = DatumGetTextPP(in->prefixDatum);
char *prefixStr = VARDATA_ANY(prefixText);
int prefixSize = VARSIZE_ANY_EXHDR(prefixText);
commonLen = commonPrefix(inStr + in->level,
prefixStr,
inSize - in->level,
prefixSize);
if (commonLen == prefixSize)
{
if (inSize - in->level > commonLen)
nodeChar = *(uint8 *) (inStr + in->level + commonLen);
else
nodeChar = '\0';
}
else
{
/* Must split tuple because incoming value doesn't match prefix */
out->resultType = spgSplitTuple;
if (commonLen == 0)
{
out->result.splitTuple.prefixHasPrefix = false;
}
else
{
out->result.splitTuple.prefixHasPrefix = true;
out->result.splitTuple.prefixPrefixDatum =
formTextDatum(prefixStr, commonLen);
}
out->result.splitTuple.nodeLabel =
UInt8GetDatum(*(prefixStr + commonLen));
if (prefixSize - commonLen == 1)
{
out->result.splitTuple.postfixHasPrefix = false;
}
else
{
out->result.splitTuple.postfixHasPrefix = true;
out->result.splitTuple.postfixPrefixDatum =
formTextDatum(prefixStr + commonLen + 1,
prefixSize - commonLen - 1);
}
PG_RETURN_VOID();
}
}
else if (inSize > in->level)
{
nodeChar = *(uint8 *) (inStr + in->level);
}
else
{
nodeChar = '\0';
}
/* Look up nodeChar in the node label array */
if (searchChar(in->nodeLabels, in->nNodes, nodeChar, &i))
{
/*
* Descend to existing node. (If in->allTheSame, the core code will
* ignore our nodeN specification here, but that's OK. We still
* have to provide the correct levelAdd and restDatum values, and
* those are the same regardless of which node gets chosen by core.)
*/
out->resultType = spgMatchNode;
out->result.matchNode.nodeN = i;
out->result.matchNode.levelAdd = commonLen + 1;
if (inSize - in->level - commonLen - 1 > 0)
out->result.matchNode.restDatum =
formTextDatum(inStr + in->level + commonLen + 1,
inSize - in->level - commonLen - 1);
else
out->result.matchNode.restDatum =
formTextDatum(NULL, 0);
}
else if (in->allTheSame)
{
/*
* Can't use AddNode action, so split the tuple. The upper tuple
* has the same prefix as before and uses an empty node label for
* the lower tuple. The lower tuple has no prefix and the same
* node labels as the original tuple.
*/
out->resultType = spgSplitTuple;
out->result.splitTuple.prefixHasPrefix = in->hasPrefix;
out->result.splitTuple.prefixPrefixDatum = in->prefixDatum;
out->result.splitTuple.nodeLabel = UInt8GetDatum('\0');
out->result.splitTuple.postfixHasPrefix = false;
}
else
{
/* Add a node for the not-previously-seen nodeChar value */
out->resultType = spgAddNode;
out->result.addNode.nodeLabel = UInt8GetDatum(nodeChar);
out->result.addNode.nodeN = i;
}
PG_RETURN_VOID();
}
/* qsort comparator to sort spgNodePtr structs by "c" */
static int
cmpNodePtr(const void *a, const void *b)
{
const spgNodePtr *aa = (const spgNodePtr *) a;
const spgNodePtr *bb = (const spgNodePtr *) b;
if (aa->c == bb->c)
return 0;
else if (aa->c > bb->c)
return 1;
else
return -1;
}
Datum
spg_text_picksplit(PG_FUNCTION_ARGS)
{
spgPickSplitIn *in = (spgPickSplitIn *) PG_GETARG_POINTER(0);
spgPickSplitOut *out = (spgPickSplitOut *) PG_GETARG_POINTER(1);
text *text0 = DatumGetTextPP(in->datums[0]);
int i,
commonLen;
spgNodePtr *nodes;
/* Identify longest common prefix, if any */
commonLen = VARSIZE_ANY_EXHDR(text0);
for (i = 1; i < in->nTuples && commonLen > 0; i++)
{
text *texti = DatumGetTextPP(in->datums[i]);
int tmp = commonPrefix(VARDATA_ANY(text0),
VARDATA_ANY(texti),
VARSIZE_ANY_EXHDR(text0),
VARSIZE_ANY_EXHDR(texti));
if (tmp < commonLen)
commonLen = tmp;
}
/*
* Limit the prefix length, if necessary, to ensure that the resulting
* inner tuple will fit on a page.
*/
commonLen = Min(commonLen, SPGIST_MAX_PREFIX_LENGTH);
/* Set node prefix to be that string, if it's not empty */
if (commonLen == 0)
{
out->hasPrefix = false;
}
else
{
out->hasPrefix = true;
out->prefixDatum = formTextDatum(VARDATA_ANY(text0), commonLen);
}
/* Extract the node label (first non-common byte) from each value */
nodes = (spgNodePtr *) palloc(sizeof(spgNodePtr) * in->nTuples);
for (i = 0; i < in->nTuples; i++)
{
text *texti = DatumGetTextPP(in->datums[i]);
if (commonLen < VARSIZE_ANY_EXHDR(texti))
nodes[i].c = *(uint8 *) (VARDATA_ANY(texti) + commonLen);
else
nodes[i].c = '\0'; /* use \0 if string is all common */
nodes[i].i = i;
nodes[i].d = in->datums[i];
}
/*
* Sort by label bytes so that we can group the values into nodes. This
* also ensures that the nodes are ordered by label value, allowing the
* use of binary search in searchChar.
*/
qsort(nodes, in->nTuples, sizeof(*nodes), cmpNodePtr);
/* And emit results */
out->nNodes = 0;
out->nodeLabels = (Datum *) palloc(sizeof(Datum) * in->nTuples);
out->mapTuplesToNodes = (int *) palloc(sizeof(int) * in->nTuples);
out->leafTupleDatums = (Datum *) palloc(sizeof(Datum) * in->nTuples);
for (i = 0; i < in->nTuples; i++)
{
text *texti = DatumGetTextPP(nodes[i].d);
Datum leafD;
if (i == 0 || nodes[i].c != nodes[i - 1].c)
{
out->nodeLabels[out->nNodes] = UInt8GetDatum(nodes[i].c);
out->nNodes++;
}
if (commonLen < VARSIZE_ANY_EXHDR(texti))
leafD = formTextDatum(VARDATA_ANY(texti) + commonLen + 1,
VARSIZE_ANY_EXHDR(texti) - commonLen - 1);
else
leafD = formTextDatum(NULL, 0);
out->leafTupleDatums[nodes[i].i] = leafD;
out->mapTuplesToNodes[nodes[i].i] = out->nNodes - 1;
}
PG_RETURN_VOID();
}
Datum
spg_text_inner_consistent(PG_FUNCTION_ARGS)
{
spgInnerConsistentIn *in = (spgInnerConsistentIn *) PG_GETARG_POINTER(0);
spgInnerConsistentOut *out = (spgInnerConsistentOut *) PG_GETARG_POINTER(1);
StrategyNumber strategy = in->strategy;
text *inText;
int inSize;
int i;
text *reconstrText = NULL;
int maxReconstrLen = 0;
text *prefixText = NULL;
int prefixSize = 0;
/*
* If it's a collation-aware operator, but the collation is C, we can
* treat it as non-collation-aware.
*/
if (strategy > 10 &&
lc_collate_is_c(PG_GET_COLLATION()))
strategy -= 10;
inText = DatumGetTextPP(in->query);
inSize = VARSIZE_ANY_EXHDR(inText);
/*
* Reconstruct values represented at this tuple, including parent data,
* prefix of this tuple if any, and the node label if any. in->level
* should be the length of the previously reconstructed value, and the
* number of bytes added here is prefixSize or prefixSize + 1.
*
* Note: we assume that in->reconstructedValue isn't toasted and doesn't
* have a short varlena header. This is okay because it must have been
* created by a previous invocation of this routine, and we always emit
* long-format reconstructed values.
*/
Assert(in->level == 0 ? DatumGetPointer(in->reconstructedValue) == NULL :
VARSIZE_ANY_EXHDR(DatumGetPointer(in->reconstructedValue)) == in->level);
maxReconstrLen = in->level + 1;
if (in->hasPrefix)
{
prefixText = DatumGetTextPP(in->prefixDatum);
prefixSize = VARSIZE_ANY_EXHDR(prefixText);
maxReconstrLen += prefixSize;
}
reconstrText = palloc(VARHDRSZ + maxReconstrLen);
SET_VARSIZE(reconstrText, VARHDRSZ + maxReconstrLen);
if (in->level)
memcpy(VARDATA(reconstrText),
VARDATA(DatumGetPointer(in->reconstructedValue)),
in->level);
if (prefixSize)
memcpy(((char *) VARDATA(reconstrText)) + in->level,
VARDATA_ANY(prefixText),
prefixSize);
/* last byte of reconstrText will be filled in below */
/*
* Scan the child nodes. For each one, complete the reconstructed value
* and see if it's consistent with the query. If so, emit an entry into
* the output arrays.
*/
out->nodeNumbers = (int *) palloc(sizeof(int) * in->nNodes);
out->levelAdds = (int *) palloc(sizeof(int) * in->nNodes);
out->reconstructedValues = (Datum *) palloc(sizeof(Datum) * in->nNodes);
out->nNodes = 0;
for (i = 0; i < in->nNodes; i++)
{
uint8 nodeChar = DatumGetUInt8(in->nodeLabels[i]);
int thisLen;
int r;
bool res = false;
/* If nodeChar is zero, don't include it in data */
if (nodeChar == '\0')
thisLen = maxReconstrLen - 1;
else
{
((char *) VARDATA(reconstrText))[maxReconstrLen - 1] = nodeChar;
thisLen = maxReconstrLen;
}
r = memcmp(VARDATA(reconstrText), VARDATA_ANY(inText),
Min(inSize, thisLen));
switch (strategy)
{
case BTLessStrategyNumber:
case BTLessEqualStrategyNumber:
if (r <= 0)
res = true;
break;
case BTEqualStrategyNumber:
if (r == 0 && inSize >= thisLen)
res = true;
break;
case BTGreaterEqualStrategyNumber:
case BTGreaterStrategyNumber:
if (r >= 0)
res = true;
break;
case BTLessStrategyNumber + 10:
case BTLessEqualStrategyNumber + 10:
case BTGreaterEqualStrategyNumber + 10:
case BTGreaterStrategyNumber + 10:
/*
* with non-C collation we need to traverse whole tree :-(
*/
res = true;
break;
default:
elog(ERROR, "unrecognized strategy number: %d",
in->strategy);
break;
}
if (res)
{
out->nodeNumbers[out->nNodes] = i;
out->levelAdds[out->nNodes] = thisLen - in->level;
SET_VARSIZE(reconstrText, VARHDRSZ + thisLen);
out->reconstructedValues[out->nNodes] =
datumCopy(PointerGetDatum(reconstrText), false, -1);
out->nNodes++;
}
}
PG_RETURN_VOID();
}
Datum
spg_text_leaf_consistent(PG_FUNCTION_ARGS)
{
spgLeafConsistentIn *in = (spgLeafConsistentIn *) PG_GETARG_POINTER(0);
spgLeafConsistentOut *out = (spgLeafConsistentOut *) PG_GETARG_POINTER(1);
StrategyNumber strategy = in->strategy;
text *query = DatumGetTextPP(in->query);
int level = in->level;
text *leafValue,
*reconstrValue = NULL;
char *fullValue;
int fullLen;
int queryLen;
int r;
bool res;
/* all tests are exact */
out->recheck = false;
leafValue = DatumGetTextPP(in->leafDatum);
if (DatumGetPointer(in->reconstructedValue))
reconstrValue = DatumGetTextP(in->reconstructedValue);
Assert(level == 0 ? reconstrValue == NULL :
VARSIZE_ANY_EXHDR(reconstrValue) == level);
fullLen = level + VARSIZE_ANY_EXHDR(leafValue);
queryLen = VARSIZE_ANY_EXHDR(query);
/* For equality, we needn't reconstruct fullValue if not same length */
if (strategy == BTEqualStrategyNumber && queryLen != fullLen)
PG_RETURN_BOOL(false);
/* Else, reconstruct the full string represented by this leaf tuple */
if (VARSIZE_ANY_EXHDR(leafValue) == 0 && level > 0)
{
fullValue = VARDATA(reconstrValue);
}
else
{
fullValue = palloc(fullLen);
if (level)
memcpy(fullValue, VARDATA(reconstrValue), level);
if (VARSIZE_ANY_EXHDR(leafValue) > 0)
memcpy(fullValue + level, VARDATA_ANY(leafValue),
VARSIZE_ANY_EXHDR(leafValue));
}
/* Run the appropriate type of comparison */
if (strategy > 10)
{
/* Collation-aware comparison */
strategy -= 10;
/* If asserts are enabled, verify encoding of reconstructed string */
Assert(pg_verifymbstr(fullValue, fullLen, false));
r = varstr_cmp(fullValue, Min(queryLen, fullLen),
VARDATA_ANY(query), Min(queryLen, fullLen),
PG_GET_COLLATION());
}
else
{
/* Non-collation-aware comparison */
r = memcmp(fullValue, VARDATA_ANY(query), Min(queryLen, fullLen));
}
if (r == 0)
{
if (queryLen > fullLen)
r = -1;
else if (queryLen < fullLen)
r = 1;
}
switch (strategy)
{
case BTLessStrategyNumber:
res = (r < 0);
break;
case BTLessEqualStrategyNumber:
res = (r <= 0);
break;
case BTEqualStrategyNumber:
res = (r == 0);
break;
case BTGreaterEqualStrategyNumber:
res = (r >= 0);
break;
case BTGreaterStrategyNumber:
res = (r > 0);
break;
default:
elog(ERROR, "unrecognized strategy number: %d", in->strategy);
res = false;
break;
}
PG_RETURN_BOOL(res);
}

View File

@ -0,0 +1,850 @@
/*-------------------------------------------------------------------------
*
* spgutils.c
* various support functions for SP-GiST
*
*
* Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/access/spgist/spgutils.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/genam.h"
#include "access/reloptions.h"
#include "access/spgist_private.h"
#include "access/transam.h"
#include "access/xact.h"
#include "storage/bufmgr.h"
#include "storage/indexfsm.h"
#include "storage/lmgr.h"
#include "utils/lsyscache.h"
/* Fill in a SpGistTypeDesc struct with info about the specified data type */
static void
fillTypeDesc(SpGistTypeDesc *desc, Oid type)
{
desc->type = type;
get_typlenbyval(type, &desc->attlen, &desc->attbyval);
}
/* Initialize SpGistState for working with the given index */
void
initSpGistState(SpGistState *state, Relation index)
{
Oid atttype;
spgConfigIn in;
/* SPGiST doesn't support multi-column indexes */
Assert(index->rd_att->natts == 1);
/*
* Get the actual data type of the indexed column from the index tupdesc.
* We pass this to the opclass config function so that polymorphic
* opclasses are possible.
*/
atttype = index->rd_att->attrs[0]->atttypid;
/* Get the config info for the opclass */
in.attType = atttype;
memset(&state->config, 0, sizeof(state->config));
FunctionCall2Coll(index_getprocinfo(index, 1, SPGIST_CONFIG_PROC),
index->rd_indcollation[0],
PointerGetDatum(&in),
PointerGetDatum(&state->config));
/* Get the information we need about each relevant datatype */
fillTypeDesc(&state->attType, atttype);
fillTypeDesc(&state->attPrefixType, state->config.prefixType);
fillTypeDesc(&state->attLabelType, state->config.labelType);
/* Get lookup info for opclass support procs */
fmgr_info_copy(&(state->chooseFn),
index_getprocinfo(index, 1, SPGIST_CHOOSE_PROC),
CurrentMemoryContext);
fmgr_info_copy(&(state->picksplitFn),
index_getprocinfo(index, 1, SPGIST_PICKSPLIT_PROC),
CurrentMemoryContext);
fmgr_info_copy(&(state->innerConsistentFn),
index_getprocinfo(index, 1, SPGIST_INNER_CONSISTENT_PROC),
CurrentMemoryContext);
fmgr_info_copy(&(state->leafConsistentFn),
index_getprocinfo(index, 1, SPGIST_LEAF_CONSISTENT_PROC),
CurrentMemoryContext);
/* Make workspace for constructing dead tuples */
state->deadTupleStorage = palloc0(SGDTSIZE);
/* Set XID to use in redirection tuples */
state->myXid = GetTopTransactionIdIfAny();
state->isBuild = false;
}
/*
* Allocate a new page (either by recycling, or by extending the index file).
*
* The returned buffer is already pinned and exclusive-locked.
* Caller is responsible for initializing the page by calling SpGistInitBuffer.
*/
Buffer
SpGistNewBuffer(Relation index)
{
Buffer buffer;
bool needLock;
/* First, try to get a page from FSM */
for (;;)
{
BlockNumber blkno = GetFreeIndexPage(index);
if (blkno == InvalidBlockNumber)
break; /* nothing known to FSM */
/*
* The root page shouldn't ever be listed in FSM, but just in case it
* is, ignore it.
*/
if (blkno == SPGIST_HEAD_BLKNO)
continue;
buffer = ReadBuffer(index, blkno);
/*
* We have to guard against the possibility that someone else already
* recycled this page; the buffer may be locked if so.
*/
if (ConditionalLockBuffer(buffer))
{
Page page = BufferGetPage(buffer);
if (PageIsNew(page))
return buffer; /* OK to use, if never initialized */
if (SpGistPageIsDeleted(page) || PageIsEmpty(page))
return buffer; /* OK to use */
LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
}
/* Can't use it, so release buffer and try again */
ReleaseBuffer(buffer);
}
/* Must extend the file */
needLock = !RELATION_IS_LOCAL(index);
if (needLock)
LockRelationForExtension(index, ExclusiveLock);
buffer = ReadBuffer(index, P_NEW);
LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
if (needLock)
UnlockRelationForExtension(index, ExclusiveLock);
return buffer;
}
/*
* Fetch local cache of lastUsedPages info, initializing it from the metapage
* if necessary
*/
static SpGistCache *
spgGetCache(Relation index)
{
SpGistCache *cache;
if (index->rd_amcache == NULL)
{
Buffer metabuffer;
SpGistMetaPageData *metadata;
cache = MemoryContextAlloc(index->rd_indexcxt,
sizeof(SpGistCache));
metabuffer = ReadBuffer(index, SPGIST_METAPAGE_BLKNO);
LockBuffer(metabuffer, BUFFER_LOCK_SHARE);
metadata = SpGistPageGetMeta(BufferGetPage(metabuffer));
if (metadata->magicNumber != SPGIST_MAGIC_NUMBER)
elog(ERROR, "index \"%s\" is not an SP-GiST index",
RelationGetRelationName(index));
*cache = metadata->lastUsedPages;
UnlockReleaseBuffer(metabuffer);
index->rd_amcache = cache;
}
else
{
cache = (SpGistCache *) index->rd_amcache;
}
return cache;
}
/*
* Update index metapage's lastUsedPages info from local cache, if possible
*
* Updating meta page isn't critical for index working, so
* 1 use ConditionalLockBuffer to improve concurrency
* 2 don't WAL-log metabuffer changes to decrease WAL traffic
*/
void
SpGistUpdateMetaPage(Relation index)
{
SpGistCache *cache = (SpGistCache *) index->rd_amcache;
if (cache != NULL)
{
Buffer metabuffer;
SpGistMetaPageData *metadata;
metabuffer = ReadBuffer(index, SPGIST_METAPAGE_BLKNO);
if (ConditionalLockBuffer(metabuffer))
{
metadata = SpGistPageGetMeta(BufferGetPage(metabuffer));
metadata->lastUsedPages = *cache;
MarkBufferDirty(metabuffer);
UnlockReleaseBuffer(metabuffer);
}
else
{
ReleaseBuffer(metabuffer);
}
}
}
/* Macro to select proper element of lastUsedPages cache depending on flags */
#define GET_LUP(c, f) (((f) & GBUF_LEAF) ? \
&(c)->leafPage : \
&(c)->innerPage[(f) & GBUF_PARITY_MASK])
/*
* Allocate and initialize a new buffer of the type and parity specified by
* flags. The returned buffer is already pinned and exclusive-locked.
*
* When requesting an inner page, if we get one with the wrong parity,
* we just release the buffer and try again. We will get a different page
* because GetFreeIndexPage will have marked the page used in FSM. The page
* is entered in our local lastUsedPages cache, so there's some hope of
* making use of it later in this session, but otherwise we rely on VACUUM
* to eventually re-enter the page in FSM, making it available for recycling.
* Note that such a page does not get marked dirty here, so unless it's used
* fairly soon, the buffer will just get discarded and the page will remain
* as it was on disk.
*
* When we return a buffer to the caller, the page is *not* entered into
* the lastUsedPages cache; we expect the caller will do so after it's taken
* whatever space it will use. This is because after the caller has used up
* some space, the page might have less space than whatever was cached already
* so we'd rather not trash the old cache entry.
*/
static Buffer
allocNewBuffer(Relation index, int flags)
{
SpGistCache *cache = spgGetCache(index);
for (;;)
{
Buffer buffer;
buffer = SpGistNewBuffer(index);
SpGistInitBuffer(buffer, (flags & GBUF_LEAF) ? SPGIST_LEAF : 0);
if (flags & GBUF_LEAF)
{
/* Leaf pages have no parity concerns, so just use it */
return buffer;
}
else
{
BlockNumber blkno = BufferGetBlockNumber(buffer);
int blkParity = blkno % 3;
if ((flags & GBUF_PARITY_MASK) == blkParity)
{
/* Page has right parity, use it */
return buffer;
}
else
{
/* Page has wrong parity, record it in cache and try again */
cache->innerPage[blkParity].blkno = blkno;
cache->innerPage[blkParity].freeSpace =
PageGetExactFreeSpace(BufferGetPage(buffer));
UnlockReleaseBuffer(buffer);
}
}
}
}
/*
* Get a buffer of the type and parity specified by flags, having at least
* as much free space as indicated by needSpace. We use the lastUsedPages
* cache to assign the same buffer previously requested when possible.
* The returned buffer is already pinned and exclusive-locked.
*
* *isNew is set true if the page was initialized here, false if it was
* already valid.
*/
Buffer
SpGistGetBuffer(Relation index, int flags, int needSpace, bool *isNew)
{
SpGistCache *cache = spgGetCache(index);
SpGistLastUsedPage *lup;
/* Bail out if even an empty page wouldn't meet the demand */
if (needSpace > SPGIST_PAGE_CAPACITY)
elog(ERROR, "desired SPGiST tuple size is too big");
/*
* If possible, increase the space request to include relation's
* fillfactor. This ensures that when we add unrelated tuples to a page,
* we try to keep 100-fillfactor% available for adding tuples that are
* related to the ones already on it. But fillfactor mustn't cause an
* error for requests that would otherwise be legal.
*/
needSpace += RelationGetTargetPageFreeSpace(index,
SPGIST_DEFAULT_FILLFACTOR);
needSpace = Min(needSpace, SPGIST_PAGE_CAPACITY);
/* Get the cache entry for this flags setting */
lup = GET_LUP(cache, flags);
/* If we have nothing cached, just turn it over to allocNewBuffer */
if (lup->blkno == InvalidBlockNumber)
{
*isNew = true;
return allocNewBuffer(index, flags);
}
/* root page should never be in cache */
Assert(lup->blkno != SPGIST_HEAD_BLKNO);
/* If cached freeSpace isn't enough, don't bother looking at the page */
if (lup->freeSpace >= needSpace)
{
Buffer buffer;
Page page;
buffer = ReadBuffer(index, lup->blkno);
if (!ConditionalLockBuffer(buffer))
{
/*
* buffer is locked by another process, so return a new buffer
*/
ReleaseBuffer(buffer);
*isNew = true;
return allocNewBuffer(index, flags);
}
page = BufferGetPage(buffer);
if (PageIsNew(page) || SpGistPageIsDeleted(page) || PageIsEmpty(page))
{
/* OK to initialize the page */
SpGistInitBuffer(buffer, (flags & GBUF_LEAF) ? SPGIST_LEAF : 0);
lup->freeSpace = PageGetExactFreeSpace(page) - needSpace;
*isNew = true;
return buffer;
}
/*
* Check that page is of right type and has enough space. We must
* recheck this since our cache isn't necessarily up to date.
*/
if ((flags & GBUF_LEAF) ? SpGistPageIsLeaf(page) :
!SpGistPageIsLeaf(page))
{
int freeSpace = PageGetExactFreeSpace(page);
if (freeSpace >= needSpace)
{
/* Success, update freespace info and return the buffer */
lup->freeSpace = freeSpace - needSpace;
*isNew = false;
return buffer;
}
}
/*
* fallback to allocation of new buffer
*/
UnlockReleaseBuffer(buffer);
}
/* No success with cache, so return a new buffer */
*isNew = true;
return allocNewBuffer(index, flags);
}
/*
* Update lastUsedPages cache when done modifying a page.
*
* We update the appropriate cache entry if it already contained this page
* (its freeSpace is likely obsolete), or if this page has more space than
* whatever we had cached.
*/
void
SpGistSetLastUsedPage(Relation index, Buffer buffer)
{
SpGistCache *cache = spgGetCache(index);
SpGistLastUsedPage *lup;
int freeSpace;
Page page = BufferGetPage(buffer);
BlockNumber blkno = BufferGetBlockNumber(buffer);
int flags;
/* Never enter the root page in cache, though */
if (blkno == SPGIST_HEAD_BLKNO)
return;
if (SpGistPageIsLeaf(page))
flags = GBUF_LEAF;
else
flags = GBUF_INNER_PARITY(blkno);
lup = GET_LUP(cache, flags);
freeSpace = PageGetExactFreeSpace(page);
if (lup->blkno == InvalidBlockNumber || lup->blkno == blkno ||
lup->freeSpace < freeSpace)
{
lup->blkno = blkno;
lup->freeSpace = freeSpace;
}
}
/*
* Initialize an SPGiST page to empty, with specified flags
*/
void
SpGistInitPage(Page page, uint16 f)
{
SpGistPageOpaque opaque;
PageInit(page, BLCKSZ, MAXALIGN(sizeof(SpGistPageOpaqueData)));
opaque = SpGistPageGetOpaque(page);
memset(opaque, 0, sizeof(SpGistPageOpaqueData));
opaque->flags = f;
opaque->spgist_page_id = SPGIST_PAGE_ID;
}
/*
* Initialize a buffer's page to empty, with specified flags
*/
void
SpGistInitBuffer(Buffer b, uint16 f)
{
Assert(BufferGetPageSize(b) == BLCKSZ);
SpGistInitPage(BufferGetPage(b), f);
}
/*
* Initialize metadata page
*/
void
SpGistInitMetapage(Page page)
{
SpGistMetaPageData *metadata;
SpGistInitPage(page, SPGIST_META);
metadata = SpGistPageGetMeta(page);
memset(metadata, 0, sizeof(SpGistMetaPageData));
metadata->magicNumber = SPGIST_MAGIC_NUMBER;
/* initialize last-used-page cache to empty */
metadata->lastUsedPages.innerPage[0].blkno = InvalidBlockNumber;
metadata->lastUsedPages.innerPage[1].blkno = InvalidBlockNumber;
metadata->lastUsedPages.innerPage[2].blkno = InvalidBlockNumber;
metadata->lastUsedPages.leafPage.blkno = InvalidBlockNumber;
}
/*
* reloptions processing for SPGiST
*/
Datum
spgoptions(PG_FUNCTION_ARGS)
{
Datum reloptions = PG_GETARG_DATUM(0);
bool validate = PG_GETARG_BOOL(1);
bytea *result;
result = default_reloptions(reloptions, validate, RELOPT_KIND_SPGIST);
if (result)
PG_RETURN_BYTEA_P(result);
PG_RETURN_NULL();
}
/*
* Get the space needed to store a datum of the indicated type.
* Note the result is already rounded up to a MAXALIGN boundary.
* Also, we follow the SPGiST convention that pass-by-val types are
* just stored in their Datum representation (compare memcpyDatum).
*/
unsigned int
SpGistGetTypeSize(SpGistTypeDesc *att, Datum datum)
{
unsigned int size;
if (att->attbyval)
size = sizeof(Datum);
else if (att->attlen > 0)
size = att->attlen;
else
size = VARSIZE_ANY(datum);
return MAXALIGN(size);
}
/*
* Copy the given datum to *target
*/
static void
memcpyDatum(void *target, SpGistTypeDesc *att, Datum datum)
{
unsigned int size;
if (att->attbyval)
{
memcpy(target, &datum, sizeof(Datum));
}
else
{
size = (att->attlen > 0) ? att->attlen : VARSIZE_ANY(datum);
memcpy(target, DatumGetPointer(datum), size);
}
}
/*
* Construct a leaf tuple containing the given heap TID and datum value
*/
SpGistLeafTuple
spgFormLeafTuple(SpGistState *state, ItemPointer heapPtr, Datum datum)
{
SpGistLeafTuple tup;
unsigned int size;
/* compute space needed (note result is already maxaligned) */
size = SGLTHDRSZ + SpGistGetTypeSize(&state->attType, datum);
/*
* Ensure that we can replace the tuple with a dead tuple later. This
* test is unnecessary given current tuple layouts, but let's be safe.
*/
if (size < SGDTSIZE)
size = SGDTSIZE;
/* OK, form the tuple */
tup = (SpGistLeafTuple) palloc0(size);
tup->size = size;
tup->nextOffset = InvalidOffsetNumber;
tup->heapPtr = *heapPtr;
memcpyDatum(SGLTDATAPTR(tup), &state->attType, datum);
return tup;
}
/*
* Construct a node (to go into an inner tuple) containing the given label
*
* Note that the node's downlink is just set invalid here. Caller will fill
* it in later.
*/
SpGistNodeTuple
spgFormNodeTuple(SpGistState *state, Datum label, bool isnull)
{
SpGistNodeTuple tup;
unsigned int size;
unsigned short infomask = 0;
/* compute space needed (note result is already maxaligned) */
size = SGNTHDRSZ;
if (!isnull)
size += SpGistGetTypeSize(&state->attLabelType, label);
/*
* Here we make sure that the size will fit in the field reserved for it
* in t_info.
*/
if ((size & INDEX_SIZE_MASK) != size)
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("index row requires %lu bytes, maximum size is %lu",
(unsigned long) size,
(unsigned long) INDEX_SIZE_MASK)));
tup = (SpGistNodeTuple) palloc0(size);
if (isnull)
infomask |= INDEX_NULL_MASK;
/* we don't bother setting the INDEX_VAR_MASK bit */
infomask |= size;
tup->t_info = infomask;
/* The TID field will be filled in later */
ItemPointerSetInvalid(&tup->t_tid);
if (!isnull)
memcpyDatum(SGNTDATAPTR(tup), &state->attLabelType, label);
return tup;
}
/*
* Construct an inner tuple containing the given prefix and node array
*/
SpGistInnerTuple
spgFormInnerTuple(SpGistState *state, bool hasPrefix, Datum prefix,
int nNodes, SpGistNodeTuple *nodes)
{
SpGistInnerTuple tup;
unsigned int size;
unsigned int prefixSize;
int i;
char *ptr;
/* Compute size needed */
if (hasPrefix)
prefixSize = SpGistGetTypeSize(&state->attPrefixType, prefix);
else
prefixSize = 0;
size = SGITHDRSZ + prefixSize;
/* Note: we rely on node tuple sizes to be maxaligned already */
for (i = 0; i < nNodes; i++)
size += IndexTupleSize(nodes[i]);
/*
* Ensure that we can replace the tuple with a dead tuple later. This
* test is unnecessary given current tuple layouts, but let's be safe.
*/
if (size < SGDTSIZE)
size = SGDTSIZE;
/*
* Inner tuple should be small enough to fit on a page
*/
if (size > SPGIST_PAGE_CAPACITY - sizeof(ItemIdData))
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("SPGiST inner tuple size %lu exceeds maximum %lu",
(unsigned long) size,
(unsigned long) (SPGIST_PAGE_CAPACITY - sizeof(ItemIdData))),
errhint("Values larger than a buffer page cannot be indexed.")));
/*
* Check for overflow of header fields --- probably can't fail if the
* above succeeded, but let's be paranoid
*/
if (size > SGITMAXSIZE ||
prefixSize > SGITMAXPREFIXSIZE ||
nNodes > SGITMAXNNODES)
elog(ERROR, "SPGiST inner tuple header field is too small");
/* OK, form the tuple */
tup = (SpGistInnerTuple) palloc0(size);
tup->nNodes = nNodes;
tup->prefixSize = prefixSize;
tup->size = size;
if (hasPrefix)
memcpyDatum(SGITDATAPTR(tup), &state->attPrefixType, prefix);
ptr = (char *) SGITNODEPTR(tup);
for (i = 0; i < nNodes; i++)
{
SpGistNodeTuple node = nodes[i];
memcpy(ptr, node, IndexTupleSize(node));
ptr += IndexTupleSize(node);
}
return tup;
}
/*
* Construct a "dead" tuple to replace a tuple being deleted.
*
* The state can be SPGIST_REDIRECT, SPGIST_DEAD, or SPGIST_PLACEHOLDER.
* For a REDIRECT tuple, a pointer (blkno+offset) must be supplied, and
* the xid field is filled in automatically.
*
* This is called in critical sections, so we don't use palloc; the tuple
* is built in preallocated storage. It should be copied before another
* call with different parameters can occur.
*/
SpGistDeadTuple
spgFormDeadTuple(SpGistState *state, int tupstate,
BlockNumber blkno, OffsetNumber offnum)
{
SpGistDeadTuple tuple = (SpGistDeadTuple) state->deadTupleStorage;
tuple->tupstate = tupstate;
tuple->size = SGDTSIZE;
tuple->nextOffset = InvalidOffsetNumber;
if (tupstate == SPGIST_REDIRECT)
{
ItemPointerSet(&tuple->pointer, blkno, offnum);
tuple->xid = state->myXid;
}
else
{
ItemPointerSetInvalid(&tuple->pointer);
tuple->xid = InvalidTransactionId;
}
return tuple;
}
/*
* Extract the label datums of the nodes within innerTuple
*
* Returns NULL if label datums are NULLs
*/
Datum *
spgExtractNodeLabels(SpGistState *state, SpGistInnerTuple innerTuple)
{
Datum *nodeLabels;
int nullcount = 0;
int i;
SpGistNodeTuple node;
nodeLabels = (Datum *) palloc(sizeof(Datum) * innerTuple->nNodes);
SGITITERATE(innerTuple, i, node)
{
if (IndexTupleHasNulls(node))
nullcount++;
else
nodeLabels[i] = SGNTDATUM(node, state);
}
if (nullcount == innerTuple->nNodes)
{
/* They're all null, so just return NULL */
pfree(nodeLabels);
return NULL;
}
if (nullcount != 0)
elog(ERROR, "some but not all node labels are null in SPGiST inner tuple");
return nodeLabels;
}
/*
* Add a new item to the page, replacing a PLACEHOLDER item if possible.
* Return the location it's inserted at, or InvalidOffsetNumber on failure.
*
* If startOffset isn't NULL, we start searching for placeholders at
* *startOffset, and update that to the next place to search. This is just
* an optimization for repeated insertions.
*
* If errorOK is false, we throw error when there's not enough room,
* rather than returning InvalidOffsetNumber.
*/
OffsetNumber
SpGistPageAddNewItem(SpGistState *state, Page page, Item item, Size size,
OffsetNumber *startOffset, bool errorOK)
{
SpGistPageOpaque opaque = SpGistPageGetOpaque(page);
OffsetNumber i,
maxoff,
offnum;
if (opaque->nPlaceholder > 0 &&
PageGetExactFreeSpace(page) + SGDTSIZE >= MAXALIGN(size))
{
/* Try to replace a placeholder */
maxoff = PageGetMaxOffsetNumber(page);
offnum = InvalidOffsetNumber;
for (;;)
{
if (startOffset && *startOffset != InvalidOffsetNumber)
i = *startOffset;
else
i = FirstOffsetNumber;
for (; i <= maxoff; i++)
{
SpGistDeadTuple it = (SpGistDeadTuple) PageGetItem(page,
PageGetItemId(page, i));
if (it->tupstate == SPGIST_PLACEHOLDER)
{
offnum = i;
break;
}
}
/* Done if we found a placeholder */
if (offnum != InvalidOffsetNumber)
break;
if (startOffset && *startOffset != InvalidOffsetNumber)
{
/* Hint was no good, re-search from beginning */
*startOffset = InvalidOffsetNumber;
continue;
}
/* Hmm, no placeholder found? */
opaque->nPlaceholder = 0;
break;
}
if (offnum != InvalidOffsetNumber)
{
/* Replace the placeholder tuple */
PageIndexTupleDelete(page, offnum);
offnum = PageAddItem(page, item, size, offnum, false, false);
/*
* We should not have failed given the size check at the top of
* the function, but test anyway. If we did fail, we must PANIC
* because we've already deleted the placeholder tuple, and
* there's no other way to keep the damage from getting to disk.
*/
if (offnum != InvalidOffsetNumber)
{
Assert(opaque->nPlaceholder > 0);
opaque->nPlaceholder--;
if (startOffset)
*startOffset = offnum + 1;
}
else
elog(PANIC, "failed to add item of size %u to SPGiST index page",
size);
return offnum;
}
}
/* No luck in replacing a placeholder, so just add it to the page */
offnum = PageAddItem(page, item, size,
InvalidOffsetNumber, false, false);
if (offnum == InvalidOffsetNumber && !errorOK)
elog(ERROR, "failed to add item of size %u to SPGiST index page",
size);
return offnum;
}

View File

@ -0,0 +1,755 @@
/*-------------------------------------------------------------------------
*
* spgvacuum.c
* vacuum for SP-GiST
*
*
* Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/access/spgist/spgvacuum.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/genam.h"
#include "access/spgist_private.h"
#include "access/transam.h"
#include "catalog/storage.h"
#include "commands/vacuum.h"
#include "miscadmin.h"
#include "storage/bufmgr.h"
#include "storage/indexfsm.h"
#include "storage/lmgr.h"
#include "storage/procarray.h"
/* local state for vacuum operations */
typedef struct spgBulkDeleteState
{
/* Parameters passed in to spgvacuumscan */
IndexVacuumInfo *info;
IndexBulkDeleteResult *stats;
IndexBulkDeleteCallback callback;
void *callback_state;
/* Additional working state */
SpGistState spgstate;
TransactionId OldestXmin;
BlockNumber lastFilledBlock;
} spgBulkDeleteState;
/*
* Vacuum a regular (non-root) leaf page
*
* We must delete tuples that are targeted for deletion by the VACUUM,
* but not move any tuples that are referenced by outside links; we assume
* those are the ones that are heads of chains.
*/
static void
vacuumLeafPage(spgBulkDeleteState *bds, Relation index, Buffer buffer)
{
Page page = BufferGetPage(buffer);
spgxlogVacuumLeaf xlrec;
XLogRecData rdata[8];
OffsetNumber toDead[MaxIndexTuplesPerPage];
OffsetNumber toPlaceholder[MaxIndexTuplesPerPage];
OffsetNumber moveSrc[MaxIndexTuplesPerPage];
OffsetNumber moveDest[MaxIndexTuplesPerPage];
OffsetNumber chainSrc[MaxIndexTuplesPerPage];
OffsetNumber chainDest[MaxIndexTuplesPerPage];
OffsetNumber predecessor[MaxIndexTuplesPerPage + 1];
bool deletable[MaxIndexTuplesPerPage + 1];
int nDeletable;
OffsetNumber i,
max = PageGetMaxOffsetNumber(page);
memset(predecessor, 0, sizeof(predecessor));
memset(deletable, 0, sizeof(deletable));
nDeletable = 0;
/* Scan page, identify tuples to delete, accumulate stats */
for (i = FirstOffsetNumber; i <= max; i++)
{
SpGistLeafTuple lt;
lt = (SpGistLeafTuple) PageGetItem(page,
PageGetItemId(page, i));
if (lt->tupstate == SPGIST_LIVE)
{
Assert(ItemPointerIsValid(&lt->heapPtr));
if (bds->callback(&lt->heapPtr, bds->callback_state))
{
bds->stats->tuples_removed += 1;
deletable[i] = true;
nDeletable++;
}
else
{
bds->stats->num_index_tuples += 1;
}
/* Form predecessor map, too */
if (lt->nextOffset != InvalidOffsetNumber)
{
/* paranoia about corrupted chain links */
if (lt->nextOffset < FirstOffsetNumber ||
lt->nextOffset > max ||
predecessor[lt->nextOffset] != InvalidOffsetNumber)
elog(ERROR, "inconsistent tuple chain links in page %u of index \"%s\"",
BufferGetBlockNumber(buffer),
RelationGetRelationName(index));
predecessor[lt->nextOffset] = i;
}
}
else
{
Assert(lt->nextOffset == InvalidOffsetNumber);
}
}
if (nDeletable == 0)
return; /* nothing more to do */
/*----------
* Figure out exactly what we have to do. We do this separately from
* actually modifying the page, mainly so that we have a representation
* that can be dumped into WAL and then the replay code can do exactly
* the same thing. The output of this step consists of six arrays
* describing four kinds of operations, to be performed in this order:
*
* toDead[]: tuple numbers to be replaced with DEAD tuples
* toPlaceholder[]: tuple numbers to be replaced with PLACEHOLDER tuples
* moveSrc[]: tuple numbers that need to be relocated to another offset
* (replacing the tuple there) and then replaced with PLACEHOLDER tuples
* moveDest[]: new locations for moveSrc tuples
* chainSrc[]: tuple numbers whose chain links (nextOffset) need updates
* chainDest[]: new values of nextOffset for chainSrc members
*
* It's easiest to figure out what we have to do by processing tuple
* chains, so we iterate over all the tuples (not just the deletable
* ones!) to identify chain heads, then chase down each chain and make
* work item entries for deletable tuples within the chain.
*----------
*/
xlrec.nDead = xlrec.nPlaceholder = xlrec.nMove = xlrec.nChain = 0;
for (i = FirstOffsetNumber; i <= max; i++)
{
SpGistLeafTuple head;
bool interveningDeletable;
OffsetNumber prevLive;
OffsetNumber j;
head = (SpGistLeafTuple) PageGetItem(page,
PageGetItemId(page, i));
if (head->tupstate != SPGIST_LIVE)
continue; /* can't be a chain member */
if (predecessor[i] != 0)
continue; /* not a chain head */
/* initialize ... */
interveningDeletable = false;
prevLive = deletable[i] ? InvalidOffsetNumber : i;
/* scan down the chain ... */
j = head->nextOffset;
while (j != InvalidOffsetNumber)
{
SpGistLeafTuple lt;
lt = (SpGistLeafTuple) PageGetItem(page,
PageGetItemId(page, j));
if (lt->tupstate != SPGIST_LIVE)
{
/* all tuples in chain should be live */
elog(ERROR, "unexpected SPGiST tuple state: %d",
lt->tupstate);
}
if (deletable[j])
{
/* This tuple should be replaced by a placeholder */
toPlaceholder[xlrec.nPlaceholder] = j;
xlrec.nPlaceholder++;
/* previous live tuple's chain link will need an update */
interveningDeletable = true;
}
else if (prevLive == InvalidOffsetNumber)
{
/*
* This is the first live tuple in the chain. It has
* to move to the head position.
*/
moveSrc[xlrec.nMove] = j;
moveDest[xlrec.nMove] = i;
xlrec.nMove++;
/* Chain updates will be applied after the move */
prevLive = i;
interveningDeletable = false;
}
else
{
/*
* Second or later live tuple. Arrange to re-chain it to the
* previous live one, if there was a gap.
*/
if (interveningDeletable)
{
chainSrc[xlrec.nChain] = prevLive;
chainDest[xlrec.nChain] = j;
xlrec.nChain++;
}
prevLive = j;
interveningDeletable = false;
}
j = lt->nextOffset;
}
if (prevLive == InvalidOffsetNumber)
{
/* The chain is entirely removable, so we need a DEAD tuple */
toDead[xlrec.nDead] = i;
xlrec.nDead++;
}
else if (interveningDeletable)
{
/* One or more deletions at end of chain, so close it off */
chainSrc[xlrec.nChain] = prevLive;
chainDest[xlrec.nChain] = InvalidOffsetNumber;
xlrec.nChain++;
}
}
/* sanity check ... */
if (nDeletable != xlrec.nDead + xlrec.nPlaceholder + xlrec.nMove)
elog(ERROR, "inconsistent counts of deletable tuples");
/* Prepare WAL record */
xlrec.node = index->rd_node;
xlrec.blkno = BufferGetBlockNumber(buffer);
STORE_STATE(&bds->spgstate, xlrec.stateSrc);
ACCEPT_RDATA_DATA(&xlrec, sizeof(xlrec), 0);
/* sizeof(xlrec) should be a multiple of sizeof(OffsetNumber) */
ACCEPT_RDATA_DATA(toDead, sizeof(OffsetNumber) * xlrec.nDead, 1);
ACCEPT_RDATA_DATA(toPlaceholder, sizeof(OffsetNumber) * xlrec.nPlaceholder, 2);
ACCEPT_RDATA_DATA(moveSrc, sizeof(OffsetNumber) * xlrec.nMove, 3);
ACCEPT_RDATA_DATA(moveDest, sizeof(OffsetNumber) * xlrec.nMove, 4);
ACCEPT_RDATA_DATA(chainSrc, sizeof(OffsetNumber) * xlrec.nChain, 5);
ACCEPT_RDATA_DATA(chainDest, sizeof(OffsetNumber) * xlrec.nChain, 6);
ACCEPT_RDATA_BUFFER(buffer, 7);
/* Do the updates */
START_CRIT_SECTION();
spgPageIndexMultiDelete(&bds->spgstate, page,
toDead, xlrec.nDead,
SPGIST_DEAD, SPGIST_DEAD,
InvalidBlockNumber, InvalidOffsetNumber);
spgPageIndexMultiDelete(&bds->spgstate, page,
toPlaceholder, xlrec.nPlaceholder,
SPGIST_PLACEHOLDER, SPGIST_PLACEHOLDER,
InvalidBlockNumber, InvalidOffsetNumber);
/*
* We implement the move step by swapping the item pointers of the
* source and target tuples, then replacing the newly-source tuples
* with placeholders. This is perhaps unduly friendly with the page
* data representation, but it's fast and doesn't risk page overflow
* when a tuple to be relocated is large.
*/
for (i = 0; i < xlrec.nMove; i++)
{
ItemId idSrc = PageGetItemId(page, moveSrc[i]);
ItemId idDest = PageGetItemId(page, moveDest[i]);
ItemIdData tmp;
tmp = *idSrc;
*idSrc = *idDest;
*idDest = tmp;
}
spgPageIndexMultiDelete(&bds->spgstate, page,
moveSrc, xlrec.nMove,
SPGIST_PLACEHOLDER, SPGIST_PLACEHOLDER,
InvalidBlockNumber, InvalidOffsetNumber);
for (i = 0; i < xlrec.nChain; i++)
{
SpGistLeafTuple lt;
lt = (SpGistLeafTuple) PageGetItem(page,
PageGetItemId(page, chainSrc[i]));
Assert(lt->tupstate == SPGIST_LIVE);
lt->nextOffset = chainDest[i];
}
MarkBufferDirty(buffer);
if (RelationNeedsWAL(index))
{
XLogRecPtr recptr;
recptr = XLogInsert(RM_SPGIST_ID, XLOG_SPGIST_VACUUM_LEAF, rdata);
PageSetLSN(page, recptr);
PageSetTLI(page, ThisTimeLineID);
}
END_CRIT_SECTION();
}
/*
* Vacuum the root page when it is a leaf
*
* On the root, we just delete any dead leaf tuples; no fancy business
*/
static void
vacuumLeafRoot(spgBulkDeleteState *bds, Relation index, Buffer buffer)
{
Page page = BufferGetPage(buffer);
spgxlogVacuumRoot xlrec;
XLogRecData rdata[3];
OffsetNumber toDelete[MaxIndexTuplesPerPage];
OffsetNumber i,
max = PageGetMaxOffsetNumber(page);
xlrec.nDelete = 0;
/* Scan page, identify tuples to delete, accumulate stats */
for (i = FirstOffsetNumber; i <= max; i++)
{
SpGistLeafTuple lt;
lt = (SpGistLeafTuple) PageGetItem(page,
PageGetItemId(page, i));
if (lt->tupstate == SPGIST_LIVE)
{
Assert(ItemPointerIsValid(&lt->heapPtr));
if (bds->callback(&lt->heapPtr, bds->callback_state))
{
bds->stats->tuples_removed += 1;
toDelete[xlrec.nDelete] = i;
xlrec.nDelete++;
}
else
{
bds->stats->num_index_tuples += 1;
}
}
else
{
/* all tuples on root should be live */
elog(ERROR, "unexpected SPGiST tuple state: %d",
lt->tupstate);
}
}
if (xlrec.nDelete == 0)
return; /* nothing more to do */
/* Prepare WAL record */
xlrec.node = index->rd_node;
STORE_STATE(&bds->spgstate, xlrec.stateSrc);
ACCEPT_RDATA_DATA(&xlrec, sizeof(xlrec), 0);
/* sizeof(xlrec) should be a multiple of sizeof(OffsetNumber) */
ACCEPT_RDATA_DATA(toDelete, sizeof(OffsetNumber) * xlrec.nDelete, 1);
ACCEPT_RDATA_BUFFER(buffer, 2);
/* Do the update */
START_CRIT_SECTION();
/* The tuple numbers are in order, so we can use PageIndexMultiDelete */
PageIndexMultiDelete(page, toDelete, xlrec.nDelete);
MarkBufferDirty(buffer);
if (RelationNeedsWAL(index))
{
XLogRecPtr recptr;
recptr = XLogInsert(RM_SPGIST_ID, XLOG_SPGIST_VACUUM_ROOT, rdata);
PageSetLSN(page, recptr);
PageSetTLI(page, ThisTimeLineID);
}
END_CRIT_SECTION();
}
/*
* Clean up redirect and placeholder tuples on the given page
*
* Redirect tuples can be marked placeholder once they're old enough.
* Placeholder tuples can be removed if it won't change the offsets of
* non-placeholder ones.
*
* Unlike the routines above, this works on both leaf and inner pages.
*/
static void
vacuumRedirectAndPlaceholder(Relation index, Buffer buffer,
TransactionId OldestXmin)
{
Page page = BufferGetPage(buffer);
SpGistPageOpaque opaque = SpGistPageGetOpaque(page);
OffsetNumber i,
max = PageGetMaxOffsetNumber(page),
firstPlaceholder = InvalidOffsetNumber;
bool hasNonPlaceholder = false;
bool hasUpdate = false;
OffsetNumber itemToPlaceholder[MaxIndexTuplesPerPage];
OffsetNumber itemnos[MaxIndexTuplesPerPage];
spgxlogVacuumRedirect xlrec;
XLogRecData rdata[3];
xlrec.node = index->rd_node;
xlrec.blkno = BufferGetBlockNumber(buffer);
xlrec.nToPlaceholder = 0;
START_CRIT_SECTION();
/*
* Scan backwards to convert old redirection tuples to placeholder tuples,
* and identify location of last non-placeholder tuple while at it.
*/
for (i = max;
i >= FirstOffsetNumber &&
(opaque->nRedirection > 0 || !hasNonPlaceholder);
i--)
{
SpGistDeadTuple dt;
dt = (SpGistDeadTuple) PageGetItem(page, PageGetItemId(page, i));
if (dt->tupstate == SPGIST_REDIRECT &&
TransactionIdPrecedes(dt->xid, OldestXmin))
{
dt->tupstate = SPGIST_PLACEHOLDER;
Assert(opaque->nRedirection > 0);
opaque->nRedirection--;
opaque->nPlaceholder++;
ItemPointerSetInvalid(&dt->pointer);
itemToPlaceholder[xlrec.nToPlaceholder] = i;
xlrec.nToPlaceholder++;
hasUpdate = true;
}
if (dt->tupstate == SPGIST_PLACEHOLDER)
{
if (!hasNonPlaceholder)
firstPlaceholder = i;
}
else
{
hasNonPlaceholder = true;
}
}
/*
* Any placeholder tuples at the end of page can safely be removed. We
* can't remove ones before the last non-placeholder, though, because we
* can't alter the offset numbers of non-placeholder tuples.
*/
if (firstPlaceholder != InvalidOffsetNumber)
{
/*
* We do not store this array to rdata because it's easy to recreate.
*/
for (i = firstPlaceholder; i <= max; i++)
itemnos[i - firstPlaceholder] = i;
i = max - firstPlaceholder + 1;
Assert(opaque->nPlaceholder >= i);
opaque->nPlaceholder -= i;
/* The array is surely sorted, so can use PageIndexMultiDelete */
PageIndexMultiDelete(page, itemnos, i);
hasUpdate = true;
}
xlrec.firstPlaceholder = firstPlaceholder;
if (hasUpdate)
MarkBufferDirty(buffer);
if (hasUpdate && RelationNeedsWAL(index))
{
XLogRecPtr recptr;
ACCEPT_RDATA_DATA(&xlrec, sizeof(xlrec), 0);
ACCEPT_RDATA_DATA(itemToPlaceholder, sizeof(OffsetNumber) * xlrec.nToPlaceholder, 1);
ACCEPT_RDATA_BUFFER(buffer, 2);
recptr = XLogInsert(RM_SPGIST_ID, XLOG_SPGIST_VACUUM_REDIRECT, rdata);
PageSetLSN(page, recptr);
PageSetTLI(page, ThisTimeLineID);
}
END_CRIT_SECTION();
}
/*
* Process one page during a bulkdelete scan
*/
static void
spgvacuumpage(spgBulkDeleteState *bds, BlockNumber blkno)
{
Relation index = bds->info->index;
Buffer buffer;
Page page;
/* call vacuum_delay_point while not holding any buffer lock */
vacuum_delay_point();
buffer = ReadBufferExtended(index, MAIN_FORKNUM, blkno,
RBM_NORMAL, bds->info->strategy);
LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
page = (Page) BufferGetPage(buffer);
if (PageIsNew(page))
{
/*
* We found an all-zero page, which could happen if the database
* crashed just after extending the file. Initialize and recycle it.
*/
SpGistInitBuffer(buffer, 0);
SpGistPageSetDeleted(page);
/* We don't bother to WAL-log this action; easy to redo */
MarkBufferDirty(buffer);
}
else if (SpGistPageIsDeleted(page))
{
/* nothing to do */
}
else if (SpGistPageIsLeaf(page))
{
if (blkno == SPGIST_HEAD_BLKNO)
{
vacuumLeafRoot(bds, index, buffer);
/* no need for vacuumRedirectAndPlaceholder */
}
else
{
vacuumLeafPage(bds, index, buffer);
vacuumRedirectAndPlaceholder(index, buffer, bds->OldestXmin);
}
}
else
{
/* inner page */
vacuumRedirectAndPlaceholder(index, buffer, bds->OldestXmin);
}
/*
* The root page must never be deleted, nor marked as available in FSM,
* because we don't want it ever returned by a search for a place to
* put a new tuple. Otherwise, check for empty/deletable page, and
* make sure FSM knows about it.
*/
if (blkno != SPGIST_HEAD_BLKNO)
{
/* If page is now empty, mark it deleted */
if (PageIsEmpty(page) && !SpGistPageIsDeleted(page))
{
SpGistPageSetDeleted(page);
/* We don't bother to WAL-log this action; easy to redo */
MarkBufferDirty(buffer);
}
if (SpGistPageIsDeleted(page))
{
RecordFreeIndexPage(index, blkno);
bds->stats->pages_deleted++;
}
else
bds->lastFilledBlock = blkno;
}
SpGistSetLastUsedPage(index, buffer);
UnlockReleaseBuffer(buffer);
}
/*
* Perform a bulkdelete scan
*/
static void
spgvacuumscan(spgBulkDeleteState *bds)
{
Relation index = bds->info->index;
bool needLock;
BlockNumber num_pages,
blkno;
/* Finish setting up spgBulkDeleteState */
initSpGistState(&bds->spgstate, index);
bds->OldestXmin = GetOldestXmin(true, false);
bds->lastFilledBlock = SPGIST_HEAD_BLKNO;
/*
* Reset counts that will be incremented during the scan; needed in case
* of multiple scans during a single VACUUM command
*/
bds->stats->estimated_count = false;
bds->stats->num_index_tuples = 0;
bds->stats->pages_deleted = 0;
/* We can skip locking for new or temp relations */
needLock = !RELATION_IS_LOCAL(index);
/*
* The outer loop iterates over all index pages except the metapage, in
* physical order (we hope the kernel will cooperate in providing
* read-ahead for speed). It is critical that we visit all leaf pages,
* including ones added after we start the scan, else we might fail to
* delete some deletable tuples. See more extensive comments about
* this in btvacuumscan().
*/
blkno = SPGIST_HEAD_BLKNO;
for (;;)
{
/* Get the current relation length */
if (needLock)
LockRelationForExtension(index, ExclusiveLock);
num_pages = RelationGetNumberOfBlocks(index);
if (needLock)
UnlockRelationForExtension(index, ExclusiveLock);
/* Quit if we've scanned the whole relation */
if (blkno >= num_pages)
break;
/* Iterate over pages, then loop back to recheck length */
for (; blkno < num_pages; blkno++)
{
spgvacuumpage(bds, blkno);
}
}
/* Propagate local lastUsedPage cache to metablock */
SpGistUpdateMetaPage(index);
/*
* Truncate index if possible
*
* XXX disabled because it's unsafe due to possible concurrent inserts.
* We'd have to rescan the pages to make sure they're still empty, and it
* doesn't seem worth it. Note that btree doesn't do this either.
*/
#ifdef NOT_USED
if (num_pages > bds->lastFilledBlock + 1)
{
BlockNumber lastBlock = num_pages - 1;
num_pages = bds->lastFilledBlock + 1;
RelationTruncate(index, num_pages);
bds->stats->pages_removed += lastBlock - bds->lastFilledBlock;
bds->stats->pages_deleted -= lastBlock - bds->lastFilledBlock;
}
#endif
/* Report final stats */
bds->stats->num_pages = num_pages;
bds->stats->pages_free = bds->stats->pages_deleted;
}
/*
* Bulk deletion of all index entries pointing to a set of heap tuples.
* The set of target tuples is specified via a callback routine that tells
* whether any given heap tuple (identified by ItemPointer) is being deleted.
*
* Result: a palloc'd struct containing statistical info for VACUUM displays.
*/
Datum
spgbulkdelete(PG_FUNCTION_ARGS)
{
IndexVacuumInfo *info = (IndexVacuumInfo *) PG_GETARG_POINTER(0);
IndexBulkDeleteResult *stats = (IndexBulkDeleteResult *) PG_GETARG_POINTER(1);
IndexBulkDeleteCallback callback = (IndexBulkDeleteCallback) PG_GETARG_POINTER(2);
void *callback_state = (void *) PG_GETARG_POINTER(3);
spgBulkDeleteState bds;
/* allocate stats if first time through, else re-use existing struct */
if (stats == NULL)
stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
bds.info = info;
bds.stats = stats;
bds.callback = callback;
bds.callback_state = callback_state;
spgvacuumscan(&bds);
PG_RETURN_POINTER(stats);
}
/* Dummy callback to delete no tuples during spgvacuumcleanup */
static bool
dummy_callback(ItemPointer itemptr, void *state)
{
return false;
}
/*
* Post-VACUUM cleanup.
*
* Result: a palloc'd struct containing statistical info for VACUUM displays.
*/
Datum
spgvacuumcleanup(PG_FUNCTION_ARGS)
{
IndexVacuumInfo *info = (IndexVacuumInfo *) PG_GETARG_POINTER(0);
IndexBulkDeleteResult *stats = (IndexBulkDeleteResult *) PG_GETARG_POINTER(1);
Relation index = info->index;
spgBulkDeleteState bds;
/* No-op in ANALYZE ONLY mode */
if (info->analyze_only)
PG_RETURN_POINTER(stats);
/*
* We don't need to scan the index if there was a preceding bulkdelete
* pass. Otherwise, make a pass that won't delete any live tuples, but
* might still accomplish useful stuff with redirect/placeholder cleanup,
* and in any case will provide stats.
*/
if (stats == NULL)
{
stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
bds.info = info;
bds.stats = stats;
bds.callback = dummy_callback;
bds.callback_state = NULL;
spgvacuumscan(&bds);
}
/* Finally, vacuum the FSM */
IndexFreeSpaceMapVacuum(index);
/*
* It's quite possible for us to be fooled by concurrent page splits into
* double-counting some index tuples, so disbelieve any total that exceeds
* the underlying heap's count ... if we know that accurately. Otherwise
* this might just make matters worse.
*/
if (!info->estimated_count)
{
if (stats->num_index_tuples > info->num_heap_tuples)
stats->num_index_tuples = info->num_heap_tuples;
}
PG_RETURN_POINTER(stats);
}

File diff suppressed because it is too large Load Diff

View File

@ -14,6 +14,7 @@
#include "access/heapam.h"
#include "access/multixact.h"
#include "access/nbtree.h"
#include "access/spgist.h"
#include "access/xact.h"
#include "access/xlog_internal.h"
#include "catalog/storage.h"
@ -40,5 +41,6 @@ const RmgrData RmgrTable[RM_MAX_ID + 1] = {
{"Hash", hash_redo, hash_desc, NULL, NULL, NULL},
{"Gin", gin_redo, gin_desc, gin_xlog_startup, gin_xlog_cleanup, gin_safe_restartpoint},
{"Gist", gist_redo, gist_desc, gist_xlog_startup, gist_xlog_cleanup, NULL},
{"Sequence", seq_redo, seq_desc, NULL, NULL, NULL}
{"Sequence", seq_redo, seq_desc, NULL, NULL, NULL},
{"SPGist", spg_redo, spg_desc, spg_xlog_startup, spg_xlog_cleanup, NULL}
};

View File

@ -6555,6 +6555,26 @@ gistcostestimate(PG_FUNCTION_ARGS)
PG_RETURN_VOID();
}
Datum
spgcostestimate(PG_FUNCTION_ARGS)
{
PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
IndexOptInfo *index = (IndexOptInfo *) PG_GETARG_POINTER(1);
List *indexQuals = (List *) PG_GETARG_POINTER(2);
List *indexOrderBys = (List *) PG_GETARG_POINTER(3);
RelOptInfo *outer_rel = (RelOptInfo *) PG_GETARG_POINTER(4);
Cost *indexStartupCost = (Cost *) PG_GETARG_POINTER(5);
Cost *indexTotalCost = (Cost *) PG_GETARG_POINTER(6);
Selectivity *indexSelectivity = (Selectivity *) PG_GETARG_POINTER(7);
double *indexCorrelation = (double *) PG_GETARG_POINTER(8);
genericcostestimate(root, index, indexQuals, indexOrderBys, outer_rel, 0.0,
indexStartupCost, indexTotalCost,
indexSelectivity, indexCorrelation);
PG_RETURN_VOID();
}
/* Find the index column matching "op"; return its index, or -1 if no match */
static int
find_index_column(Node *op, IndexOptInfo *index)

View File

@ -24,6 +24,10 @@
* Note: GIN does not include a page ID word as do the other index types.
* This is OK because the opaque data is only 8 bytes and so can be reliably
* distinguished by size. Revisit this if the size ever increases.
* Further note: as of 9.2, SP-GiST also uses 8-byte special space. This is
* still OK, as long as GIN isn't using all of the high-order bits in its
* flags word, because that way the flags word cannot match the page ID used
* by SP-GiST.
*/
typedef struct GinPageOpaqueData
{

View File

@ -42,8 +42,9 @@ typedef enum relopt_kind
RELOPT_KIND_GIST = (1 << 5),
RELOPT_KIND_ATTRIBUTE = (1 << 6),
RELOPT_KIND_TABLESPACE = (1 << 7),
RELOPT_KIND_SPGIST = (1 << 8),
/* if you add a new kind, make sure you update "last_default" too */
RELOPT_KIND_LAST_DEFAULT = RELOPT_KIND_TABLESPACE,
RELOPT_KIND_LAST_DEFAULT = RELOPT_KIND_SPGIST,
/* some compilers treat enums as signed ints, so we can't use 1 << 31 */
RELOPT_KIND_MAX = (1 << 30)
} relopt_kind;

View File

@ -32,6 +32,8 @@ typedef uint8 RmgrId;
#define RM_GIN_ID 13
#define RM_GIST_ID 14
#define RM_SEQ_ID 15
#define RM_MAX_ID RM_SEQ_ID
#define RM_SPGIST_ID 16
#define RM_MAX_ID RM_SPGIST_ID
#endif /* RMGR_H */

199
src/include/access/spgist.h Normal file
View File

@ -0,0 +1,199 @@
/*-------------------------------------------------------------------------
*
* spgist.h
* Public header file for SP-GiST access method.
*
*
* Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* src/include/access/spgist.h
*
*-------------------------------------------------------------------------
*/
#ifndef SPGIST_H
#define SPGIST_H
#include "access/skey.h"
#include "access/xlog.h"
#include "fmgr.h"
/* reloption parameters */
#define SPGIST_MIN_FILLFACTOR 10
#define SPGIST_DEFAULT_FILLFACTOR 80
/* SPGiST opclass support function numbers */
#define SPGIST_CONFIG_PROC 1
#define SPGIST_CHOOSE_PROC 2
#define SPGIST_PICKSPLIT_PROC 3
#define SPGIST_INNER_CONSISTENT_PROC 4
#define SPGIST_LEAF_CONSISTENT_PROC 5
#define SPGISTNProc 5
/*
* Argument structs for spg_config method
*/
typedef struct spgConfigIn
{
Oid attType; /* Data type to be indexed */
} spgConfigIn;
typedef struct spgConfigOut
{
Oid prefixType; /* Data type of inner-tuple prefixes */
Oid labelType; /* Data type of inner-tuple node labels */
bool longValuesOK; /* Opclass can cope with values > 1 page */
} spgConfigOut;
/*
* Argument structs for spg_choose method
*/
typedef struct spgChooseIn
{
Datum datum; /* original datum to be indexed */
Datum leafDatum; /* current datum to be stored at leaf */
int level; /* current level (counting from zero) */
/* Data from current inner tuple */
bool allTheSame; /* tuple is marked all-the-same? */
bool hasPrefix; /* tuple has a prefix? */
Datum prefixDatum; /* if so, the prefix value */
int nNodes; /* number of nodes in the inner tuple */
Datum *nodeLabels; /* node label values (NULL if none) */
} spgChooseIn;
typedef enum spgChooseResultType
{
spgMatchNode = 1, /* descend into existing node */
spgAddNode, /* add a node to the inner tuple */
spgSplitTuple /* split inner tuple (change its prefix) */
} spgChooseResultType;
typedef struct spgChooseOut
{
spgChooseResultType resultType; /* action code, see above */
union
{
struct /* results for spgMatchNode */
{
int nodeN; /* descend to this node (index from 0) */
int levelAdd; /* increment level by this much */
Datum restDatum; /* new leaf datum */
} matchNode;
struct /* results for spgAddNode */
{
Datum nodeLabel; /* new node's label */
int nodeN; /* where to insert it (index from 0) */
} addNode;
struct /* results for spgSplitTuple */
{
/* Info to form new inner tuple with one node */
bool prefixHasPrefix; /* tuple should have a prefix? */
Datum prefixPrefixDatum; /* if so, its value */
Datum nodeLabel; /* node's label */
/* Info to form new lower-level inner tuple with all old nodes */
bool postfixHasPrefix; /* tuple should have a prefix? */
Datum postfixPrefixDatum; /* if so, its value */
} splitTuple;
} result;
} spgChooseOut;
/*
* Argument structs for spg_picksplit method
*/
typedef struct spgPickSplitIn
{
int nTuples; /* number of leaf tuples */
Datum *datums; /* their datums (array of length nTuples) */
int level; /* current level (counting from zero) */
} spgPickSplitIn;
typedef struct spgPickSplitOut
{
bool hasPrefix; /* new inner tuple should have a prefix? */
Datum prefixDatum; /* if so, its value */
int nNodes; /* number of nodes for new inner tuple */
Datum *nodeLabels; /* their labels (or NULL for no labels) */
int *mapTuplesToNodes; /* node index for each leaf tuple */
Datum *leafTupleDatums; /* datum to store in each new leaf tuple */
} spgPickSplitOut;
/*
* Argument structs for spg_inner_consistent method
*/
typedef struct spgInnerConsistentIn
{
StrategyNumber strategy; /* operator strategy number */
Datum query; /* operator's RHS value */
Datum reconstructedValue; /* value reconstructed at parent */
int level; /* current level (counting from zero) */
/* Data from current inner tuple */
bool allTheSame; /* tuple is marked all-the-same? */
bool hasPrefix; /* tuple has a prefix? */
Datum prefixDatum; /* if so, the prefix value */
int nNodes; /* number of nodes in the inner tuple */
Datum *nodeLabels; /* node label values (NULL if none) */
} spgInnerConsistentIn;
typedef struct spgInnerConsistentOut
{
int nNodes; /* number of child nodes to be visited */
int *nodeNumbers; /* their indexes in the node array */
int *levelAdds; /* increment level by this much for each */
Datum *reconstructedValues; /* associated reconstructed values */
} spgInnerConsistentOut;
/*
* Argument structs for spg_leaf_consistent method
*/
typedef struct spgLeafConsistentIn
{
StrategyNumber strategy; /* operator strategy number */
Datum query; /* operator's RHS value */
Datum reconstructedValue; /* value reconstructed at parent */
int level; /* current level (counting from zero) */
Datum leafDatum; /* datum in leaf tuple */
} spgLeafConsistentIn;
typedef struct spgLeafConsistentOut
{
bool recheck; /* set true if operator must be rechecked */
} spgLeafConsistentOut;
/* spginsert.c */
extern Datum spgbuild(PG_FUNCTION_ARGS);
extern Datum spgbuildempty(PG_FUNCTION_ARGS);
extern Datum spginsert(PG_FUNCTION_ARGS);
/* spgscan.c */
extern Datum spgbeginscan(PG_FUNCTION_ARGS);
extern Datum spgendscan(PG_FUNCTION_ARGS);
extern Datum spgrescan(PG_FUNCTION_ARGS);
extern Datum spgmarkpos(PG_FUNCTION_ARGS);
extern Datum spgrestrpos(PG_FUNCTION_ARGS);
extern Datum spggetbitmap(PG_FUNCTION_ARGS);
extern Datum spggettuple(PG_FUNCTION_ARGS);
/* spgutils.c */
extern Datum spgoptions(PG_FUNCTION_ARGS);
/* spgvacuum.c */
extern Datum spgbulkdelete(PG_FUNCTION_ARGS);
extern Datum spgvacuumcleanup(PG_FUNCTION_ARGS);
/* spgxlog.c */
extern void spg_redo(XLogRecPtr lsn, XLogRecord *record);
extern void spg_desc(StringInfo buf, uint8 xl_info, char *rec);
extern void spg_xlog_startup(void);
extern void spg_xlog_cleanup(void);
#endif /* SPGIST_H */

View File

@ -0,0 +1,609 @@
/*-------------------------------------------------------------------------
*
* spgist_private.h
* Private declarations for SP-GiST access method.
*
*
* Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* src/include/access/spgist_private.h
*
*-------------------------------------------------------------------------
*/
#ifndef SPGIST_PRIVATE_H
#define SPGIST_PRIVATE_H
#include "access/itup.h"
#include "access/spgist.h"
#include "nodes/tidbitmap.h"
#include "utils/rel.h"
/* Page numbers of fixed-location pages */
#define SPGIST_METAPAGE_BLKNO (0)
#define SPGIST_HEAD_BLKNO (1)
/*
* Contents of page special space on SPGiST index pages
*/
typedef struct SpGistPageOpaqueData
{
uint16 flags; /* see bit definitions below */
uint16 nRedirection; /* number of redirection tuples on page */
uint16 nPlaceholder; /* number of placeholder tuples on page */
/* note there's no count of either LIVE or DEAD tuples ... */
uint16 spgist_page_id; /* for identification of SP-GiST indexes */
} SpGistPageOpaqueData;
typedef SpGistPageOpaqueData *SpGistPageOpaque;
/* Flag bits in page special space */
#define SPGIST_META (1<<0)
#define SPGIST_DELETED (1<<1)
#define SPGIST_LEAF (1<<2)
#define SpGistPageGetOpaque(page) ((SpGistPageOpaque) PageGetSpecialPointer(page))
#define SpGistPageIsMeta(page) (SpGistPageGetOpaque(page)->flags & SPGIST_META)
#define SpGistPageIsDeleted(page) (SpGistPageGetOpaque(page)->flags & SPGIST_DELETED)
#define SpGistPageSetDeleted(page) (SpGistPageGetOpaque(page)->flags |= SPGIST_DELETED)
#define SpGistPageSetNonDeleted(page) (SpGistPageGetOpaque(page)->flags &= ~SPGIST_DELETED)
#define SpGistPageIsLeaf(page) (SpGistPageGetOpaque(page)->flags & SPGIST_LEAF)
#define SpGistPageSetLeaf(page) (SpGistPageGetOpaque(page)->flags |= SPGIST_LEAF)
#define SpGistPageSetInner(page) (SpGistPageGetOpaque(page)->flags &= ~SPGIST_LEAF)
/*
* The page ID is for the convenience of pg_filedump and similar utilities,
* which otherwise would have a hard time telling pages of different index
* types apart. It should be the last 2 bytes on the page. This is more or
* less "free" due to alignment considerations.
*/
#define SPGIST_PAGE_ID 0xFF82
/*
* Each backend keeps a cache of last-used page info in its index->rd_amcache
* area. This is initialized from, and occasionally written back to,
* shared storage in the index metapage.
*/
typedef struct SpGistLastUsedPage
{
BlockNumber blkno; /* block number of described page */
int freeSpace; /* its free space (could be obsolete!) */
} SpGistLastUsedPage;
typedef struct SpGistCache
{
SpGistLastUsedPage innerPage[3]; /* one per triple-parity group */
SpGistLastUsedPage leafPage;
} SpGistCache;
/*
* metapage
*/
typedef struct SpGistMetaPageData
{
uint32 magicNumber; /* for identity cross-check */
SpGistCache lastUsedPages; /* shared storage of last-used info */
} SpGistMetaPageData;
#define SPGIST_MAGIC_NUMBER (0xBA0BABED)
#define SpGistPageGetMeta(p) \
((SpGistMetaPageData *) PageGetContents(p))
/*
* Private state of index AM. SpGistState is common to both insert and
* search code; SpGistScanOpaque is for searches only.
*/
/* Per-datatype info needed in SpGistState */
typedef struct SpGistTypeDesc
{
Oid type;
bool attbyval;
int16 attlen;
} SpGistTypeDesc;
typedef struct SpGistState
{
spgConfigOut config; /* filled in by opclass config method */
SpGistTypeDesc attType; /* type of input data and leaf values */
SpGistTypeDesc attPrefixType; /* type of inner-tuple prefix values */
SpGistTypeDesc attLabelType; /* type of node label values */
/* lookup data for the opclass support functions, except config */
FmgrInfo chooseFn;
FmgrInfo picksplitFn;
FmgrInfo innerConsistentFn;
FmgrInfo leafConsistentFn;
char *deadTupleStorage; /* workspace for spgFormDeadTuple */
TransactionId myXid; /* XID to use when creating a redirect tuple */
bool isBuild; /* true if doing index build */
} SpGistState;
/*
* Private state of an index scan
*/
typedef struct SpGistScanOpaqueData
{
SpGistState state; /* see above */
MemoryContext tempCxt; /* short-lived memory context */
/* Index quals for scan (copied from IndexScanDesc for convenience) */
int numberOfKeys; /* number of index qualifier conditions */
ScanKey keyData; /* array of index qualifier descriptors */
/* Stack of yet-to-be-visited pages */
List *scanStack; /* List of ScanStackEntrys */
/* These fields are only used in amgetbitmap scans: */
TIDBitmap *tbm; /* bitmap being filled */
int64 ntids; /* number of TIDs passed to bitmap */
/* These fields are only used in amgettuple scans: */
int nPtrs; /* number of TIDs found on current page */
int iPtr; /* index for scanning through same */
ItemPointerData heapPtrs[MaxIndexTuplesPerPage]; /* TIDs from cur page */
bool recheck[MaxIndexTuplesPerPage]; /* their recheck flags */
/*
* Note: using MaxIndexTuplesPerPage above is a bit hokey since
* SpGistLeafTuples aren't exactly IndexTuples; however, they are
* larger, so this is safe.
*/
} SpGistScanOpaqueData;
typedef SpGistScanOpaqueData *SpGistScanOpaque;
/*
* SPGiST tuple types. Note: inner, leaf, and dead tuple structs
* must have the same tupstate field in the same position! Real inner and
* leaf tuples always have tupstate = LIVE; if the state is something else,
* use the SpGistDeadTuple struct to inspect the tuple.
*/
/* values of tupstate (see README for more info) */
#define SPGIST_LIVE 0 /* normal live tuple (either inner or leaf) */
#define SPGIST_REDIRECT 1 /* temporary redirection placeholder */
#define SPGIST_DEAD 2 /* dead, cannot be removed because of links */
#define SPGIST_PLACEHOLDER 3 /* placeholder, used to preserve offsets */
/*
* SPGiST inner tuple: list of "nodes" that subdivide a set of tuples
*
* Inner tuple layout:
* header/optional prefix/array of nodes, which are SpGistNodeTuples
*
* size and prefixSize must be multiples of MAXALIGN
*/
typedef struct SpGistInnerTupleData
{
unsigned int tupstate:2, /* LIVE/REDIRECT/DEAD/PLACEHOLDER */
allTheSame:1, /* all nodes in tuple are equivalent */
nNodes:13, /* number of nodes within inner tuple */
prefixSize:16; /* size of prefix, or 0 if none */
uint16 size; /* total size of inner tuple */
/* On most machines there will be a couple of wasted bytes here */
/* prefix datum follows, then nodes */
} SpGistInnerTupleData;
typedef SpGistInnerTupleData *SpGistInnerTuple;
/* these must match largest values that fit in bit fields declared above */
#define SGITMAXNNODES 0x1FFF
#define SGITMAXPREFIXSIZE 0xFFFF
#define SGITMAXSIZE 0xFFFF
#define SGITHDRSZ MAXALIGN(sizeof(SpGistInnerTupleData))
#define _SGITDATA(x) (((char *) (x)) + SGITHDRSZ)
#define SGITDATAPTR(x) ((x)->prefixSize ? _SGITDATA(x) : NULL)
#define SGITDATUM(x, s) ((x)->prefixSize ? \
((s)->attPrefixType.attbyval ? \
*(Datum *) _SGITDATA(x) : \
PointerGetDatum(_SGITDATA(x))) \
: (Datum) 0)
#define SGITNODEPTR(x) ((SpGistNodeTuple) (_SGITDATA(x) + (x)->prefixSize))
/* Macro for iterating through the nodes of an inner tuple */
#define SGITITERATE(x, i, nt) \
for ((i) = 0, (nt) = SGITNODEPTR(x); \
(i) < (x)->nNodes; \
(i)++, (nt) = (SpGistNodeTuple) (((char *) (nt)) + IndexTupleSize(nt)))
/*
* SPGiST node tuple: one node within an inner tuple
*
* Node tuples use the same header as ordinary Postgres IndexTuples, but
* we do not use a null bitmap, because we know there is only one column
* so the INDEX_NULL_MASK bit suffices. Also, pass-by-value datums are
* stored as a full Datum, the same convention as for inner tuple prefixes
* and leaf tuple datums.
*/
typedef IndexTupleData SpGistNodeTupleData;
typedef SpGistNodeTupleData *SpGistNodeTuple;
#define SGNTHDRSZ MAXALIGN(sizeof(SpGistNodeTupleData))
#define SGNTDATAPTR(x) (((char *) (x)) + SGNTHDRSZ)
#define SGNTDATUM(x, s) ((s)->attLabelType.attbyval ? \
*(Datum *) SGNTDATAPTR(x) : \
PointerGetDatum(SGNTDATAPTR(x)))
/*
* SPGiST leaf tuple: carries a datum and a heap tuple TID
*
* In the simplest case, the datum is the same as the indexed value; but
* it could also be a suffix or some other sort of delta that permits
* reconstruction given knowledge of the prefix path traversed to get here.
*
* The size field is wider than could possibly be needed for an on-disk leaf
* tuple, but this allows us to form leaf tuples even when the datum is too
* wide to be stored immediately, and it costs nothing because of alignment
* considerations.
*
* Normally, nextOffset links to the next tuple belonging to the same parent
* node (which must be on the same page). But when the root page is a leaf
* page, we don't chain its tuples, so nextOffset is always 0 on the root.
*
* size must be a multiple of MAXALIGN
*/
typedef struct SpGistLeafTupleData
{
unsigned int tupstate:2, /* LIVE/REDIRECT/DEAD/PLACEHOLDER */
size:30; /* large enough for any palloc'able value */
OffsetNumber nextOffset; /* next tuple in chain, or InvalidOffset */
ItemPointerData heapPtr; /* TID of represented heap tuple */
/* leaf datum follows */
} SpGistLeafTupleData;
typedef SpGistLeafTupleData *SpGistLeafTuple;
#define SGLTHDRSZ MAXALIGN(sizeof(SpGistLeafTupleData))
#define SGLTDATAPTR(x) (((char *) (x)) + SGLTHDRSZ)
#define SGLTDATUM(x, s) ((s)->attType.attbyval ? \
*(Datum *) SGLTDATAPTR(x) : \
PointerGetDatum(SGLTDATAPTR(x)))
/*
* SPGiST dead tuple: declaration for examining non-live tuples
*
* The tupstate field of this struct must match those of regular inner and
* leaf tuples, and its size field must match a leaf tuple's.
* Also, the pointer field must be in the same place as a leaf tuple's heapPtr
* field, to satisfy some Asserts that we make when replacing a leaf tuple
* with a dead tuple.
* We don't use nextOffset, but it's needed to align the pointer field.
* pointer and xid are only valid when tupstate = REDIRECT.
*/
typedef struct SpGistDeadTupleData
{
unsigned int tupstate:2, /* LIVE/REDIRECT/DEAD/PLACEHOLDER */
size:30;
OffsetNumber nextOffset; /* not used in dead tuples */
ItemPointerData pointer; /* redirection inside index */
TransactionId xid; /* ID of xact that inserted this tuple */
} SpGistDeadTupleData;
typedef SpGistDeadTupleData *SpGistDeadTuple;
#define SGDTSIZE MAXALIGN(sizeof(SpGistDeadTupleData))
/*
* Macros for doing free-space calculations. Note that when adding up the
* space needed for tuples, we always consider each tuple to need the tuple's
* size plus sizeof(ItemIdData) (for the line pointer). This works correctly
* so long as tuple sizes are always maxaligned.
*/
/* Page capacity after allowing for fixed header and special space */
#define SPGIST_PAGE_CAPACITY \
MAXALIGN_DOWN(BLCKSZ - \
SizeOfPageHeaderData - \
MAXALIGN(sizeof(SpGistPageOpaqueData)))
/*
* Compute free space on page, assuming that up to n placeholders can be
* recycled if present (n should be the number of tuples to be inserted)
*/
#define SpGistPageGetFreeSpace(p, n) \
(PageGetExactFreeSpace(p) + \
Min(SpGistPageGetOpaque(p)->nPlaceholder, n) * \
(SGDTSIZE + sizeof(ItemIdData)))
/*
* XLOG stuff
*
* ACCEPT_RDATA_* can only use fixed-length rdata arrays, because of lengthof
*/
#define ACCEPT_RDATA_DATA(p, s, i) \
do { \
Assert((i) < lengthof(rdata)); \
rdata[i].data = (char *) (p); \
rdata[i].len = (s); \
rdata[i].buffer = InvalidBuffer; \
rdata[i].buffer_std = true; \
rdata[i].next = NULL; \
if ((i) > 0) \
rdata[(i) - 1].next = rdata + (i); \
} while(0)
#define ACCEPT_RDATA_BUFFER(b, i) \
do { \
Assert((i) < lengthof(rdata)); \
rdata[i].data = NULL; \
rdata[i].len = 0; \
rdata[i].buffer = (b); \
rdata[i].buffer_std = true; \
rdata[i].next = NULL; \
if ((i) > 0) \
rdata[(i) - 1].next = rdata + (i); \
} while(0)
/* XLOG record types for SPGiST */
#define XLOG_SPGIST_CREATE_INDEX 0x00
#define XLOG_SPGIST_ADD_LEAF 0x10
#define XLOG_SPGIST_MOVE_LEAFS 0x20
#define XLOG_SPGIST_ADD_NODE 0x30
#define XLOG_SPGIST_SPLIT_TUPLE 0x40
#define XLOG_SPGIST_PICKSPLIT 0x50
#define XLOG_SPGIST_VACUUM_LEAF 0x60
#define XLOG_SPGIST_VACUUM_ROOT 0x70
#define XLOG_SPGIST_VACUUM_REDIRECT 0x80
/*
* Some redo functions need an SpGistState, although only a few of its fields
* need to be valid. spgxlogState carries the required info in xlog records.
* (See fillFakeState in spgxlog.c for more comments.)
*/
typedef struct spgxlogState
{
TransactionId myXid;
bool isBuild;
} spgxlogState;
#define STORE_STATE(s, d) \
do { \
(d).myXid = (s)->myXid; \
(d).isBuild = (s)->isBuild; \
} while(0)
typedef struct spgxlogAddLeaf
{
RelFileNode node;
BlockNumber blknoLeaf; /* destination page for leaf tuple */
bool newPage; /* init dest page? */
OffsetNumber offnumLeaf; /* offset where leaf tuple gets placed */
OffsetNumber offnumHeadLeaf; /* offset of head tuple in chain, if any */
BlockNumber blknoParent; /* where the parent downlink is, if any */
OffsetNumber offnumParent;
uint16 nodeI;
/*
* new leaf tuple follows, on an intalign boundary (replay only needs to
* fetch its size field, so that should be enough alignment)
*/
} spgxlogAddLeaf;
typedef struct spgxlogMoveLeafs
{
RelFileNode node;
BlockNumber blknoSrc; /* source leaf page */
BlockNumber blknoDst; /* destination leaf page */
uint16 nMoves; /* number of tuples moved from source page */
bool newPage; /* init dest page? */
bool replaceDead; /* are we replacing a DEAD source tuple? */
BlockNumber blknoParent; /* where the parent downlink is */
OffsetNumber offnumParent;
uint16 nodeI;
spgxlogState stateSrc;
/*----------
* data follows:
* array of deleted tuple numbers, length nMoves
* array of inserted tuple numbers, length nMoves + 1 or 1
* list of leaf tuples, length nMoves + 1 or 1 (must be maxaligned)
* the tuple number arrays are padded to maxalign boundaries so that the
* leaf tuples will be suitably aligned
*
* Note: if replaceDead is true then there is only one inserted tuple
* number and only one leaf tuple in the data, because we are not copying
* the dead tuple from the source
*
* Buffer references in the rdata array are:
* Src page
* Dest page
* Parent page
*----------
*/
} spgxlogMoveLeafs;
typedef struct spgxlogAddNode
{
RelFileNode node;
BlockNumber blkno; /* block number of original inner tuple */
OffsetNumber offnum; /* offset of original inner tuple */
BlockNumber blknoParent; /* where parent downlink is, if updated */
OffsetNumber offnumParent;
uint16 nodeI;
BlockNumber blknoNew; /* where new tuple goes, if not same place */
OffsetNumber offnumNew;
bool newPage; /* init new page? */
spgxlogState stateSrc;
/*
* updated inner tuple follows, on an intalign boundary (replay only needs
* to fetch its size field, so that should be enough alignment)
*/
} spgxlogAddNode;
typedef struct spgxlogSplitTuple
{
RelFileNode node;
BlockNumber blknoPrefix; /* where the prefix tuple goes */
OffsetNumber offnumPrefix;
BlockNumber blknoPostfix; /* where the postfix tuple goes */
OffsetNumber offnumPostfix;
bool newPage; /* need to init that page? */
/*
* new prefix inner tuple follows, then new postfix inner tuple, on
* intalign boundaries (replay only needs to fetch size fields, so that
* should be enough alignment)
*/
} spgxlogSplitTuple;
typedef struct spgxlogPickSplit
{
RelFileNode node;
BlockNumber blknoSrc; /* original leaf page */
BlockNumber blknoDest; /* other leaf page, if any */
uint16 nDelete; /* n to delete from Src */
uint16 nInsert; /* n to insert on Src and/or Dest */
bool initSrc; /* re-init the Src page? */
bool initDest; /* re-init the Dest page? */
BlockNumber blknoInner; /* where to put new inner tuple */
OffsetNumber offnumInner;
bool initInner; /* re-init the Inner page? */
BlockNumber blknoParent; /* where the parent downlink is, if any */
OffsetNumber offnumParent;
uint16 nodeI;
spgxlogState stateSrc;
/*----------
* data follows:
* new inner tuple (assumed to have a maxaligned length)
* array of deleted tuple numbers, length nDelete
* array of inserted tuple numbers, length nInsert
* array of page selector bytes for inserted tuples, length nInsert
* list of leaf tuples, length nInsert (must be maxaligned)
* the tuple number and page selector arrays are padded to maxalign
* boundaries so that the leaf tuples will be suitably aligned
*
* Buffer references in the rdata array are:
* Src page (only if not root and not being init'd)
* Dest page (if used and not being init'd)
* Inner page (only if not being init'd)
* Parent page (if any; could be same as Inner)
*----------
*/
} spgxlogPickSplit;
typedef struct spgxlogVacuumLeaf
{
RelFileNode node;
BlockNumber blkno; /* block number to clean */
uint16 nDead; /* number of tuples to become DEAD */
uint16 nPlaceholder; /* number of tuples to become PLACEHOLDER */
uint16 nMove; /* number of tuples to move */
uint16 nChain; /* number of tuples to re-chain */
spgxlogState stateSrc;
/*----------
* data follows:
* tuple numbers to become DEAD
* tuple numbers to become PLACEHOLDER
* tuple numbers to move from (and replace with PLACEHOLDER)
* tuple numbers to move to (replacing what is there)
* tuple numbers to update nextOffset links of
* tuple numbers to insert in nextOffset links
*----------
*/
} spgxlogVacuumLeaf;
typedef struct spgxlogVacuumRoot
{
/* vacuum root page when it is a leaf */
RelFileNode node;
uint16 nDelete; /* number of tuples to delete */
spgxlogState stateSrc;
/* offsets of tuples to delete follow */
} spgxlogVacuumRoot;
typedef struct spgxlogVacuumRedirect
{
RelFileNode node;
BlockNumber blkno; /* block number to clean */
uint16 nToPlaceholder; /* number of redirects to make placeholders */
OffsetNumber firstPlaceholder; /* first placeholder tuple to remove */
/* offsets of redirect tuples to make placeholders follow */
} spgxlogVacuumRedirect;
/*
* The "flags" argument for SpGistGetBuffer should be either GBUF_LEAF to
* get a leaf page, or GBUF_INNER_PARITY(blockNumber) to get an inner
* page in the same triple-parity group as the specified block number.
* (Typically, this should be GBUF_INNER_PARITY(parentBlockNumber + 1)
* to follow the rule described in spgist/README.)
*/
#define GBUF_PARITY_MASK 0x03
#define GBUF_LEAF 0x04
#define GBUF_INNER_PARITY(x) ((x) % 3)
/* spgutils.c */
extern void initSpGistState(SpGistState *state, Relation index);
extern Buffer SpGistNewBuffer(Relation index);
extern void SpGistUpdateMetaPage(Relation index);
extern Buffer SpGistGetBuffer(Relation index, int flags,
int needSpace, bool *isNew);
extern void SpGistSetLastUsedPage(Relation index, Buffer buffer);
extern void SpGistInitPage(Page page, uint16 f);
extern void SpGistInitBuffer(Buffer b, uint16 f);
extern void SpGistInitMetapage(Page page);
extern unsigned int SpGistGetTypeSize(SpGistTypeDesc *att, Datum datum);
extern SpGistLeafTuple spgFormLeafTuple(SpGistState *state,
ItemPointer heapPtr, Datum datum);
extern SpGistNodeTuple spgFormNodeTuple(SpGistState *state,
Datum label, bool isnull);
extern SpGistInnerTuple spgFormInnerTuple(SpGistState *state,
bool hasPrefix, Datum prefix,
int nNodes, SpGistNodeTuple *nodes);
extern SpGistDeadTuple spgFormDeadTuple(SpGistState *state, int tupstate,
BlockNumber blkno, OffsetNumber offnum);
extern Datum *spgExtractNodeLabels(SpGistState *state,
SpGistInnerTuple innerTuple);
extern OffsetNumber SpGistPageAddNewItem(SpGistState *state, Page page,
Item item, Size size,
OffsetNumber *startOffset,
bool errorOK);
/* spgdoinsert.c */
extern void updateNodeLink(SpGistInnerTuple tup, int nodeN,
BlockNumber blkno, OffsetNumber offset);
extern void spgPageIndexMultiDelete(SpGistState *state, Page page,
OffsetNumber *itemnos, int nitems,
int firststate, int reststate,
BlockNumber blkno, OffsetNumber offnum);
extern void spgdoinsert(Relation index, SpGistState *state,
ItemPointer heapPtr, Datum datum);
#endif /* SPGIST_PRIVATE_H */

View File

@ -53,6 +53,6 @@
*/
/* yyyymmddN */
#define CATALOG_VERSION_NO 201112071
#define CATALOG_VERSION_NO 201112171
#endif

View File

@ -117,17 +117,20 @@ typedef FormData_pg_am *Form_pg_am;
* ----------------
*/
DATA(insert OID = 403 ( btree 5 2 t f t t t t t t t f t t 0 btinsert btbeginscan btgettuple btgetbitmap btrescan btendscan btmarkpos btrestrpos btbuild btbuildempty btbulkdelete btvacuumcleanup btcostestimate btoptions ));
DATA(insert OID = 403 ( btree 5 2 t f t t t t t t t f t t 0 btinsert btbeginscan btgettuple btgetbitmap btrescan btendscan btmarkpos btrestrpos btbuild btbuildempty btbulkdelete btvacuumcleanup btcostestimate btoptions ));
DESCR("b-tree index access method");
#define BTREE_AM_OID 403
DATA(insert OID = 405 ( hash 1 1 f f t f f f f f f f f f 23 hashinsert hashbeginscan hashgettuple hashgetbitmap hashrescan hashendscan hashmarkpos hashrestrpos hashbuild hashbuildempty hashbulkdelete hashvacuumcleanup hashcostestimate hashoptions ));
DATA(insert OID = 405 ( hash 1 1 f f t f f f f f f f f f 23 hashinsert hashbeginscan hashgettuple hashgetbitmap hashrescan hashendscan hashmarkpos hashrestrpos hashbuild hashbuildempty hashbulkdelete hashvacuumcleanup hashcostestimate hashoptions ));
DESCR("hash index access method");
#define HASH_AM_OID 405
DATA(insert OID = 783 ( gist 0 8 f t f f t f t f t t t f 0 gistinsert gistbeginscan gistgettuple gistgetbitmap gistrescan gistendscan gistmarkpos gistrestrpos gistbuild gistbuildempty gistbulkdelete gistvacuumcleanup gistcostestimate gistoptions ));
DATA(insert OID = 783 ( gist 0 8 f t f f t f t f t t t f 0 gistinsert gistbeginscan gistgettuple gistgetbitmap gistrescan gistendscan gistmarkpos gistrestrpos gistbuild gistbuildempty gistbulkdelete gistvacuumcleanup gistcostestimate gistoptions ));
DESCR("GiST index access method");
#define GIST_AM_OID 783
DATA(insert OID = 2742 ( gin 0 5 f f f f t f t f f t f f 0 gininsert ginbeginscan - gingetbitmap ginrescan ginendscan ginmarkpos ginrestrpos ginbuild ginbuildempty ginbulkdelete ginvacuumcleanup gincostestimate ginoptions ));
DATA(insert OID = 2742 ( gin 0 5 f f f f t f t f f t f f 0 gininsert ginbeginscan - gingetbitmap ginrescan ginendscan ginmarkpos ginrestrpos ginbuild ginbuildempty ginbulkdelete ginvacuumcleanup gincostestimate ginoptions ));
DESCR("GIN index access method");
#define GIN_AM_OID 2742
DATA(insert OID = 4000 ( spgist 0 5 f f f f f f f f f f f f 0 spginsert spgbeginscan spggettuple spggetbitmap spgrescan spgendscan spgmarkpos spgrestrpos spgbuild spgbuildempty spgbulkdelete spgvacuumcleanup spgcostestimate spgoptions ));
DESCR("SP-GiST index access method");
#define SPGIST_AM_OID 4000
#endif /* PG_AM_H */

View File

@ -737,4 +737,37 @@ DATA(insert ( 3919 3831 3831 8 s 3892 783 0 ));
DATA(insert ( 3919 3831 2283 16 s 3889 783 0 ));
DATA(insert ( 3919 3831 3831 18 s 3882 783 0 ));
/*
* SP-GiST quad_point_ops
*/
DATA(insert ( 4015 600 600 11 s 506 4000 0 ));
DATA(insert ( 4015 600 600 1 s 507 4000 0 ));
DATA(insert ( 4015 600 600 5 s 508 4000 0 ));
DATA(insert ( 4015 600 600 10 s 509 4000 0 ));
DATA(insert ( 4015 600 600 6 s 510 4000 0 ));
DATA(insert ( 4015 600 603 8 s 511 4000 0 ));
/*
* SP-GiST kd_point_ops
*/
DATA(insert ( 4016 600 600 11 s 506 4000 0 ));
DATA(insert ( 4016 600 600 1 s 507 4000 0 ));
DATA(insert ( 4016 600 600 5 s 508 4000 0 ));
DATA(insert ( 4016 600 600 10 s 509 4000 0 ));
DATA(insert ( 4016 600 600 6 s 510 4000 0 ));
DATA(insert ( 4016 600 603 8 s 511 4000 0 ));
/*
* SP-GiST text_ops
*/
DATA(insert ( 4017 25 25 1 s 2314 4000 0 ));
DATA(insert ( 4017 25 25 2 s 2315 4000 0 ));
DATA(insert ( 4017 25 25 3 s 98 4000 0 ));
DATA(insert ( 4017 25 25 4 s 2317 4000 0 ));
DATA(insert ( 4017 25 25 5 s 2318 4000 0 ));
DATA(insert ( 4017 25 25 11 s 664 4000 0 ));
DATA(insert ( 4017 25 25 12 s 665 4000 0 ));
DATA(insert ( 4017 25 25 14 s 667 4000 0 ));
DATA(insert ( 4017 25 25 15 s 666 4000 0 ));
#endif /* PG_AMOP_H */

View File

@ -356,4 +356,22 @@ DATA(insert ( 3919 3831 3831 5 3879 ));
DATA(insert ( 3919 3831 3831 6 3880 ));
DATA(insert ( 3919 3831 3831 7 3881 ));
/* sp-gist */
DATA(insert ( 4015 600 600 1 4018 ));
DATA(insert ( 4015 600 600 2 4019 ));
DATA(insert ( 4015 600 600 3 4020 ));
DATA(insert ( 4015 600 600 4 4021 ));
DATA(insert ( 4015 600 600 5 4022 ));
DATA(insert ( 4016 600 600 1 4023 ));
DATA(insert ( 4016 600 600 2 4024 ));
DATA(insert ( 4016 600 600 3 4025 ));
DATA(insert ( 4016 600 600 4 4026 ));
DATA(insert ( 4016 600 600 5 4022 ));
DATA(insert ( 4017 25 25 1 4027 ));
DATA(insert ( 4017 25 25 2 4028 ));
DATA(insert ( 4017 25 25 3 4029 ));
DATA(insert ( 4017 25 25 4 4030 ));
DATA(insert ( 4017 25 25 5 4031 ));
#endif /* PG_AMPROC_H */

View File

@ -223,5 +223,8 @@ DATA(insert ( 783 tsquery_ops PGNSP PGUID 3702 3615 t 20 ));
DATA(insert ( 403 range_ops PGNSP PGUID 3901 3831 t 0 ));
DATA(insert ( 405 range_ops PGNSP PGUID 3903 3831 t 0 ));
DATA(insert ( 783 range_ops PGNSP PGUID 3919 3831 t 0 ));
DATA(insert ( 4000 quad_point_ops PGNSP PGUID 4015 600 t 0 ));
DATA(insert ( 4000 kd_point_ops PGNSP PGUID 4016 600 f 0 ));
DATA(insert ( 4000 text_ops PGNSP PGUID 4017 25 t 0 ));
#endif /* PG_OPCLASS_H */

View File

@ -142,5 +142,8 @@ DATA(insert OID = 3702 ( 783 tsquery_ops PGNSP PGUID ));
DATA(insert OID = 3901 ( 403 range_ops PGNSP PGUID ));
DATA(insert OID = 3903 ( 405 range_ops PGNSP PGUID ));
DATA(insert OID = 3919 ( 783 range_ops PGNSP PGUID ));
DATA(insert OID = 4015 ( 4000 quad_point_ops PGNSP PGUID ));
DATA(insert OID = 4016 ( 4000 kd_point_ops PGNSP PGUID ));
DATA(insert OID = 4017 ( 4000 text_ops PGNSP PGUID ));
#endif /* PG_OPFAMILY_H */

View File

@ -4481,6 +4481,68 @@ DESCR("int8range constructor");
DATA(insert OID = 3946 ( int8range PGNSP PGUID 12 1 0 0 0 f f f f f i 3 0 3926 "20 20 25" _null_ _null_ _null_ _null_ range_constructor3 _null_ _null_ _null_ ));
DESCR("int8range constructor");
/* spgist support functions */
DATA(insert OID = 4001 ( spggettuple PGNSP PGUID 12 1 0 0 0 f f f t f v 2 0 16 "2281 2281" _null_ _null_ _null_ _null_ spggettuple _null_ _null_ _null_ ));
DESCR("spgist(internal)");
DATA(insert OID = 4002 ( spggetbitmap PGNSP PGUID 12 1 0 0 0 f f f t f v 2 0 20 "2281 2281" _null_ _null_ _null_ _null_ spggetbitmap _null_ _null_ _null_ ));
DESCR("spgist(internal)");
DATA(insert OID = 4003 ( spginsert PGNSP PGUID 12 1 0 0 0 f f f t f v 6 0 16 "2281 2281 2281 2281 2281 2281" _null_ _null_ _null_ _null_ spginsert _null_ _null_ _null_ ));
DESCR("spgist(internal)");
DATA(insert OID = 4004 ( spgbeginscan PGNSP PGUID 12 1 0 0 0 f f f t f v 3 0 2281 "2281 2281 2281" _null_ _null_ _null_ _null_ spgbeginscan _null_ _null_ _null_ ));
DESCR("spgist(internal)");
DATA(insert OID = 4005 ( spgrescan PGNSP PGUID 12 1 0 0 0 f f f t f v 5 0 2278 "2281 2281 2281 2281 2281" _null_ _null_ _null_ _null_ spgrescan _null_ _null_ _null_ ));
DESCR("spgist(internal)");
DATA(insert OID = 4006 ( spgendscan PGNSP PGUID 12 1 0 0 0 f f f t f v 1 0 2278 "2281" _null_ _null_ _null_ _null_ spgendscan _null_ _null_ _null_ ));
DESCR("spgist(internal)");
DATA(insert OID = 4007 ( spgmarkpos PGNSP PGUID 12 1 0 0 0 f f f t f v 1 0 2278 "2281" _null_ _null_ _null_ _null_ spgmarkpos _null_ _null_ _null_ ));
DESCR("spgist(internal)");
DATA(insert OID = 4008 ( spgrestrpos PGNSP PGUID 12 1 0 0 0 f f f t f v 1 0 2278 "2281" _null_ _null_ _null_ _null_ spgrestrpos _null_ _null_ _null_ ));
DESCR("spgist(internal)");
DATA(insert OID = 4009 ( spgbuild PGNSP PGUID 12 1 0 0 0 f f f t f v 3 0 2281 "2281 2281 2281" _null_ _null_ _null_ _null_ spgbuild _null_ _null_ _null_ ));
DESCR("spgist(internal)");
DATA(insert OID = 4010 ( spgbuildempty PGNSP PGUID 12 1 0 0 0 f f f t f v 1 0 2278 "2281" _null_ _null_ _null_ _null_ spgbuildempty _null_ _null_ _null_ ));
DESCR("spgist(internal)");
DATA(insert OID = 4011 ( spgbulkdelete PGNSP PGUID 12 1 0 0 0 f f f t f v 4 0 2281 "2281 2281 2281 2281" _null_ _null_ _null_ _null_ spgbulkdelete _null_ _null_ _null_ ));
DESCR("spgist(internal)");
DATA(insert OID = 4012 ( spgvacuumcleanup PGNSP PGUID 12 1 0 0 0 f f f t f v 2 0 2281 "2281 2281" _null_ _null_ _null_ _null_ spgvacuumcleanup _null_ _null_ _null_ ));
DESCR("spgist(internal)");
DATA(insert OID = 4013 ( spgcostestimate PGNSP PGUID 12 1 0 0 0 f f f t f v 9 0 2278 "2281 2281 2281 2281 2281 2281 2281 2281 2281" _null_ _null_ _null_ _null_ spgcostestimate _null_ _null_ _null_ ));
DESCR("spgist(internal)");
DATA(insert OID = 4014 ( spgoptions PGNSP PGUID 12 1 0 0 0 f f f t f s 2 0 17 "1009 16" _null_ _null_ _null_ _null_ spgoptions _null_ _null_ _null_ ));
DESCR("spgist(internal)");
/* spgist opclasses */
DATA(insert OID = 4018 ( spg_quad_config PGNSP PGUID 12 1 0 0 0 f f f t f i 2 0 2278 "2281 2281" _null_ _null_ _null_ _null_ spg_quad_config _null_ _null_ _null_ ));
DESCR("SP-GiST support for quad tree over point");
DATA(insert OID = 4019 ( spg_quad_choose PGNSP PGUID 12 1 0 0 0 f f f t f i 2 0 2278 "2281 2281" _null_ _null_ _null_ _null_ spg_quad_choose _null_ _null_ _null_ ));
DESCR("SP-GiST support for quad tree over point");
DATA(insert OID = 4020 ( spg_quad_picksplit PGNSP PGUID 12 1 0 0 0 f f f t f i 2 0 2278 "2281 2281" _null_ _null_ _null_ _null_ spg_quad_picksplit _null_ _null_ _null_ ));
DESCR("SP-GiST support for quad tree over point");
DATA(insert OID = 4021 ( spg_quad_inner_consistent PGNSP PGUID 12 1 0 0 0 f f f t f i 2 0 2278 "2281 2281" _null_ _null_ _null_ _null_ spg_quad_inner_consistent _null_ _null_ _null_ ));
DESCR("SP-GiST support for quad tree over point");
DATA(insert OID = 4022 ( spg_quad_leaf_consistent PGNSP PGUID 12 1 0 0 0 f f f t f i 2 0 16 "2281 2281" _null_ _null_ _null_ _null_ spg_quad_leaf_consistent _null_ _null_ _null_ ));
DESCR("SP-GiST support for quad tree and k-d tree over point");
DATA(insert OID = 4023 ( spg_kd_config PGNSP PGUID 12 1 0 0 0 f f f t f i 2 0 2278 "2281 2281" _null_ _null_ _null_ _null_ spg_kd_config _null_ _null_ _null_ ));
DESCR("SP-GiST support for k-d tree over point");
DATA(insert OID = 4024 ( spg_kd_choose PGNSP PGUID 12 1 0 0 0 f f f t f i 2 0 2278 "2281 2281" _null_ _null_ _null_ _null_ spg_kd_choose _null_ _null_ _null_ ));
DESCR("SP-GiST support for k-d tree over point");
DATA(insert OID = 4025 ( spg_kd_picksplit PGNSP PGUID 12 1 0 0 0 f f f t f i 2 0 2278 "2281 2281" _null_ _null_ _null_ _null_ spg_kd_picksplit _null_ _null_ _null_ ));
DESCR("SP-GiST support for k-d tree over point");
DATA(insert OID = 4026 ( spg_kd_inner_consistent PGNSP PGUID 12 1 0 0 0 f f f t f i 2 0 2278 "2281 2281" _null_ _null_ _null_ _null_ spg_kd_inner_consistent _null_ _null_ _null_ ));
DESCR("SP-GiST support for k-d tree over point");
DATA(insert OID = 4027 ( spg_text_config PGNSP PGUID 12 1 0 0 0 f f f t f i 2 0 2278 "2281 2281" _null_ _null_ _null_ _null_ spg_text_config _null_ _null_ _null_ ));
DESCR("SP-GiST support for suffix tree over text");
DATA(insert OID = 4028 ( spg_text_choose PGNSP PGUID 12 1 0 0 0 f f f t f i 2 0 2278 "2281 2281" _null_ _null_ _null_ _null_ spg_text_choose _null_ _null_ _null_ ));
DESCR("SP-GiST support for suffix tree over text");
DATA(insert OID = 4029 ( spg_text_picksplit PGNSP PGUID 12 1 0 0 0 f f f t f i 2 0 2278 "2281 2281" _null_ _null_ _null_ _null_ spg_text_picksplit _null_ _null_ _null_ ));
DESCR("SP-GiST support for suffix tree over text");
DATA(insert OID = 4030 ( spg_text_inner_consistent PGNSP PGUID 12 1 0 0 0 f f f t f i 2 0 2278 "2281 2281" _null_ _null_ _null_ _null_ spg_text_inner_consistent _null_ _null_ _null_ ));
DESCR("SP-GiST support for suffix tree over text");
DATA(insert OID = 4031 ( spg_text_leaf_consistent PGNSP PGUID 12 1 0 0 0 f f f t f i 2 0 16 "2281 2281" _null_ _null_ _null_ _null_ spg_text_leaf_consistent _null_ _null_ _null_ ));
DESCR("SP-GiST support for suffix tree over text");
/*
* Symbolic values for provolatile column: these indicate whether the result

View File

@ -1080,6 +1080,26 @@ extern Datum window_first_value(PG_FUNCTION_ARGS);
extern Datum window_last_value(PG_FUNCTION_ARGS);
extern Datum window_nth_value(PG_FUNCTION_ARGS);
/* access/spgist/spgquadtreeproc.c */
extern Datum spg_quad_config(PG_FUNCTION_ARGS);
extern Datum spg_quad_choose(PG_FUNCTION_ARGS);
extern Datum spg_quad_picksplit(PG_FUNCTION_ARGS);
extern Datum spg_quad_inner_consistent(PG_FUNCTION_ARGS);
extern Datum spg_quad_leaf_consistent(PG_FUNCTION_ARGS);
/* access/spgist/spgkdtreeproc.c */
extern Datum spg_kd_config(PG_FUNCTION_ARGS);
extern Datum spg_kd_choose(PG_FUNCTION_ARGS);
extern Datum spg_kd_picksplit(PG_FUNCTION_ARGS);
extern Datum spg_kd_inner_consistent(PG_FUNCTION_ARGS);
/* access/spgist/spgtextproc.c */
extern Datum spg_text_config(PG_FUNCTION_ARGS);
extern Datum spg_text_choose(PG_FUNCTION_ARGS);
extern Datum spg_text_picksplit(PG_FUNCTION_ARGS);
extern Datum spg_text_inner_consistent(PG_FUNCTION_ARGS);
extern Datum spg_text_leaf_consistent(PG_FUNCTION_ARGS);
/* access/gin/ginarrayproc.c */
extern Datum ginarrayextract(PG_FUNCTION_ARGS);
extern Datum ginarrayextract_2args(PG_FUNCTION_ARGS);

View File

@ -194,6 +194,7 @@ extern Selectivity estimate_hash_bucketsize(PlannerInfo *root, Node *hashkey,
extern Datum btcostestimate(PG_FUNCTION_ARGS);
extern Datum hashcostestimate(PG_FUNCTION_ARGS);
extern Datum gistcostestimate(PG_FUNCTION_ARGS);
extern Datum spgcostestimate(PG_FUNCTION_ARGS);
extern Datum gincostestimate(PG_FUNCTION_ARGS);
#endif /* SELFUNCS_H */

File diff suppressed because it is too large Load Diff

View File

@ -1053,7 +1053,22 @@ ORDER BY 1, 2, 3;
2742 | 2 | @@@
2742 | 3 | <@
2742 | 4 | =
(43 rows)
4000 | 1 | <<
4000 | 1 | ~<~
4000 | 2 | ~<=~
4000 | 3 | =
4000 | 4 | ~>=~
4000 | 5 | >>
4000 | 5 | ~>~
4000 | 6 | ~=
4000 | 8 | <@
4000 | 10 | <^
4000 | 11 | <
4000 | 11 | >^
4000 | 12 | <=
4000 | 14 | >=
4000 | 15 | >
(58 rows)
-- Check that all opclass search operators have selectivity estimators.
-- This is not absolutely required, but it seems a reasonable thing
@ -1077,6 +1092,24 @@ WHERE NOT EXISTS(SELECT 1 FROM pg_amop AS p2
---------+-----------
(0 rows)
-- Check that each operator listed in pg_amop has an associated opclass,
-- that is one whose opcintype matches oprleft (possibly by coercion).
-- Otherwise the operator is useless because it cannot be matched to an index.
-- (In principle it could be useful to list such operators in multiple-datatype
-- btree opfamilies, but in practice you'd expect there to be an opclass for
-- every datatype the family knows about.)
SELECT p1.amopfamily, p1.amopstrategy, p1.amopopr
FROM pg_amop AS p1
WHERE NOT EXISTS(SELECT 1 FROM pg_opclass AS p2
WHERE p2.opcfamily = p1.amopfamily
AND binary_coercible(p2.opcintype, p1.amoplefttype));
amopfamily | amopstrategy | amopopr
------------+--------------+---------
1029 | 27 | 433
1029 | 47 | 757
1029 | 67 | 759
(3 rows)
-- Operators that are primary members of opclasses must be immutable (else
-- it suggests that the index ordering isn't fixed). Operators that are
-- cross-type members need only be stable, since they are just shorthands
@ -1297,6 +1330,27 @@ ORDER BY 1;
2226 | 1 | hashint4 | cid_ops
(6 rows)
-- We can also check SP-GiST carefully, since the support routine signatures
-- are independent of the datatype being indexed.
SELECT p1.amprocfamily, p1.amprocnum,
p2.oid, p2.proname,
p3.opfname
FROM pg_amproc AS p1, pg_proc AS p2, pg_opfamily AS p3
WHERE p3.opfmethod = (SELECT oid FROM pg_am WHERE amname = 'spgist')
AND p1.amprocfamily = p3.oid AND p1.amproc = p2.oid AND
(CASE WHEN amprocnum = 1 OR amprocnum = 2 OR amprocnum = 3 OR amprocnum = 4
THEN prorettype != 'void'::regtype OR proretset OR pronargs != 2
OR proargtypes[0] != 'internal'::regtype
OR proargtypes[1] != 'internal'::regtype
WHEN amprocnum = 5
THEN prorettype != 'bool'::regtype OR proretset OR pronargs != 2
OR proargtypes[0] != 'internal'::regtype
OR proargtypes[1] != 'internal'::regtype
ELSE true END);
amprocfamily | amprocnum | oid | proname | opfname
--------------+-----------+-----+---------+---------
(0 rows)
-- Support routines that are primary members of opfamilies must be immutable
-- (else it suggests that the index ordering isn't fixed). But cross-type
-- members need only be stable, since they are just shorthands

View File

@ -63,6 +63,7 @@ SELECT relname, relhasindex
int8_tbl | f
interval_tbl | f
iportaltest | f
kd_point_tbl | t
log_table | f
lseg_tbl | f
main_table | f
@ -134,6 +135,7 @@ SELECT relname, relhasindex
pg_user_mapping | t
point_tbl | t
polygon_tbl | t
quad_point_tbl | t
ramp | f
real_city | f
reltime_tbl | f
@ -149,6 +151,7 @@ SELECT relname, relhasindex
sql_sizing_profiles | f
stud_emp | f
student | f
suffix_text_tbl | t
tenk1 | t
tenk2 | t
test_range_excl | t
@ -161,7 +164,7 @@ SELECT relname, relhasindex
timetz_tbl | f
tinterval_tbl | f
varchar_tbl | f
(150 rows)
(153 rows)
--
-- another sanity check: every system catalog that has OIDs should have

View File

@ -636,6 +636,7 @@ SELECT user_relns() AS user_relns
int8_tbl
interval_tbl
iportaltest
kd_point_tbl
log_table
lseg_tbl
main_table
@ -657,6 +658,7 @@ SELECT user_relns() AS user_relns
person
point_tbl
polygon_tbl
quad_point_tbl
ramp
random_tbl
real_city
@ -668,6 +670,7 @@ SELECT user_relns() AS user_relns
stud_emp
student
subselect_tbl
suffix_text_tbl
tenk1
tenk2
test_range_excl
@ -682,7 +685,7 @@ SELECT user_relns() AS user_relns
toyemp
varchar_tbl
xacttest
(104 rows)
(107 rows)
SELECT name(equipment(hobby_construct(text 'skywalking', text 'mer')));
name

View File

@ -92,6 +92,36 @@ CREATE INDEX ggpolygonind ON gpolygon_tbl USING gist (f1);
CREATE INDEX ggcircleind ON gcircle_tbl USING gist (f1);
--
-- SP-GiST
--
CREATE TABLE quad_point_tbl AS
SELECT point(unique1,unique2) AS p FROM tenk1;
INSERT INTO quad_point_tbl
SELECT '(333.0,400.0)'::point FROM generate_series(1,1000);
CREATE INDEX sp_quad_ind ON quad_point_tbl USING spgist (p);
CREATE TABLE kd_point_tbl AS SELECT * FROM quad_point_tbl;
CREATE INDEX sp_kd_ind ON kd_point_tbl USING spgist (p kd_point_ops);
CREATE TABLE suffix_text_tbl AS
SELECT name AS t FROM road;
INSERT INTO suffix_text_tbl
SELECT '0123456789abcdef' FROM generate_series(1,1000);
INSERT INTO suffix_text_tbl VALUES ('0123456789abcde');
INSERT INTO suffix_text_tbl VALUES ('0123456789abcdefF');
CREATE INDEX sp_suff_ind ON suffix_text_tbl USING spgist (t);
--
-- Test GiST and SP-GiST indexes
--
-- get non-indexed results for comparison purposes
SET enable_seqscan = ON;
@ -142,9 +172,50 @@ SELECT * FROM point_tbl WHERE f1 IS NOT NULL ORDER BY f1 <-> '0,1';
SELECT * FROM point_tbl WHERE f1 <@ '(-10,-10),(10,10)':: box ORDER BY f1 <-> '0,1';
SELECT count(*) FROM quad_point_tbl WHERE p <@ box '(200,200,1000,1000)';
SELECT count(*) FROM quad_point_tbl WHERE box '(200,200,1000,1000)' @> p;
SELECT count(*) FROM quad_point_tbl WHERE p << '(5000, 4000)';
SELECT count(*) FROM quad_point_tbl WHERE p >> '(5000, 4000)';
SELECT count(*) FROM quad_point_tbl WHERE p <^ '(5000, 4000)';
SELECT count(*) FROM quad_point_tbl WHERE p >^ '(5000, 4000)';
SELECT count(*) FROM quad_point_tbl WHERE p ~= '(4585, 365)';
SELECT count(*) FROM suffix_text_tbl WHERE t = '0123456789abcdef';
SELECT count(*) FROM suffix_text_tbl WHERE t = '0123456789abcde';
SELECT count(*) FROM suffix_text_tbl WHERE t = '0123456789abcdefF';
SELECT count(*) FROM suffix_text_tbl WHERE t < 'Aztec Ct ';
SELECT count(*) FROM suffix_text_tbl WHERE t ~<~ 'Aztec Ct ';
SELECT count(*) FROM suffix_text_tbl WHERE t <= 'Aztec Ct ';
SELECT count(*) FROM suffix_text_tbl WHERE t ~<=~ 'Aztec Ct ';
SELECT count(*) FROM suffix_text_tbl WHERE t = 'Aztec Ct ';
SELECT count(*) FROM suffix_text_tbl WHERE t = 'Worth St ';
SELECT count(*) FROM suffix_text_tbl WHERE t >= 'Worth St ';
SELECT count(*) FROM suffix_text_tbl WHERE t ~>=~ 'Worth St ';
SELECT count(*) FROM suffix_text_tbl WHERE t > 'Worth St ';
SELECT count(*) FROM suffix_text_tbl WHERE t ~>~ 'Worth St ';
-- Now check the results from plain indexscan
SET enable_seqscan = OFF;
SET enable_indexscan = ON;
SET enable_bitmapscan = ON;
SET enable_bitmapscan = OFF;
EXPLAIN (COSTS OFF)
SELECT * FROM fast_emp4000
@ -234,6 +305,115 @@ EXPLAIN (COSTS OFF)
SELECT * FROM point_tbl WHERE f1 <@ '(-10,-10),(10,10)':: box ORDER BY f1 <-> '0,1';
SELECT * FROM point_tbl WHERE f1 <@ '(-10,-10),(10,10)':: box ORDER BY f1 <-> '0,1';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM quad_point_tbl WHERE p <@ box '(200,200,1000,1000)';
SELECT count(*) FROM quad_point_tbl WHERE p <@ box '(200,200,1000,1000)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM quad_point_tbl WHERE box '(200,200,1000,1000)' @> p;
SELECT count(*) FROM quad_point_tbl WHERE box '(200,200,1000,1000)' @> p;
EXPLAIN (COSTS OFF)
SELECT count(*) FROM quad_point_tbl WHERE p << '(5000, 4000)';
SELECT count(*) FROM quad_point_tbl WHERE p << '(5000, 4000)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM quad_point_tbl WHERE p >> '(5000, 4000)';
SELECT count(*) FROM quad_point_tbl WHERE p >> '(5000, 4000)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM quad_point_tbl WHERE p <^ '(5000, 4000)';
SELECT count(*) FROM quad_point_tbl WHERE p <^ '(5000, 4000)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM quad_point_tbl WHERE p >^ '(5000, 4000)';
SELECT count(*) FROM quad_point_tbl WHERE p >^ '(5000, 4000)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM quad_point_tbl WHERE p ~= '(4585, 365)';
SELECT count(*) FROM quad_point_tbl WHERE p ~= '(4585, 365)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM kd_point_tbl WHERE p <@ box '(200,200,1000,1000)';
SELECT count(*) FROM kd_point_tbl WHERE p <@ box '(200,200,1000,1000)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM kd_point_tbl WHERE box '(200,200,1000,1000)' @> p;
SELECT count(*) FROM kd_point_tbl WHERE box '(200,200,1000,1000)' @> p;
EXPLAIN (COSTS OFF)
SELECT count(*) FROM kd_point_tbl WHERE p << '(5000, 4000)';
SELECT count(*) FROM kd_point_tbl WHERE p << '(5000, 4000)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM kd_point_tbl WHERE p >> '(5000, 4000)';
SELECT count(*) FROM kd_point_tbl WHERE p >> '(5000, 4000)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM kd_point_tbl WHERE p <^ '(5000, 4000)';
SELECT count(*) FROM kd_point_tbl WHERE p <^ '(5000, 4000)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM kd_point_tbl WHERE p >^ '(5000, 4000)';
SELECT count(*) FROM kd_point_tbl WHERE p >^ '(5000, 4000)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM kd_point_tbl WHERE p ~= '(4585, 365)';
SELECT count(*) FROM kd_point_tbl WHERE p ~= '(4585, 365)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t = '0123456789abcdef';
SELECT count(*) FROM suffix_text_tbl WHERE t = '0123456789abcdef';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t = '0123456789abcde';
SELECT count(*) FROM suffix_text_tbl WHERE t = '0123456789abcde';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t = '0123456789abcdefF';
SELECT count(*) FROM suffix_text_tbl WHERE t = '0123456789abcdefF';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t < 'Aztec Ct ';
SELECT count(*) FROM suffix_text_tbl WHERE t < 'Aztec Ct ';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t ~<~ 'Aztec Ct ';
SELECT count(*) FROM suffix_text_tbl WHERE t ~<~ 'Aztec Ct ';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t <= 'Aztec Ct ';
SELECT count(*) FROM suffix_text_tbl WHERE t <= 'Aztec Ct ';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t ~<=~ 'Aztec Ct ';
SELECT count(*) FROM suffix_text_tbl WHERE t ~<=~ 'Aztec Ct ';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t = 'Aztec Ct ';
SELECT count(*) FROM suffix_text_tbl WHERE t = 'Aztec Ct ';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t = 'Worth St ';
SELECT count(*) FROM suffix_text_tbl WHERE t = 'Worth St ';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t >= 'Worth St ';
SELECT count(*) FROM suffix_text_tbl WHERE t >= 'Worth St ';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t ~>=~ 'Worth St ';
SELECT count(*) FROM suffix_text_tbl WHERE t ~>=~ 'Worth St ';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t > 'Worth St ';
SELECT count(*) FROM suffix_text_tbl WHERE t > 'Worth St ';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t ~>~ 'Worth St ';
SELECT count(*) FROM suffix_text_tbl WHERE t ~>~ 'Worth St ';
-- Now check the results from bitmap indexscan
SET enable_seqscan = OFF;
SET enable_indexscan = OFF;
SET enable_bitmapscan = ON;
@ -242,6 +422,114 @@ EXPLAIN (COSTS OFF)
SELECT * FROM point_tbl WHERE f1 <@ '(-10,-10),(10,10)':: box ORDER BY f1 <-> '0,1';
SELECT * FROM point_tbl WHERE f1 <@ '(-10,-10),(10,10)':: box ORDER BY f1 <-> '0,1';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM quad_point_tbl WHERE p <@ box '(200,200,1000,1000)';
SELECT count(*) FROM quad_point_tbl WHERE p <@ box '(200,200,1000,1000)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM quad_point_tbl WHERE box '(200,200,1000,1000)' @> p;
SELECT count(*) FROM quad_point_tbl WHERE box '(200,200,1000,1000)' @> p;
EXPLAIN (COSTS OFF)
SELECT count(*) FROM quad_point_tbl WHERE p << '(5000, 4000)';
SELECT count(*) FROM quad_point_tbl WHERE p << '(5000, 4000)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM quad_point_tbl WHERE p >> '(5000, 4000)';
SELECT count(*) FROM quad_point_tbl WHERE p >> '(5000, 4000)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM quad_point_tbl WHERE p <^ '(5000, 4000)';
SELECT count(*) FROM quad_point_tbl WHERE p <^ '(5000, 4000)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM quad_point_tbl WHERE p >^ '(5000, 4000)';
SELECT count(*) FROM quad_point_tbl WHERE p >^ '(5000, 4000)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM quad_point_tbl WHERE p ~= '(4585, 365)';
SELECT count(*) FROM quad_point_tbl WHERE p ~= '(4585, 365)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM kd_point_tbl WHERE p <@ box '(200,200,1000,1000)';
SELECT count(*) FROM kd_point_tbl WHERE p <@ box '(200,200,1000,1000)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM kd_point_tbl WHERE box '(200,200,1000,1000)' @> p;
SELECT count(*) FROM kd_point_tbl WHERE box '(200,200,1000,1000)' @> p;
EXPLAIN (COSTS OFF)
SELECT count(*) FROM kd_point_tbl WHERE p << '(5000, 4000)';
SELECT count(*) FROM kd_point_tbl WHERE p << '(5000, 4000)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM kd_point_tbl WHERE p >> '(5000, 4000)';
SELECT count(*) FROM kd_point_tbl WHERE p >> '(5000, 4000)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM kd_point_tbl WHERE p <^ '(5000, 4000)';
SELECT count(*) FROM kd_point_tbl WHERE p <^ '(5000, 4000)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM kd_point_tbl WHERE p >^ '(5000, 4000)';
SELECT count(*) FROM kd_point_tbl WHERE p >^ '(5000, 4000)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM kd_point_tbl WHERE p ~= '(4585, 365)';
SELECT count(*) FROM kd_point_tbl WHERE p ~= '(4585, 365)';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t = '0123456789abcdef';
SELECT count(*) FROM suffix_text_tbl WHERE t = '0123456789abcdef';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t = '0123456789abcde';
SELECT count(*) FROM suffix_text_tbl WHERE t = '0123456789abcde';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t = '0123456789abcdefF';
SELECT count(*) FROM suffix_text_tbl WHERE t = '0123456789abcdefF';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t < 'Aztec Ct ';
SELECT count(*) FROM suffix_text_tbl WHERE t < 'Aztec Ct ';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t ~<~ 'Aztec Ct ';
SELECT count(*) FROM suffix_text_tbl WHERE t ~<~ 'Aztec Ct ';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t <= 'Aztec Ct ';
SELECT count(*) FROM suffix_text_tbl WHERE t <= 'Aztec Ct ';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t ~<=~ 'Aztec Ct ';
SELECT count(*) FROM suffix_text_tbl WHERE t ~<=~ 'Aztec Ct ';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t = 'Aztec Ct ';
SELECT count(*) FROM suffix_text_tbl WHERE t = 'Aztec Ct ';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t = 'Worth St ';
SELECT count(*) FROM suffix_text_tbl WHERE t = 'Worth St ';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t >= 'Worth St ';
SELECT count(*) FROM suffix_text_tbl WHERE t >= 'Worth St ';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t ~>=~ 'Worth St ';
SELECT count(*) FROM suffix_text_tbl WHERE t ~>=~ 'Worth St ';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t > 'Worth St ';
SELECT count(*) FROM suffix_text_tbl WHERE t > 'Worth St ';
EXPLAIN (COSTS OFF)
SELECT count(*) FROM suffix_text_tbl WHERE t ~>~ 'Worth St ';
SELECT count(*) FROM suffix_text_tbl WHERE t ~>~ 'Worth St ';
RESET enable_seqscan;
RESET enable_indexscan;
RESET enable_bitmapscan;

View File

@ -831,6 +831,19 @@ WHERE NOT EXISTS(SELECT 1 FROM pg_amop AS p2
WHERE p2.amopfamily = p1.opcfamily
AND binary_coercible(p1.opcintype, p2.amoplefttype));
-- Check that each operator listed in pg_amop has an associated opclass,
-- that is one whose opcintype matches oprleft (possibly by coercion).
-- Otherwise the operator is useless because it cannot be matched to an index.
-- (In principle it could be useful to list such operators in multiple-datatype
-- btree opfamilies, but in practice you'd expect there to be an opclass for
-- every datatype the family knows about.)
SELECT p1.amopfamily, p1.amopstrategy, p1.amopopr
FROM pg_amop AS p1
WHERE NOT EXISTS(SELECT 1 FROM pg_opclass AS p2
WHERE p2.opcfamily = p1.amopfamily
AND binary_coercible(p2.opcintype, p1.amoplefttype));
-- Operators that are primary members of opclasses must be immutable (else
-- it suggests that the index ordering isn't fixed). Operators that are
-- cross-type members need only be stable, since they are just shorthands
@ -1018,6 +1031,25 @@ WHERE p3.opfmethod = (SELECT oid FROM pg_am WHERE amname = 'hash')
OR amproclefttype != amprocrighttype)
ORDER BY 1;
-- We can also check SP-GiST carefully, since the support routine signatures
-- are independent of the datatype being indexed.
SELECT p1.amprocfamily, p1.amprocnum,
p2.oid, p2.proname,
p3.opfname
FROM pg_amproc AS p1, pg_proc AS p2, pg_opfamily AS p3
WHERE p3.opfmethod = (SELECT oid FROM pg_am WHERE amname = 'spgist')
AND p1.amprocfamily = p3.oid AND p1.amproc = p2.oid AND
(CASE WHEN amprocnum = 1 OR amprocnum = 2 OR amprocnum = 3 OR amprocnum = 4
THEN prorettype != 'void'::regtype OR proretset OR pronargs != 2
OR proargtypes[0] != 'internal'::regtype
OR proargtypes[1] != 'internal'::regtype
WHEN amprocnum = 5
THEN prorettype != 'bool'::regtype OR proretset OR pronargs != 2
OR proargtypes[0] != 'internal'::regtype
OR proargtypes[1] != 'internal'::regtype
ELSE true END);
-- Support routines that are primary members of opfamilies must be immutable
-- (else it suggests that the index ordering isn't fixed). But cross-type
-- members need only be stable, since they are just shorthands