Detect case where an outer join can be reduced to a plain inner join

because there are WHERE clauses that will reject the null-extended rows.
Per suggestion from Brandon Craig Rhodes, 19-Nov-02.
This commit is contained in:
Tom Lane 2003-02-09 23:57:19 +00:00
parent 43785a434e
commit b5956a2f22
3 changed files with 378 additions and 15 deletions

View File

@ -8,7 +8,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/plan/planner.c,v 1.145 2003/02/09 00:30:39 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/plan/planner.c,v 1.146 2003/02/09 23:57:19 tgl Exp $
*
*-------------------------------------------------------------------------
*/
@ -144,6 +144,7 @@ subquery_planner(Query *parse, double tuple_fraction)
{
List *saved_initplan = PlannerInitPlan;
int saved_planid = PlannerPlanId;
bool hasOuterJoins;
Plan *plan;
List *newHaving;
List *lst;
@ -172,10 +173,12 @@ subquery_planner(Query *parse, double tuple_fraction)
/*
* Detect whether any rangetable entries are RTE_JOIN kind; if not,
* we can avoid the expense of doing flatten_join_alias_vars().
* we can avoid the expense of doing flatten_join_alias_vars(). Also
* check for outer joins --- if none, we can skip reduce_outer_joins().
* This must be done after we have done pull_up_subqueries, of course.
*/
parse->hasJoinRTEs = false;
hasOuterJoins = false;
foreach(lst, parse->rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(lst);
@ -183,7 +186,12 @@ subquery_planner(Query *parse, double tuple_fraction)
if (rte->rtekind == RTE_JOIN)
{
parse->hasJoinRTEs = true;
break;
if (IS_OUTER_JOIN(rte->jointype))
{
hasOuterJoins = true;
/* Can quit scanning once we find an outer join */
break;
}
}
}
@ -244,15 +252,23 @@ subquery_planner(Query *parse, double tuple_fraction)
}
parse->havingQual = (Node *) newHaving;
/*
* If we have any outer joins, try to reduce them to plain inner joins.
* This step is most easily done after we've done expression preprocessing.
*/
if (hasOuterJoins)
reduce_outer_joins(parse);
/*
* See if we can simplify the jointree; opportunities for this may come
* from having pulled up subqueries, or from flattening explicit JOIN
* syntax. We must do this after flattening JOIN alias variables, since
* eliminating explicit JOIN nodes from the jointree will cause
* get_relids_for_join() to fail.
* get_relids_for_join() to fail. But it should happen after
* reduce_outer_joins, anyway.
*/
parse->jointree = (FromExpr *)
preprocess_jointree(parse, (Node *) parse->jointree);
simplify_jointree(parse, (Node *) parse->jointree);
/*
* Do the main planning. If we have an inherited target relation,

View File

@ -3,13 +3,20 @@
* prepjointree.c
* Planner preprocessing for subqueries and join tree manipulation.
*
* NOTE: the intended sequence for invoking these operations is
* pull_up_IN_clauses
* pull_up_subqueries
* do expression preprocessing (including flattening JOIN alias vars)
* reduce_outer_joins
* simplify_jointree
*
*
* Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/prep/prepjointree.c,v 1.4 2003/02/09 00:35:55 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/prep/prepjointree.c,v 1.5 2003/02/09 23:57:19 tgl Exp $
*
*-------------------------------------------------------------------------
*/
@ -21,6 +28,7 @@
#include "optimizer/var.h"
#include "parser/parsetree.h"
#include "rewrite/rewriteManip.h"
#include "utils/lsyscache.h"
/* These parameters are set by GUC */
@ -28,9 +36,22 @@ int from_collapse_limit;
int join_collapse_limit;
typedef struct reduce_outer_joins_state
{
Relids relids; /* base relids within this subtree */
bool contains_outer; /* does subtree contain outer join(s)? */
List *sub_states; /* List of states for subtree components */
} reduce_outer_joins_state;
static bool is_simple_subquery(Query *subquery);
static bool has_nullable_targetlist(Query *subquery);
static void resolvenew_in_jointree(Node *jtnode, int varno, List *subtlist);
static reduce_outer_joins_state *reduce_outer_joins_pass1(Node *jtnode);
static void reduce_outer_joins_pass2(Node *jtnode,
reduce_outer_joins_state *state,
Query *parse,
Relids nonnullable_rels);
static Relids find_nonnullable_rels(Node *node, bool top_level);
static void fix_in_clause_relids(List *in_info_list, int varno,
Relids subrelids);
static Node *find_jointree_node_for_rel(Node *jtnode, int relid);
@ -463,7 +484,332 @@ resolvenew_in_jointree(Node *jtnode, int varno, List *subtlist)
}
/*
* preprocess_jointree
* reduce_outer_joins
* Attempt to reduce outer joins to plain inner joins.
*
* The idea here is that given a query like
* SELECT ... FROM a LEFT JOIN b ON (...) WHERE b.y = 42;
* we can reduce the LEFT JOIN to a plain JOIN if the "=" operator in WHERE
* is strict. The strict operator will always return NULL, causing the outer
* WHERE to fail, on any row where the LEFT JOIN filled in NULLs for b's
* columns. Therefore, there's no need for the join to produce null-extended
* rows in the first place --- which makes it a plain join not an outer join.
* (This scenario may not be very likely in a query written out by hand, but
* it's reasonably likely when pushing quals down into complex views.)
*
* More generally, an outer join can be reduced in strength if there is a
* strict qual above it in the qual tree that constrains a Var from the
* nullable side of the join to be non-null. (For FULL joins this applies
* to each side separately.)
*
* To ease recognition of strict qual clauses, we require this routine to be
* run after expression preprocessing (i.e., qual canonicalization and JOIN
* alias-var expansion).
*/
void
reduce_outer_joins(Query *parse)
{
reduce_outer_joins_state *state;
/*
* To avoid doing strictness checks on more quals than necessary,
* we want to stop descending the jointree as soon as there are no
* outer joins below our current point. This consideration forces
* a two-pass process. The first pass gathers information about which
* base rels appear below each side of each join clause, and about
* whether there are outer join(s) below each side of each join clause.
* The second pass examines qual clauses and changes join types as
* it descends the tree.
*/
state = reduce_outer_joins_pass1((Node *) parse->jointree);
/* planner.c shouldn't have called me if no outer joins */
if (state == NULL || !state->contains_outer)
elog(ERROR, "reduce_outer_joins: so where are the outer joins?");
reduce_outer_joins_pass2((Node *) parse->jointree, state, parse, NULL);
}
/*
* reduce_outer_joins_pass1 - phase 1 data collection
*
* Returns a state node describing the given jointree node.
*/
static reduce_outer_joins_state *
reduce_outer_joins_pass1(Node *jtnode)
{
reduce_outer_joins_state *result;
result = (reduce_outer_joins_state *)
palloc(sizeof(reduce_outer_joins_state));
result->relids = NULL;
result->contains_outer = false;
result->sub_states = NIL;
if (jtnode == NULL)
return result;
if (IsA(jtnode, RangeTblRef))
{
int varno = ((RangeTblRef *) jtnode)->rtindex;
result->relids = bms_make_singleton(varno);
}
else if (IsA(jtnode, FromExpr))
{
FromExpr *f = (FromExpr *) jtnode;
List *l;
foreach(l, f->fromlist)
{
reduce_outer_joins_state *sub_state;
sub_state = reduce_outer_joins_pass1(lfirst(l));
result->relids = bms_add_members(result->relids,
sub_state->relids);
result->contains_outer |= sub_state->contains_outer;
result->sub_states = lappend(result->sub_states, sub_state);
}
}
else if (IsA(jtnode, JoinExpr))
{
JoinExpr *j = (JoinExpr *) jtnode;
reduce_outer_joins_state *sub_state;
/* join's own RT index is not wanted in result->relids */
if (IS_OUTER_JOIN(j->jointype))
result->contains_outer = true;
sub_state = reduce_outer_joins_pass1(j->larg);
result->relids = bms_add_members(result->relids,
sub_state->relids);
result->contains_outer |= sub_state->contains_outer;
result->sub_states = lappend(result->sub_states, sub_state);
sub_state = reduce_outer_joins_pass1(j->rarg);
result->relids = bms_add_members(result->relids,
sub_state->relids);
result->contains_outer |= sub_state->contains_outer;
result->sub_states = lappend(result->sub_states, sub_state);
}
else
elog(ERROR, "reduce_outer_joins_pass1: unexpected node type %d",
nodeTag(jtnode));
return result;
}
/*
* reduce_outer_joins_pass2 - phase 2 processing
*
* jtnode: current jointree node
* state: state data collected by phase 1 for this node
* parse: toplevel Query
* nonnullable_rels: set of base relids forced non-null by upper quals
*/
static void
reduce_outer_joins_pass2(Node *jtnode,
reduce_outer_joins_state *state,
Query *parse,
Relids nonnullable_rels)
{
/*
* pass 2 should never descend as far as an empty subnode or base rel,
* because it's only called on subtrees marked as contains_outer.
*/
if (jtnode == NULL)
elog(ERROR, "reduce_outer_joins_pass2: reached empty jointree");
if (IsA(jtnode, RangeTblRef))
{
elog(ERROR, "reduce_outer_joins_pass2: reached base rel");
}
else if (IsA(jtnode, FromExpr))
{
FromExpr *f = (FromExpr *) jtnode;
List *l;
List *s;
Relids pass_nonnullable;
/* Scan quals to see if we can add any nonnullability constraints */
pass_nonnullable = find_nonnullable_rels(f->quals, true);
pass_nonnullable = bms_add_members(pass_nonnullable,
nonnullable_rels);
/* And recurse --- but only into interesting subtrees */
s = state->sub_states;
foreach(l, f->fromlist)
{
reduce_outer_joins_state *sub_state = lfirst(s);
if (sub_state->contains_outer)
reduce_outer_joins_pass2(lfirst(l), sub_state, parse,
pass_nonnullable);
s = lnext(s);
}
bms_free(pass_nonnullable);
}
else if (IsA(jtnode, JoinExpr))
{
JoinExpr *j = (JoinExpr *) jtnode;
int rtindex = j->rtindex;
JoinType jointype = j->jointype;
reduce_outer_joins_state *left_state = lfirst(state->sub_states);
reduce_outer_joins_state *right_state = lsecond(state->sub_states);
/* Can we simplify this join? */
switch (jointype)
{
case JOIN_LEFT:
if (bms_overlap(nonnullable_rels, right_state->relids))
jointype = JOIN_INNER;
break;
case JOIN_RIGHT:
if (bms_overlap(nonnullable_rels, left_state->relids))
jointype = JOIN_INNER;
break;
case JOIN_FULL:
if (bms_overlap(nonnullable_rels, left_state->relids))
{
if (bms_overlap(nonnullable_rels, right_state->relids))
jointype = JOIN_INNER;
else
jointype = JOIN_LEFT;
}
else
{
if (bms_overlap(nonnullable_rels, right_state->relids))
jointype = JOIN_RIGHT;
}
break;
default:
break;
}
if (jointype != j->jointype)
{
/* apply the change to both jointree node and RTE */
RangeTblEntry *rte = rt_fetch(rtindex, parse->rtable);
Assert(rte->rtekind == RTE_JOIN);
Assert(rte->jointype == j->jointype);
rte->jointype = j->jointype = jointype;
}
/* Only recurse if there's more to do below here */
if (left_state->contains_outer || right_state->contains_outer)
{
Relids pass_nonnullable;
/*
* Scan join quals to see if we can add any nonnullability
* constraints. (Okay to do this even if join is still outer.)
*/
pass_nonnullable = find_nonnullable_rels(j->quals, true);
pass_nonnullable = bms_add_members(pass_nonnullable,
nonnullable_rels);
/* And recurse as needed */
if (left_state->contains_outer)
reduce_outer_joins_pass2(j->larg, left_state, parse,
pass_nonnullable);
if (right_state->contains_outer)
reduce_outer_joins_pass2(j->rarg, right_state, parse,
pass_nonnullable);
bms_free(pass_nonnullable);
}
}
else
elog(ERROR, "reduce_outer_joins_pass2: unexpected node type %d",
nodeTag(jtnode));
}
/*
* find_nonnullable_rels
* Determine which base rels are forced nonnullable by given quals
*
* We don't use expression_tree_walker here because we don't want to
* descend through very many kinds of nodes; only the ones we can be sure
* are strict. We can descend through the top level of implicit AND'ing,
* but not through any explicit ANDs (or ORs) below that, since those are not
* strict constructs. The List case handles the top-level implicit AND list
* as well as lists of arguments to strict operators/functions.
*/
static Relids
find_nonnullable_rels(Node *node, bool top_level)
{
Relids result = NULL;
if (node == NULL)
return NULL;
if (IsA(node, Var))
{
Var *var = (Var *) node;
if (var->varlevelsup == 0)
result = bms_make_singleton(var->varno);
}
else if (IsA(node, List))
{
List *l;
foreach(l, (List *) node)
{
result = bms_join(result, find_nonnullable_rels(lfirst(l),
top_level));
}
}
else if (IsA(node, FuncExpr))
{
FuncExpr *expr = (FuncExpr *) node;
if (func_strict(expr->funcid))
result = find_nonnullable_rels((Node *) expr->args, false);
}
else if (IsA(node, OpExpr))
{
OpExpr *expr = (OpExpr *) node;
if (op_strict(expr->opno))
result = find_nonnullable_rels((Node *) expr->args, false);
}
else if (IsA(node, BoolExpr))
{
BoolExpr *expr = (BoolExpr *) node;
/* NOT is strict, others are not */
if (expr->boolop == NOT_EXPR)
result = find_nonnullable_rels((Node *) expr->args, false);
}
else if (IsA(node, RelabelType))
{
RelabelType *expr = (RelabelType *) node;
result = find_nonnullable_rels((Node *) expr->arg, top_level);
}
else if (IsA(node, NullTest))
{
NullTest *expr = (NullTest *) node;
/*
* IS NOT NULL can be considered strict, but only at top level;
* else we might have something like NOT (x IS NOT NULL).
*/
if (top_level && expr->nulltesttype == IS_NOT_NULL)
result = find_nonnullable_rels((Node *) expr->arg, false);
}
else if (IsA(node, BooleanTest))
{
BooleanTest *expr = (BooleanTest *) node;
/*
* Appropriate boolean tests are strict at top level.
*/
if (top_level &&
(expr->booltesttype == IS_TRUE ||
expr->booltesttype == IS_FALSE ||
expr->booltesttype == IS_NOT_UNKNOWN))
result = find_nonnullable_rels((Node *) expr->arg, false);
}
return result;
}
/*
* simplify_jointree
* Attempt to simplify a query's jointree.
*
* If we succeed in pulling up a subquery then we might form a jointree
@ -487,7 +833,7 @@ resolvenew_in_jointree(Node *jtnode, int varno, List *subtlist)
* work reliably --- see comments for pull_up_subqueries().
*/
Node *
preprocess_jointree(Query *parse, Node *jtnode)
simplify_jointree(Query *parse, Node *jtnode)
{
if (jtnode == NULL)
return NULL;
@ -506,7 +852,7 @@ preprocess_jointree(Query *parse, Node *jtnode)
Node *child = (Node *) lfirst(l);
/* Recursively simplify this child... */
child = preprocess_jointree(parse, child);
child = simplify_jointree(parse, child);
/* Now, is it a FromExpr? */
if (child && IsA(child, FromExpr))
{
@ -546,8 +892,8 @@ preprocess_jointree(Query *parse, Node *jtnode)
JoinExpr *j = (JoinExpr *) jtnode;
/* Recursively simplify the children... */
j->larg = preprocess_jointree(parse, j->larg);
j->rarg = preprocess_jointree(parse, j->rarg);
j->larg = simplify_jointree(parse, j->larg);
j->rarg = simplify_jointree(parse, j->rarg);
/*
* If it is an outer join, we must not flatten it. An inner join
* is semantically equivalent to a FromExpr; we convert it to one,
@ -605,7 +951,7 @@ preprocess_jointree(Query *parse, Node *jtnode)
}
}
else
elog(ERROR, "preprocess_jointree: unexpected node type %d",
elog(ERROR, "simplify_jointree: unexpected node type %d",
nodeTag(jtnode));
return jtnode;
}
@ -684,7 +1030,7 @@ get_relids_in_jointree(Node *jtnode)
/*
* get_relids_for_join: get set of base RT indexes making up a join
*
* NB: this will not work reliably after preprocess_jointree() is run,
* NB: this will not work reliably after simplify_jointree() is run,
* since that may eliminate join nodes from the jointree.
*/
Relids

View File

@ -7,7 +7,7 @@
* Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $Id: prep.h,v 1.36 2003/02/08 20:20:55 tgl Exp $
* $Id: prep.h,v 1.37 2003/02/09 23:57:19 tgl Exp $
*
*-------------------------------------------------------------------------
*/
@ -28,7 +28,8 @@ extern int join_collapse_limit;
extern Node *pull_up_IN_clauses(Query *parse, Node *node);
extern Node *pull_up_subqueries(Query *parse, Node *jtnode,
bool below_outer_join);
extern Node *preprocess_jointree(Query *parse, Node *jtnode);
extern void reduce_outer_joins(Query *parse);
extern Node *simplify_jointree(Query *parse, Node *jtnode);
extern Relids get_relids_in_jointree(Node *jtnode);
extern Relids get_relids_for_join(Query *parse, int joinrelid);