Remove now-dead code for !HAVE_INT64_TIMESTAMP.

This is a basically mechanical removal of #ifdef HAVE_INT64_TIMESTAMP
tests and the negative-case controlled code.

Discussion: https://postgr.es/m/26788.1487455319@sss.pgh.pa.us
This commit is contained in:
Tom Lane 2017-02-23 14:04:43 -05:00
parent d28aafb6dd
commit b9d092c962
26 changed files with 28 additions and 1298 deletions

View File

@ -179,11 +179,7 @@ gbt_timetz_compress(PG_FUNCTION_ARGS)
retval = palloc(sizeof(GISTENTRY));
/* We are using the time + zone only to compress */
#ifdef HAVE_INT64_TIMESTAMP
tmp = tz->time + (tz->zone * INT64CONST(1000000));
#else
tmp = (tz->time + tz->zone);
#endif
r->lower = r->upper = tmp;
gistentryinit(*retval, PointerGetDatum(r),
entry->rel, entry->page,
@ -259,11 +255,7 @@ gbt_timetz_consistent(PG_FUNCTION_ARGS)
/* All cases served by this function are inexact */
*recheck = true;
#ifdef HAVE_INT64_TIMESTAMP
qqq = query->time + (query->zone * INT64CONST(1000000));
#else
qqq = (query->time + query->zone);
#endif
key.lower = (GBT_NUMKEY *) &kkk->lower;
key.upper = (GBT_NUMKEY *) &kkk->upper;

View File

@ -153,11 +153,7 @@ ts_dist(PG_FUNCTION_ARGS)
p->day = INT_MAX;
p->month = INT_MAX;
#ifdef HAVE_INT64_TIMESTAMP
p->time = PG_INT64_MAX;
#else
p->time = DBL_MAX;
#endif
PG_RETURN_INTERVAL_P(p);
}
else
@ -181,11 +177,7 @@ tstz_dist(PG_FUNCTION_ARGS)
p->day = INT_MAX;
p->month = INT_MAX;
#ifdef HAVE_INT64_TIMESTAMP
p->time = PG_INT64_MAX;
#else
p->time = DBL_MAX;
#endif
PG_RETURN_INTERVAL_P(p);
}

View File

@ -82,17 +82,10 @@ typedef struct
* (as a double). Here because we need it for time/timetz as well as
* interval. See interval_cmp_internal for comparison.
*/
#ifdef HAVE_INT64_TIMESTAMP
#define INTERVAL_TO_SEC(ivp) \
(((double) (ivp)->time) / ((double) USECS_PER_SEC) + \
(ivp)->day * (24.0 * SECS_PER_HOUR) + \
(ivp)->month * (30.0 * SECS_PER_DAY))
#else
#define INTERVAL_TO_SEC(ivp) \
((ivp)->time + \
(ivp)->day * (24.0 * SECS_PER_HOUR) + \
(ivp)->month * (30.0 * SECS_PER_DAY))
#endif
#define GET_FLOAT_DISTANCE(t, arg1, arg2) Abs( ((float8) *((const t *) (arg1))) - ((float8) *((const t *) (arg2))) )

View File

@ -308,11 +308,7 @@ check_timezone(char **newval, void **extra, GucSource source)
}
/* Here we change from SQL to Unix sign convention */
#ifdef HAVE_INT64_TIMESTAMP
gmtoffset = -(interval->time / USECS_PER_SEC);
#else
gmtoffset = -interval->time;
#endif
new_tz = pg_tzset_offset(gmtoffset);
pfree(interval);

View File

@ -590,13 +590,9 @@ date2timestamp(DateADT dateVal)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("date out of range for timestamp")));
#ifdef HAVE_INT64_TIMESTAMP
/* date is days since 2000, timestamp is microseconds since same... */
result = dateVal * USECS_PER_DAY;
#else
/* date is days since 2000, timestamp is seconds since same... */
result = dateVal * (double) SECS_PER_DAY;
#endif
}
return result;
@ -633,11 +629,7 @@ date2timestamptz(DateADT dateVal)
tm->tm_sec = 0;
tz = DetermineTimeZoneOffset(tm, session_timezone);
#ifdef HAVE_INT64_TIMESTAMP
result = dateVal * USECS_PER_DAY + tz * USECS_PER_SEC;
#else
result = dateVal * (double) SECS_PER_DAY + tz;
#endif
/*
* Since it is possible to go beyond allowed timestamptz range because
@ -673,13 +665,8 @@ date2timestamp_no_overflow(DateADT dateVal)
result = DBL_MAX;
else
{
#ifdef HAVE_INT64_TIMESTAMP
/* date is days since 2000, timestamp is microseconds since same... */
result = dateVal * (double) USECS_PER_DAY;
#else
/* date is days since 2000, timestamp is seconds since same... */
result = dateVal * (double) SECS_PER_DAY;
#endif
}
return result;
@ -1250,12 +1237,8 @@ time_in(PG_FUNCTION_ARGS)
static int
tm2time(struct pg_tm * tm, fsec_t fsec, TimeADT *result)
{
#ifdef HAVE_INT64_TIMESTAMP
*result = ((((tm->tm_hour * MINS_PER_HOUR + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec)
* USECS_PER_SEC) + fsec;
#else
*result = ((tm->tm_hour * MINS_PER_HOUR + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec + fsec;
#endif
return 0;
}
@ -1269,7 +1252,6 @@ tm2time(struct pg_tm * tm, fsec_t fsec, TimeADT *result)
static int
time2tm(TimeADT time, struct pg_tm * tm, fsec_t *fsec)
{
#ifdef HAVE_INT64_TIMESTAMP
tm->tm_hour = time / USECS_PER_HOUR;
time -= tm->tm_hour * USECS_PER_HOUR;
tm->tm_min = time / USECS_PER_MINUTE;
@ -1277,24 +1259,6 @@ time2tm(TimeADT time, struct pg_tm * tm, fsec_t *fsec)
tm->tm_sec = time / USECS_PER_SEC;
time -= tm->tm_sec * USECS_PER_SEC;
*fsec = time;
#else
double trem;
recalc:
trem = time;
TMODULO(trem, tm->tm_hour, (double) SECS_PER_HOUR);
TMODULO(trem, tm->tm_min, (double) SECS_PER_MINUTE);
TMODULO(trem, tm->tm_sec, 1.0);
trem = TIMEROUND(trem);
/* roundoff may need to propagate to higher-order fields */
if (trem >= 1.0)
{
time = ceil(time);
goto recalc;
}
*fsec = trem;
#endif
return 0;
}
@ -1317,9 +1281,6 @@ time_out(PG_FUNCTION_ARGS)
/*
* time_recv - converts external binary format to time
*
* We make no attempt to provide compatibility between int and float
* time representations ...
*/
Datum
time_recv(PG_FUNCTION_ARGS)
@ -1332,21 +1293,12 @@ time_recv(PG_FUNCTION_ARGS)
int32 typmod = PG_GETARG_INT32(2);
TimeADT result;
#ifdef HAVE_INT64_TIMESTAMP
result = pq_getmsgint64(buf);
if (result < INT64CONST(0) || result > USECS_PER_DAY)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("time out of range")));
#else
result = pq_getmsgfloat8(buf);
if (result < 0 || result > (double) SECS_PER_DAY)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("time out of range")));
#endif
AdjustTimeForTypmod(&result, typmod);
@ -1363,11 +1315,7 @@ time_send(PG_FUNCTION_ARGS)
StringInfoData buf;
pq_begintypsend(&buf);
#ifdef HAVE_INT64_TIMESTAMP
pq_sendint64(&buf, time);
#else
pq_sendfloat8(&buf, time);
#endif
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
@ -1410,12 +1358,8 @@ make_time(PG_FUNCTION_ARGS)
tm_hour, tm_min, sec)));
/* This should match tm2time */
#ifdef HAVE_INT64_TIMESTAMP
time = (((tm_hour * MINS_PER_HOUR + tm_min) * SECS_PER_MINUTE)
* USECS_PER_SEC) + rint(sec * USECS_PER_SEC);
#else
time = ((tm_hour * MINS_PER_HOUR + tm_min) * SECS_PER_MINUTE) + sec;
#endif
PG_RETURN_TIMEADT(time);
}
@ -1459,7 +1403,6 @@ time_scale(PG_FUNCTION_ARGS)
static void
AdjustTimeForTypmod(TimeADT *time, int32 typmod)
{
#ifdef HAVE_INT64_TIMESTAMP
static const int64 TimeScales[MAX_TIME_PRECISION + 1] = {
INT64CONST(1000000),
INT64CONST(100000),
@ -1479,42 +1422,15 @@ AdjustTimeForTypmod(TimeADT *time, int32 typmod)
INT64CONST(5),
INT64CONST(0)
};
#else
/* note MAX_TIME_PRECISION differs in this case */
static const double TimeScales[MAX_TIME_PRECISION + 1] = {
1.0,
10.0,
100.0,
1000.0,
10000.0,
100000.0,
1000000.0,
10000000.0,
100000000.0,
1000000000.0,
10000000000.0
};
#endif
if (typmod >= 0 && typmod <= MAX_TIME_PRECISION)
{
/*
* Note: this round-to-nearest code is not completely consistent about
* rounding values that are exactly halfway between integral values.
* On most platforms, rint() will implement round-to-nearest-even, but
* the integer code always rounds up (away from zero). Is it worth
* trying to be consistent?
*/
#ifdef HAVE_INT64_TIMESTAMP
if (*time >= INT64CONST(0))
*time = ((*time + TimeOffsets[typmod]) / TimeScales[typmod]) *
TimeScales[typmod];
else
*time = -((((-*time) + TimeOffsets[typmod]) / TimeScales[typmod]) *
TimeScales[typmod]);
#else
*time = rint((double) *time * TimeScales[typmod]) / TimeScales[typmod];
#endif
}
}
@ -1589,12 +1505,7 @@ time_cmp(PG_FUNCTION_ARGS)
Datum
time_hash(PG_FUNCTION_ARGS)
{
/* We can use either hashint8 or hashfloat8 directly */
#ifdef HAVE_INT64_TIMESTAMP
return hashint8(fcinfo);
#else
return hashfloat8(fcinfo);
#endif
}
Datum
@ -1760,17 +1671,12 @@ timestamp_time(PG_FUNCTION_ARGS)
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
#ifdef HAVE_INT64_TIMESTAMP
/*
* Could also do this with time = (timestamp / USECS_PER_DAY *
* USECS_PER_DAY) - timestamp;
*/
result = ((((tm->tm_hour * MINS_PER_HOUR + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec) *
USECS_PER_SEC) + fsec;
#else
result = ((tm->tm_hour * MINS_PER_HOUR + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec + fsec;
#endif
PG_RETURN_TIMEADT(result);
}
@ -1796,17 +1702,12 @@ timestamptz_time(PG_FUNCTION_ARGS)
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
#ifdef HAVE_INT64_TIMESTAMP
/*
* Could also do this with time = (timestamp / USECS_PER_DAY *
* USECS_PER_DAY) - timestamp;
*/
result = ((((tm->tm_hour * MINS_PER_HOUR + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec) *
USECS_PER_SEC) + fsec;
#else
result = ((tm->tm_hour * MINS_PER_HOUR + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec + fsec;
#endif
PG_RETURN_TIMEADT(result);
}
@ -1865,8 +1766,6 @@ interval_time(PG_FUNCTION_ARGS)
{
Interval *span = PG_GETARG_INTERVAL_P(0);
TimeADT result;
#ifdef HAVE_INT64_TIMESTAMP
int64 days;
result = span->time;
@ -1880,11 +1779,6 @@ interval_time(PG_FUNCTION_ARGS)
days = (-result + USECS_PER_DAY - 1) / USECS_PER_DAY;
result += days * USECS_PER_DAY;
}
#else
result = span->time;
if (result >= (double) SECS_PER_DAY || result < 0)
result -= floor(result / (double) SECS_PER_DAY) * (double) SECS_PER_DAY;
#endif
PG_RETURN_TIMEADT(result);
}
@ -1918,19 +1812,10 @@ time_pl_interval(PG_FUNCTION_ARGS)
Interval *span = PG_GETARG_INTERVAL_P(1);
TimeADT result;
#ifdef HAVE_INT64_TIMESTAMP
result = time + span->time;
result -= result / USECS_PER_DAY * USECS_PER_DAY;
if (result < INT64CONST(0))
result += USECS_PER_DAY;
#else
TimeADT time1;
result = time + span->time;
TMODULO(result, time1, (double) SECS_PER_DAY);
if (result < 0)
result += SECS_PER_DAY;
#endif
PG_RETURN_TIMEADT(result);
}
@ -1945,19 +1830,10 @@ time_mi_interval(PG_FUNCTION_ARGS)
Interval *span = PG_GETARG_INTERVAL_P(1);
TimeADT result;
#ifdef HAVE_INT64_TIMESTAMP
result = time - span->time;
result -= result / USECS_PER_DAY * USECS_PER_DAY;
if (result < INT64CONST(0))
result += USECS_PER_DAY;
#else
TimeADT time1;
result = time - span->time;
TMODULO(result, time1, (double) SECS_PER_DAY);
if (result < 0)
result += SECS_PER_DAY;
#endif
PG_RETURN_TIMEADT(result);
}
@ -1995,27 +1871,15 @@ time_part(PG_FUNCTION_ARGS)
switch (val)
{
case DTK_MICROSEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000000.0 + fsec;
#else
result = (tm->tm_sec + fsec) * 1000000;
#endif
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
#else
result = (tm->tm_sec + fsec) * 1000;
#endif
break;
case DTK_SECOND:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec + fsec / 1000000.0;
#else
result = tm->tm_sec + fsec;
#endif
break;
case DTK_MINUTE:
@ -2047,11 +1911,7 @@ time_part(PG_FUNCTION_ARGS)
}
else if (type == RESERV && val == DTK_EPOCH)
{
#ifdef HAVE_INT64_TIMESTAMP
result = time / 1000000.0;
#else
result = time;
#endif
}
else
{
@ -2076,12 +1936,8 @@ time_part(PG_FUNCTION_ARGS)
static int
tm2timetz(struct pg_tm * tm, fsec_t fsec, int tz, TimeTzADT *result)
{
#ifdef HAVE_INT64_TIMESTAMP
result->time = ((((tm->tm_hour * MINS_PER_HOUR + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec) *
USECS_PER_SEC) + fsec;
#else
result->time = ((tm->tm_hour * MINS_PER_HOUR + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec + fsec;
#endif
result->zone = tz;
return 0;
@ -2156,21 +2012,12 @@ timetz_recv(PG_FUNCTION_ARGS)
result = (TimeTzADT *) palloc(sizeof(TimeTzADT));
#ifdef HAVE_INT64_TIMESTAMP
result->time = pq_getmsgint64(buf);
if (result->time < INT64CONST(0) || result->time > USECS_PER_DAY)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("time out of range")));
#else
result->time = pq_getmsgfloat8(buf);
if (result->time < 0 || result->time > (double) SECS_PER_DAY)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("time out of range")));
#endif
result->zone = pq_getmsgint(buf, sizeof(result->zone));
@ -2195,11 +2042,7 @@ timetz_send(PG_FUNCTION_ARGS)
StringInfoData buf;
pq_begintypsend(&buf);
#ifdef HAVE_INT64_TIMESTAMP
pq_sendint64(&buf, time->time);
#else
pq_sendfloat8(&buf, time->time);
#endif
pq_sendint(&buf, time->zone, sizeof(time->zone));
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
@ -2229,27 +2072,12 @@ timetz2tm(TimeTzADT *time, struct pg_tm * tm, fsec_t *fsec, int *tzp)
{
TimeOffset trem = time->time;
#ifdef HAVE_INT64_TIMESTAMP
tm->tm_hour = trem / USECS_PER_HOUR;
trem -= tm->tm_hour * USECS_PER_HOUR;
tm->tm_min = trem / USECS_PER_MINUTE;
trem -= tm->tm_min * USECS_PER_MINUTE;
tm->tm_sec = trem / USECS_PER_SEC;
*fsec = trem - tm->tm_sec * USECS_PER_SEC;
#else
recalc:
TMODULO(trem, tm->tm_hour, (double) SECS_PER_HOUR);
TMODULO(trem, tm->tm_min, (double) SECS_PER_MINUTE);
TMODULO(trem, tm->tm_sec, 1.0);
trem = TIMEROUND(trem);
/* roundoff may need to propagate to higher-order fields */
if (trem >= 1.0)
{
trem = ceil(time->time);
goto recalc;
}
*fsec = trem;
#endif
if (tzp != NULL)
*tzp = time->zone;
@ -2286,13 +2114,8 @@ timetz_cmp_internal(TimeTzADT *time1, TimeTzADT *time2)
t2;
/* Primary sort is by true (GMT-equivalent) time */
#ifdef HAVE_INT64_TIMESTAMP
t1 = time1->time + (time1->zone * USECS_PER_SEC);
t2 = time2->time + (time2->zone * USECS_PER_SEC);
#else
t1 = time1->time + time1->zone;
t2 = time2->time + time2->zone;
#endif
if (t1 > t2)
return 1;
@ -2382,17 +2205,10 @@ timetz_hash(PG_FUNCTION_ARGS)
/*
* To avoid any problems with padding bytes in the struct, we figure the
* field hashes separately and XOR them. This also provides a convenient
* framework for dealing with the fact that the time field might be either
* double or int64.
* field hashes separately and XOR them.
*/
#ifdef HAVE_INT64_TIMESTAMP
thash = DatumGetUInt32(DirectFunctionCall1(hashint8,
Int64GetDatumFast(key->time)));
#else
thash = DatumGetUInt32(DirectFunctionCall1(hashfloat8,
Float8GetDatumFast(key->time)));
#endif
thash ^= DatumGetUInt32(hash_uint32(key->zone));
PG_RETURN_UINT32(thash);
}
@ -2435,23 +2251,12 @@ timetz_pl_interval(PG_FUNCTION_ARGS)
Interval *span = PG_GETARG_INTERVAL_P(1);
TimeTzADT *result;
#ifndef HAVE_INT64_TIMESTAMP
TimeTzADT time1;
#endif
result = (TimeTzADT *) palloc(sizeof(TimeTzADT));
#ifdef HAVE_INT64_TIMESTAMP
result->time = time->time + span->time;
result->time -= result->time / USECS_PER_DAY * USECS_PER_DAY;
if (result->time < INT64CONST(0))
result->time += USECS_PER_DAY;
#else
result->time = time->time + span->time;
TMODULO(result->time, time1.time, (double) SECS_PER_DAY);
if (result->time < 0)
result->time += SECS_PER_DAY;
#endif
result->zone = time->zone;
@ -2468,23 +2273,12 @@ timetz_mi_interval(PG_FUNCTION_ARGS)
Interval *span = PG_GETARG_INTERVAL_P(1);
TimeTzADT *result;
#ifndef HAVE_INT64_TIMESTAMP
TimeTzADT time1;
#endif
result = (TimeTzADT *) palloc(sizeof(TimeTzADT));
#ifdef HAVE_INT64_TIMESTAMP
result->time = time->time - span->time;
result->time -= result->time / USECS_PER_DAY * USECS_PER_DAY;
if (result->time < INT64CONST(0))
result->time += USECS_PER_DAY;
#else
result->time = time->time - span->time;
TMODULO(result->time, time1.time, (double) SECS_PER_DAY);
if (result->time < 0)
result->time += SECS_PER_DAY;
#endif
result->zone = time->zone;
@ -2710,11 +2504,7 @@ datetimetz_timestamptz(PG_FUNCTION_ARGS)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("date out of range for timestamp")));
#ifdef HAVE_INT64_TIMESTAMP
result = date * USECS_PER_DAY + time->time + time->zone * USECS_PER_SEC;
#else
result = date * (double) SECS_PER_DAY + time->time + time->zone;
#endif
/*
* Since it is possible to go beyond allowed timestamptz range because
@ -2779,27 +2569,15 @@ timetz_part(PG_FUNCTION_ARGS)
break;
case DTK_MICROSEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000000.0 + fsec;
#else
result = (tm->tm_sec + fsec) * 1000000;
#endif
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
#else
result = (tm->tm_sec + fsec) * 1000;
#endif
break;
case DTK_SECOND:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec + fsec / 1000000.0;
#else
result = tm->tm_sec + fsec;
#endif
break;
case DTK_MINUTE:
@ -2827,11 +2605,7 @@ timetz_part(PG_FUNCTION_ARGS)
}
else if (type == RESERV && val == DTK_EPOCH)
{
#ifdef HAVE_INT64_TIMESTAMP
result = time->time / 1000000.0 + time->zone;
#else
result = time->time + time->zone;
#endif
}
else
{
@ -2917,19 +2691,11 @@ timetz_zone(PG_FUNCTION_ARGS)
result = (TimeTzADT *) palloc(sizeof(TimeTzADT));
#ifdef HAVE_INT64_TIMESTAMP
result->time = t->time + (t->zone - tz) * USECS_PER_SEC;
while (result->time < INT64CONST(0))
result->time += USECS_PER_DAY;
while (result->time >= USECS_PER_DAY)
result->time -= USECS_PER_DAY;
#else
result->time = t->time + (t->zone - tz);
while (result->time < 0)
result->time += SECS_PER_DAY;
while (result->time >= SECS_PER_DAY)
result->time -= SECS_PER_DAY;
#endif
result->zone = tz;
@ -2954,27 +2720,15 @@ timetz_izone(PG_FUNCTION_ARGS)
DatumGetCString(DirectFunctionCall1(interval_out,
PointerGetDatum(zone))))));
#ifdef HAVE_INT64_TIMESTAMP
tz = -(zone->time / USECS_PER_SEC);
#else
tz = -(zone->time);
#endif
result = (TimeTzADT *) palloc(sizeof(TimeTzADT));
#ifdef HAVE_INT64_TIMESTAMP
result->time = time->time + (time->zone - tz) * USECS_PER_SEC;
while (result->time < INT64CONST(0))
result->time += USECS_PER_DAY;
while (result->time >= USECS_PER_DAY)
result->time -= USECS_PER_DAY;
#else
result->time = time->time + (time->zone - tz);
while (result->time < 0)
result->time += SECS_PER_DAY;
while (result->time >= SECS_PER_DAY)
result->time -= SECS_PER_DAY;
#endif
result->zone = tz;

View File

@ -43,11 +43,6 @@ static int DecodeTime(char *str, int fmask, int range,
static const datetkn *datebsearch(const char *key, const datetkn *base, int nel);
static int DecodeDate(char *str, int fmask, int *tmask, bool *is2digits,
struct pg_tm * tm);
#ifndef HAVE_INT64_TIMESTAMP
static char *TrimTrailingZeros(char *str);
#endif /* HAVE_INT64_TIMESTAMP */
static char *AppendSeconds(char *cp, int sec, fsec_t fsec,
int precision, bool fillzeros);
static void AdjustFractSeconds(double frac, struct pg_tm * tm, fsec_t *fsec,
@ -401,28 +396,6 @@ GetCurrentTimeUsec(struct pg_tm * tm, fsec_t *fsec, int *tzp)
}
/* TrimTrailingZeros()
* ... resulting from printing numbers with full precision.
*
* Returns a pointer to the new end of string. No NUL terminator is put
* there; callers are responsible for NUL terminating str themselves.
*
* Before Postgres 8.4, this always left at least 2 fractional digits,
* but conversations on the lists suggest this isn't desired
* since showing '0.10' is misleading with values of precision(1).
*/
#ifndef HAVE_INT64_TIMESTAMP
static char *
TrimTrailingZeros(char *str)
{
int len = strlen(str);
while (len > 1 && *(str + len - 1) == '0' && *(str + len - 2) != '.')
len--;
return str + len;
}
#endif /* HAVE_INT64_TIMESTAMP */
/*
* Append seconds and fractional seconds (if any) at *cp.
*
@ -439,14 +412,12 @@ AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros)
{
Assert(precision >= 0);
#ifdef HAVE_INT64_TIMESTAMP
/* fsec_t is just an int32 */
if (fillzeros)
cp = pg_ltostr_zeropad(cp, Abs(sec), 2);
else
cp = pg_ltostr(cp, Abs(sec));
/* fsec_t is just an int32 */
if (fsec != 0)
{
int32 value = Abs(fsec);
@ -490,25 +461,6 @@ AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros)
}
else
return cp;
#else
/* fsec_t is a double */
if (fsec == 0)
{
if (fillzeros)
return pg_ltostr_zeropad(cp, Abs(sec), 2);
else
return pg_ltostr(cp, Abs(sec));
}
else
{
if (fillzeros)
sprintf(cp, "%0*.*f", precision + 3, precision, fabs(sec + fsec));
else
sprintf(cp, "%.*f", precision, fabs(sec + fsec));
return TrimTrailingZeros(cp);
}
#endif /* HAVE_INT64_TIMESTAMP */
}
@ -521,14 +473,6 @@ AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros)
static char *
AppendTimestampSeconds(char *cp, struct pg_tm * tm, fsec_t fsec)
{
/*
* In float mode, don't print fractional seconds before 1 AD, since it's
* unlikely there's any precision left ...
*/
#ifndef HAVE_INT64_TIMESTAMP
if (tm->tm_year <= 0)
fsec = 0;
#endif
return AppendSeconds(cp, tm->tm_sec, fsec, MAX_TIMESTAMP_PRECISION, true);
}
@ -547,11 +491,7 @@ AdjustFractSeconds(double frac, struct pg_tm * tm, fsec_t *fsec, int scale)
sec = (int) frac;
tm->tm_sec += sec;
frac -= sec;
#ifdef HAVE_INT64_TIMESTAMP
*fsec += rint(frac * 1000000);
#else
*fsec += frac;
#endif
}
/* As above, but initial scale produces days */
@ -582,11 +522,7 @@ ParseFractionalSecond(char *cp, fsec_t *fsec)
/* check for parse failure */
if (*cp != '\0' || errno != 0)
return DTERR_BAD_FORMAT;
#ifdef HAVE_INT64_TIMESTAMP
*fsec = rint(frac * 1000000);
#else
*fsec = frac;
#endif
return 0;
}
@ -1162,12 +1098,7 @@ DecodeDateTime(char **field, int *ftype, int nf,
time = strtod(cp, &cp);
if (*cp != '\0' || errno != 0)
return DTERR_BAD_FORMAT;
#ifdef HAVE_INT64_TIMESTAMP
time *= USECS_PER_DAY;
#else
time *= SECS_PER_DAY;
#endif
dt2time(time,
&tm->tm_hour, &tm->tm_min,
&tm->tm_sec, fsec);
@ -2070,12 +2001,7 @@ DecodeTimeOnly(char **field, int *ftype, int nf,
time = strtod(cp, &cp);
if (*cp != '\0' || errno != 0)
return DTERR_BAD_FORMAT;
#ifdef HAVE_INT64_TIMESTAMP
time *= USECS_PER_DAY;
#else
time *= SECS_PER_DAY;
#endif
dt2time(time,
&tm->tm_hour, &tm->tm_min,
&tm->tm_sec, fsec);
@ -2338,12 +2264,7 @@ DecodeTimeOnly(char **field, int *ftype, int nf,
/* test for > 24:00:00 */
(tm->tm_hour == HOURS_PER_DAY &&
(tm->tm_min > 0 || tm->tm_sec > 0 || *fsec > 0)) ||
#ifdef HAVE_INT64_TIMESTAMP
*fsec < INT64CONST(0) || *fsec > USECS_PER_SEC
#else
*fsec < 0 || *fsec > 1
#endif
)
*fsec < INT64CONST(0) || *fsec > USECS_PER_SEC)
return DTERR_FIELD_OVERFLOW;
if ((fmask & DTK_TIME_M) != DTK_TIME_M)
@ -2695,18 +2616,11 @@ DecodeTime(char *str, int fmask, int range,
return DTERR_BAD_FORMAT;
/* do a sanity check */
#ifdef HAVE_INT64_TIMESTAMP
if (tm->tm_hour < 0 || tm->tm_min < 0 || tm->tm_min > MINS_PER_HOUR - 1 ||
tm->tm_sec < 0 || tm->tm_sec > SECS_PER_MINUTE ||
*fsec < INT64CONST(0) ||
*fsec > USECS_PER_SEC)
return DTERR_FIELD_OVERFLOW;
#else
if (tm->tm_hour < 0 || tm->tm_min < 0 || tm->tm_min > MINS_PER_HOUR - 1 ||
tm->tm_sec < 0 || tm->tm_sec > SECS_PER_MINUTE ||
*fsec < 0 || *fsec > 1)
return DTERR_FIELD_OVERFLOW;
#endif
return 0;
}
@ -2923,11 +2837,7 @@ DecodeNumberField(int len, char *str, int fmask,
frac = strtod(cp, NULL);
if (errno != 0)
return DTERR_BAD_FORMAT;
#ifdef HAVE_INT64_TIMESTAMP
*fsec = rint(frac * 1000000);
#else
*fsec = frac;
#endif
/* Now truncate off the fraction for further processing */
*cp = '\0';
len = strlen(str);
@ -3336,11 +3246,7 @@ DecodeInterval(char **field, int *ftype, int nf, int range,
switch (type)
{
case DTK_MICROSEC:
#ifdef HAVE_INT64_TIMESTAMP
*fsec += rint(val + fval);
#else
*fsec += (val + fval) * 1e-6;
#endif
tmask = DTK_M(MICROSECOND);
break;
@ -3348,21 +3254,13 @@ DecodeInterval(char **field, int *ftype, int nf, int range,
/* avoid overflowing the fsec field */
tm->tm_sec += val / 1000;
val -= (val / 1000) * 1000;
#ifdef HAVE_INT64_TIMESTAMP
*fsec += rint((val + fval) * 1000);
#else
*fsec += (val + fval) * 1e-3;
#endif
tmask = DTK_M(MILLISECOND);
break;
case DTK_SECOND:
tm->tm_sec += val;
#ifdef HAVE_INT64_TIMESTAMP
*fsec += rint(fval * 1000000);
#else
*fsec += fval;
#endif
/*
* If any subseconds were specified, consider this
@ -3484,12 +3382,8 @@ DecodeInterval(char **field, int *ftype, int nf, int range,
{
int sec;
#ifdef HAVE_INT64_TIMESTAMP
sec = *fsec / USECS_PER_SEC;
*fsec -= sec * USECS_PER_SEC;
#else
TMODULO(*fsec, sec, 1.0);
#endif
tm->tm_sec += sec;
}

View File

@ -2434,23 +2434,13 @@ DCH_to_char(FormatNode *node, bool is_interval, TmToChar *in, char *out, Oid col
s += strlen(s);
break;
case DCH_MS: /* millisecond */
#ifdef HAVE_INT64_TIMESTAMP
sprintf(s, "%03d", (int) (in->fsec / INT64CONST(1000)));
#else
/* No rint() because we can't overflow and we might print US */
sprintf(s, "%03d", (int) (in->fsec * 1000));
#endif
if (S_THth(n->suffix))
str_numth(s, s, S_TH_TYPE(n->suffix));
s += strlen(s);
break;
case DCH_US: /* microsecond */
#ifdef HAVE_INT64_TIMESTAMP
sprintf(s, "%06d", (int) in->fsec);
#else
/* don't use rint() because we can't overflow 1000 */
sprintf(s, "%06d", (int) (in->fsec * 1000000));
#endif
if (S_THth(n->suffix))
str_numth(s, s, S_TH_TYPE(n->suffix));
s += strlen(s);
@ -3793,17 +3783,10 @@ do_to_timestamp(text *date_txt, text *fmt,
}
}
#ifdef HAVE_INT64_TIMESTAMP
if (tmfc.ms)
*fsec += tmfc.ms * 1000;
if (tmfc.us)
*fsec += tmfc.us;
#else
if (tmfc.ms)
*fsec += (double) tmfc.ms / 1000;
if (tmfc.us)
*fsec += (double) tmfc.us / 1000000;
#endif
/* Range-check date fields according to bit mask computed above */
if (fmask != 0)
@ -3826,12 +3809,7 @@ do_to_timestamp(text *date_txt, text *fmt,
if (tm->tm_hour < 0 || tm->tm_hour >= HOURS_PER_DAY ||
tm->tm_min < 0 || tm->tm_min >= MINS_PER_HOUR ||
tm->tm_sec < 0 || tm->tm_sec >= SECS_PER_MINUTE ||
#ifdef HAVE_INT64_TIMESTAMP
*fsec < INT64CONST(0) || *fsec >= USECS_PER_SEC
#else
*fsec < 0 || *fsec >= 1
#endif
)
*fsec < INT64CONST(0) || *fsec >= USECS_PER_SEC)
DateTimeParseError(DTERR_FIELD_OVERFLOW, date_str, "timestamp");
DEBUG_TM(tm);

View File

@ -535,12 +535,7 @@ pg_sleep(PG_FUNCTION_ARGS)
* less than the specified time when WaitLatch is terminated early by a
* non-query-canceling signal such as SIGHUP.
*/
#ifdef HAVE_INT64_TIMESTAMP
#define GetNowFloat() ((float8) GetCurrentTimestamp() / 1000000.0)
#else
#define GetNowFloat() GetCurrentTimestamp()
#endif
endtime = GetNowFloat() + secs;

View File

@ -818,14 +818,10 @@ interval_reltime(PG_FUNCTION_ARGS)
month = interval->month % MONTHS_PER_YEAR;
day = interval->day;
#ifdef HAVE_INT64_TIMESTAMP
span = ((INT64CONST(365250000) * year + INT64CONST(30000000) * month +
INT64CONST(1000000) * day) * INT64CONST(86400)) +
interval->time;
span /= USECS_PER_SEC;
#else
span = (DAYS_PER_YEAR * year + (double) DAYS_PER_MONTH * month + day) * SECS_PER_DAY + interval->time;
#endif
if (span < INT_MIN || span > INT_MAX)
time = INVALID_RELTIME;
@ -859,7 +855,6 @@ reltime_interval(PG_FUNCTION_ARGS)
break;
default:
#ifdef HAVE_INT64_TIMESTAMP
year = reltime / SECS_PER_YEAR;
reltime -= year * SECS_PER_YEAR;
month = reltime / (DAYS_PER_MONTH * SECS_PER_DAY);
@ -868,13 +863,6 @@ reltime_interval(PG_FUNCTION_ARGS)
reltime -= day * SECS_PER_DAY;
result->time = (reltime * USECS_PER_SEC);
#else
TMODULO(reltime, year, SECS_PER_YEAR);
TMODULO(reltime, month, DAYS_PER_MONTH * SECS_PER_DAY);
TMODULO(reltime, day, SECS_PER_DAY);
result->time = reltime;
#endif
result->month = MONTHS_PER_YEAR * year + month;
result->day = day;
break;

View File

@ -1443,12 +1443,7 @@ tsrange_subdiff(PG_FUNCTION_ARGS)
Timestamp v2 = PG_GETARG_TIMESTAMP(1);
float8 result;
#ifdef HAVE_INT64_TIMESTAMP
result = ((float8) v1 - (float8) v2) / USECS_PER_SEC;
#else
result = v1 - v2;
#endif
PG_RETURN_FLOAT8(result);
}
@ -1459,12 +1454,7 @@ tstzrange_subdiff(PG_FUNCTION_ARGS)
Timestamp v2 = PG_GETARG_TIMESTAMP(1);
float8 result;
#ifdef HAVE_INT64_TIMESTAMP
result = ((float8) v1 - (float8) v2) / USECS_PER_SEC;
#else
result = v1 - v2;
#endif
PG_RETURN_FLOAT8(result);
}

View File

@ -4212,31 +4212,17 @@ convert_timevalue_to_scalar(Datum value, Oid typid)
* average month length of 365.25/12.0 days. Not too
* accurate, but plenty good enough for our purposes.
*/
#ifdef HAVE_INT64_TIMESTAMP
return interval->time + interval->day * (double) USECS_PER_DAY +
interval->month * ((DAYS_PER_YEAR / (double) MONTHS_PER_YEAR) * USECS_PER_DAY);
#else
return interval->time + interval->day * SECS_PER_DAY +
interval->month * ((DAYS_PER_YEAR / (double) MONTHS_PER_YEAR) * (double) SECS_PER_DAY);
#endif
}
case RELTIMEOID:
#ifdef HAVE_INT64_TIMESTAMP
return (DatumGetRelativeTime(value) * 1000000.0);
#else
return DatumGetRelativeTime(value);
#endif
case TINTERVALOID:
{
TimeInterval tinterval = DatumGetTimeInterval(value);
#ifdef HAVE_INT64_TIMESTAMP
if (tinterval->status != 0)
return ((tinterval->data[1] - tinterval->data[0]) * 1000000.0);
#else
if (tinterval->status != 0)
return tinterval->data[1] - tinterval->data[0];
#endif
return 0; /* for lack of a better idea */
}
case TIMEOID:
@ -4246,11 +4232,7 @@ convert_timevalue_to_scalar(Datum value, Oid typid)
TimeTzADT *timetz = DatumGetTimeTzADTP(value);
/* use GMT-equivalent time */
#ifdef HAVE_INT64_TIMESTAMP
return (double) (timetz->time + (timetz->zone * 1000000.0));
#else
return (double) (timetz->time + timetz->zone);
#endif
}
}

View File

@ -234,9 +234,6 @@ timestamp_out(PG_FUNCTION_ARGS)
/*
* timestamp_recv - converts external binary format to timestamp
*
* We make no attempt to provide compatibility between int and float
* timestamp representations ...
*/
Datum
timestamp_recv(PG_FUNCTION_ARGS)
@ -252,16 +249,7 @@ timestamp_recv(PG_FUNCTION_ARGS)
*tm = &tt;
fsec_t fsec;
#ifdef HAVE_INT64_TIMESTAMP
timestamp = (Timestamp) pq_getmsgint64(buf);
#else
timestamp = (Timestamp) pq_getmsgfloat8(buf);
if (isnan(timestamp))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp cannot be NaN")));
#endif
/* range check: see if timestamp_out would like it */
if (TIMESTAMP_NOT_FINITE(timestamp))
@ -287,11 +275,7 @@ timestamp_send(PG_FUNCTION_ARGS)
StringInfoData buf;
pq_begintypsend(&buf);
#ifdef HAVE_INT64_TIMESTAMP
pq_sendint64(&buf, timestamp);
#else
pq_sendfloat8(&buf, timestamp);
#endif
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
@ -348,7 +332,6 @@ timestamp_scale(PG_FUNCTION_ARGS)
static void
AdjustTimestampForTypmod(Timestamp *time, int32 typmod)
{
#ifdef HAVE_INT64_TIMESTAMP
static const int64 TimestampScales[MAX_TIMESTAMP_PRECISION + 1] = {
INT64CONST(1000000),
INT64CONST(100000),
@ -368,17 +351,6 @@ AdjustTimestampForTypmod(Timestamp *time, int32 typmod)
INT64CONST(5),
INT64CONST(0)
};
#else
static const double TimestampScales[MAX_TIMESTAMP_PRECISION + 1] = {
1,
10,
100,
1000,
10000,
100000,
1000000
};
#endif
if (!TIMESTAMP_NOT_FINITE(*time)
&& (typmod != -1) && (typmod != MAX_TIMESTAMP_PRECISION))
@ -389,14 +361,6 @@ AdjustTimestampForTypmod(Timestamp *time, int32 typmod)
errmsg("timestamp(%d) precision must be between %d and %d",
typmod, 0, MAX_TIMESTAMP_PRECISION)));
/*
* Note: this round-to-nearest code is not completely consistent about
* rounding values that are exactly halfway between integral values.
* On most platforms, rint() will implement round-to-nearest-even, but
* the integer code always rounds up (away from zero). Is it worth
* trying to be consistent?
*/
#ifdef HAVE_INT64_TIMESTAMP
if (*time >= INT64CONST(0))
{
*time = ((*time + TimestampOffsets[typmod]) / TimestampScales[typmod]) *
@ -407,9 +371,6 @@ AdjustTimestampForTypmod(Timestamp *time, int32 typmod)
*time = -((((-*time) + TimestampOffsets[typmod]) / TimestampScales[typmod])
* TimestampScales[typmod]);
}
#else
*time = rint((double) *time * TimestampScales[typmod]) / TimestampScales[typmod];
#endif
}
}
@ -628,7 +589,6 @@ make_timestamp_internal(int year, int month, int day,
hour, min, sec)));
/* This should match tm2time */
#ifdef HAVE_INT64_TIMESTAMP
time = (((hour * MINS_PER_HOUR + min) * SECS_PER_MINUTE)
* USECS_PER_SEC) + rint(sec * USECS_PER_SEC);
@ -650,10 +610,6 @@ make_timestamp_internal(int year, int month, int day,
errmsg("timestamp out of range: %d-%02d-%02d %d:%02d:%02g",
year, month, day,
hour, min, sec)));
#else
time = ((hour * MINS_PER_HOUR + min) * SECS_PER_MINUTE) + sec;
result = date * SECS_PER_DAY + time;
#endif
/* final range check catches just-out-of-range timestamps */
if (!IS_VALID_TIMESTAMP(result))
@ -783,12 +739,8 @@ float8_timestamptz(PG_FUNCTION_ARGS)
/* Convert UNIX epoch to Postgres epoch */
seconds -= ((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
#ifdef HAVE_INT64_TIMESTAMP
seconds = rint(seconds * USECS_PER_SEC);
result = (int64) seconds;
#else
result = seconds;
#endif
/* Recheck in case roundoff produces something just out of range */
if (!IS_VALID_TIMESTAMP(result))
@ -831,9 +783,6 @@ timestamptz_out(PG_FUNCTION_ARGS)
/*
* timestamptz_recv - converts external binary format to timestamptz
*
* We make no attempt to provide compatibility between int and float
* timestamp representations ...
*/
Datum
timestamptz_recv(PG_FUNCTION_ARGS)
@ -850,11 +799,7 @@ timestamptz_recv(PG_FUNCTION_ARGS)
*tm = &tt;
fsec_t fsec;
#ifdef HAVE_INT64_TIMESTAMP
timestamp = (TimestampTz) pq_getmsgint64(buf);
#else
timestamp = (TimestampTz) pq_getmsgfloat8(buf);
#endif
/* range check: see if timestamptz_out would like it */
if (TIMESTAMP_NOT_FINITE(timestamp))
@ -880,11 +825,7 @@ timestamptz_send(PG_FUNCTION_ARGS)
StringInfoData buf;
pq_begintypsend(&buf);
#ifdef HAVE_INT64_TIMESTAMP
pq_sendint64(&buf, timestamp);
#else
pq_sendfloat8(&buf, timestamp);
#endif
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
@ -1047,11 +988,7 @@ interval_recv(PG_FUNCTION_ARGS)
interval = (Interval *) palloc(sizeof(Interval));
#ifdef HAVE_INT64_TIMESTAMP
interval->time = pq_getmsgint64(buf);
#else
interval->time = pq_getmsgfloat8(buf);
#endif
interval->day = pq_getmsgint(buf, sizeof(interval->day));
interval->month = pq_getmsgint(buf, sizeof(interval->month));
@ -1070,11 +1007,7 @@ interval_send(PG_FUNCTION_ARGS)
StringInfoData buf;
pq_begintypsend(&buf);
#ifdef HAVE_INT64_TIMESTAMP
pq_sendint64(&buf, interval->time);
#else
pq_sendfloat8(&buf, interval->time);
#endif
pq_sendint(&buf, interval->day, sizeof(interval->day));
pq_sendint(&buf, interval->month, sizeof(interval->month));
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
@ -1385,7 +1318,6 @@ interval_scale(PG_FUNCTION_ARGS)
static void
AdjustIntervalForTypmod(Interval *interval, int32 typmod)
{
#ifdef HAVE_INT64_TIMESTAMP
static const int64 IntervalScales[MAX_INTERVAL_PRECISION + 1] = {
INT64CONST(1000000),
INT64CONST(100000),
@ -1405,17 +1337,6 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
INT64CONST(5),
INT64CONST(0)
};
#else
static const double IntervalScales[MAX_INTERVAL_PRECISION + 1] = {
1,
10,
100,
1000,
10000,
100000,
1000000
};
#endif
/*
* Unspecified range and precision? Then not necessary to adjust. Setting
@ -1473,21 +1394,13 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
}
else if (range == INTERVAL_MASK(HOUR))
{
#ifdef HAVE_INT64_TIMESTAMP
interval->time = (interval->time / USECS_PER_HOUR) *
USECS_PER_HOUR;
#else
interval->time = ((int) (interval->time / SECS_PER_HOUR)) * (double) SECS_PER_HOUR;
#endif
}
else if (range == INTERVAL_MASK(MINUTE))
{
#ifdef HAVE_INT64_TIMESTAMP
interval->time = (interval->time / USECS_PER_MINUTE) *
USECS_PER_MINUTE;
#else
interval->time = ((int) (interval->time / SECS_PER_MINUTE)) * (double) SECS_PER_MINUTE;
#endif
}
else if (range == INTERVAL_MASK(SECOND))
{
@ -1497,24 +1410,16 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
else if (range == (INTERVAL_MASK(DAY) |
INTERVAL_MASK(HOUR)))
{
#ifdef HAVE_INT64_TIMESTAMP
interval->time = (interval->time / USECS_PER_HOUR) *
USECS_PER_HOUR;
#else
interval->time = ((int) (interval->time / SECS_PER_HOUR)) * (double) SECS_PER_HOUR;
#endif
}
/* DAY TO MINUTE */
else if (range == (INTERVAL_MASK(DAY) |
INTERVAL_MASK(HOUR) |
INTERVAL_MASK(MINUTE)))
{
#ifdef HAVE_INT64_TIMESTAMP
interval->time = (interval->time / USECS_PER_MINUTE) *
USECS_PER_MINUTE;
#else
interval->time = ((int) (interval->time / SECS_PER_MINUTE)) * (double) SECS_PER_MINUTE;
#endif
}
/* DAY TO SECOND */
else if (range == (INTERVAL_MASK(DAY) |
@ -1528,12 +1433,8 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
else if (range == (INTERVAL_MASK(HOUR) |
INTERVAL_MASK(MINUTE)))
{
#ifdef HAVE_INT64_TIMESTAMP
interval->time = (interval->time / USECS_PER_MINUTE) *
USECS_PER_MINUTE;
#else
interval->time = ((int) (interval->time / SECS_PER_MINUTE)) * (double) SECS_PER_MINUTE;
#endif
}
/* HOUR TO SECOND */
else if (range == (INTERVAL_MASK(HOUR) |
@ -1560,14 +1461,6 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
errmsg("interval(%d) precision must be between %d and %d",
precision, 0, MAX_INTERVAL_PRECISION)));
/*
* Note: this round-to-nearest code is not completely consistent
* about rounding values that are exactly halfway between integral
* values. On most platforms, rint() will implement
* round-to-nearest-even, but the integer code always rounds up
* (away from zero). Is it worth trying to be consistent?
*/
#ifdef HAVE_INT64_TIMESTAMP
if (interval->time >= INT64CONST(0))
{
interval->time = ((interval->time +
@ -1582,11 +1475,6 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
IntervalScales[precision]) *
IntervalScales[precision]);
}
#else
interval->time = rint(((double) interval->time) *
IntervalScales[precision]) /
IntervalScales[precision];
#endif
}
}
}
@ -1619,16 +1507,10 @@ make_interval(PG_FUNCTION_ARGS)
result->month = years * MONTHS_PER_YEAR + months;
result->day = weeks * 7 + days;
#ifdef HAVE_INT64_TIMESTAMP
secs = rint(secs * USECS_PER_SEC);
result->time = hours * ((int64) SECS_PER_HOUR * USECS_PER_SEC) +
mins * ((int64) SECS_PER_MINUTE * USECS_PER_SEC) +
(int64) secs;
#else
result->time = hours * (double) SECS_PER_HOUR +
mins * (double) SECS_PER_MINUTE +
secs;
#endif
PG_RETURN_INTERVAL_P(result);
}
@ -1693,59 +1575,10 @@ GetCurrentTimestamp(void)
result = (TimestampTz) tp.tv_sec -
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
#ifdef HAVE_INT64_TIMESTAMP
result = (result * USECS_PER_SEC) + tp.tv_usec;
#else
result = result + (tp.tv_usec / 1000000.0);
#endif
return result;
}
/*
* GetCurrentIntegerTimestamp -- get the current operating system time as int64
*
* Result is the number of microseconds since the Postgres epoch. If compiled
* with --enable-integer-datetimes, this is identical to GetCurrentTimestamp(),
* and is implemented as a macro.
*/
#ifndef HAVE_INT64_TIMESTAMP
int64
GetCurrentIntegerTimestamp(void)
{
int64 result;
struct timeval tp;
gettimeofday(&tp, NULL);
result = (int64) tp.tv_sec -
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
result = (result * USECS_PER_SEC) + tp.tv_usec;
return result;
}
#endif
/*
* IntegerTimestampToTimestampTz -- convert an int64 timestamp to native format
*
* When compiled with --enable-integer-datetimes, this is implemented as a
* no-op macro.
*/
#ifndef HAVE_INT64_TIMESTAMP
TimestampTz
IntegerTimestampToTimestampTz(int64 timestamp)
{
TimestampTz result;
result = timestamp / USECS_PER_SEC;
result += (timestamp % USECS_PER_SEC) / 1000000.0;
return result;
}
#endif
/*
* GetSQLCurrentTimestamp -- implements CURRENT_TIMESTAMP, CURRENT_TIMESTAMP(n)
@ -1799,13 +1632,8 @@ TimestampDifference(TimestampTz start_time, TimestampTz stop_time,
}
else
{
#ifdef HAVE_INT64_TIMESTAMP
*secs = (long) (diff / USECS_PER_SEC);
*microsecs = (int) (diff % USECS_PER_SEC);
#else
*secs = (long) diff;
*microsecs = (int) ((diff - *secs) * 1000000.0);
#endif
}
}
@ -1823,11 +1651,7 @@ TimestampDifferenceExceeds(TimestampTz start_time,
{
TimestampTz diff = stop_time - start_time;
#ifdef HAVE_INT64_TIMESTAMP
return (diff >= msec * INT64CONST(1000));
#else
return (diff * 1000.0 >= msec);
#endif
}
/*
@ -1848,10 +1672,7 @@ time_t_to_timestamptz(pg_time_t tm)
result = (TimestampTz) tm -
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
#ifdef HAVE_INT64_TIMESTAMP
result *= USECS_PER_SEC;
#endif
return result;
}
@ -1871,13 +1692,8 @@ timestamptz_to_time_t(TimestampTz t)
{
pg_time_t result;
#ifdef HAVE_INT64_TIMESTAMP
result = (pg_time_t) (t / USECS_PER_SEC +
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY));
#else
result = (pg_time_t) (t +
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY));
#endif
return result;
}
@ -1917,21 +1733,12 @@ dt2time(Timestamp jd, int *hour, int *min, int *sec, fsec_t *fsec)
time = jd;
#ifdef HAVE_INT64_TIMESTAMP
*hour = time / USECS_PER_HOUR;
time -= (*hour) * USECS_PER_HOUR;
*min = time / USECS_PER_MINUTE;
time -= (*min) * USECS_PER_MINUTE;
*sec = time / USECS_PER_SEC;
*fsec = time - (*sec * USECS_PER_SEC);
#else
*hour = time / SECS_PER_HOUR;
time -= (*hour) * SECS_PER_HOUR;
*min = time / SECS_PER_MINUTE;
time -= (*min) * SECS_PER_MINUTE;
*sec = time;
*fsec = time - *sec;
#endif
} /* dt2time() */
@ -1957,7 +1764,6 @@ timestamp2tm(Timestamp dt, int *tzp, struct pg_tm * tm, fsec_t *fsec, const char
if (attimezone == NULL)
attimezone = session_timezone;
#ifdef HAVE_INT64_TIMESTAMP
time = dt;
TMODULO(time, date, USECS_PER_DAY);
@ -1976,42 +1782,6 @@ timestamp2tm(Timestamp dt, int *tzp, struct pg_tm * tm, fsec_t *fsec, const char
j2date((int) date, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
dt2time(time, &tm->tm_hour, &tm->tm_min, &tm->tm_sec, fsec);
#else
time = dt;
TMODULO(time, date, (double) SECS_PER_DAY);
if (time < 0)
{
time += SECS_PER_DAY;
date -= 1;
}
/* add offset to go from J2000 back to standard Julian date */
date += POSTGRES_EPOCH_JDATE;
recalc_d:
/* Julian day routine does not work for negative Julian days */
if (date < 0 || date > (Timestamp) INT_MAX)
return -1;
j2date((int) date, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
recalc_t:
dt2time(time, &tm->tm_hour, &tm->tm_min, &tm->tm_sec, fsec);
*fsec = TSROUND(*fsec);
/* roundoff may need to propagate to higher-order fields */
if (*fsec >= 1.0)
{
time = ceil(time);
if (time >= (double) SECS_PER_DAY)
{
time = 0;
date += 1;
goto recalc_d;
}
goto recalc_t;
}
#endif
/* Done if no TZ conversion wanted */
if (tzp == NULL)
@ -2034,13 +1804,8 @@ recalc_t:
* coding avoids hardwiring any assumptions about the width of pg_time_t,
* so it should behave sanely on machines without int64.
*/
#ifdef HAVE_INT64_TIMESTAMP
dt = (dt - *fsec) / USECS_PER_SEC +
(POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY;
#else
dt = rint(dt - *fsec +
(POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
#endif
utime = (pg_time_t) dt;
if ((Timestamp) utime == dt)
{
@ -2100,7 +1865,6 @@ tm2timestamp(struct pg_tm * tm, fsec_t fsec, int *tzp, Timestamp *result)
date = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - POSTGRES_EPOCH_JDATE;
time = time2t(tm->tm_hour, tm->tm_min, tm->tm_sec, fsec);
#ifdef HAVE_INT64_TIMESTAMP
*result = date * USECS_PER_DAY + time;
/* check for major overflow */
if ((*result - time) / USECS_PER_DAY != date)
@ -2116,9 +1880,6 @@ tm2timestamp(struct pg_tm * tm, fsec_t fsec, int *tzp, Timestamp *result)
*result = 0; /* keep compiler quiet */
return -1;
}
#else
*result = date * SECS_PER_DAY + time;
#endif
if (tzp != NULL)
*result = dt2local(*result, -(*tzp));
@ -2147,7 +1908,6 @@ interval2tm(Interval span, struct pg_tm * tm, fsec_t *fsec)
tm->tm_mday = span.day;
time = span.time;
#ifdef HAVE_INT64_TIMESTAMP
tfrac = time / USECS_PER_HOUR;
time -= tfrac * USECS_PER_HOUR;
tm->tm_hour = tfrac;
@ -2161,23 +1921,6 @@ interval2tm(Interval span, struct pg_tm * tm, fsec_t *fsec)
tfrac = time / USECS_PER_SEC;
*fsec = time - (tfrac * USECS_PER_SEC);
tm->tm_sec = tfrac;
#else
recalc:
TMODULO(time, tfrac, (double) SECS_PER_HOUR);
tm->tm_hour = tfrac; /* could overflow ... */
TMODULO(time, tfrac, (double) SECS_PER_MINUTE);
tm->tm_min = tfrac;
TMODULO(time, tfrac, 1.0);
tm->tm_sec = tfrac;
time = TSROUND(time);
/* roundoff may need to propagate to higher-order fields */
if (time >= 1.0)
{
time = ceil(span.time);
goto recalc;
}
*fsec = time;
#endif
return 0;
}
@ -2191,15 +1934,9 @@ tm2interval(struct pg_tm * tm, fsec_t fsec, Interval *span)
return -1;
span->month = total_months;
span->day = tm->tm_mday;
#ifdef HAVE_INT64_TIMESTAMP
span->time = (((((tm->tm_hour * INT64CONST(60)) +
tm->tm_min) * INT64CONST(60)) +
tm->tm_sec) * USECS_PER_SEC) + fsec;
#else
span->time = (((tm->tm_hour * (double) MINS_PER_HOUR) +
tm->tm_min) * (double) SECS_PER_MINUTE) +
tm->tm_sec + fsec;
#endif
return 0;
}
@ -2207,21 +1944,13 @@ tm2interval(struct pg_tm * tm, fsec_t fsec, Interval *span)
static TimeOffset
time2t(const int hour, const int min, const int sec, const fsec_t fsec)
{
#ifdef HAVE_INT64_TIMESTAMP
return (((((hour * MINS_PER_HOUR) + min) * SECS_PER_MINUTE) + sec) * USECS_PER_SEC) + fsec;
#else
return (((hour * MINS_PER_HOUR) + min) * SECS_PER_MINUTE) + sec + fsec;
#endif
}
static Timestamp
dt2local(Timestamp dt, int tz)
{
#ifdef HAVE_INT64_TIMESTAMP
dt -= (tz * USECS_PER_SEC);
#else
dt -= tz;
#endif
return dt;
}
@ -2288,44 +2017,11 @@ SetEpochTimestamp(void)
* The comparison functions are among them. - thomas 2001-09-25
*
* timestamp_relop - is timestamp1 relop timestamp2
*
* collate invalid timestamp at the end
*/
int
timestamp_cmp_internal(Timestamp dt1, Timestamp dt2)
{
#ifdef HAVE_INT64_TIMESTAMP
return (dt1 < dt2) ? -1 : ((dt1 > dt2) ? 1 : 0);
#else
/*
* When using float representation, we have to be wary of NaNs.
*
* We consider all NANs to be equal and larger than any non-NAN. This is
* somewhat arbitrary; the important thing is to have a consistent sort
* order.
*/
if (isnan(dt1))
{
if (isnan(dt2))
return 0; /* NAN = NAN */
else
return 1; /* NAN > non-NAN */
}
else if (isnan(dt2))
{
return -1; /* non-NAN < NAN */
}
else
{
if (dt1 > dt2)
return 1;
else if (dt1 < dt2)
return -1;
else
return 0;
}
#endif
}
Datum
@ -2413,12 +2109,7 @@ timestamp_sortsupport(PG_FUNCTION_ARGS)
Datum
timestamp_hash(PG_FUNCTION_ARGS)
{
/* We can use either hashint8 or hashfloat8 directly */
#ifdef HAVE_INT64_TIMESTAMP
return hashint8(fcinfo);
#else
return hashfloat8(fcinfo);
#endif
}
@ -2597,8 +2288,6 @@ timestamptz_cmp_timestamp(PG_FUNCTION_ARGS)
/*
* interval_relop - is interval1 relop interval2
*
* collate invalid interval at the end
*/
static inline TimeOffset
interval_cmp_value(const Interval *interval)
@ -2606,14 +2295,8 @@ interval_cmp_value(const Interval *interval)
TimeOffset span;
span = interval->time;
#ifdef HAVE_INT64_TIMESTAMP
span += interval->month * INT64CONST(30) * USECS_PER_DAY;
span += interval->day * INT64CONST(24) * USECS_PER_HOUR;
#else
span += interval->month * ((double) DAYS_PER_MONTH * SECS_PER_DAY);
span += interval->day * ((double) HOURS_PER_DAY * SECS_PER_HOUR);
#endif
return span;
}
@ -2695,7 +2378,7 @@ interval_cmp(PG_FUNCTION_ARGS)
*
* We must produce equal hashvals for values that interval_cmp_internal()
* considers equal. So, compute the net span the same way it does,
* and then hash that, using either int64 or float8 hashing.
* and then hash that.
*/
Datum
interval_hash(PG_FUNCTION_ARGS)
@ -2703,11 +2386,7 @@ interval_hash(PG_FUNCTION_ARGS)
Interval *interval = PG_GETARG_INTERVAL_P(0);
TimeOffset span = interval_cmp_value(interval);
#ifdef HAVE_INT64_TIMESTAMP
return DirectFunctionCall1(hashint8, Int64GetDatumFast(span));
#else
return DirectFunctionCall1(hashfloat8, Float8GetDatumFast(span));
#endif
}
/* overlaps_timestamp() --- implements the SQL OVERLAPS operator.
@ -2946,11 +2625,7 @@ interval_justify_interval(PG_FUNCTION_ARGS)
result->day = span->day;
result->time = span->time;
#ifdef HAVE_INT64_TIMESTAMP
TMODULO(result->time, wholeday, USECS_PER_DAY);
#else
TMODULO(result->time, wholeday, (double) SECS_PER_DAY);
#endif
result->day += wholeday; /* could overflow... */
wholemonth = result->day / DAYS_PER_MONTH;
@ -2972,20 +2647,12 @@ interval_justify_interval(PG_FUNCTION_ARGS)
if (result->day > 0 && result->time < 0)
{
#ifdef HAVE_INT64_TIMESTAMP
result->time += USECS_PER_DAY;
#else
result->time += (double) SECS_PER_DAY;
#endif
result->day--;
}
else if (result->day < 0 && result->time > 0)
{
#ifdef HAVE_INT64_TIMESTAMP
result->time -= USECS_PER_DAY;
#else
result->time -= (double) SECS_PER_DAY;
#endif
result->day++;
}
@ -3012,29 +2679,17 @@ interval_justify_hours(PG_FUNCTION_ARGS)
result->day = span->day;
result->time = span->time;
#ifdef HAVE_INT64_TIMESTAMP
TMODULO(result->time, wholeday, USECS_PER_DAY);
#else
TMODULO(result->time, wholeday, (double) SECS_PER_DAY);
#endif
result->day += wholeday; /* could overflow... */
if (result->day > 0 && result->time < 0)
{
#ifdef HAVE_INT64_TIMESTAMP
result->time += USECS_PER_DAY;
#else
result->time += (double) SECS_PER_DAY;
#endif
result->day--;
}
else if (result->day < 0 && result->time > 0)
{
#ifdef HAVE_INT64_TIMESTAMP
result->time -= USECS_PER_DAY;
#else
result->time -= (double) SECS_PER_DAY;
#endif
result->day++;
}
@ -3492,16 +3147,12 @@ interval_mul(PG_FUNCTION_ARGS)
/* cascade units down */
result->day += (int32) month_remainder_days;
#ifdef HAVE_INT64_TIMESTAMP
result_double = rint(span->time * factor + sec_remainder * USECS_PER_SEC);
if (result_double > PG_INT64_MAX || result_double < PG_INT64_MIN)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range")));
result->time = (int64) result_double;
#else
result->time = span->time * factor + sec_remainder;
#endif
PG_RETURN_INTERVAL_P(result);
}
@ -3553,12 +3204,7 @@ interval_div(PG_FUNCTION_ARGS)
/* cascade units down */
result->day += (int32) month_remainder_days;
#ifdef HAVE_INT64_TIMESTAMP
result->time = rint(span->time / factor + sec_remainder * USECS_PER_SEC);
#else
/* See TSROUND comment in interval_mul(). */
result->time = span->time / factor + sec_remainder;
#endif
PG_RETURN_INTERVAL_P(result);
}
@ -3571,11 +3217,6 @@ interval_div(PG_FUNCTION_ARGS)
* intervals, where the first is the running sum and the second contains
* the number of values so far in its 'time' field. This is a bit ugly
* but it beats inventing a specialized datatype for the purpose.
*
* NOTE: The inverse transition function cannot guarantee exact results
* when using float8 timestamps. However, int8 timestamps are now the
* norm, and the probable range of values is not so wide that disastrous
* cancellation is likely even with float8, so we'll ignore the risk.
*/
Datum
@ -3776,11 +3417,7 @@ timestamp_age(PG_FUNCTION_ARGS)
/* propagate any negative fields into the next higher field */
while (fsec < 0)
{
#ifdef HAVE_INT64_TIMESTAMP
fsec += USECS_PER_SEC;
#else
fsec += 1.0;
#endif
tm->tm_sec--;
}
@ -3901,11 +3538,7 @@ timestamptz_age(PG_FUNCTION_ARGS)
/* propagate any negative fields into the next higher field */
while (fsec < 0)
{
#ifdef HAVE_INT64_TIMESTAMP
fsec += USECS_PER_SEC;
#else
fsec += 1.0;
#endif
tm->tm_sec--;
}
@ -4076,17 +3709,10 @@ timestamp_trunc(PG_FUNCTION_ARGS)
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
fsec = (fsec / 1000) * 1000;
#else
fsec = floor(fsec * 1000) / 1000;
#endif
break;
case DTK_MICROSEC:
#ifndef HAVE_INT64_TIMESTAMP
fsec = floor(fsec * 1000000) / 1000000;
#endif
break;
default:
@ -4229,18 +3855,10 @@ timestamptz_trunc(PG_FUNCTION_ARGS)
case DTK_SECOND:
fsec = 0;
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
fsec = (fsec / 1000) * 1000;
#else
fsec = floor(fsec * 1000) / 1000;
#endif
break;
case DTK_MICROSEC:
#ifndef HAVE_INT64_TIMESTAMP
fsec = floor(fsec * 1000000) / 1000000;
#endif
break;
default:
@ -4326,18 +3944,10 @@ interval_trunc(PG_FUNCTION_ARGS)
case DTK_SECOND:
fsec = 0;
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
fsec = (fsec / 1000) * 1000;
#else
fsec = floor(fsec * 1000) / 1000;
#endif
break;
case DTK_MICROSEC:
#ifndef HAVE_INT64_TIMESTAMP
fsec = floor(fsec * 1000000) / 1000000;
#endif
break;
default:
@ -4669,27 +4279,15 @@ timestamp_part(PG_FUNCTION_ARGS)
switch (val)
{
case DTK_MICROSEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000000.0 + fsec;
#else
result = (tm->tm_sec + fsec) * 1000000;
#endif
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
#else
result = (tm->tm_sec + fsec) * 1000;
#endif
break;
case DTK_SECOND:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec + fsec / 1000000.0;
#else
result = tm->tm_sec + fsec;
#endif
break;
case DTK_MINUTE:
@ -4762,13 +4360,8 @@ timestamp_part(PG_FUNCTION_ARGS)
case DTK_JULIAN:
result = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
#ifdef HAVE_INT64_TIMESTAMP
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) +
tm->tm_sec + (fsec / 1000000.0)) / (double) SECS_PER_DAY;
#else
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) +
tm->tm_sec + fsec) / (double) SECS_PER_DAY;
#endif
break;
case DTK_ISOYEAR:
@ -4812,15 +4405,11 @@ timestamp_part(PG_FUNCTION_ARGS)
{
case DTK_EPOCH:
epoch = SetEpochTimestamp();
#ifdef HAVE_INT64_TIMESTAMP
/* try to avoid precision loss in subtraction */
if (timestamp < (PG_INT64_MAX + epoch))
result = (timestamp - epoch) / 1000000.0;
else
result = ((float8) timestamp - epoch) / 1000000.0;
#else
result = timestamp - epoch;
#endif
break;
default:
@ -4906,27 +4495,15 @@ timestamptz_part(PG_FUNCTION_ARGS)
break;
case DTK_MICROSEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000000.0 + fsec;
#else
result = (tm->tm_sec + fsec) * 1000000;
#endif
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
#else
result = (tm->tm_sec + fsec) * 1000;
#endif
break;
case DTK_SECOND:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec + fsec / 1000000.0;
#else
result = tm->tm_sec + fsec;
#endif
break;
case DTK_MINUTE:
@ -4987,13 +4564,8 @@ timestamptz_part(PG_FUNCTION_ARGS)
case DTK_JULIAN:
result = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
#ifdef HAVE_INT64_TIMESTAMP
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) +
tm->tm_sec + (fsec / 1000000.0)) / (double) SECS_PER_DAY;
#else
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) +
tm->tm_sec + fsec) / (double) SECS_PER_DAY;
#endif
break;
case DTK_ISOYEAR:
@ -5035,15 +4607,11 @@ timestamptz_part(PG_FUNCTION_ARGS)
{
case DTK_EPOCH:
epoch = SetEpochTimestamp();
#ifdef HAVE_INT64_TIMESTAMP
/* try to avoid precision loss in subtraction */
if (timestamp < (PG_INT64_MAX + epoch))
result = (timestamp - epoch) / 1000000.0;
else
result = ((float8) timestamp - epoch) / 1000000.0;
#else
result = timestamp - epoch;
#endif
break;
default:
@ -5099,27 +4667,15 @@ interval_part(PG_FUNCTION_ARGS)
switch (val)
{
case DTK_MICROSEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000000.0 + fsec;
#else
result = (tm->tm_sec + fsec) * 1000000;
#endif
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
#else
result = (tm->tm_sec + fsec) * 1000;
#endif
break;
case DTK_SECOND:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec + fsec / 1000000.0;
#else
result = tm->tm_sec + fsec;
#endif
break;
case DTK_MINUTE:
@ -5178,11 +4734,7 @@ interval_part(PG_FUNCTION_ARGS)
}
else if (type == RESERV && val == DTK_EPOCH)
{
#ifdef HAVE_INT64_TIMESTAMP
result = interval->time / 1000000.0;
#else
result = interval->time;
#endif
result += ((double) DAYS_PER_YEAR * SECS_PER_DAY) * (interval->month / MONTHS_PER_YEAR);
result += ((double) DAYS_PER_MONTH * SECS_PER_DAY) * (interval->month % MONTHS_PER_YEAR);
result += ((double) SECS_PER_DAY) * interval->day;
@ -5338,11 +4890,7 @@ timestamp_izone(PG_FUNCTION_ARGS)
DatumGetCString(DirectFunctionCall1(interval_out,
PointerGetDatum(zone))))));
#ifdef HAVE_INT64_TIMESTAMP
tz = zone->time / USECS_PER_SEC;
#else
tz = zone->time;
#endif
result = dt2local(timestamp, tz);
@ -5539,11 +5087,7 @@ timestamptz_izone(PG_FUNCTION_ARGS)
DatumGetCString(DirectFunctionCall1(interval_out,
PointerGetDatum(zone))))));
#ifdef HAVE_INT64_TIMESTAMP
tz = -(zone->time / USECS_PER_SEC);
#else
tz = -zone->time;
#endif
result = dt2local(timestamp, tz);

View File

@ -1507,11 +1507,7 @@ static struct config_bool ConfigureNamesBool[] =
GUC_REPORT | GUC_NOT_IN_SAMPLE | GUC_DISALLOW_IN_FILE
},
&integer_datetimes,
#ifdef HAVE_INT64_TIMESTAMP
true,
#else
false,
#endif
NULL, NULL, NULL
},

View File

@ -208,8 +208,8 @@ GetConnection(void)
PQconninfoFree(conn_opts);
/*
* Ensure we have the same value of integer timestamps as the server we
* are connecting to.
* Ensure we have the same value of integer_datetimes (now always "on") as
* the server we are connecting to.
*/
tmpparam = PQparameterStatus(tmpconn, "integer_datetimes");
if (!tmpparam)
@ -221,11 +221,7 @@ GetConnection(void)
exit(1);
}
#ifdef HAVE_INT64_TIMESTAMP
if (strcmp(tmpparam, "on") != 0)
#else
if (strcmp(tmpparam, "off") != 0)
#endif
{
fprintf(stderr,
_("%s: integer_datetimes compile flag does not match server\n"),

View File

@ -29,13 +29,8 @@ timestamptz_to_time_t(TimestampTz t)
{
pg_time_t result;
#ifdef HAVE_INT64_TIMESTAMP
result = (pg_time_t) (t / USECS_PER_SEC +
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY));
#else
result = (pg_time_t) (t +
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY));
#endif
return result;
}
@ -63,11 +58,7 @@ timestamptz_to_str(TimestampTz dt)
strftime(ts, sizeof(ts), "%Y-%m-%d %H:%M:%S", ltime);
strftime(zone, sizeof(zone), "%Z", ltime);
#ifdef HAVE_INT64_TIMESTAMP
sprintf(buf, "%s.%06d %s", ts, (int) (dt % USECS_PER_SEC), zone);
#else
sprintf(buf, "%s.%.6f %s", ts, fabs(dt - floor(dt)), zone);
#endif
return buf;
}

View File

@ -29,29 +29,20 @@
* Note that Postgres uses "time interval" to mean a bounded interval,
* consisting of a beginning and ending time, not a time span - thomas 97/03/20
*
* We have two implementations, one that uses int64 values with units of
* microseconds, and one that uses double values with units of seconds.
* Timestamps, as well as the h/m/s fields of intervals, are stored as
* int64 values with units of microseconds. (Once upon a time they were
* double values with units of seconds.)
*
* TimeOffset and fsec_t are convenience typedefs for temporary variables
* that are of different types in the two cases. Do not use fsec_t in values
* stored on-disk, since it is not the same size in both implementations.
* TimeOffset and fsec_t are convenience typedefs for temporary variables.
* Do not use fsec_t in values stored on-disk.
* Also, fsec_t is only meant for *fractional* seconds; beware of overflow
* if the value you need to store could be many seconds.
*/
#ifdef HAVE_INT64_TIMESTAMP
typedef int64 Timestamp;
typedef int64 TimestampTz;
typedef int64 TimeOffset;
typedef int32 fsec_t; /* fractional seconds (in microseconds) */
#else
typedef double Timestamp;
typedef double TimestampTz;
typedef double TimeOffset;
typedef double fsec_t; /* fractional seconds (in seconds) */
#endif
typedef struct
{
@ -62,6 +53,7 @@ typedef struct
} Interval;
/* Limits on the "precision" option (typmod) for these data types */
#define MAX_TIMESTAMP_PRECISION 6
#define MAX_INTERVAL_PRECISION 6
@ -118,18 +110,8 @@ typedef struct
/*
* DT_NOBEGIN represents timestamp -infinity; DT_NOEND represents +infinity
*/
#ifdef HAVE_INT64_TIMESTAMP
#define DT_NOBEGIN PG_INT64_MIN
#define DT_NOEND PG_INT64_MAX
#else /* !HAVE_INT64_TIMESTAMP */
#ifdef HUGE_VAL
#define DT_NOBEGIN (-HUGE_VAL)
#define DT_NOEND (HUGE_VAL)
#else
#define DT_NOBEGIN (-DBL_MAX)
#define DT_NOEND (DBL_MAX)
#endif
#endif /* HAVE_INT64_TIMESTAMP */
#define TIMESTAMP_NOBEGIN(j) \
do {(j) = DT_NOBEGIN;} while (0)
@ -191,35 +173,22 @@ typedef struct
* so that is the lower bound for both dates and timestamps.
*
* The upper limit for dates is 5874897-12-31, which is a bit less than what
* the Julian-date code can allow. We use that same limit for timestamps when
* using floating-point timestamps (so that the timezone offset problem would
* exist here too if there were no slop). For integer timestamps, the upper
* limit is 294276-12-31. The int64 overflow limit would be a few days later;
* again, leaving some slop avoids worries about corner-case overflow, and
* provides a simpler user-visible definition.
* the Julian-date code can allow. For timestamps, the upper limit is
* 294276-12-31. The int64 overflow limit would be a few days later; again,
* leaving some slop avoids worries about corner-case overflow, and provides
* a simpler user-visible definition.
*/
/* First allowed date, and first disallowed date, in Julian-date form */
#define DATETIME_MIN_JULIAN (0)
#define DATE_END_JULIAN (2147483494) /* == date2j(JULIAN_MAXYEAR, 1, 1) */
#ifdef HAVE_INT64_TIMESTAMP
#define TIMESTAMP_END_JULIAN (109203528) /* == date2j(294277, 1, 1) */
#else
#define TIMESTAMP_END_JULIAN DATE_END_JULIAN
#endif
/* Timestamp limits */
#ifdef HAVE_INT64_TIMESTAMP
#define MIN_TIMESTAMP INT64CONST(-211813488000000000)
/* == (DATETIME_MIN_JULIAN - POSTGRES_EPOCH_JDATE) * USECS_PER_DAY */
#define END_TIMESTAMP INT64CONST(9223371331200000000)
/* == (TIMESTAMP_END_JULIAN - POSTGRES_EPOCH_JDATE) * USECS_PER_DAY */
#else
#define MIN_TIMESTAMP (-211813488000.0)
/* == (DATETIME_MIN_JULIAN - POSTGRES_EPOCH_JDATE) * SECS_PER_DAY */
#define END_TIMESTAMP 185330760393600.0
/* == (TIMESTAMP_END_JULIAN - POSTGRES_EPOCH_JDATE) * SECS_PER_DAY */
#endif
/* Range-check a date (given in Postgres, not Julian, numbering) */
#define IS_VALID_DATE(d) \

View File

@ -21,11 +21,7 @@
typedef int32 DateADT;
#ifdef HAVE_INT64_TIMESTAMP
typedef int64 TimeADT;
#else
typedef float8 TimeADT;
#endif
typedef struct
{
@ -48,11 +44,9 @@ typedef struct
/*
* Macros for fmgr-callable functions.
*
* For TimeADT, we make use of the same support routines as for float8 or int64.
* Therefore TimeADT is pass-by-reference if and only if float8 or int64 is!
* For TimeADT, we make use of the same support routines as for int64.
* Therefore TimeADT is pass-by-reference if and only if int64 is!
*/
#ifdef HAVE_INT64_TIMESTAMP
#define MAX_TIME_PRECISION 6
#define DatumGetDateADT(X) ((DateADT) DatumGetInt32(X))
@ -62,22 +56,6 @@ typedef struct
#define DateADTGetDatum(X) Int32GetDatum(X)
#define TimeADTGetDatum(X) Int64GetDatum(X)
#define TimeTzADTPGetDatum(X) PointerGetDatum(X)
#else /* !HAVE_INT64_TIMESTAMP */
#define MAX_TIME_PRECISION 10
/* round off to MAX_TIME_PRECISION decimal places */
#define TIME_PREC_INV 10000000000.0
#define TIMEROUND(j) (rint(((double) (j)) * TIME_PREC_INV) / TIME_PREC_INV)
#define DatumGetDateADT(X) ((DateADT) DatumGetInt32(X))
#define DatumGetTimeADT(X) ((TimeADT) DatumGetFloat8(X))
#define DatumGetTimeTzADTP(X) ((TimeTzADT *) DatumGetPointer(X))
#define DateADTGetDatum(X) Int32GetDatum(X)
#define TimeADTGetDatum(X) Float8GetDatum(X)
#define TimeTzADTPGetDatum(X) PointerGetDatum(X)
#endif /* HAVE_INT64_TIMESTAMP */
#define PG_GETARG_DATEADT(n) DatumGetDateADT(PG_GETARG_DATUM(n))
#define PG_GETARG_TIMEADT(n) DatumGetTimeADT(PG_GETARG_DATUM(n))

View File

@ -244,23 +244,15 @@ do { \
} while(0)
/* TMODULO()
* Like FMODULO(), but work on the timestamp datatype (either int64 or float8).
* Like FMODULO(), but work on the timestamp datatype (now always int64).
* We assume that int64 follows the C99 semantics for division (negative
* quotients truncate towards zero).
*/
#ifdef HAVE_INT64_TIMESTAMP
#define TMODULO(t,q,u) \
do { \
(q) = ((t) / (u)); \
if ((q) != 0) (t) -= ((q) * (u)); \
} while(0)
#else
#define TMODULO(t,q,u) \
do { \
(q) = (((t) < 0) ? ceil((t) / (u)) : floor((t) / (u))); \
if ((q) != 0) (t) -= rint((q) * (u)); \
} while(0)
#endif
/*
* Date/time validation

View File

@ -21,12 +21,9 @@
/*
* Macros for fmgr-callable functions.
*
* For Timestamp, we make use of the same support routines as for int64
* or float8. Therefore Timestamp is pass-by-reference if and only if
* int64 or float8 is!
* For Timestamp, we make use of the same support routines as for int64.
* Therefore Timestamp is pass-by-reference if and only if int64 is!
*/
#ifdef HAVE_INT64_TIMESTAMP
#define DatumGetTimestamp(X) ((Timestamp) DatumGetInt64(X))
#define DatumGetTimestampTz(X) ((TimestampTz) DatumGetInt64(X))
#define DatumGetIntervalP(X) ((Interval *) DatumGetPointer(X))
@ -42,24 +39,6 @@
#define PG_RETURN_TIMESTAMP(x) return TimestampGetDatum(x)
#define PG_RETURN_TIMESTAMPTZ(x) return TimestampTzGetDatum(x)
#define PG_RETURN_INTERVAL_P(x) return IntervalPGetDatum(x)
#else /* !HAVE_INT64_TIMESTAMP */
#define DatumGetTimestamp(X) ((Timestamp) DatumGetFloat8(X))
#define DatumGetTimestampTz(X) ((TimestampTz) DatumGetFloat8(X))
#define DatumGetIntervalP(X) ((Interval *) DatumGetPointer(X))
#define TimestampGetDatum(X) Float8GetDatum(X)
#define TimestampTzGetDatum(X) Float8GetDatum(X)
#define IntervalPGetDatum(X) PointerGetDatum(X)
#define PG_GETARG_TIMESTAMP(n) DatumGetTimestamp(PG_GETARG_DATUM(n))
#define PG_GETARG_TIMESTAMPTZ(n) DatumGetTimestampTz(PG_GETARG_DATUM(n))
#define PG_GETARG_INTERVAL_P(n) DatumGetIntervalP(PG_GETARG_DATUM(n))
#define PG_RETURN_TIMESTAMP(x) return TimestampGetDatum(x)
#define PG_RETURN_TIMESTAMPTZ(x) return TimestampTzGetDatum(x)
#define PG_RETURN_INTERVAL_P(x) return IntervalPGetDatum(x)
#endif /* HAVE_INT64_TIMESTAMP */
#define TIMESTAMP_MASK(b) (1 << (b))
@ -74,11 +53,7 @@
#define INTERVAL_PRECISION(t) ((t) & INTERVAL_PRECISION_MASK)
#define INTERVAL_RANGE(t) (((t) >> 16) & INTERVAL_RANGE_MASK)
#ifdef HAVE_INT64_TIMESTAMP
#define TimestampTzPlusMilliseconds(tz,ms) ((tz) + ((ms) * (int64) 1000))
#else
#define TimestampTzPlusMilliseconds(tz,ms) ((tz) + ((ms) / 1000.0))
#endif
/* Set at postmaster start */
@ -105,13 +80,8 @@ extern bool TimestampDifferenceExceeds(TimestampTz start_time,
* Prototypes for functions to deal with integer timestamps, when the native
* format is float timestamps.
*/
#ifndef HAVE_INT64_TIMESTAMP
extern int64 GetCurrentIntegerTimestamp(void);
extern TimestampTz IntegerTimestampToTimestampTz(int64 timestamp);
#else
#define GetCurrentIntegerTimestamp() GetCurrentTimestamp()
#define IntegerTimestampToTimestampTz(timestamp) (timestamp)
#endif
extern TimestampTz time_t_to_timestamptz(pg_time_t tm);
extern pg_time_t timestamptz_to_time_t(TimestampTz t);

View File

@ -25,11 +25,7 @@ typedef long long int int64;
typedef struct
{
#ifdef HAVE_INT64_TIMESTAMP
int64 time; /* all time units other than months and years */
#else
double time; /* all time units other than months and years */
#endif
long month; /* months and years, after time for alignment */
} interval;

View File

@ -6,13 +6,8 @@
/* pgtypes_interval.h includes ecpg_config.h */
#include <pgtypes_interval.h>
#ifdef HAVE_INT64_TIMESTAMP
typedef int64 timestamp;
typedef int64 TimestampTz;
#else
typedef double timestamp;
typedef double TimestampTz;
#endif
#ifdef __cplusplus
extern "C"

View File

@ -37,13 +37,8 @@ PGTYPESdate_from_timestamp(timestamp dt)
if (!TIMESTAMP_NOT_FINITE(dt))
{
#ifdef HAVE_INT64_TIMESTAMP
/* Microseconds to days */
dDate = (dt / USECS_PER_DAY);
#else
/* Seconds to days */
dDate = (dt / (double) SECS_PER_DAY);
#endif
}
return dDate;

View File

@ -7,18 +7,7 @@
#define MAXTZLEN 10
#ifdef HAVE_INT64_TIMESTAMP
typedef int32 fsec_t;
#else
typedef double fsec_t;
/* round off to MAX_TIMESTAMP_PRECISION decimal places */
/* note: this is also used for rounding off intervals */
#define TS_PREC_INV 1000000.0
#define TSROUND(j) (rint(((double) (j)) * TS_PREC_INV) / TS_PREC_INV)
#endif
#define USE_POSTGRES_DATES 0
#define USE_ISO_DATES 1
@ -232,23 +221,15 @@ do { \
} while(0)
/* TMODULO()
* Like FMODULO(), but work on the timestamp datatype (either int64 or float8).
* Like FMODULO(), but work on the timestamp datatype (now always int64).
* We assume that int64 follows the C99 semantics for division (negative
* quotients truncate towards zero).
*/
#ifdef HAVE_INT64_TIMESTAMP
#define TMODULO(t,q,u) \
do { \
(q) = ((t) / (u)); \
if ((q) != 0) (t) -= ((q) * (u)); \
} while(0)
#else
#define TMODULO(t,q,u) \
do { \
(q) = (((t) < 0) ? ceil((t) / (u)): floor((t) / (u))); \
if ((q) != 0) (t) -= rint((q) * (u)); \
} while(0)
#endif
/* in both timestamp.h and ecpg/dt.h */
#define DAYS_PER_YEAR 365.25 /* assumes leap year every four years */
@ -274,12 +255,10 @@ do { \
#define SECS_PER_MINUTE 60
#define MINS_PER_HOUR 60
#ifdef HAVE_INT64_TIMESTAMP
#define USECS_PER_DAY INT64CONST(86400000000)
#define USECS_PER_HOUR INT64CONST(3600000000)
#define USECS_PER_MINUTE INT64CONST(60000000)
#define USECS_PER_SEC INT64CONST(1000000)
#endif
/*
* Date/time validation
@ -304,13 +283,8 @@ do { \
((y) < JULIAN_MAXYEAR || \
((y) == JULIAN_MAXYEAR && ((m) < JULIAN_MAXMONTH))))
#ifdef HAVE_INT64_TIMESTAMP
#define MIN_TIMESTAMP INT64CONST(-211813488000000000)
#define END_TIMESTAMP INT64CONST(9223371331200000000)
#else
#define MIN_TIMESTAMP (-211813488000.0)
#define END_TIMESTAMP 185330760393600.0
#endif
#define IS_VALID_TIMESTAMP(t) (MIN_TIMESTAMP <= (t) && (t) < END_TIMESTAMP)
@ -328,20 +302,8 @@ do { \
|| (((y) == UTIME_MAXYEAR) && (((m) < UTIME_MAXMONTH) \
|| (((m) == UTIME_MAXMONTH) && ((d) <= UTIME_MAXDAY))))))
#ifdef HAVE_INT64_TIMESTAMP
#define DT_NOBEGIN (-INT64CONST(0x7fffffffffffffff) - 1)
#define DT_NOEND (INT64CONST(0x7fffffffffffffff))
#else
#ifdef HUGE_VAL
#define DT_NOBEGIN (-HUGE_VAL)
#define DT_NOEND (HUGE_VAL)
#else
#define DT_NOBEGIN (-DBL_MAX)
#define DT_NOEND (DBL_MAX)
#endif
#endif /* HAVE_INT64_TIMESTAMP */
#define TIMESTAMP_NOBEGIN(j) do {(j) = DT_NOBEGIN;} while (0)
#define TIMESTAMP_NOEND(j) do {(j) = DT_NOEND;} while (0)

View File

@ -783,19 +783,10 @@ EncodeDateTime(struct tm * tm, fsec_t fsec, bool print_tz, int tz, const char *t
/*
* Print fractional seconds if any. The field widths here should
* be at least equal to MAX_TIMESTAMP_PRECISION.
*
* In float mode, don't print fractional seconds before 1 AD,
* since it's unlikely there's any precision left ...
*/
#ifdef HAVE_INT64_TIMESTAMP
if (fsec != 0)
{
sprintf(str + strlen(str), ":%02d.%06d", tm->tm_sec, fsec);
#else
if ((fsec != 0) && (tm->tm_year > 0))
{
sprintf(str + strlen(str), ":%09.6f", tm->tm_sec + fsec);
#endif
TrimTrailingZeros(str);
}
else
@ -830,19 +821,10 @@ EncodeDateTime(struct tm * tm, fsec_t fsec, bool print_tz, int tz, const char *t
/*
* Print fractional seconds if any. The field widths here should
* be at least equal to MAX_TIMESTAMP_PRECISION.
*
* In float mode, don't print fractional seconds before 1 AD,
* since it's unlikely there's any precision left ...
*/
#ifdef HAVE_INT64_TIMESTAMP
if (fsec != 0)
{
sprintf(str + strlen(str), ":%02d.%06d", tm->tm_sec, fsec);
#else
if (fsec != 0 && tm->tm_year > 0)
{
sprintf(str + strlen(str), ":%09.6f", tm->tm_sec + fsec);
#endif
TrimTrailingZeros(str);
}
else
@ -885,19 +867,10 @@ EncodeDateTime(struct tm * tm, fsec_t fsec, bool print_tz, int tz, const char *t
/*
* Print fractional seconds if any. The field widths here should
* be at least equal to MAX_TIMESTAMP_PRECISION.
*
* In float mode, don't print fractional seconds before 1 AD,
* since it's unlikely there's any precision left ...
*/
#ifdef HAVE_INT64_TIMESTAMP
if (fsec != 0)
{
sprintf(str + strlen(str), ":%02d.%06d", tm->tm_sec, fsec);
#else
if (fsec != 0 && tm->tm_year > 0)
{
sprintf(str + strlen(str), ":%09.6f", tm->tm_sec + fsec);
#endif
TrimTrailingZeros(str);
}
else
@ -942,19 +915,10 @@ EncodeDateTime(struct tm * tm, fsec_t fsec, bool print_tz, int tz, const char *t
/*
* Print fractional seconds if any. The field widths here should
* be at least equal to MAX_TIMESTAMP_PRECISION.
*
* In float mode, don't print fractional seconds before 1 AD,
* since it's unlikely there's any precision left ...
*/
#ifdef HAVE_INT64_TIMESTAMP
if (fsec != 0)
{
sprintf(str + strlen(str), ":%02d.%06d", tm->tm_sec, fsec);
#else
if (fsec != 0 && tm->tm_year > 0)
{
sprintf(str + strlen(str), ":%09.6f", tm->tm_sec + fsec);
#endif
TrimTrailingZeros(str);
}
else
@ -1110,28 +1074,15 @@ GetCurrentDateTime(struct tm * tm)
void
dt2time(double jd, int *hour, int *min, int *sec, fsec_t *fsec)
{
#ifdef HAVE_INT64_TIMESTAMP
int64 time;
#else
double time;
#endif
time = jd;
#ifdef HAVE_INT64_TIMESTAMP
*hour = time / USECS_PER_HOUR;
time -= (*hour) * USECS_PER_HOUR;
*min = time / USECS_PER_MINUTE;
time -= (*min) * USECS_PER_MINUTE;
*sec = time / USECS_PER_SEC;
*fsec = time - (*sec * USECS_PER_SEC);
#else
*hour = time / SECS_PER_HOUR;
time -= (*hour) * SECS_PER_HOUR;
*min = time / SECS_PER_MINUTE;
time -= (*min) * SECS_PER_MINUTE;
*sec = time;
*fsec = time - *sec;
#endif
} /* dt2time() */
@ -1153,7 +1104,6 @@ DecodeNumberField(int len, char *str, int fmask,
*/
if ((cp = strchr(str, '.')) != NULL)
{
#ifdef HAVE_INT64_TIMESTAMP
char fstr[7];
int i;
@ -1164,16 +1114,13 @@ DecodeNumberField(int len, char *str, int fmask,
* string with those digits, zero-padded on the right, and then do the
* conversion to an integer.
*
* XXX This truncates the seventh digit, unlike rounding it as do the
* backend and the !HAVE_INT64_TIMESTAMP case.
* XXX This truncates the seventh digit, unlike rounding it as the
* backend does.
*/
for (i = 0; i < 6; i++)
fstr[i] = *cp != '\0' ? *cp++ : '0';
fstr[i] = '\0';
*fsec = strtol(fstr, NULL, 10);
#else
*fsec = strtod(cp, NULL);
#endif
*cp = '\0';
len = strlen(str);
}
@ -1520,7 +1467,6 @@ DecodeTime(char *str, int *tmask, struct tm * tm, fsec_t *fsec)
*fsec = 0;
else if (*cp == '.')
{
#ifdef HAVE_INT64_TIMESTAMP
char fstr[7];
int i;
@ -1531,17 +1477,13 @@ DecodeTime(char *str, int *tmask, struct tm * tm, fsec_t *fsec)
* string with those digits, zero-padded on the right, and then do
* the conversion to an integer.
*
* XXX This truncates the seventh digit, unlike rounding it as do
* the backend and the !HAVE_INT64_TIMESTAMP case.
* XXX This truncates the seventh digit, unlike rounding it as the
* backend does.
*/
for (i = 0; i < 6; i++)
fstr[i] = *cp != '\0' ? *cp++ : '0';
fstr[i] = '\0';
*fsec = strtol(fstr, &cp, 10);
#else
str = cp;
*fsec = strtod(str, &cp);
#endif
if (*cp != '\0')
return -1;
}
@ -1550,15 +1492,9 @@ DecodeTime(char *str, int *tmask, struct tm * tm, fsec_t *fsec)
}
/* do a sanity check */
#ifdef HAVE_INT64_TIMESTAMP
if (tm->tm_hour < 0 || tm->tm_min < 0 || tm->tm_min > 59 ||
tm->tm_sec < 0 || tm->tm_sec > 59 || *fsec >= USECS_PER_SEC)
return -1;
#else
if (tm->tm_hour < 0 || tm->tm_min < 0 || tm->tm_min > 59 ||
tm->tm_sec < 0 || tm->tm_sec > 59 || *fsec >= 1)
return -1;
#endif
return 0;
} /* DecodeTime() */
@ -2105,11 +2041,7 @@ DecodeDateTime(char **field, int *ftype, int nf,
frac = strtod(cp, &cp);
if (*cp != '\0')
return -1;
#ifdef HAVE_INT64_TIMESTAMP
*fsec = frac * 1000000;
#else
*fsec = frac;
#endif
}
break;
@ -2135,11 +2067,7 @@ DecodeDateTime(char **field, int *ftype, int nf,
return -1;
tmask |= DTK_TIME_M;
#ifdef HAVE_INT64_TIMESTAMP
dt2time((time * USECS_PER_DAY), &tm->tm_hour, &tm->tm_min, &tm->tm_sec, fsec);
#else
dt2time((time * SECS_PER_DAY), &tm->tm_hour, &tm->tm_min, &tm->tm_sec, fsec);
#endif
}
break;

View File

@ -42,11 +42,7 @@ AdjustFractSeconds(double frac, struct /* pg_ */ tm * tm, fsec_t *fsec, int scal
sec = (int) frac;
tm->tm_sec += sec;
frac -= sec;
#ifdef HAVE_INT64_TIMESTAMP
*fsec += rint(frac * 1000000);
#else
*fsec += frac;
#endif
}
@ -488,30 +484,18 @@ DecodeInterval(char **field, int *ftype, int nf, /* int range, */
switch (type)
{
case DTK_MICROSEC:
#ifdef HAVE_INT64_TIMESTAMP
*fsec += rint(val + fval);
#else
*fsec += (val + fval) * 1e-6;
#endif
tmask = DTK_M(MICROSECOND);
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
*fsec += rint((val + fval) * 1000);
#else
*fsec += (val + fval) * 1e-3;
#endif
tmask = DTK_M(MILLISECOND);
break;
case DTK_SECOND:
tm->tm_sec += val;
#ifdef HAVE_INT64_TIMESTAMP
*fsec += rint(fval * 1000000);
#else
*fsec += fval;
#endif
/*
* If any subseconds were specified, consider this
@ -633,12 +617,8 @@ DecodeInterval(char **field, int *ftype, int nf, /* int range, */
{
int sec;
#ifdef HAVE_INT64_TIMESTAMP
sec = *fsec / USECS_PER_SEC;
*fsec -= sec * USECS_PER_SEC;
#else
TMODULO(*fsec, sec, 1.0);
#endif
tm->tm_sec += sec;
}
@ -777,17 +757,10 @@ AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros)
}
else
{
#ifdef HAVE_INT64_TIMESTAMP
if (fillzeros)
sprintf(cp, "%02d.%0*d", abs(sec), precision, (int) Abs(fsec));
else
sprintf(cp, "%d.%0*d", abs(sec), precision, (int) Abs(fsec));
#else
if (fillzeros)
sprintf(cp, "%0*.*f", precision + 3, precision, fabs(sec + fsec));
else
sprintf(cp, "%.*f", precision, fabs(sec + fsec));
#endif
TrimTrailingZeros(cp);
}
}
@ -985,11 +958,7 @@ EncodeInterval(struct /* pg_ */ tm * tm, fsec_t fsec, int style, char *str)
static int
interval2tm(interval span, struct tm * tm, fsec_t *fsec)
{
#ifdef HAVE_INT64_TIMESTAMP
int64 time;
#else
double time;
#endif
if (span.month != 0)
{
@ -1005,7 +974,6 @@ interval2tm(interval span, struct tm * tm, fsec_t *fsec)
time = span.time;
#ifdef HAVE_INT64_TIMESTAMP
tm->tm_mday = time / USECS_PER_DAY;
time -= tm->tm_mday * USECS_PER_DAY;
tm->tm_hour = time / USECS_PER_HOUR;
@ -1014,21 +982,6 @@ interval2tm(interval span, struct tm * tm, fsec_t *fsec)
time -= tm->tm_min * USECS_PER_MINUTE;
tm->tm_sec = time / USECS_PER_SEC;
*fsec = time - (tm->tm_sec * USECS_PER_SEC);
#else
recalc:
TMODULO(time, tm->tm_mday, (double) SECS_PER_DAY);
TMODULO(time, tm->tm_hour, (double) SECS_PER_HOUR);
TMODULO(time, tm->tm_min, (double) SECS_PER_MINUTE);
TMODULO(time, tm->tm_sec, 1.0);
time = TSROUND(time);
/* roundoff may need to propagate to higher-order fields */
if (time >= 1.0)
{
time = ceil(span.time);
goto recalc;
}
*fsec = time;
#endif
return 0;
} /* interval2tm() */
@ -1040,17 +993,10 @@ tm2interval(struct tm * tm, fsec_t fsec, interval * span)
(double) tm->tm_year * MONTHS_PER_YEAR + tm->tm_mon < INT_MIN)
return -1;
span->month = tm->tm_year * MONTHS_PER_YEAR + tm->tm_mon;
#ifdef HAVE_INT64_TIMESTAMP
span->time = (((((((tm->tm_mday * INT64CONST(24)) +
tm->tm_hour) * INT64CONST(60)) +
tm->tm_min) * INT64CONST(60)) +
tm->tm_sec) * USECS_PER_SEC) + fsec;
#else
span->time = (((((tm->tm_mday * (double) HOURS_PER_DAY) +
tm->tm_hour) * (double) MINS_PER_HOUR) +
tm->tm_min) * (double) SECS_PER_MINUTE) +
tm->tm_sec + fsec;
#endif
return 0;
} /* tm2interval() */

View File

@ -18,28 +18,16 @@
#include "pgtypes_date.h"
#ifdef HAVE_INT64_TIMESTAMP
static int64
time2t(const int hour, const int min, const int sec, const fsec_t fsec)
{
return (((((hour * MINS_PER_HOUR) + min) * SECS_PER_MINUTE) + sec) * USECS_PER_SEC) + fsec;
} /* time2t() */
#else
static double
time2t(const int hour, const int min, const int sec, const fsec_t fsec)
{
return (((hour * MINS_PER_HOUR) + min) * SECS_PER_MINUTE) + sec + fsec;
} /* time2t() */
#endif
static timestamp
dt2local(timestamp dt, int tz)
{
#ifdef HAVE_INT64_TIMESTAMP
dt -= (tz * USECS_PER_SEC);
#else
dt -= tz;
#endif
return dt;
} /* dt2local() */
@ -53,13 +41,8 @@ dt2local(timestamp dt, int tz)
int
tm2timestamp(struct tm * tm, fsec_t fsec, int *tzp, timestamp * result)
{
#ifdef HAVE_INT64_TIMESTAMP
int dDate;
int64 time;
#else
double dDate,
time;
#endif
/* Prevent overflow in Julian-day routines */
if (!IS_VALID_JULIAN(tm->tm_year, tm->tm_mon, tm->tm_mday))
@ -67,7 +50,6 @@ tm2timestamp(struct tm * tm, fsec_t fsec, int *tzp, timestamp * result)
dDate = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - date2j(2000, 1, 1);
time = time2t(tm->tm_hour, tm->tm_min, tm->tm_sec, fsec);
#ifdef HAVE_INT64_TIMESTAMP
*result = (dDate * USECS_PER_DAY) + time;
/* check for major overflow */
if ((*result - time) / USECS_PER_DAY != dDate)
@ -77,9 +59,6 @@ tm2timestamp(struct tm * tm, fsec_t fsec, int *tzp, timestamp * result)
if ((*result < 0 && dDate > 0) ||
(*result > 0 && dDate < -1))
return -1;
#else
*result = dDate * SECS_PER_DAY + time;
#endif
if (tzp != NULL)
*result = dt2local(*result, -(*tzp));
@ -93,11 +72,7 @@ tm2timestamp(struct tm * tm, fsec_t fsec, int *tzp, timestamp * result)
static timestamp
SetEpochTimestamp(void)
{
#ifdef HAVE_INT64_TIMESTAMP
int64 noresult = 0;
#else
double noresult = 0.0;
#endif
timestamp dt;
struct tm tt,
*tm = &tt;
@ -123,15 +98,9 @@ SetEpochTimestamp(void)
static int
timestamp2tm(timestamp dt, int *tzp, struct tm * tm, fsec_t *fsec, const char **tzn)
{
#ifdef HAVE_INT64_TIMESTAMP
int64 dDate,
date0;
int64 time;
#else
double dDate,
date0;
double time;
#endif
#if defined(HAVE_TM_ZONE) || defined(HAVE_INT_TIMEZONE)
time_t utime;
struct tm *tx;
@ -139,7 +108,6 @@ timestamp2tm(timestamp dt, int *tzp, struct tm * tm, fsec_t *fsec, const char **
date0 = date2j(2000, 1, 1);
#ifdef HAVE_INT64_TIMESTAMP
time = dt;
TMODULO(time, dDate, USECS_PER_DAY);
@ -158,42 +126,6 @@ timestamp2tm(timestamp dt, int *tzp, struct tm * tm, fsec_t *fsec, const char **
j2date((int) dDate, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
dt2time(time, &tm->tm_hour, &tm->tm_min, &tm->tm_sec, fsec);
#else
time = dt;
TMODULO(time, dDate, (double) SECS_PER_DAY);
if (time < 0)
{
time += SECS_PER_DAY;
dDate -= 1;
}
/* add offset to go from J2000 back to standard Julian date */
dDate += date0;
recalc_d:
/* Julian day routine does not work for negative Julian days */
if (dDate < 0 || dDate > (timestamp) INT_MAX)
return -1;
j2date((int) dDate, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
recalc_t:
dt2time(time, &tm->tm_hour, &tm->tm_min, &tm->tm_sec, fsec);
*fsec = TSROUND(*fsec);
/* roundoff may need to propagate to higher-order fields */
if (*fsec >= 1.0)
{
time = ceil(time);
if (time >= (double) SECS_PER_DAY)
{
time = 0;
dDate += 1;
goto recalc_d;
}
goto recalc_t;
}
#endif
if (tzp != NULL)
{
@ -205,12 +137,8 @@ recalc_t:
{
#if defined(HAVE_TM_ZONE) || defined(HAVE_INT_TIMEZONE)
#ifdef HAVE_INT64_TIMESTAMP
utime = dt / USECS_PER_SEC +
((date0 - date2j(1970, 1, 1)) * INT64CONST(86400));
#else
utime = dt + (date0 - date2j(1970, 1, 1)) * SECS_PER_DAY;
#endif
tx = localtime(&utime);
tm->tm_year = tx->tm_year + 1900;
@ -281,12 +209,7 @@ timestamp
PGTYPEStimestamp_from_asc(char *str, char **endptr)
{
timestamp result;
#ifdef HAVE_INT64_TIMESTAMP
int64 noresult = 0;
#else
double noresult = 0.0;
#endif
fsec_t fsec;
struct tm tt,
*tm = &tt;
@ -633,13 +556,8 @@ dttofmtasc_replace(timestamp * ts, date dDate, int dow, struct tm * tm,
break;
/* The number of seconds since the Epoch (1970-01-01) */
case 's':
#ifdef HAVE_INT64_TIMESTAMP
replace_val.int64_val = (*ts - SetEpochTimestamp()) / 1000000.0;
replace_type = PGTYPES_TYPE_INT64;
#else
replace_val.double_val = *ts - SetEpochTimestamp();
replace_type = PGTYPES_TYPE_DOUBLE_NF;
#endif
break;
/* seconds as a decimal number with leading zeroes */
case 'S':