Fix race conditions in synchronous standby management.

We have repeatedly seen the buildfarm reach the Assert(false) in
SyncRepGetSyncStandbysPriority.  This apparently is due to failing to
consider the possibility that the sync_standby_priority values in
shared memory might be inconsistent; but they will be whenever only
some of the walsenders have updated their values after a change in
the synchronous_standby_names setting.  That function is vastly too
complex for what it does, anyway, so rewriting it seems better than
trying to apply a band-aid fix.

Furthermore, the API of SyncRepGetSyncStandbys is broken by design:
it returns a list of WalSnd array indexes, but there is nothing
guaranteeing that the contents of the WalSnd array remain stable.
Thus, if some walsender exits and then a new walsender process
takes over that WalSnd array slot, a caller might make use of
WAL position data that it should not, potentially leading to
incorrect decisions about whether to release transactions that
are waiting for synchronous commit.

To fix, replace SyncRepGetSyncStandbys with a new function
SyncRepGetCandidateStandbys that copies all the required data
from shared memory while holding the relevant mutexes.  If the
associated walsender process then exits, this data is still safe to
make release decisions with, since we know that that much WAL *was*
sent to a valid standby server.  This incidentally means that we no
longer need to treat sync_standby_priority as protected by the
SyncRepLock rather than the per-walsender mutex.

SyncRepGetSyncStandbys is no longer used by the core code, so remove
it entirely in HEAD.  However, it seems possible that external code is
relying on that function, so do not remove it from the back branches.
Instead, just remove the known-incorrect Assert.  When the bug occurs,
the function will return a too-short list, which callers should treat
as meaning there are not enough sync standbys, which seems like a
reasonably safe fallback until the inconsistent state is resolved.
Moreover it's bug-compatible with what has been happening in non-assert
builds.  We cannot do anything about the walsender-replacement race
condition without an API/ABI break.

The bogus assertion exists back to 9.6, but 9.6 is sufficiently
different from the later branches that the patch doesn't apply at all.
I chose to just remove the bogus assertion in 9.6, feeling that the
probability of a bad outcome from the walsender-replacement race
condition is too low to justify rewriting the whole patch for 9.6.

Discussion: https://postgr.es/m/21519.1585272409@sss.pgh.pa.us
This commit is contained in:
Tom Lane 2020-04-18 14:02:44 -04:00
parent 3cb02e307e
commit f332241a60
4 changed files with 187 additions and 294 deletions

View File

@ -108,14 +108,16 @@ static bool SyncRepGetSyncRecPtr(XLogRecPtr *writePtr,
static void SyncRepGetOldestSyncRecPtr(XLogRecPtr *writePtr,
XLogRecPtr *flushPtr,
XLogRecPtr *applyPtr,
List *sync_standbys);
SyncRepStandbyData *sync_standbys,
int num_standbys);
static void SyncRepGetNthLatestSyncRecPtr(XLogRecPtr *writePtr,
XLogRecPtr *flushPtr,
XLogRecPtr *applyPtr,
List *sync_standbys, uint8 nth);
SyncRepStandbyData *sync_standbys,
int num_standbys,
uint8 nth);
static int SyncRepGetStandbyPriority(void);
static List *SyncRepGetSyncStandbysPriority(bool *am_sync);
static List *SyncRepGetSyncStandbysQuorum(bool *am_sync);
static int standby_priority_comparator(const void *a, const void *b);
static int cmp_lsn(const void *a, const void *b);
#ifdef USE_ASSERT_CHECKING
@ -406,9 +408,10 @@ SyncRepInitConfig(void)
priority = SyncRepGetStandbyPriority();
if (MyWalSnd->sync_standby_priority != priority)
{
LWLockAcquire(SyncRepLock, LW_EXCLUSIVE);
SpinLockAcquire(&MyWalSnd->mutex);
MyWalSnd->sync_standby_priority = priority;
LWLockRelease(SyncRepLock);
SpinLockRelease(&MyWalSnd->mutex);
ereport(DEBUG1,
(errmsg("standby \"%s\" now has synchronous standby priority %u",
application_name, priority)));
@ -459,7 +462,11 @@ SyncRepReleaseWaiters(void)
/*
* Check whether we are a sync standby or not, and calculate the synced
* positions among all sync standbys.
* positions among all sync standbys. (Note: although this step does not
* of itself require holding SyncRepLock, it seems like a good idea to do
* it after acquiring the lock. This ensures that the WAL pointers we use
* to release waiters are newer than any previous execution of this
* routine used.)
*/
got_recptr = SyncRepGetSyncRecPtr(&writePtr, &flushPtr, &applyPtr, &am_sync);
@ -523,8 +530,6 @@ SyncRepReleaseWaiters(void)
/*
* Calculate the synced Write, Flush and Apply positions among sync standbys.
*
* The caller must hold SyncRepLock.
*
* Return false if the number of sync standbys is less than
* synchronous_standby_names specifies. Otherwise return true and
* store the positions into *writePtr, *flushPtr and *applyPtr.
@ -536,27 +541,41 @@ static bool
SyncRepGetSyncRecPtr(XLogRecPtr *writePtr, XLogRecPtr *flushPtr,
XLogRecPtr *applyPtr, bool *am_sync)
{
List *sync_standbys;
Assert(LWLockHeldByMe(SyncRepLock));
SyncRepStandbyData *sync_standbys;
int num_standbys;
int i;
/* Initialize default results */
*writePtr = InvalidXLogRecPtr;
*flushPtr = InvalidXLogRecPtr;
*applyPtr = InvalidXLogRecPtr;
*am_sync = false;
/* Quick out if not even configured to be synchronous */
if (SyncRepConfig == NULL)
return false;
/* Get standbys that are considered as synchronous at this moment */
sync_standbys = SyncRepGetSyncStandbys(am_sync);
num_standbys = SyncRepGetCandidateStandbys(&sync_standbys);
/* Am I among the candidate sync standbys? */
for (i = 0; i < num_standbys; i++)
{
if (sync_standbys[i].is_me)
{
*am_sync = true;
break;
}
}
/*
* Quick exit if we are not managing a sync standby or there are not
* enough synchronous standbys.
* Nothing more to do if we are not managing a sync standby or there are
* not enough synchronous standbys.
*/
if (!(*am_sync) ||
SyncRepConfig == NULL ||
list_length(sync_standbys) < SyncRepConfig->num_sync)
num_standbys < SyncRepConfig->num_sync)
{
list_free(sync_standbys);
pfree(sync_standbys);
return false;
}
@ -576,15 +595,16 @@ SyncRepGetSyncRecPtr(XLogRecPtr *writePtr, XLogRecPtr *flushPtr,
if (SyncRepConfig->syncrep_method == SYNC_REP_PRIORITY)
{
SyncRepGetOldestSyncRecPtr(writePtr, flushPtr, applyPtr,
sync_standbys);
sync_standbys, num_standbys);
}
else
{
SyncRepGetNthLatestSyncRecPtr(writePtr, flushPtr, applyPtr,
sync_standbys, SyncRepConfig->num_sync);
sync_standbys, num_standbys,
SyncRepConfig->num_sync);
}
list_free(sync_standbys);
pfree(sync_standbys);
return true;
}
@ -592,27 +612,24 @@ SyncRepGetSyncRecPtr(XLogRecPtr *writePtr, XLogRecPtr *flushPtr,
* Calculate the oldest Write, Flush and Apply positions among sync standbys.
*/
static void
SyncRepGetOldestSyncRecPtr(XLogRecPtr *writePtr, XLogRecPtr *flushPtr,
XLogRecPtr *applyPtr, List *sync_standbys)
SyncRepGetOldestSyncRecPtr(XLogRecPtr *writePtr,
XLogRecPtr *flushPtr,
XLogRecPtr *applyPtr,
SyncRepStandbyData *sync_standbys,
int num_standbys)
{
ListCell *cell;
int i;
/*
* Scan through all sync standbys and calculate the oldest Write, Flush
* and Apply positions.
* and Apply positions. We assume *writePtr et al were initialized to
* InvalidXLogRecPtr.
*/
foreach(cell, sync_standbys)
for (i = 0; i < num_standbys; i++)
{
WalSnd *walsnd = &WalSndCtl->walsnds[lfirst_int(cell)];
XLogRecPtr write;
XLogRecPtr flush;
XLogRecPtr apply;
SpinLockAcquire(&walsnd->mutex);
write = walsnd->write;
flush = walsnd->flush;
apply = walsnd->apply;
SpinLockRelease(&walsnd->mutex);
XLogRecPtr write = sync_standbys[i].write;
XLogRecPtr flush = sync_standbys[i].flush;
XLogRecPtr apply = sync_standbys[i].apply;
if (XLogRecPtrIsInvalid(*writePtr) || *writePtr > write)
*writePtr = write;
@ -628,38 +645,36 @@ SyncRepGetOldestSyncRecPtr(XLogRecPtr *writePtr, XLogRecPtr *flushPtr,
* standbys.
*/
static void
SyncRepGetNthLatestSyncRecPtr(XLogRecPtr *writePtr, XLogRecPtr *flushPtr,
XLogRecPtr *applyPtr, List *sync_standbys, uint8 nth)
SyncRepGetNthLatestSyncRecPtr(XLogRecPtr *writePtr,
XLogRecPtr *flushPtr,
XLogRecPtr *applyPtr,
SyncRepStandbyData *sync_standbys,
int num_standbys,
uint8 nth)
{
ListCell *cell;
XLogRecPtr *write_array;
XLogRecPtr *flush_array;
XLogRecPtr *apply_array;
int len;
int i = 0;
int i;
len = list_length(sync_standbys);
write_array = (XLogRecPtr *) palloc(sizeof(XLogRecPtr) * len);
flush_array = (XLogRecPtr *) palloc(sizeof(XLogRecPtr) * len);
apply_array = (XLogRecPtr *) palloc(sizeof(XLogRecPtr) * len);
/* Should have enough candidates, or somebody messed up */
Assert(nth > 0 && nth <= num_standbys);
foreach(cell, sync_standbys)
write_array = (XLogRecPtr *) palloc(sizeof(XLogRecPtr) * num_standbys);
flush_array = (XLogRecPtr *) palloc(sizeof(XLogRecPtr) * num_standbys);
apply_array = (XLogRecPtr *) palloc(sizeof(XLogRecPtr) * num_standbys);
for (i = 0; i < num_standbys; i++)
{
WalSnd *walsnd = &WalSndCtl->walsnds[lfirst_int(cell)];
SpinLockAcquire(&walsnd->mutex);
write_array[i] = walsnd->write;
flush_array[i] = walsnd->flush;
apply_array[i] = walsnd->apply;
SpinLockRelease(&walsnd->mutex);
i++;
write_array[i] = sync_standbys[i].write;
flush_array[i] = sync_standbys[i].flush;
apply_array[i] = sync_standbys[i].apply;
}
/* Sort each array in descending order */
qsort(write_array, len, sizeof(XLogRecPtr), cmp_lsn);
qsort(flush_array, len, sizeof(XLogRecPtr), cmp_lsn);
qsort(apply_array, len, sizeof(XLogRecPtr), cmp_lsn);
qsort(write_array, num_standbys, sizeof(XLogRecPtr), cmp_lsn);
qsort(flush_array, num_standbys, sizeof(XLogRecPtr), cmp_lsn);
qsort(apply_array, num_standbys, sizeof(XLogRecPtr), cmp_lsn);
/* Get Nth latest Write, Flush, Apply positions */
*writePtr = write_array[nth - 1];
@ -689,67 +704,49 @@ cmp_lsn(const void *a, const void *b)
}
/*
* Return the list of sync standbys, or NIL if no sync standby is connected.
* Return data about walsenders that are candidates to be sync standbys.
*
* The caller must hold SyncRepLock.
*
* On return, *am_sync is set to true if this walsender is connecting to
* sync standby. Otherwise it's set to false.
* *standbys is set to a palloc'd array of structs of per-walsender data,
* and the number of valid entries (candidate sync senders) is returned.
* (This might be more or fewer than num_sync; caller must check.)
*/
List *
SyncRepGetSyncStandbys(bool *am_sync)
int
SyncRepGetCandidateStandbys(SyncRepStandbyData **standbys)
{
Assert(LWLockHeldByMe(SyncRepLock));
int i;
int n;
/* Set default result */
if (am_sync != NULL)
*am_sync = false;
/* Create result array */
*standbys = (SyncRepStandbyData *)
palloc(max_wal_senders * sizeof(SyncRepStandbyData));
/* Quick exit if sync replication is not requested */
if (SyncRepConfig == NULL)
return NIL;
return (SyncRepConfig->syncrep_method == SYNC_REP_PRIORITY) ?
SyncRepGetSyncStandbysPriority(am_sync) :
SyncRepGetSyncStandbysQuorum(am_sync);
}
/*
* Return the list of all the candidates for quorum sync standbys,
* or NIL if no such standby is connected.
*
* The caller must hold SyncRepLock. This function must be called only in
* a quorum-based sync replication.
*
* On return, *am_sync is set to true if this walsender is connecting to
* sync standby. Otherwise it's set to false.
*/
static List *
SyncRepGetSyncStandbysQuorum(bool *am_sync)
{
List *result = NIL;
int i;
volatile WalSnd *walsnd; /* Use volatile pointer to prevent code
* rearrangement */
Assert(SyncRepConfig->syncrep_method == SYNC_REP_QUORUM);
return 0;
/* Collect raw data from shared memory */
n = 0;
for (i = 0; i < max_wal_senders; i++)
{
XLogRecPtr flush;
WalSndState state;
int pid;
volatile WalSnd *walsnd; /* Use volatile pointer to prevent code
* rearrangement */
SyncRepStandbyData *stby;
WalSndState state; /* not included in SyncRepStandbyData */
walsnd = &WalSndCtl->walsnds[i];
stby = *standbys + n;
SpinLockAcquire(&walsnd->mutex);
pid = walsnd->pid;
flush = walsnd->flush;
stby->pid = walsnd->pid;
state = walsnd->state;
stby->write = walsnd->write;
stby->flush = walsnd->flush;
stby->apply = walsnd->apply;
stby->sync_standby_priority = walsnd->sync_standby_priority;
SpinLockRelease(&walsnd->mutex);
/* Must be active */
if (pid == 0)
if (stby->pid == 0)
continue;
/* Must be streaming or stopping */
@ -758,200 +755,59 @@ SyncRepGetSyncStandbysQuorum(bool *am_sync)
continue;
/* Must be synchronous */
if (walsnd->sync_standby_priority == 0)
if (stby->sync_standby_priority == 0)
continue;
/* Must have a valid flush position */
if (XLogRecPtrIsInvalid(flush))
if (XLogRecPtrIsInvalid(stby->flush))
continue;
/*
* Consider this standby as a candidate for quorum sync standbys and
* append it to the result.
*/
result = lappend_int(result, i);
if (am_sync != NULL && walsnd == MyWalSnd)
*am_sync = true;
/* OK, it's a candidate */
stby->walsnd_index = i;
stby->is_me = (walsnd == MyWalSnd);
n++;
}
return result;
/*
* In quorum mode, we return all the candidates. In priority mode, if we
* have too many candidates then return only the num_sync ones of highest
* priority.
*/
if (SyncRepConfig->syncrep_method == SYNC_REP_PRIORITY &&
n > SyncRepConfig->num_sync)
{
/* Sort by priority ... */
qsort(*standbys, n, sizeof(SyncRepStandbyData),
standby_priority_comparator);
/* ... then report just the first num_sync ones */
n = SyncRepConfig->num_sync;
}
return n;
}
/*
* Return the list of sync standbys chosen based on their priorities,
* or NIL if no sync standby is connected.
*
* If there are multiple standbys with the same priority,
* the first one found is selected preferentially.
*
* The caller must hold SyncRepLock. This function must be called only in
* a priority-based sync replication.
*
* On return, *am_sync is set to true if this walsender is connecting to
* sync standby. Otherwise it's set to false.
* qsort comparator to sort SyncRepStandbyData entries by priority
*/
static List *
SyncRepGetSyncStandbysPriority(bool *am_sync)
static int
standby_priority_comparator(const void *a, const void *b)
{
List *result = NIL;
List *pending = NIL;
int lowest_priority;
int next_highest_priority;
int this_priority;
int priority;
int i;
bool am_in_pending = false;
volatile WalSnd *walsnd; /* Use volatile pointer to prevent code
* rearrangement */
const SyncRepStandbyData *sa = (const SyncRepStandbyData *) a;
const SyncRepStandbyData *sb = (const SyncRepStandbyData *) b;
Assert(SyncRepConfig->syncrep_method == SYNC_REP_PRIORITY);
lowest_priority = SyncRepConfig->nmembers;
next_highest_priority = lowest_priority + 1;
/* First, sort by increasing priority value */
if (sa->sync_standby_priority != sb->sync_standby_priority)
return sa->sync_standby_priority - sb->sync_standby_priority;
/*
* Find the sync standbys which have the highest priority (i.e, 1). Also
* store all the other potential sync standbys into the pending list, in
* order to scan it later and find other sync standbys from it quickly.
* We might have equal priority values; arbitrarily break ties by position
* in the WALSnd array. (This is utterly bogus, since that is arrival
* order dependent, but there are regression tests that rely on it.)
*/
for (i = 0; i < max_wal_senders; i++)
{
XLogRecPtr flush;
WalSndState state;
int pid;
walsnd = &WalSndCtl->walsnds[i];
SpinLockAcquire(&walsnd->mutex);
pid = walsnd->pid;
flush = walsnd->flush;
state = walsnd->state;
SpinLockRelease(&walsnd->mutex);
/* Must be active */
if (pid == 0)
continue;
/* Must be streaming or stopping */
if (state != WALSNDSTATE_STREAMING &&
state != WALSNDSTATE_STOPPING)
continue;
/* Must be synchronous */
this_priority = walsnd->sync_standby_priority;
if (this_priority == 0)
continue;
/* Must have a valid flush position */
if (XLogRecPtrIsInvalid(flush))
continue;
/*
* If the priority is equal to 1, consider this standby as sync and
* append it to the result. Otherwise append this standby to the
* pending list to check if it's actually sync or not later.
*/
if (this_priority == 1)
{
result = lappend_int(result, i);
if (am_sync != NULL && walsnd == MyWalSnd)
*am_sync = true;
if (list_length(result) == SyncRepConfig->num_sync)
{
list_free(pending);
return result; /* Exit if got enough sync standbys */
}
}
else
{
pending = lappend_int(pending, i);
if (am_sync != NULL && walsnd == MyWalSnd)
am_in_pending = true;
/*
* Track the highest priority among the standbys in the pending
* list, in order to use it as the starting priority for later
* scan of the list. This is useful to find quickly the sync
* standbys from the pending list later because we can skip
* unnecessary scans for the unused priorities.
*/
if (this_priority < next_highest_priority)
next_highest_priority = this_priority;
}
}
/*
* Consider all pending standbys as sync if the number of them plus
* already-found sync ones is lower than the configuration requests.
*/
if (list_length(result) + list_length(pending) <= SyncRepConfig->num_sync)
{
/*
* Set *am_sync to true if this walsender is in the pending list
* because all pending standbys are considered as sync.
*/
if (am_sync != NULL && !(*am_sync))
*am_sync = am_in_pending;
result = list_concat(result, pending);
list_free(pending);
return result;
}
/*
* Find the sync standbys from the pending list.
*/
priority = next_highest_priority;
while (priority <= lowest_priority)
{
ListCell *cell;
next_highest_priority = lowest_priority + 1;
foreach(cell, pending)
{
i = lfirst_int(cell);
walsnd = &WalSndCtl->walsnds[i];
this_priority = walsnd->sync_standby_priority;
if (this_priority == priority)
{
result = lappend_int(result, i);
if (am_sync != NULL && walsnd == MyWalSnd)
*am_sync = true;
/*
* We should always exit here after the scan of pending list
* starts because we know that the list has enough elements to
* reach SyncRepConfig->num_sync.
*/
if (list_length(result) == SyncRepConfig->num_sync)
{
list_free(pending);
return result; /* Exit if got enough sync standbys */
}
/*
* Remove the entry for this sync standby from the list to
* prevent us from looking at the same entry again.
*/
pending = foreach_delete_current(pending, cell);
continue; /* don't adjust next_highest_priority */
}
if (this_priority < next_highest_priority)
next_highest_priority = this_priority;
}
priority = next_highest_priority;
}
/* never reached, but keep compiler quiet */
Assert(false);
return result;
return sa->walsnd_index - sb->walsnd_index;
}
/*
* Check if we are in the list of sync standbys, and if so, determine
* priority sequence. Return priority if set, or zero to indicate that

View File

@ -2375,14 +2375,16 @@ InitWalSenderSlot(void)
* Found a free slot. Reserve it for us.
*/
walsnd->pid = MyProcPid;
walsnd->state = WALSNDSTATE_STARTUP;
walsnd->sentPtr = InvalidXLogRecPtr;
walsnd->needreload = false;
walsnd->write = InvalidXLogRecPtr;
walsnd->flush = InvalidXLogRecPtr;
walsnd->apply = InvalidXLogRecPtr;
walsnd->writeLag = -1;
walsnd->flushLag = -1;
walsnd->applyLag = -1;
walsnd->state = WALSNDSTATE_STARTUP;
walsnd->sync_standby_priority = 0;
walsnd->latch = &MyProc->procLatch;
walsnd->replyTime = 0;
walsnd->spillTxns = 0;
@ -3235,7 +3237,8 @@ pg_stat_get_wal_senders(PG_FUNCTION_ARGS)
Tuplestorestate *tupstore;
MemoryContext per_query_ctx;
MemoryContext oldcontext;
List *sync_standbys;
SyncRepStandbyData *sync_standbys;
int num_standbys;
int i;
/* check to see if caller supports us returning a tuplestore */
@ -3263,11 +3266,10 @@ pg_stat_get_wal_senders(PG_FUNCTION_ARGS)
MemoryContextSwitchTo(oldcontext);
/*
* Get the currently active synchronous standbys.
* Get the currently active synchronous standbys. This could be out of
* date before we're done, but we'll use the data anyway.
*/
LWLockAcquire(SyncRepLock, LW_SHARED);
sync_standbys = SyncRepGetSyncStandbys(NULL);
LWLockRelease(SyncRepLock);
num_standbys = SyncRepGetCandidateStandbys(&sync_standbys);
for (i = 0; i < max_wal_senders; i++)
{
@ -3286,9 +3288,12 @@ pg_stat_get_wal_senders(PG_FUNCTION_ARGS)
int64 spillTxns;
int64 spillCount;
int64 spillBytes;
bool is_sync_standby;
Datum values[PG_STAT_GET_WAL_SENDERS_COLS];
bool nulls[PG_STAT_GET_WAL_SENDERS_COLS];
int j;
/* Collect data from shared memory */
SpinLockAcquire(&walsnd->mutex);
if (walsnd->pid == 0)
{
@ -3311,6 +3316,22 @@ pg_stat_get_wal_senders(PG_FUNCTION_ARGS)
spillBytes = walsnd->spillBytes;
SpinLockRelease(&walsnd->mutex);
/*
* Detect whether walsender is/was considered synchronous. We can
* provide some protection against stale data by checking the PID
* along with walsnd_index.
*/
is_sync_standby = false;
for (j = 0; j < num_standbys; j++)
{
if (sync_standbys[j].walsnd_index == i &&
sync_standbys[j].pid == pid)
{
is_sync_standby = true;
break;
}
}
memset(nulls, 0, sizeof(nulls));
values[0] = Int32GetDatum(pid);
@ -3380,7 +3401,7 @@ pg_stat_get_wal_senders(PG_FUNCTION_ARGS)
*/
if (priority == 0)
values[10] = CStringGetTextDatum("async");
else if (list_member_int(sync_standbys, i))
else if (is_sync_standby)
values[10] = SyncRepConfig->syncrep_method == SYNC_REP_PRIORITY ?
CStringGetTextDatum("sync") : CStringGetTextDatum("quorum");
else

View File

@ -36,6 +36,24 @@
#define SYNC_REP_PRIORITY 0
#define SYNC_REP_QUORUM 1
/*
* SyncRepGetCandidateStandbys returns an array of these structs,
* one per candidate synchronous walsender.
*/
typedef struct SyncRepStandbyData
{
/* Copies of relevant fields from WalSnd shared-memory struct */
pid_t pid;
XLogRecPtr write;
XLogRecPtr flush;
XLogRecPtr apply;
int sync_standby_priority;
/* Index of this walsender in the WalSnd shared-memory array */
int walsnd_index;
/* This flag indicates whether this struct is about our own process */
bool is_me;
} SyncRepStandbyData;
/*
* Struct for the configuration of synchronous replication.
*
@ -74,7 +92,7 @@ extern void SyncRepInitConfig(void);
extern void SyncRepReleaseWaiters(void);
/* called by wal sender and user backend */
extern List *SyncRepGetSyncStandbys(bool *am_sync);
extern int SyncRepGetCandidateStandbys(SyncRepStandbyData **standbys);
/* called by checkpointer */
extern void SyncRepUpdateSyncStandbysDefined(void);

View File

@ -31,8 +31,7 @@ typedef enum WalSndState
/*
* Each walsender has a WalSnd struct in shared memory.
*
* This struct is protected by 'mutex', with two exceptions: one is
* sync_standby_priority as noted below. The other exception is that some
* This struct is protected by its 'mutex' spinlock field, except that some
* members are only written by the walsender process itself, and thus that
* process is free to read those members without holding spinlock. pid and
* needreload always require the spinlock to be held for all accesses.
@ -60,6 +59,12 @@ typedef struct WalSnd
TimeOffset flushLag;
TimeOffset applyLag;
/*
* The priority order of the standby managed by this WALSender, as listed
* in synchronous_standby_names, or 0 if not-listed.
*/
int sync_standby_priority;
/* Protects shared variables shown above. */
slock_t mutex;
@ -69,13 +74,6 @@ typedef struct WalSnd
*/
Latch *latch;
/*
* The priority order of the standby managed by this WALSender, as listed
* in synchronous_standby_names, or 0 if not-listed. Protected by
* SyncRepLock.
*/
int sync_standby_priority;
/*
* Timestamp of the last message received from standby.
*/