Commit Graph

163 Commits

Author SHA1 Message Date
Andres Freund 26669757b6 Handle logical slot conflicts on standby
During WAL replay on the standby, when a conflict with a logical slot is
identified, invalidate such slots. There are two sources of conflicts:
1) Using the information added in 6af1793954, logical slots are invalidated if
   required rows are removed
2) wal_level on the primary server is reduced to below logical

Uses the infrastructure introduced in the prior commit. FIXME: add commit
reference.

Change InvalidatePossiblyObsoleteSlot() to use a recovery conflict to
interrupt use of a slot, if called in the startup process. The new recovery
conflict is added to pg_stat_database_conflicts, as confl_active_logicalslot.

See 6af1793954 for an overall design of logical decoding on a standby.

Bumps catversion for the addition of the pg_stat_database_conflicts column.
Bumps PGSTAT_FILE_FORMAT_ID for the same reason.

Author: "Drouvot, Bertrand" <bertranddrouvot.pg@gmail.com>
Author: Andres Freund <andres@anarazel.de>
Author: Amit Khandekar <amitdkhan.pg@gmail.com> (in an older version)
Reviewed-by: "Drouvot, Bertrand" <bertranddrouvot.pg@gmail.com>
Reviewed-by: Andres Freund <andres@anarazel.de>
Reviewed-by: Robert Haas <robertmhaas@gmail.com>
Reviewed-by: Fabrízio de Royes Mello <fabriziomello@gmail.com>
Reviewed-by: Bharath Rupireddy <bharath.rupireddyforpostgres@gmail.com>
Reviewed-by: Amit Kapila <amit.kapila16@gmail.com>
Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org>
Discussion: https://postgr.es/m/20230407075009.igg7be27ha2htkbt@awork3.anarazel.de
2023-04-08 00:05:44 -07:00
Bruce Momjian c8e1ba736b Update copyright for 2023
Backpatch-through: 11
2023-01-02 15:00:37 -05:00
Peter Geoghegan 1489b1ce72 Standardize rmgrdesc recovery conflict XID output.
Standardize on the name snapshotConflictHorizon for all XID fields from
WAL records that generate recovery conflicts when in hot standby mode.
This supersedes the previous latestRemovedXid naming convention.

The new naming convention places emphasis on how the values are actually
used by REDO routines.  How the values are generated during original
execution (details of which vary by record type) is deemphasized.  Users
of tools like pg_waldump can now grep for snapshotConflictHorizon to see
all potential sources of recovery conflicts in a standardized way,
without necessarily having to consider which specific record types might
be involved.

Also bring a couple of WAL record types that didn't follow any kind of
naming convention into line.  These are heapam's VISIBLE record type and
SP-GiST's VACUUM_REDIRECT record type.  Now every WAL record whose REDO
routine calls ResolveRecoveryConflictWithSnapshot() passes through the
snapshotConflictHorizon field from its WAL record.  This is follow-up
work to the refactoring from commit 9e540599 that made FREEZE_PAGE WAL
records use a standard snapshotConflictHorizon style XID cutoff.

No bump in XLOG_PAGE_MAGIC, since the underlying format of affected WAL
records doesn't change.

Author: Peter Geoghegan <pg@bowt.ie>
Reviewed-By: Andres Freund <andres@anarazel.de>
Discussion: https://postgr.es/m/CAH2-Wzm2CQUmViUq7Opgk=McVREHSOorYaAjR1ZpLYkRN7_dPw@mail.gmail.com
2022-11-17 14:55:08 -08:00
Robert Haas b0a55e4329 Change internal RelFileNode references to RelFileNumber or RelFileLocator.
We have been using the term RelFileNode to refer to either (1) the
integer that is used to name the sequence of files for a certain relation
within the directory set aside for that tablespace/database combination;
or (2) that value plus the OIDs of the tablespace and database; or
occasionally (3) the whole series of files created for a relation
based on those values. Using the same name for more than one thing is
confusing.

Replace RelFileNode with RelFileNumber when we're talking about just the
single number, i.e. (1) from above, and with RelFileLocator when we're
talking about all the things that are needed to locate a relation's files
on disk, i.e. (2) from above. In the places where we refer to (3) as
a relfilenode, instead refer to "relation storage".

Since there is a ton of SQL code in the world that knows about
pg_class.relfilenode, don't change the name of that column, or of other
SQL-facing things that derive their name from it.

On the other hand, do adjust closely-related internal terminology. For
example, the structure member names dbNode and spcNode appear to be
derived from the fact that the structure itself was called RelFileNode,
so change those to dbOid and spcOid. Likewise, various variables with
names like rnode and relnode get renamed appropriately, according to
how they're being used in context.

Hopefully, this is clearer than before. It is also preparation for
future patches that intend to widen the relfilenumber fields from its
current width of 32 bits. Variables that store a relfilenumber are now
declared as type RelFileNumber rather than type Oid; right now, these
are the same, but that can now more easily be changed.

Dilip Kumar, per an idea from me. Reviewed also by Andres Freund.
I fixed some whitespace issues, changed a couple of words in a
comment, and made one other minor correction.

Discussion: http://postgr.es/m/CA+TgmoamOtXbVAQf9hWFzonUo6bhhjS6toZQd7HZ-pmojtAmag@mail.gmail.com
Discussion: http://postgr.es/m/CA+Tgmobp7+7kmi4gkq7Y+4AM9fTvL+O1oQ4-5gFTT+6Ng-dQ=g@mail.gmail.com
Discussion: http://postgr.es/m/CAFiTN-vTe79M8uDH1yprOU64MNFE+R3ODRuA+JWf27JbhY4hJw@mail.gmail.com
2022-07-06 11:39:09 -04:00
Tom Lane bd037dc928 Make XLogRecGetBlockTag() throw error if there's no such block.
All but a few existing callers assume without checking that this
function succeeds.  While it probably will, that's a poor excuse for
not checking.  Let's make it return void and instead throw an error
if it doesn't find the block reference.  Callers that actually need
to handle the no-such-block case must now use the underlying function
XLogRecGetBlockTagExtended.

In addition to being a bit less error-prone, this should also serve
to suppress some Coverity complaints about XLogRecGetBlockRefInfo.

While at it, clean up some inconsistency about use of the
XLogRecHasBlockRef macro: make XLogRecGetBlockTagExtended use
that instead of open-coding the same condition, and avoid calling
XLogRecHasBlockRef twice in relevant code paths.  (That is,
calling XLogRecHasBlockRef followed by XLogRecGetBlockTag is now
deprecated: use XLogRecGetBlockTagExtended instead.)

Patch HEAD only; this doesn't seem to have enough value to consider
a back-branch API break.

Discussion: https://postgr.es/m/425039.1649701221@sss.pgh.pa.us
2022-04-11 17:43:53 -04:00
Michael Paquier d16773cdc8 Add macros in hash and btree AMs to get the special area of their pages
This makes the code more consistent with SpGiST, GiST and GIN, that
already use this style, and the idea is to make easier the introduction
of more sanity checks for each of these AM-specific macros.  BRIN uses a
different set of macros to get a page's type and flags, so it has no
need for something similar.

Author: Matthias van de Meent
Discussion: https://postgr.es/m/CAEze2WjE3+tGO9Fs9+iZMU+z6mMZKo54W1Zt98WKqbEUHbHOBg@mail.gmail.com
2022-04-01 13:24:50 +09:00
Bruce Momjian 27b77ecf9f Update copyright for 2022
Backpatch-through: 10
2022-01-07 19:04:57 -05:00
Heikki Linnakangas 4c64b51dc5 Remove dead assignment to local variable.
This should have been removed in commit 7e30c186da, which split the loop
into two. Only the first loop uses the 'from' variable; updating it in
the second loop is bogus. It was never read after the first loop, so this
was harmless and surely optimized away by the compiler, but let's be tidy.

Backpatch to all supported versions.

Author: Ranier Vilela
Discussion: https://www.postgresql.org/message-id/CAEudQAoWq%2BAL3BnELHu7gms2GN07k-np6yLbukGaxJ1vY-zeiQ%40mail.gmail.com
2021-07-12 11:13:33 +03:00
Tom Lane def5b065ff Initial pgindent and pgperltidy run for v14.
Also "make reformat-dat-files".

The only change worthy of note is that pgindent messed up the formatting
of launcher.c's struct LogicalRepWorkerId, which led me to notice that
that struct wasn't used at all anymore, so I just took it out.
2021-05-12 13:14:10 -04:00
Peter Geoghegan 9f3665fbfc Don't consider newly inserted tuples in nbtree VACUUM.
Remove the entire idea of "stale stats" within nbtree VACUUM (stop
caring about stats involving the number of inserted tuples).  Also
remove the vacuum_cleanup_index_scale_factor GUC/param on the master
branch (though just disable them on postgres 13).

The vacuum_cleanup_index_scale_factor/stats interface made the nbtree AM
partially responsible for deciding when pg_class.reltuples stats needed
to be updated.  This seems contrary to the spirit of the index AM API,
though -- it is not actually necessary for an index AM's bulk delete and
cleanup callbacks to provide accurate stats when it happens to be
inconvenient.  The core code owns that.  (Index AMs have the authority
to perform or not perform certain kinds of deferred cleanup based on
their own considerations, such as page deletion and recycling, but that
has little to do with pg_class.reltuples/num_index_tuples.)

This issue was fairly harmless until the introduction of the
autovacuum_vacuum_insert_threshold feature by commit b07642db, which had
an undesirable interaction with the vacuum_cleanup_index_scale_factor
mechanism: it made insert-driven autovacuums perform full index scans,
even though there is no real benefit to doing so.  This has been tied to
a regression with an append-only insert benchmark [1].

Also have remaining cases that perform a full scan of an index during a
cleanup-only nbtree VACUUM indicate that the final tuple count is only
an estimate.  This prevents vacuumlazy.c from setting the index's
pg_class.reltuples in those cases (it will now only update pg_class when
vacuumlazy.c had TIDs for nbtree to bulk delete).  This arguably fixes
an oversight in deduplication-related bugfix commit 48e12913.

[1] https://smalldatum.blogspot.com/2021/01/insert-benchmark-postgres-is-still.html

Author: Peter Geoghegan <pg@bowt.ie>
Reviewed-By: Masahiko Sawada <sawada.mshk@gmail.com>
Discussion: https://postgr.es/m/CAD21AoA4WHthN5uU6+WScZ7+J_RcEjmcuH94qcoUPuB42ShXzg@mail.gmail.com
Backpatch: 13-, where autovacuum_vacuum_insert_threshold was added.
2021-03-10 16:27:01 -08:00
Peter Geoghegan 5b2f2af3d9 nbtree page deletion: Add leaftopparent assertion.
Add documenting assertion.  This makes it easier to follow how we
maintain the top parent link in target subtree's half-dead/leaf level
page.
2021-03-02 14:06:07 -08:00
Peter Geoghegan e5d8a99903 Use full 64-bit XIDs in deleted nbtree pages.
Otherwise we risk "leaking" deleted pages by making them non-recyclable
indefinitely.  Commit 6655a729 did the same thing for deleted pages in
GiST indexes.  That work was used as a starting point here.

Stop storing an XID indicating the oldest bpto.xact across all deleted
though unrecycled pages in nbtree metapages.  There is no longer any
reason to care about that condition/the oldest XID.  It only ever made
sense when wraparound was something _bt_vacuum_needs_cleanup() had to
consider.

The btm_oldest_btpo_xact metapage field has been repurposed and renamed.
It is now btm_last_cleanup_num_delpages, which is used to remember how
many non-recycled deleted pages remain from the last VACUUM (in practice
its value is usually the precise number of pages that were _newly
deleted_ during the specific VACUUM operation that last set the field).

The general idea behind storing btm_last_cleanup_num_delpages is to use
it to give _some_ consideration to non-recycled deleted pages inside
_bt_vacuum_needs_cleanup() -- though never too much.  We only really
need to avoid leaving a truly excessive number of deleted pages in an
unrecycled state forever.  We only do this to cover certain narrow cases
where no other factor makes VACUUM do a full scan, and yet the index
continues to grow (and so actually misses out on recycling existing
deleted pages).

These metapage changes result in a clear user-visible benefit: We no
longer trigger full index scans during VACUUM operations solely due to
the presence of only 1 or 2 known deleted (though unrecycled) blocks
from a very large index.  All that matters now is keeping the costs and
benefits in balance over time.

Fix an issue that has been around since commit 857f9c36, which added the
"skip full scan of index" mechanism (i.e. the _bt_vacuum_needs_cleanup()
logic).  The accuracy of btm_last_cleanup_num_heap_tuples accidentally
hinged upon _when_ the source value gets stored.  We now always store
btm_last_cleanup_num_heap_tuples in btvacuumcleanup().  This fixes the
issue because IndexVacuumInfo.num_heap_tuples (the source field) is
expected to accurately indicate the state of the table _after_ the
VACUUM completes inside btvacuumcleanup().

A backpatchable fix cannot easily be extracted from this commit.  A
targeted fix for the issue will follow in a later commit, though that
won't happen today.

I (pgeoghegan) have chosen to remove any mention of deleted pages in the
documentation of the vacuum_cleanup_index_scale_factor GUC/param, since
the presence of deleted (though unrecycled) pages is no longer of much
concern to users.  The vacuum_cleanup_index_scale_factor description in
the docs now seems rather unclear in any case, and it should probably be
rewritten in the near future.  Perhaps some passing mention of page
deletion will be added back at the same time.

Bump XLOG_PAGE_MAGIC due to nbtree WAL records using full XIDs now.

Author: Peter Geoghegan <pg@bowt.ie>
Reviewed-By: Masahiko Sawada <sawada.mshk@gmail.com>
Discussion: https://postgr.es/m/CAH2-WznpdHvujGUwYZ8sihX=d5u-tRYhi-F4wnV2uN2zHpMUXw@mail.gmail.com
2021-02-24 18:41:34 -08:00
Peter Geoghegan d168b66682 Enhance nbtree index tuple deletion.
Teach nbtree and heapam to cooperate in order to eagerly remove
duplicate tuples representing dead MVCC versions.  This is "bottom-up
deletion".  Each bottom-up deletion pass is triggered lazily in response
to a flood of versions on an nbtree leaf page.  This usually involves a
"logically unchanged index" hint (these are produced by the executor
mechanism added by commit 9dc718bd).

The immediate goal of bottom-up index deletion is to avoid "unnecessary"
page splits caused entirely by version duplicates.  It naturally has an
even more useful effect, though: it acts as a backstop against
accumulating an excessive number of index tuple versions for any given
_logical row_.  Bottom-up index deletion complements what we might now
call "top-down index deletion": index vacuuming performed by VACUUM.
Bottom-up index deletion responds to the immediate local needs of
queries, while leaving it up to autovacuum to perform infrequent clean
sweeps of the index.  The overall effect is to avoid certain
pathological performance issues related to "version churn" from UPDATEs.

The previous tableam interface used by index AMs to perform tuple
deletion (the table_compute_xid_horizon_for_tuples() function) has been
replaced with a new interface that supports certain new requirements.
Many (perhaps all) of the capabilities added to nbtree by this commit
could also be extended to other index AMs.  That is left as work for a
later commit.

Extend deletion of LP_DEAD-marked index tuples in nbtree by adding logic
to consider extra index tuples (that are not LP_DEAD-marked) for
deletion in passing.  This increases the number of index tuples deleted
significantly in many cases.  The LP_DEAD deletion process (which is now
called "simple deletion" to clearly distinguish it from bottom-up
deletion) won't usually need to visit any extra table blocks to check
these extra tuples.  We have to visit the same table blocks anyway to
generate a latestRemovedXid value (at least in the common case where the
index deletion operation's WAL record needs such a value).

Testing has shown that the "extra tuples" simple deletion enhancement
increases the number of index tuples deleted with almost any workload
that has LP_DEAD bits set in leaf pages.  That is, it almost never fails
to delete at least a few extra index tuples.  It helps most of all in
cases that happen to naturally have a lot of delete-safe tuples.  It's
not uncommon for an individual deletion operation to end up deleting an
order of magnitude more index tuples compared to the old naive approach
(e.g., custom instrumentation of the patch shows that this happens
fairly often when the regression tests are run).

Add a further enhancement that augments simple deletion and bottom-up
deletion in indexes that make use of deduplication: Teach nbtree's
_bt_delitems_delete() function to support granular TID deletion in
posting list tuples.  It is now possible to delete individual TIDs from
posting list tuples provided the TIDs have a tableam block number of a
table block that gets visited as part of the deletion process (visiting
the table block can be triggered directly or indirectly).  Setting the
LP_DEAD bit of a posting list tuple is still an all-or-nothing thing,
but that matters much less now that deletion only needs to start out
with the right _general_ idea about which index tuples are deletable.

Bump XLOG_PAGE_MAGIC because xl_btree_delete changed.

No bump in BTREE_VERSION, since there are no changes to the on-disk
representation of nbtree indexes.  Indexes built on PostgreSQL 12 or
PostgreSQL 13 will automatically benefit from bottom-up index deletion
(i.e. no reindexing required) following a pg_upgrade.  The enhancement
to simple deletion is available with all B-Tree indexes following a
pg_upgrade, no matter what PostgreSQL version the user upgrades from.

Author: Peter Geoghegan <pg@bowt.ie>
Reviewed-By: Heikki Linnakangas <hlinnaka@iki.fi>
Reviewed-By: Victor Yegorov <vyegorov@gmail.com>
Discussion: https://postgr.es/m/CAH2-Wzm+maE3apHB8NOtmM=p-DO65j2V5GzAWCOEEuy3JZgb2g@mail.gmail.com
2021-01-13 09:21:32 -08:00
Bruce Momjian ca3b37487b Update copyright for 2021
Backpatch-through: 9.5
2021-01-02 13:06:25 -05:00
Peter Geoghegan cf2acaf4dc Deprecate nbtree's BTP_HAS_GARBAGE flag.
Streamline handling of the various strategies that we have to avoid a
page split in nbtinsert.c.  When it looks like a leaf page is about to
overflow, we now perform deleting LP_DEAD items and deduplication in one
central place.  This greatly simplifies _bt_findinsertloc().

This has an independently useful consequence: nbtree no longer relies on
the BTP_HAS_GARBAGE page level flag/hint for anything important.  We
still set and unset the flag in the same way as before, but it's no
longer treated as a gating condition when considering if we should check
for already-set LP_DEAD bits.  This happens at the point where the page
looks like it might have to be split anyway, so simply checking the
LP_DEAD bits in passing is practically free.  This avoids missing
LP_DEAD bits just because the page-level hint is unset, which is
probably reasonably common (e.g. it happens when VACUUM unsets the
page-level flag without actually removing index tuples whose LP_DEAD-bit
was set recently, after the VACUUM operation began but before it reached
the leaf page in question).

Note that this isn't a big behavioral change compared to PostgreSQL 13.
We were already checking for set LP_DEAD bits regardless of whether the
BTP_HAS_GARBAGE page level flag was set before we considered doing a
deduplication pass.  This commit only goes slightly further by doing the
same check for all indexes, even indexes where deduplication won't be
performed.

We don't completely remove the BTP_HAS_GARBAGE flag.  We still rely on
it as a gating condition with pg_upgrade'd indexes from before B-tree
version 4/PostgreSQL 12.  That makes sense because we sometimes have to
make a choice among pages full of duplicates when inserting a tuple with
pre version 4 indexes.  It probably still pays to avoid accessing the
line pointer array of a page there, since it won't yet be clear whether
we'll insert on to the page in question at all, let alone split it as a
result.

Author: Peter Geoghegan <pg@bowt.ie>
Reviewed-By: Victor Yegorov <vyegorov@gmail.com>
Discussion: https://postgr.es/m/CAH2-Wz%3DYpc1PDdk8OVJDChGJBjT06%3DA0Mbv9HyTLCsOknGcUFg%40mail.gmail.com
2020-11-17 09:45:56 -08:00
Peter Geoghegan efc5dcfd8a Fix wal_consistency_checking nbtree bug.
wal_consistency_checking indicated an inconsistency in certain cases
involving nbtree page deletion.  The underlying issue is that there was
a minor difference between the page image produced after a REDO routine
ran and the corresponding page image following original execution.

This harmless inconsistency has been around forever.  We more or less
expect total consistency among even deleted nbtree pages these days,
though, so this won't do anymore.

To fix, tweak the REDO routine to match original execution.

Oversight in commit f47b5e13.
2020-11-05 15:01:40 -08:00
Andres Freund dc7420c2c9 snapshot scalability: Don't compute global horizons while building snapshots.
To make GetSnapshotData() more scalable, it cannot not look at at each proc's
xmin: While snapshot contents do not need to change whenever a read-only
transaction commits or a snapshot is released, a proc's xmin is modified in
those cases. The frequency of xmin modifications leads to, particularly on
higher core count systems, many cache misses inside GetSnapshotData(), despite
the data underlying a snapshot not changing. That is the most
significant source of GetSnapshotData() scaling poorly on larger systems.

Without accessing xmins, GetSnapshotData() cannot calculate accurate horizons /
thresholds as it has so far. But we don't really have to: The horizons don't
actually change that much between GetSnapshotData() calls. Nor are the horizons
actually used every time a snapshot is built.

The trick this commit introduces is to delay computation of accurate horizons
until there use and using horizon boundaries to determine whether accurate
horizons need to be computed.

The use of RecentGlobal[Data]Xmin to decide whether a row version could be
removed has been replaces with new GlobalVisTest* functions.  These use two
thresholds to determine whether a row can be pruned:
1) definitely_needed, indicating that rows deleted by XIDs >= definitely_needed
   are definitely still visible.
2) maybe_needed, indicating that rows deleted by XIDs < maybe_needed can
   definitely be removed
GetSnapshotData() updates definitely_needed to be the xmin of the computed
snapshot.

When testing whether a row can be removed (with GlobalVisTestIsRemovableXid())
and the tested XID falls in between the two (i.e. XID >= maybe_needed && XID <
definitely_needed) the boundaries can be recomputed to be more accurate. As it
is not cheap to compute accurate boundaries, we limit the number of times that
happens in short succession.  As the boundaries used by
GlobalVisTestIsRemovableXid() are never reset (with maybe_needed updated by
GetSnapshotData()), it is likely that further test can benefit from an earlier
computation of accurate horizons.

To avoid regressing performance when old_snapshot_threshold is set (as that
requires an accurate horizon to be computed), heap_page_prune_opt() doesn't
unconditionally call TransactionIdLimitedForOldSnapshots() anymore. Both the
computation of the limited horizon, and the triggering of errors (with
SetOldSnapshotThresholdTimestamp()) is now only done when necessary to remove
tuples.

This commit just removes the accesses to PGXACT->xmin from
GetSnapshotData(), but other members of PGXACT residing in the same
cache line are accessed. Therefore this in itself does not result in a
significant improvement. Subsequent commits will take advantage of the
fact that GetSnapshotData() now does not need to access xmins anymore.

Note: This contains a workaround in heap_page_prune_opt() to keep the
snapshot_too_old tests working. While that workaround is ugly, the tests
currently are not meaningful, and it seems best to address them separately.

Author: Andres Freund <andres@anarazel.de>
Reviewed-By: Robert Haas <robertmhaas@gmail.com>
Reviewed-By: Thomas Munro <thomas.munro@gmail.com>
Reviewed-By: David Rowley <dgrowleyml@gmail.com>
Discussion: https://postgr.es/m/20200301083601.ews6hz5dduc3w2se@alap3.anarazel.de
2020-08-12 16:03:49 -07:00
Peter Geoghegan 0a7d771f0f Make nbtree split REDO locking match original execution.
Make the nbtree page split REDO routine consistent with original
execution in its approach to acquiring and releasing buffer locks (at
least for pages on the tree level of the page being split).  This brings
btree_xlog_split() in line with btree_xlog_unlink_page(), which was
taught to couple buffer locks by commit 9a9db08a.

Note that the precise order in which we both acquire and release sibling
buffer locks in btree_xlog_split() now matches original execution
exactly (the precise order in which the locks are released probably
doesn't matter much, but we might as well be consistent about it).

The rule for nbtree REDO routines from here on is that same-level locks
should be acquired in an order that's consistent with original
execution.  It's not practical to have a similar rule for cross-level
page locks, since for the most part original execution holds those locks
for a period that spans multiple atomic actions/WAL records.  It's also
not necessary, because clearly the cross-level lock coupling is only
truly needed during original execution because of the presence of
concurrent inserters.

This is not a bug fix (unlike the similar aforementioned commit, commit
9a9db08a).  The immediate reason to tighten things up in this area is to
enable an upcoming enhancement to contrib/amcheck that allows it to
verify that sibling links are in agreement with only an AccessShareLock
(this check produced false positives when run on a replica server on
account of the inconsistency fixed by this commit).  But that's not the
only reason to be stricter here.

It is generally useful to make locking on replicas be as close to what
happens during original execution as practically possible.  It makes it
less likely that hard to catch bugs will slip in in the future.  The
previous state of affairs seems to be a holdover from before the
introduction of Hot Standby, when buffer lock acquisitions during
recovery were totally unnecessary.  See also: commit 3bbf668d, which
tightened things up in this area a few years after the introduction of
Hot Standby.

Discussion: https://postgr.es/m/CAH2-Wz=465cJj11YXD9RKH8z=nhQa2dofOZ_23h67EXUGOJ00Q@mail.gmail.com
2020-08-07 15:27:56 -07:00
Peter Geoghegan 3df92bbd1d Rename nbtree split REDO routine variables.
Make the nbtree page split REDO routine variable names consistent with
_bt_split() (which handles the original execution of page splits).
These names make the code easier to follow by making the distinction
between the original page and the left half of the split clear.  (The
left half of the split page is a temp page that REDO creates to replace
the origpage contents.)

Also reduce the elevel used when adding a new high key to the temp page
from PANIC to ERROR to be consistent.  We already only raise an ERROR
when data item PageAddItem() temp page calls fail.
2020-08-07 09:53:27 -07:00
Alexander Korotkov f47b5e1395 Remove btree page items after page unlink
Currently, page unlink leaves remaining items "as is", but replay of
corresponding WAL-record re-initializes page leaving it with no items.
For the sake of consistency, this commit makes primary delete all the items
during page unlink as well.

Thanks to this change, we now don't mask contents of deleted btree page for
WAL consistency checking.

Discussion: https://postgr.es/m/CAPpHfdt_OTyQpXaPJcWzV2N-LNeNJseNB-K_A66qG%3DL518VTFw%40mail.gmail.com
Author: Alexander Korotkov
Reviewed-by: Peter Geoghegan
2020-08-05 02:16:13 +03:00
Peter Geoghegan 9a9db08ae4 Fix replica backward scan race condition.
It was possible for the logic used by backward scans (which must reason
about concurrent page splits/deletions in its own peculiar way) to
become confused when running on a replica.  Concurrent replay of a WAL
record that describes the second phase of page deletion could cause
_bt_walk_left() to get confused.  btree_xlog_unlink_page() simply failed
to adhere to the same locking protocol that we use on the primary, which
is obviously wrong once you consider these two disparate functions
together.  This bug is present in all stable branches.

More concretely, the problem was that nothing stopped _bt_walk_left()
from observing inconsistencies between the deletion's target page and
its original sibling pages when running on a replica.  This is true even
though the second phase of page deletion is supposed to work as a single
atomic action.  Queries running on replicas raised "could not find left
sibling of block %u in index %s" can't-happen errors when they went back
to their scan's "original" page and observed that the page has not been
marked deleted (even though it really was concurrently deleted).

There is no evidence that this actually happened in the real world.  The
issue came to light during unrelated feature development work.  Note
that _bt_walk_left() is the only code that cares about the difference
between a half-dead page and a fully deleted page that isn't also
exclusively used by nbtree VACUUM (unless you include contrib/amcheck
code).  It seems very likely that backward scans are the only thing that
could become confused by the inconsistency.  Even amcheck's complex
bt_right_page_check_scankey() dance was unaffected.

To fix, teach btree_xlog_unlink_page() to lock the left sibling, target,
and right sibling pages in that order before releasing any locks (just
like _bt_unlink_halfdead_page()).  This is the simplest possible
approach.  There doesn't seem to be any opportunity to be more clever
about lock acquisition in the REDO routine, and it hardly seems worth
the trouble in any case.

This fix might enable contrib/amcheck verification of leaf page sibling
links with only an AccessShareLock on the relation.  An amcheck patch
from Andrey Borodin was rejected back in January because it clashed with
btree_xlog_unlink_page()'s lax approach to locking pages.  It now seems
likely that the real problem was with btree_xlog_unlink_page(), not the
patch.

This is a low severity, low likelihood bug, so no backpatch.

Author: Michail Nikolaev
Diagnosed-By: Michail Nikolaev
Discussion: https://postgr.es/m/CANtu0ohkR-evAWbpzJu54V8eCOtqjJyYp3PQ_SGoBTRGXWhWRw@mail.gmail.com
2020-08-03 15:54:38 -07:00
Andres Freund 5e7bbb5286 code: replace 'master' with 'primary' where appropriate.
Also changed "in the primary" to "on the primary", and added a few
"the" before "primary".

Author: Andres Freund
Reviewed-By: David Steele
Discussion: https://postgr.es/m/20200615182235.x7lch5n6kcjq4aue@alap3.anarazel.de
2020-07-08 12:57:23 -07:00
Peter Geoghegan be14f884d5 Fix deduplication "single value" strategy bug.
It was possible for deduplication's single value strategy to mistakenly
believe that a very small duplicate tuple counts as one of the six large
tuples that it aims to leave behind after the page finally splits.  This
could cause slightly suboptimal space utilization with very low
cardinality indexes, though only under fairly narrow conditions.

To fix, be particular about what kind of tuple counts as a
maxpostingsize-capped tuple.  This avoids confusion in the event of a
small tuple that gets "wedged" between two large tuples, where all
tuples on the page are duplicates of the same value.

Discussion: https://postgr.es/m/CAH2-Wz=Y+sgSFc-O3LpiZX-POx2bC+okec2KafERHuzdVa7-rQ@mail.gmail.com
Backpatch: 13-, where deduplication was introduced (by commit 0d861bbb)
2020-06-19 08:57:24 -07:00
Peter Geoghegan 624686abcf Adjust "root of to-be-deleted subtree" function.
Restructure the function that locates the root of the to-be-deleted
subtree during nbtree page deletion.  Handle the conditions that make
page deletion unsafe in a slightly more uniform way, and acknowledge the
fact that the behavior with incomplete splits on internal pages is
different (as pointed out in the nbtree README as of commit 35bc0ec7).
Also invent new terminology that avoids ambiguity around which pages are
about to be deleted.  Consistently use the term "to-be-deleted subtree",
not the ambiguous term "branch".

We were calling the subtree parent page the "top parent page", but that
was quite misleading.  The top parent page usually refers to a page
unlinked from its siblings and marked deleted (during the second stage
of page deletion).  There was one kind of top parent page that we merely
removed a downlink from, and another kind of top parent page that we
actually marked deleted.  Eliminate the ambiguity by inventing a new
term ("subtree parent page") that refers to the former kind of page
only.
2020-05-11 11:01:07 -07:00
Peter Geoghegan bc3087b626 Harmonize nbtree page split point code.
An nbtree split point can be thought of as a point between two adjoining
tuples from an imaginary version of the page being split that includes
the incoming/new item (in addition to the items that really are on the
page).  These adjoining tuples are called the lastleft and firstright
tuples.

The variables that represent split points contained a field called
firstright, which is an offset number of the first data item from the
original page that goes on the new right page.  The corresponding tuple
from origpage was usually the same thing as the actual firstright tuple,
but not always: the firstright tuple is sometimes the new/incoming item
instead.  This situation seems unnecessarily confusing.

Make things clearer by renaming the origpage offset returned by
_bt_findsplitloc() to "firstrightoff".  We now have a firstright tuple
and a firstrightoff offset number which are comparable to the
newitem/lastleft tuples and the newitemoff/lastleftoff offset numbers
respectively.  Also make sure that we are consistent about how we
describe nbtree page split point state.

Push the responsibility for dealing with pg_upgrade'd !heapkeyspace
indexes down to lower level code, relieving _bt_split() from dealing
with it directly.  This means that we always have a palloc'd left page
high key on the leaf level, no matter what.  This enables simplifying
some of the code (and code comments) within _bt_split().

Finally, restructure the page split code to make it clearer why suffix
truncation (which only takes place during leaf page splits) is
completely different to the first data item truncation that takes place
during internal page splits.  Tuples are marked as having fewer
attributes stored in both cases, and the firstright tuple is truncated
in both cases, so it's easy to imagine somebody missing the distinction.
2020-04-13 16:39:55 -07:00
Peter Geoghegan 0d861bbb70 Add deduplication to nbtree.
Deduplication reduces the storage overhead of duplicates in indexes that
use the standard nbtree index access method.  The deduplication process
is applied lazily, after the point where opportunistic deletion of
LP_DEAD-marked index tuples occurs.  Deduplication is only applied at
the point where a leaf page split would otherwise be required.  New
posting list tuples are formed by merging together existing duplicate
tuples.  The physical representation of the items on an nbtree leaf page
is made more space efficient by deduplication, but the logical contents
of the page are not changed.  Even unique indexes make use of
deduplication as a way of controlling bloat from duplicates whose TIDs
point to different versions of the same logical table row.

The lazy approach taken by nbtree has significant advantages over a GIN
style eager approach.  Most individual inserts of index tuples have
exactly the same overhead as before.  The extra overhead of
deduplication is amortized across insertions, just like the overhead of
page splits.  The key space of indexes works in the same way as it has
since commit dd299df8 (the commit that made heap TID a tiebreaker
column).

Testing has shown that nbtree deduplication can generally make indexes
with about 10 or 15 tuples for each distinct key value about 2.5X - 4X
smaller, even with single column integer indexes (e.g., an index on a
referencing column that accompanies a foreign key).  The final size of
single column nbtree indexes comes close to the final size of a similar
contrib/btree_gin index, at least in cases where GIN's posting list
compression isn't very effective.  This can significantly improve
transaction throughput, and significantly reduce the cost of vacuuming
indexes.

A new index storage parameter (deduplicate_items) controls the use of
deduplication.  The default setting is 'on', so all new B-Tree indexes
automatically use deduplication where possible.  This decision will be
reviewed at the end of the Postgres 13 beta period.

There is a regression of approximately 2% of transaction throughput with
synthetic workloads that consist of append-only inserts into a table
with several non-unique indexes, where all indexes have few or no
repeated values.  The underlying issue is that cycles are wasted on
unsuccessful attempts at deduplicating items in non-unique indexes.
There doesn't seem to be a way around it short of disabling
deduplication entirely.  Note that deduplication of items in unique
indexes is fairly well targeted in general, which avoids the problem
there (we can use a special heuristic to trigger deduplication passes in
unique indexes, since we're specifically targeting "version bloat").

Bump XLOG_PAGE_MAGIC because xl_btree_vacuum changed.

No bump in BTREE_VERSION, since the representation of posting list
tuples works in a way that's backwards compatible with version 4 indexes
(i.e. indexes built on PostgreSQL 12).  However, users must still
REINDEX a pg_upgrade'd index to use deduplication, regardless of the
Postgres version they've upgraded from.  This is the only way to set the
new nbtree metapage flag indicating that deduplication is generally
safe.

Author: Anastasia Lubennikova, Peter Geoghegan
Reviewed-By: Peter Geoghegan, Heikki Linnakangas
Discussion:
    https://postgr.es/m/55E4051B.7020209@postgrespro.ru
    https://postgr.es/m/4ab6e2db-bcee-f4cf-0916-3a06e6ccbb55@postgrespro.ru
2020-02-26 13:05:30 -08:00
Peter Geoghegan d2e5e20e57 Add xl_btree_delete optimization.
Commit 558a9165e0 taught _bt_delitems_delete() to produce its own XID
horizon on the primary.  Standbys no longer needed to generate their own
latestRemovedXid, since they could just use the explicitly logged value
from the primary instead.  The deleted offset numbers array from the
xl_btree_delete WAL record was no longer used by the REDO routine for
anything other than deleting the items.

This enables a minor optimization:  We now treat the array as buffer
state, not generic WAL data, following _bt_delitems_vacuum()'s example.
This should be a minor win, since it allows us to avoid including the
deleted items array in cases where XLogInsert() stores the whole buffer
anyway.  The primary goal here is to make the code more maintainable,
though.  Removing inessential differences between the two functions
highlights the fundamental differences that remain.

Also change xl_btree_delete to use uint32 for the size of the array of
item offsets being deleted.  This brings xl_btree_delete closer to
xl_btree_vacuum.  Furthermore, it seems like a good idea to use an
explicit-width integer type (the field was previously an "int").

Bump XLOG_PAGE_MAGIC because xl_btree_delete changed.

Discussion: https://postgr.es/m/CAH2-Wzkz4TjmezzfAbaV1zYrh=fr0bCpzuJTvBe5iUQ3aUPsCQ@mail.gmail.com
2020-01-03 12:18:13 -08:00
Peter Geoghegan 0c41c83d8f Clear up btree_xlog_split() alignment comment.
Adjust a comment that describes how alignment of the new left page high
key works in btree_xlog_split(), the nbtree page split REDO routine.
The wording used before commit 2c03216d83 is much clearer, so go back
to that.
2020-01-02 18:30:25 -08:00
Peter Geoghegan c5f3b53b0e Update btree_xlog_delete() comments.
Commit fe97c61c updated LP_DEAD item deletion comments, but missed a
minor discrepancy on the REDO side.  Fix it now.

In passing, don't talk about the btree_xlog_vacuum() behavior within
btree_xlog_delete().  The reliance on XLOG_HEAP2_CLEANUP_INFO records
for recovery conflicts is already discussed within btvacuumpage() and
mentioned again in passing above btree_xlog_vacuum(), which seems
sufficient.
2020-01-01 11:32:07 -08:00
Bruce Momjian 7559d8ebfa Update copyrights for 2020
Backpatch-through: update all files in master, backpatch legal files through 9.4
2020-01-01 12:21:45 -05:00
Peter Geoghegan 9f83468b35 Remove unneeded "pin scan" nbtree VACUUM code.
The REDO routine for nbtree's xl_btree_vacuum record type hasn't
performed a "pin scan" since commit 3e4b7d87 went in, so clearly there
isn't any point in VACUUM WAL-logging information that won't actually be
used.  Finish off the work of commit 3e4b7d87 (and the closely related
preceding commit 687f2cd7) by removing the code that generates this
unused information.  Also remove the REDO routine code disabled by
commit 3e4b7d87.

Replace the unneeded lastBlockVacuumed field in xl_btree_vacuum with a
new "ndeleted" field.  The new field isn't actually needed right now,
since we could continue to infer the array length from the overall
record length.  However, an upcoming patch to add deduplication to
nbtree needs to add an "items updated" field to xl_btree_vacuum, so we
might as well start being explicit about the number of items now.
(Besides, it doesn't seem like a good idea to leave the xl_btree_vacuum
struct without any fields; the C standard says that that's undefined.)

nbtree VACUUM no longer forces writing a WAL record for the last block
in the index.  Writing out a WAL record with no items for the final
block was supposed to force processing of a lastBlockVacuumed field by a
pin scan.

Bump XLOG_PAGE_MAGIC because xl_btree_vacuum changed.

Discussion: https://postgr.es/m/CAH2-WzmY_mT7UnTzFB5LBQDBkKpdV5UxP3B5bLb7uP%3D%3D6UQJRQ%40mail.gmail.com
2019-12-19 11:35:55 -08:00
Bruce Momjian b93e9a5c94 revert: Remove meaningless assignments in nbtree code
Reverts commit 05684c8255.

Reported-by: Tom Lane

Discussion: https://postgr.es/m/404.1576770942@sss.pgh.pa.us

Backpatch-through: master
2019-12-19 11:19:10 -05:00
Bruce Momjian 05684c8255 Remove meaningless assignments in nbtree code
Reported-by: Ranier Vilela

Discussion: https://postgr.es/m/MN2PR18MB2927BB876D12A70FDBE8F35AE3450@MN2PR18MB2927.namprd18.prod.outlook.com

Backpatch-through: master
2019-12-19 10:33:48 -05:00
Peter Geoghegan fcf3b6917b Rename nbtree tuple macros.
Rename two function-style macros, removing the word "inner".  This makes
things more consistent.
2019-12-16 17:49:45 -08:00
Amit Kapila 14aec03502 Make the order of the header file includes consistent in backend modules.
Similar to commits 7e735035f2 and dddf4cdc33, this commit makes the order
of header file inclusion consistent for backend modules.

In the passing, removed a couple of duplicate inclusions.

Author: Vignesh C
Reviewed-by: Kuntal Ghosh and Amit Kapila
Discussion: https://postgr.es/m/CALDaNm2Sznv8RR6Ex-iJO6xAdsxgWhCoETkaYX=+9DW3q0QCfA@mail.gmail.com
2019-11-12 08:30:16 +05:30
Peter Geoghegan d004147eb3 Fix nbtree metapage cache upgrade bug.
Commit 857f9c36cd, which taught nbtree VACUUM to avoid unnecessary
index scans, bumped the nbtree version number from 2 to 3, while adding
the ability for nbtree indexes to be upgraded on-the-fly.  Various
assertions that assumed that an nbtree index was always on version 2 had
to be changed to accept any supported version (version 2 or 3 on
Postgres 11).

However, a few assertions were missed in the initial commit, all of
which were in code paths that cache a local copy of the metapage
metadata, where the index had been expected to be on the current version
(no longer version 2) as a generic sanity check.  Rather than simply
update the assertions, follow-up commit 0a64b45152 intentionally made
the metapage caching code update the per-backend cached metadata version
without changing the on-disk version at the same time.  This could even
happen when the planner needed to determine the height of a B-Tree for
costing purposes.  The assertions only fail on Postgres v12 when
upgrading from v10, because they were adjusted to use the authoritative
shared memory metapage by v12's commit dd299df8.

To fix, remove the cache-only upgrade mechanism entirely, and update the
assertions themselves to accept any supported version (go back to using
the cached version in v12).  The fix is almost a full revert of commit
0a64b45152 on the v11 branch.

VACUUM only considers the authoritative metapage, and never bothers with
a locally cached version, whereas everywhere else isn't interested in
the metapage fields that were added by commit 857f9c36cd.  It seems
unlikely that this bug has affected any user on v11.

Reported-By: Christoph Berg
Bug: #15896
Discussion: https://postgr.es/m/15896-5b25e260fdb0b081%40postgresql.org
Backpatch: 11-, where VACUUM was taught to avoid unnecessary index scans.
2019-07-18 13:22:56 -07:00
Michael Paquier c74d49d41c Fix many typos and inconsistencies
Author: Alexander Lakhin
Discussion: https://postgr.es/m/af27d1b3-a128-9d62-46e0-88f424397f44@gmail.com
2019-07-01 10:00:23 +09:00
Peter Geoghegan d95e36dc38 Remove obsolete nbtree split REDO routine comment.
Commit dd299df818, which added suffix truncation to nbtree, simplified
the WAL record format used by page splits.  It became necessary to
explicitly WAL-log the new high key for the left half of a split in all
cases, which relieved the REDO routine from having to reconstruct a new
high key for the left page by copying the first item from the right
page.  Remove a comment that referred to the previous practice.
2019-05-08 12:47:20 -07:00
Andres Freund 4bb50236eb tableam: Formatting and other minor cleanups.
The superflous heapam_xlog.h includes were reported by Peter
Geoghegan.
2019-03-31 18:16:53 -07:00
Andres Freund 558a9165e0 Compute XID horizon for page level index vacuum on primary.
Previously the xid horizon was only computed during WAL replay. That
had two major problems:
1) It relied on knowing what the table pointed to looks like. That was
   easy enough before the introducing of tableam (we knew it had to be
   heap, although some trickery around logging the heap relfilenodes
   was required). But to properly handle table AMs we need
   per-database catalog access to look up the AM handler, which
   recovery doesn't allow.
2) Not knowing the xid horizon also makes it hard to support logical
   decoding on standbys. When on a catalog table, we need to be able
   to conflict with slots that have an xid horizon that's too old. But
   computing the horizon by visiting the heap only works once
   consistency is reached, but we always need to be able to detect
   conflicts.

There's also a secondary problem, in that the current method performs
redundant work on every standby. But that's counterbalanced by
potentially computing the value when not necessary (either because
there's no standby, or because there's no connected backends).

Solve 1) and 2) by moving computation of the xid horizon to the
primary and by involving tableam in the computation of the horizon.

To address the potentially increased overhead, increase the efficiency
of the xid horizon computation for heap by sorting the tids, and
eliminating redundant buffer accesses. When prefetching is available,
additionally perform prefetching of buffers.  As this is more of a
maintenance task, rather than something routinely done in every read
only query, we add an arbitrary 10 to the effective concurrency -
thereby using IO concurrency, when not globally enabled.  That's
possibly not the perfect formula, but seems good enough for now.

Bumps WAL format, as latestRemovedXid is now part of the records, and
the heap's relfilenode isn't anymore.

Author: Andres Freund, Amit Khandekar, Robert Haas
Reviewed-By: Robert Haas
Discussion:
    https://postgr.es/m/20181212204154.nsxf3gzqv3gesl32@alap3.anarazel.de
    https://postgr.es/m/20181214014235.dal5ogljs3bmlq44@alap3.anarazel.de
    https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-03-26 16:52:54 -07:00
Peter Geoghegan 3d0dcc5c7f Fix spurious compiler warning in nbtxlog.c.
Cleanup from commit dd299df8.

Per complaint from Tom Lane.
2019-03-20 14:04:35 -07:00
Peter Geoghegan dd299df818 Make heap TID a tiebreaker nbtree index column.
Make nbtree treat all index tuples as having a heap TID attribute.
Index searches can distinguish duplicates by heap TID, since heap TID is
always guaranteed to be unique.  This general approach has numerous
benefits for performance, and is prerequisite to teaching VACUUM to
perform "retail index tuple deletion".

Naively adding a new attribute to every pivot tuple has unacceptable
overhead (it bloats internal pages), so suffix truncation of pivot
tuples is added.  This will usually truncate away the "extra" heap TID
attribute from pivot tuples during a leaf page split, and may also
truncate away additional user attributes.  This can increase fan-out,
especially in a multi-column index.  Truncation can only occur at the
attribute granularity, which isn't particularly effective, but works
well enough for now.  A future patch may add support for truncating
"within" text attributes by generating truncated key values using new
opclass infrastructure.

Only new indexes (BTREE_VERSION 4 indexes) will have insertions that
treat heap TID as a tiebreaker attribute, or will have pivot tuples
undergo suffix truncation during a leaf page split (on-disk
compatibility with versions 2 and 3 is preserved).  Upgrades to version
4 cannot be performed on-the-fly, unlike upgrades from version 2 to
version 3.  contrib/amcheck continues to work with version 2 and 3
indexes, while also enforcing stricter invariants when verifying version
4 indexes.  These stricter invariants are the same invariants described
by "3.1.12 Sequencing" from the Lehman and Yao paper.

A later patch will enhance the logic used by nbtree to pick a split
point.  This patch is likely to negatively impact performance without
smarter choices around the precise point to split leaf pages at.  Making
these two mostly-distinct sets of enhancements into distinct commits
seems like it might clarify their design, even though neither commit is
particularly useful on its own.

The maximum allowed size of new tuples is reduced by an amount equal to
the space required to store an extra MAXALIGN()'d TID in a new high key
during leaf page splits.  The user-facing definition of the "1/3 of a
page" restriction is already imprecise, and so does not need to be
revised.  However, there should be a compatibility note in the v12
release notes.

Author: Peter Geoghegan
Reviewed-By: Heikki Linnakangas, Alexander Korotkov
Discussion: https://postgr.es/m/CAH2-WzkVb0Kom=R+88fDFb=JSxZMFvbHVC6Mn9LJ2n=X=kS-Uw@mail.gmail.com
2019-03-20 10:04:01 -07:00
Bruce Momjian 97c39498e5 Update copyright for 2019
Backpatch-through: certain files through 9.4
2019-01-02 12:44:25 -05:00
Teodor Sigaev 6db4b49986 Fix wrong validation of top-parent pointer during page deletion in Btree.
After introducing usage of t_tid of inner or page high key for storing
number of attributes of tuple, validation of tuple's ItemPointer with
ItemPointerIsValid becomes incorrect, it's need to validate only blocknumber of
ItemPointer. Missing this causes a incorrect page deletion, fix that. Test is
added.

BTW, current contrib/amcheck doesn't fail on index corrupted by this way.

Also introduce BTreeTupleGetTopParent/BTreeTupleSetTopParent macroses to improve
code readability and to avoid possible confusion with page high key: high key
is used to store top-parent link for branch to remove.

Bug found by Michael Paquier, but bug doesn't exist in previous versions because
t_tid was set to P_HIKEY.

Author: Teodor Sigaev
Reviewer: Peter Geoghegan
Discussion: https://www.postgresql.org/message-id/flat/20180419052436.GA16000%40paquier.xyz
2018-04-23 15:55:10 +03:00
Teodor Sigaev 075aade436 Adjust INCLUDE index truncation comments and code.
Add several assertions that ensure that we're dealing with a pivot tuple
without non-key attributes where that's expected.  Also, remove the
assertion within _bt_isequal(), restoring the v10 function signature.  A
similar check will be performed for the page highkey within
_bt_moveright() in most cases.  Also avoid dropping all objects within
regression tests, to increase pg_dump test coverage for INCLUDE indexes.

Rather than using infrastructure that's generally intended to be used
with reference counted heap tuple descriptors during truncation, use the
same function that was introduced to store flat TupleDescs in shared
memory (we use a temp palloc'd buffer).  This isn't strictly necessary,
but seems more future-proof than the old approach.  It also lets us
avoid including rel.h within indextuple.c, which was arguably a
modularity violation.  Also, we now call index_deform_tuple() with the
truncated TupleDesc, not the source TupleDesc, since that's more robust,
and saves a few cycles.

In passing, fix a memory leak by pfree'ing truncated pivot tuple memory
during CREATE INDEX.  Also pfree during a page split, just to be
consistent.

Refactor _bt_check_natts() to be more readable.

Author: Peter Geoghegan with some editorization by me
Reviewed by: Alexander Korotkov, Teodor Sigaev
Discussion: https://www.postgresql.org/message-id/CAH2-Wz%3DkCWuXeMrBCopC-tFs3FbiVxQNjjgNKdG2sHxZ5k2y3w%40mail.gmail.com
2018-04-19 08:45:58 +03:00
Teodor Sigaev 8224de4f42 Indexes with INCLUDE columns and their support in B-tree
This patch introduces INCLUDE clause to index definition.  This clause
specifies a list of columns which will be included as a non-key part in
the index.  The INCLUDE columns exist solely to allow more queries to
benefit from index-only scans.  Also, such columns don't need to have
appropriate operator classes.  Expressions are not supported as INCLUDE
columns since they cannot be used in index-only scans.

Index access methods supporting INCLUDE are indicated by amcaninclude flag
in IndexAmRoutine.  For now, only B-tree indexes support INCLUDE clause.

In B-tree indexes INCLUDE columns are truncated from pivot index tuples
(tuples located in non-leaf pages and high keys).  Therefore, B-tree indexes
now might have variable number of attributes.  This patch also provides
generic facility to support that: pivot tuples contain number of their
attributes in t_tid.ip_posid.  Free 13th bit of t_info is used for indicating
that.  This facility will simplify further support of index suffix truncation.
The changes of above are backward-compatible, pg_upgrade doesn't need special
handling of B-tree indexes for that.

Bump catalog version

Author: Anastasia Lubennikova with contribition by Alexander Korotkov and me
Reviewed by: Peter Geoghegan, Tomas Vondra, Antonin Houska, Jeff Janes,
			 David Rowley, Alexander Korotkov
Discussion: https://www.postgresql.org/message-id/flat/56168952.4010101@postgrespro.ru
2018-04-07 23:00:39 +03:00
Teodor Sigaev 857f9c36cd Skip full index scan during cleanup of B-tree indexes when possible
Vacuum of index consists from two stages: multiple (zero of more) ambulkdelete
calls and one amvacuumcleanup call. When workload on particular table
is append-only, then autovacuum isn't intended to touch this table. However,
user may run vacuum manually in order to fill visibility map and get benefits
of index-only scans. Then ambulkdelete wouldn't be called for indexes
of such table (because no heap tuples were deleted), only amvacuumcleanup would
be called In this case, amvacuumcleanup would perform full index scan for
two objectives: put recyclable pages into free space map and update index
statistics.

This patch allows btvacuumclanup to skip full index scan when two conditions
are satisfied: no pages are going to be put into free space map and index
statistics isn't stalled. In order to check first condition, we store
oldest btpo_xact in the meta-page. When it's precedes RecentGlobalXmin, then
there are some recyclable pages. In order to check second condition we store
number of heap tuples observed during previous full index scan by cleanup.
If fraction of newly inserted tuples is less than
vacuum_cleanup_index_scale_factor, then statistics isn't considered to be
stalled. vacuum_cleanup_index_scale_factor can be defined as both reloption and GUC (default).

This patch bumps B-tree meta-page version. Upgrade of meta-page is performed
"on the fly": during VACUUM meta-page is rewritten with new version. No special
handling in pg_upgrade is required.

Author: Masahiko Sawada, Alexander Korotkov
Review by: Peter Geoghegan, Kyotaro Horiguchi, Alexander Korotkov, Yura Sokolov
Discussion: https://www.postgresql.org/message-id/flat/CAD21AoAX+d2oD_nrd9O2YkpzHaFr=uQeGr9s1rKC3O4ENc568g@mail.gmail.com
2018-04-04 19:29:00 +03:00
Tom Lane d79e7e92bf Remove redundant IndexTupleDSize macro.
Use IndexTupleSize everywhere, instead.  Also, remove IndexTupleSize's
internal typecast, as that's not really needed and might mask coding
errors.  Change some pointer variable datatypes in the call sites
to compensate for that and make it clearer what we're assuming.

Ildar Musin, Robert Haas, Stephen Frost

Discussion: https://postgr.es/m/0274288e-9e88-13b6-c61c-7b36928bf221@postgrespro.ru
2018-02-28 19:25:54 -05:00
Bruce Momjian 9d4649ca49 Update copyright for 2018
Backpatch-through: certain files through 9.3
2018-01-02 23:30:12 -05:00
Tom Lane 4c11d2c559 Flag index metapages as standard-format in xlog.c calls.
btree, hash, and bloom indexes all set up their metapages in standard
format (that is, with pd_lower and pd_upper correctly delimiting the
unused area); but they mostly didn't inform the xlog routines of this.
When calling log_newpage[_buffer], this is bad because it loses the
opportunity to compress unused data out of the WAL record.  When
calling XLogRegisterBuffer, it's not such a performance problem because
all of these call sites also use REGBUF_WILL_INIT, preventing an FPI
image from being written.  But it's still a good idea to provide the
flag when relevant, because that aids WAL consistency checking.

This completes the project of getting all the in-core index AMs to
handle their metapage WAL operations similarly.

Amit Kapila, reviewed by Michael Paquier

Discussion: https://postgr.es/m/0d273805-0e9e-ec1a-cb84-d4da400b8f85@lab.ntt.co.jp
2017-11-03 16:31:32 -04:00