Commit Graph

33 Commits

Author SHA1 Message Date
Michael Paquier d8c3106bb6 Add back SQLValueFunction for SQL keywords
This is equivalent to a revert of f193883 and fb32748, with the addition
that the declaration of the SQLValueFunction node needs to gain a couple
of node_attr for query jumbling.  The performance impact of removing the
function call inlining is proving to be too huge for some workloads
where these are used.  A worst-case test case of involving only simple
SELECT queries with a SQL keyword is proving to lead to a reduction of
10% in TPS via pgbench and prepared queries on a high-end machine.

None of the tests I ran back for this set of changes saw such a huge
gap, but Alexander Lakhin and Andres Freund have found that this can be
noticeable.  Keeping the older performance would mean to do more
inlining in the executor when using COERCE_SQL_SYNTAX for a function
expression, similarly to what SQLValueFunction does.  This requires more
redesign work and there is little time until 16beta1 is released, so for
now reverting the change is the best way forward, bringing back the
previous performance.

Bump catalog version.

Reported-by: Alexander Lakhin
Discussion: https://postgr.es/m/b32bed1b-0746-9b20-1472-4bdc9ca66d52@gmail.com
2023-05-17 10:19:17 +09:00
Tom Lane fce3b26e97 Rename ExecAggTransReparent, and improve its documentation.
The name of this function suggests that it ought to reparent R/W
expanded objects to be children of the persistent aggcontext, instead
of copying them.  In fact it does no such thing, and if you try to
make it do so you will see multiple regression failures.  Rename it
to the less-misleading ExecAggCopyTransValue, and add commentary
about why that attractive-sounding optimization won't work.  Also
adjust comments at call sites, some of which were describing logic
that has since been moved into ExecAggCopyTransValue.

Discussion: https://postgr.es/m/3004282.1681930251@sss.pgh.pa.us
2023-04-24 13:01:33 -04:00
Alvaro Herrera 6ee30209a6
SQL/JSON: support the IS JSON predicate
This patch introduces the SQL standard IS JSON predicate. It operates
on text and bytea values representing JSON, as well as on the json and
jsonb types. Each test has IS and IS NOT variants and supports a WITH
UNIQUE KEYS flag. The tests are:

IS JSON [VALUE]
IS JSON ARRAY
IS JSON OBJECT
IS JSON SCALAR

These should be self-explanatory.

The WITH UNIQUE KEYS flag makes these return false when duplicate keys
exist in any object within the value, not necessarily directly contained
in the outermost object.

Author: Nikita Glukhov <n.gluhov@postgrespro.ru>
Author: Teodor Sigaev <teodor@sigaev.ru>
Author: Oleg Bartunov <obartunov@gmail.com>
Author: Alexander Korotkov <aekorotkov@gmail.com>
Author: Amit Langote <amitlangote09@gmail.com>
Author: Andrew Dunstan <andrew@dunslane.net>

Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.

Discussion: https://postgr.es/m/CAF4Au4w2x-5LTnN_bxky-mq4=WOqsGsxSpENCzHRAzSnEd8+WQ@mail.gmail.com
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
Discussion: https://postgr.es/m/20220616233130.rparivafipt6doj3@alap3.anarazel.de
Discussion: https://postgr.es/m/abd9b83b-aa66-f230-3d6d-734817f0995d%40postgresql.org
2023-03-31 22:34:04 +02:00
Alvaro Herrera 7081ac46ac
SQL/JSON: add standard JSON constructor functions
This commit introduces the SQL/JSON standard-conforming constructors for
JSON types:

JSON_ARRAY()
JSON_ARRAYAGG()
JSON_OBJECT()
JSON_OBJECTAGG()

Most of the functionality was already present in PostgreSQL-specific
functions, but these include some new functionality such as the ability
to skip or include NULL values, and to allow duplicate keys or throw
error when they are found, as well as the standard specified syntax to
specify output type and format.

Author: Nikita Glukhov <n.gluhov@postgrespro.ru>
Author: Teodor Sigaev <teodor@sigaev.ru>
Author: Oleg Bartunov <obartunov@gmail.com>
Author: Alexander Korotkov <aekorotkov@gmail.com>
Author: Amit Langote <amitlangote09@gmail.com>

Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.

Discussion: https://postgr.es/m/CAF4Au4w2x-5LTnN_bxky-mq4=WOqsGsxSpENCzHRAzSnEd8+WQ@mail.gmail.com
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
Discussion: https://postgr.es/m/20220616233130.rparivafipt6doj3@alap3.anarazel.de
Discussion: https://postgr.es/m/abd9b83b-aa66-f230-3d6d-734817f0995d%40postgresql.org
2023-03-29 12:11:36 +02:00
Bruce Momjian c8e1ba736b Update copyright for 2023
Backpatch-through: 11
2023-01-02 15:00:37 -05:00
Michael Paquier f193883fc9 Replace SQLValueFunction by COERCE_SQL_SYNTAX
This switch impacts 9 patterns related to a SQL-mandated special syntax
for function calls:
- LOCALTIME [ ( typmod ) ]
- LOCALTIMESTAMP [ ( typmod ) ]
- CURRENT_TIME [ ( typmod ) ]
- CURRENT_TIMESTAMP [ ( typmod ) ]
- CURRENT_DATE

Five new entries are added to pg_proc to compensate the removal of
SQLValueFunction to provide backward-compatibility and making this
change transparent for the end-user (for example for the attribute
generated when a keyword is specified in a SELECT or in a FROM clause
without an alias, or when specifying something else than an Iconst to
the parser).

The parser included a set of checks coming from the files in charge of
holding the C functions used for the SQLValueFunction calls (as of
transformSQLValueFunction()), which are now moved within each function's
execution path, so this reduces the dependencies between the execution
and the parsing steps.  As of this change, all the SQL keywords use the
same paths for their work, relying only on COERCE_SQL_SYNTAX.  Like
fb32748, no performance difference has been noticed, while the perf
profiles get reduced with ExecEvalSQLValueFunction() gone.

Bump catalog version.

Reviewed-by: Corey Huinker, Ted Yu
Discussion: https://postgr.es/m/YzaG3MoryCguUOym@paquier.xyz
2022-11-21 18:31:59 +09:00
Andrew Dunstan 2f2b18bd3f Revert SQL/JSON features
The reverts the following and makes some associated cleanups:

    commit f79b803dc: Common SQL/JSON clauses
    commit f4fb45d15: SQL/JSON constructors
    commit 5f0adec25: Make STRING an unreserved_keyword.
    commit 33a377608: IS JSON predicate
    commit 1a36bc9db: SQL/JSON query functions
    commit 606948b05: SQL JSON functions
    commit 49082c2cc: RETURNING clause for JSON() and JSON_SCALAR()
    commit 4e34747c8: JSON_TABLE
    commit fadb48b00: PLAN clauses for JSON_TABLE
    commit 2ef6f11b0: Reduce running time of jsonb_sqljson test
    commit 14d3f24fa: Further improve jsonb_sqljson parallel test
    commit a6baa4bad: Documentation for SQL/JSON features
    commit b46bcf7a4: Improve readability of SQL/JSON documentation.
    commit 112fdb352: Fix finalization for json_objectagg and friends
    commit fcdb35c32: Fix transformJsonBehavior
    commit 4cd8717af: Improve a couple of sql/json error messages
    commit f7a605f63: Small cleanups in SQL/JSON code
    commit 9c3d25e17: Fix JSON_OBJECTAGG uniquefying bug
    commit a79153b7a: Claim SQL standard compliance for SQL/JSON features
    commit a1e7616d6: Rework SQL/JSON documentation
    commit 8d9f9634e: Fix errors in copyfuncs/equalfuncs support for JSON node types.
    commit 3c633f32b: Only allow returning string types or bytea from json_serialize
    commit 67b26703b: expression eval: Fix EEOP_JSON_CONSTRUCTOR and EEOP_JSONEXPR size.

The release notes are also adjusted.

Backpatch to release 15.

Discussion: https://postgr.es/m/40d2c882-bcac-19a9-754d-4299e1d87ac7@postgresql.org
2022-09-01 17:07:14 -04:00
David Rowley 1349d2790b Improve performance of ORDER BY / DISTINCT aggregates
ORDER BY / DISTINCT aggreagtes have, since implemented in Postgres, been
executed by always performing a sort in nodeAgg.c to sort the tuples in
the current group into the correct order before calling the transition
function on the sorted tuples.  This was not great as often there might be
an index that could have provided pre-sorted input and allowed the
transition functions to be called as the rows come in, rather than having
to store them in a tuplestore in order to sort them once all the tuples
for the group have arrived.

Here we change the planner so it requests a path with a sort order which
supports the most amount of ORDER BY / DISTINCT aggregate functions and
add new code to the executor to allow it to support the processing of
ORDER BY / DISTINCT aggregates where the tuples are already sorted in the
correct order.

Since there can be many ORDER BY / DISTINCT aggregates in any given query
level, it's very possible that we can't find an order that suits all of
these aggregates.  The sort order that the planner chooses is simply the
one that suits the most aggregate functions.  We take the most strictly
sorted variation of each order and see how many aggregate functions can
use that, then we try again with the order of the remaining aggregates to
see if another order would suit more aggregate functions.  For example:

SELECT agg(a ORDER BY a),agg2(a ORDER BY a,b) ...

would request the sort order to be {a, b} because {a} is a subset of the
sort order of {a,b}, but;

SELECT agg(a ORDER BY a),agg2(a ORDER BY c) ...

would just pick a plan ordered by {a} (we give precedence to aggregates
which are earlier in the targetlist).

SELECT agg(a ORDER BY a),agg2(a ORDER BY b),agg3(a ORDER BY b) ...

would choose to order by {b} since two aggregates suit that vs just one
that requires input ordered by {a}.

Author: David Rowley
Reviewed-by: Ronan Dunklau, James Coleman, Ranier Vilela, Richard Guo, Tom Lane
Discussion: https://postgr.es/m/CAApHDvpHzfo92%3DR4W0%2BxVua3BUYCKMckWAmo-2t_KiXN-wYH%3Dw%40mail.gmail.com
2022-08-02 23:11:45 +12:00
Andrew Dunstan 1a36bc9dba SQL/JSON query functions
This introduces the SQL/JSON functions for querying JSON data using
jsonpath expressions. The functions are:

JSON_EXISTS()
JSON_QUERY()
JSON_VALUE()

All of these functions only operate on jsonb. The workaround for now is
to cast the argument to jsonb.

JSON_EXISTS() tests if the jsonpath expression applied to the jsonb
value yields any values. JSON_VALUE() must return a single value, and an
error occurs if it tries to return multiple values. JSON_QUERY() must
return a json object or array, and there are various WRAPPER options for
handling scalar or multi-value results. Both these functions have
options for handling EMPTY and ERROR conditions.

Nikita Glukhov

Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.

Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
2022-03-29 16:57:13 -04:00
Andrew Dunstan 33a377608f IS JSON predicate
This patch intrdocuces the SQL standard IS JSON predicate. It operates
on text and bytea values representing JSON as well as on the json and
jsonb types. Each test has an IS and IS NOT variant. The tests are:

IS JSON [VALUE]
IS JSON ARRAY
IS JSON OBJECT
IS JSON SCALAR
IS JSON  WITH | WITHOUT UNIQUE KEYS

These are mostly self-explanatory, but note that IS JSON WITHOUT UNIQUE
KEYS is true whenever IS JSON is true, and IS JSON WITH UNIQUE KEYS is
true whenever IS JSON is true except it IS JSON OBJECT is true and there
are duplicate keys (which is never the case when applied to jsonb values).

Nikita Glukhov

Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.

Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
2022-03-28 15:37:08 -04:00
Andrew Dunstan f4fb45d15c SQL/JSON constructors
This patch introduces the SQL/JSON standard constructors for JSON:

JSON()
JSON_ARRAY()
JSON_ARRAYAGG()
JSON_OBJECT()
JSON_OBJECTAGG()

For the most part these functions provide facilities that mimic
existing json/jsonb functions. However, they also offer some useful
additional functionality. In addition to text input, the JSON() function
accepts bytea input, which it will decode and constuct a json value from.
The other functions provide useful options for handling duplicate keys
and null values.

This series of patches will be followed by a consolidated documentation
patch.

Nikita Glukhov

Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.

Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
2022-03-27 17:03:34 -04:00
Bruce Momjian 27b77ecf9f Update copyright for 2022
Backpatch-through: 10
2022-01-07 19:04:57 -05:00
David Rowley 50e17ad281 Speedup ScalarArrayOpExpr evaluation
ScalarArrayOpExprs with "useOr=true" and a set of Consts on the righthand
side have traditionally been evaluated by using a linear search over the
array.  When these arrays contain large numbers of elements then this
linear search could become a significant part of execution time.

Here we add a new method of evaluating ScalarArrayOpExpr expressions to
allow them to be evaluated by first building a hash table containing each
element, then on subsequent evaluations, we just probe that hash table to
determine if there is a match.

The planner is in charge of determining when this optimization is possible
and it enables it by setting hashfuncid in the ScalarArrayOpExpr.  The
executor will only perform the hash table evaluation when the hashfuncid
is set.

This means that not all cases are optimized. For example CHECK constraints
containing an IN clause won't go through the planner, so won't get the
hashfuncid set.  We could maybe do something about that at some later
date.  The reason we're not doing it now is from fear that we may slow
down cases where the expression is evaluated only once.  Those cases can
be common, for example, a single row INSERT to a table with a CHECK
constraint containing an IN clause.

In the planner, we enable this when there are suitable hash functions for
the ScalarArrayOpExpr's operator and only when there is at least
MIN_ARRAY_SIZE_FOR_HASHED_SAOP elements in the array.  The threshold is
currently set to 9.

Author: James Coleman, David Rowley
Reviewed-by: David Rowley, Tomas Vondra, Heikki Linnakangas
Discussion: https://postgr.es/m/CAAaqYe8x62+=wn0zvNKCj55tPpg-JBHzhZFFc6ANovdqFw7-dA@mail.gmail.com
2021-04-08 23:51:22 +12:00
Bruce Momjian ca3b37487b Update copyright for 2021
Backpatch-through: 9.5
2021-01-02 13:06:25 -05:00
Tom Lane c7aba7c14e Support subscripting of arbitrary types, not only arrays.
This patch generalizes the subscripting infrastructure so that any
data type can be subscripted, if it provides a handler function to
define what that means.  Traditional variable-length (varlena) arrays
all use array_subscript_handler(), while the existing fixed-length
types that support subscripting use raw_array_subscript_handler().
It's expected that other types that want to use subscripting notation
will define their own handlers.  (This patch provides no such new
features, though; it only lays the foundation for them.)

To do this, move the parser's semantic processing of subscripts
(including coercion to whatever data type is required) into a
method callback supplied by the handler.  On the execution side,
replace the ExecEvalSubscriptingRef* layer of functions with direct
calls to callback-supplied execution routines.  (Thus, essentially
no new run-time overhead should be caused by this patch.  Indeed,
there is room to remove some overhead by supplying specialized
execution routines.  This patch does a little bit in that line,
but more could be done.)

Additional work is required here and there to remove formerly
hard-wired assumptions about the result type, collation, etc
of a SubscriptingRef expression node; and to remove assumptions
that the subscript values must be integers.

One useful side-effect of this is that we now have a less squishy
mechanism for identifying whether a data type is a "true" array:
instead of wiring in weird rules about typlen, we can look to see
if pg_type.typsubscript == F_ARRAY_SUBSCRIPT_HANDLER.  For this
to be bulletproof, we have to forbid user-defined types from using
that handler directly; but there seems no good reason for them to
do so.

This patch also removes assumptions that the number of subscripts
is limited to MAXDIM (6), or indeed has any hard-wired limit.
That limit still applies to types handled by array_subscript_handler
or raw_array_subscript_handler, but to discourage other dependencies
on this constant, I've moved it from c.h to utils/array.h.

Dmitry Dolgov, reviewed at various times by Tom Lane, Arthur Zakirov,
Peter Eisentraut, Pavel Stehule

Discussion: https://postgr.es/m/CA+q6zcVDuGBv=M0FqBYX8DPebS3F_0KQ6OVFobGJPM507_SZ_w@mail.gmail.com
Discussion: https://postgr.es/m/CA+q6zcVovR+XY4mfk-7oNk-rF91gH0PebnNfuUjuuDsyHjOcVA@mail.gmail.com
2020-12-09 12:40:37 -05:00
Andres Freund df99ddc70b jit: Reference function pointer types via llvmjit_types.c.
It is error prone (see 5da871bfa1) and verbose to manually create function
types. Add a helper that can reference a function pointer type via
llvmjit_types.c and and convert existing instances of manual creation.

Author: Andres Freund <andres@anarazel.de>
Reviewed-By: Tom Lane <tgl@sss.pgh.pa.us>
Discussion: https://postgr.es/m/20201207212142.wz5tnbk2jsaqzogb@alap3.anarazel.de
2020-12-08 16:55:20 -08:00
Tom Lane 41efb83408 Move resolution of AlternativeSubPlan choices to the planner.
When commit bd3daddaf introduced AlternativeSubPlans, I had some
ambitions towards allowing the choice of subplan to change during
execution.  That has not happened, or even been thought about, in the
ensuing twelve years; so it seems like a failed experiment.  So let's
rip that out and resolve the choice of subplan at the end of planning
(in setrefs.c) rather than during executor startup.  This has a number
of positive benefits:

* Removal of a few hundred lines of executor code, since
AlternativeSubPlans need no longer be supported there.

* Removal of executor-startup overhead (particularly, initialization
of subplans that won't be used).

* Removal of incidental costs of having a larger plan tree, such as
tree-scanning and copying costs in the plancache; not to mention
setrefs.c's own costs of processing the discarded subplans.

* EXPLAIN no longer has to print a weird (and undocumented)
representation of an AlternativeSubPlan choice; it sees only the
subplan actually used.  This should mean less confusion for users.

* Since setrefs.c knows which subexpression of a plan node it's
working on at any instant, it's possible to adjust the estimated
number of executions of the subplan based on that.  For example,
we should usually estimate more executions of a qual expression
than a targetlist expression.  The implementation used here is
pretty simplistic, because we don't want to expend a lot of cycles
on the issue; but it's better than ignoring the point entirely,
as the executor had to.

That last point might possibly result in shifting the choice
between hashed and non-hashed EXISTS subplans in a few cases,
but in general this patch isn't meant to change planner choices.
Since we're doing the resolution so late, it's really impossible
to change any plan choices outside the AlternativeSubPlan itself.

Patch by me; thanks to David Rowley for review.

Discussion: https://postgr.es/m/1992952.1592785225@sss.pgh.pa.us
2020-09-27 12:51:28 -04:00
Andres Freund b059d2f456 jit: Reference expression step functions via llvmjit_types.
The main benefit of doing so is that this allows llvm to ensure that
types match - previously that'd only be detected by a crash within the
called function. There were a number of cases where we passed a
superfluous parameter...

To avoid needing to add all the functions to llvmjit.{c,h}, instead
get them from the llvm module for llvmjit_types.c. Also use that for
the functions from llvmjit_types already in llvmjit.h.

Author: Soumyadeep Chakraborty and Andres Freund
Discussion: https://postgr.es/m/CADwEdooww3wZv-sXSfatzFRwMuwa186LyTwkBfwEW6NjtooBPA@mail.gmail.com
2020-02-06 22:29:14 -08:00
Bruce Momjian 7559d8ebfa Update copyrights for 2020
Backpatch-through: update all files in master, backpatch legal files through 9.4
2020-01-01 12:21:45 -05:00
Alvaro Herrera 558d77f20e Renaming for new subscripting mechanism
Over at patch https://commitfest.postgresql.org/21/1062/ Dmitry wants to
introduce a more generic subscription mechanism, which allows
subscripting not only arrays but also other object types such as JSONB.
That functionality is introduced in a largish invasive patch, out of
which this internal renaming patch was extracted.

Author: Dmitry Dolgov
Reviewed-by: Tom Lane, Arthur Zakirov
Discussion: https://postgr.es/m/CA+q6zcUK4EqPAu7XRRO5CCjMwhz5zvg+rfWuLzVoxp_5sKS6=w@mail.gmail.com
2019-02-01 12:50:32 -03:00
Andres Freund a9c35cf85c Change function call information to be variable length.
Before this change FunctionCallInfoData, the struct arguments etc for
V1 function calls are stored in, always had space for
FUNC_MAX_ARGS/100 arguments, storing datums and their nullness in two
arrays.  For nearly every function call 100 arguments is far more than
needed, therefore wasting memory. Arg and argnull being two separate
arrays also guarantees that to access a single argument, two
cachelines have to be touched.

Change the layout so there's a single variable-length array with pairs
of value / isnull. That drastically reduces memory consumption for
most function calls (on x86-64 a two argument function now uses
64bytes, previously 936 bytes), and makes it very likely that argument
value and its nullness are on the same cacheline.

Arguments are stored in a new NullableDatum struct, which, due to
padding, needs more memory per argument than before. But as usually
far fewer arguments are stored, and individual arguments are cheaper
to access, that's still a clear win.  It's likely that there's other
places where conversion to NullableDatum arrays would make sense,
e.g. TupleTableSlots, but that's for another commit.

Because the function call information is now variable-length
allocations have to take the number of arguments into account. For
heap allocations that can be done with SizeForFunctionCallInfoData(),
for on-stack allocations there's a new LOCAL_FCINFO(name, nargs) macro
that helps to allocate an appropriately sized and aligned variable.

Some places with stack allocation function call information don't know
the number of arguments at compile time, and currently variably sized
stack allocations aren't allowed in postgres. Therefore allow for
FUNC_MAX_ARGS space in these cases. They're not that common, so for
now that seems acceptable.

Because of the need to allocate FunctionCallInfo of the appropriate
size, older extensions may need to update their code. To avoid subtle
breakages, the FunctionCallInfoData struct has been renamed to
FunctionCallInfoBaseData. Most code only references FunctionCallInfo,
so that shouldn't cause much collateral damage.

This change is also a prerequisite for more efficient expression JIT
compilation (by allocating the function call information on the stack,
allowing LLVM to optimize it away); previously the size of the call
information caused problems inside LLVM's optimizer.

Author: Andres Freund
Reviewed-By: Tom Lane
Discussion: https://postgr.es/m/20180605172952.x34m5uz6ju6enaem@alap3.anarazel.de
2019-01-26 14:17:52 -08:00
Andres Freund 774a975c9a Make naming of tupdesc related structs more consistent with the rest of PG.
We usually don't change the name of structs between the struct name
itself and the name of the typedef. Additionally, structs that are
usually used via a typedef that hides being a pointer, are commonly
suffixed Data.  Change tupdesc code to follow those convention.

This is triggered by a future patch that intends to forward declare
TupleDescData in another header - keeping with the naming scheme makes
that easier to understand.

Author: Andres Freund
Discussion: https://postgr.es/m/20190114000701.y4ttcb74jpskkcfb@alap3.anarazel.de
2019-01-14 16:25:50 -08:00
Bruce Momjian 97c39498e5 Update copyright for 2019
Backpatch-through: certain files through 9.4
2019-01-02 12:44:25 -05:00
Andres Freund 4da597edf1 Make TupleTableSlots extensible, finish split of existing slot type.
This commit completes the work prepared in 1a0586de36, splitting the
old TupleTableSlot implementation (which could store buffer, heap,
minimal and virtual slots) into four different slot types.  As
described in the aforementioned commit, this is done with the goal of
making tuple table slots extensible, to allow for pluggable table
access methods.

To achieve runtime extensibility for TupleTableSlots, operations on
slots that can differ between types of slots are performed using the
TupleTableSlotOps struct provided at slot creation time.  That
includes information from the size of TupleTableSlot struct to be
allocated, initialization, deforming etc.  See the struct's definition
for more detailed information about callbacks TupleTableSlotOps.

I decided to rename TTSOpsBufferTuple to TTSOpsBufferHeapTuple and
ExecCopySlotTuple to ExecCopySlotHeapTuple, as that seems more
consistent with other naming introduced in recent patches.

There's plenty optimization potential in the slot implementation, but
according to benchmarking the state after this commit has similar
performance characteristics to before this set of changes, which seems
sufficient.

There's a few changes in execReplication.c that currently need to poke
through the slot abstraction, that'll be repaired once the pluggable
storage patchset provides the necessary infrastructure.

Author: Andres Freund and  Ashutosh Bapat, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-16 16:35:15 -08:00
Andres Freund a7aa608e0f Inline hot path of slot_getsomeattrs().
This yields a minor speedup, which roughly balances the loss from the
upcoming introduction of callbacks to do some operations on slots.

Author: Andres Freund
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-16 10:29:01 -08:00
Andres Freund b84a6dafbf Move EEOP_*_SYSVAR evaluation out of line.
This mainly de-duplicates code. As evaluating a system variable isn't
the hottest path and the current inline implementation ends up calling
out to an external function anyway, this is OK from a performance POV.

The main motivation for de-duplicating is the upcoming slot
abstraction work, after which there's not guaranteed to be a HeapTuple
backing the slot.

Author: Andres Freund, Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-07 11:08:45 -08:00
Alexander Korotkov edf59c40dd Fix more wrong paths in header comments
It appears that there are more files, whose header comment paths are
wrong.  So, fix those paths.  No backpatching per proposal of Tom Lane.

Discussion: https://postgr.es/m/CAPpHfdsJyYbOj59MOQL%2B4XxdcomLSLfLqBtAvwR%2BpsCqj3ELdQ%40mail.gmail.com
2018-07-11 17:57:04 +03:00
Andres Freund f4f5845b31 Quick adaption of JIT tuple deforming to the fast default patch.
Instead using memset to set tts_isnull, call the new
slot_getmissingattrs().

Also fix a bug (= instead of >=) in the code generation. Normally = is
correct, but when repeatedly deforming fields not in a
tuple (e.g. deform up to natts + 1 and then natts + 2) >= is needed.

Discussion: https://postgr.es/m/20180328010053.i2qvsuuusst4lgmc@alap3.anarazel.de
2018-03-27 21:03:10 -07:00
Andres Freund 96b5eac918 Correct some typos in the new JIT code.
Author: Thomas Munro
2018-03-26 12:58:17 -07:00
Andres Freund 32af96b2b1 JIT tuple deforming in LLVM JIT provider.
Performing JIT compilation for deforming gains performance benefits
over unJITed deforming from compile-time knowledge of the tuple
descriptor. Fixed column widths, NOT NULLness, etc can be taken
advantage of.

Right now the JITed deforming is only used when deforming tuples as
part of expression evaluation (and obviously only if the descriptor is
known). It's likely to be beneficial in other cases, too.

By default tuple deforming is JITed whenever an expression is JIT
compiled. There's a separate boolean GUC controlling it, but that's
expected to be primarily useful for development and benchmarking.

Docs will follow in a later commit containing docs for the whole JIT
feature.

Author: Andres Freund
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
2018-03-26 12:57:19 -07:00
Andres Freund 2111a48a0c Adapt expression JIT to stdbool.h introduction.
The LLVM JIT provider uses clang to synchronize types between normal C
code and runtime generated code. Clang represents stdbool.h style
booleans in return values & parameters differently from booleans
stored in variables.

Thus the expression compilation code from 2a0faed9d needs to be
adapted to 9a95a77d9. Instead of hardcoding i8 as the type for
booleans (which already was wrong on some edge case platforms!), use
postgres' notion of a boolean as used for storage and for parameters.

Per buildfarm animal xenodermus.

Author: Andres Freund
2018-03-22 22:15:51 -07:00
Andres Freund fb46ac26fe Expand list of synchronized types and functions in LLVM JIT provider.
Author: Andres Freund
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
2018-03-22 14:45:59 -07:00
Andres Freund b96d550eb0 Support for optimizing and emitting code in LLVM JIT provider.
This commit introduces the ability to actually generate code using
LLVM. In particular, this adds:

- Ability to emit code both in heavily optimized and largely
  unoptimized fashion
- Batching facility to allow functions to be defined in small
  increments, but optimized and emitted in executable form in larger
  batches (for performance and memory efficiency)
- Type and function declaration synchronization between runtime
  generated code and normal postgres code. This is critical to be able
  to access struct fields etc.
- Developer oriented jit_dump_bitcode GUC, for inspecting / debugging
  the generated code.
- per JitContext statistics of number of functions, time spent
  generating code, optimizing, and emitting it.  This will later be
  employed for EXPLAIN support.

This commit doesn't yet contain any code actually generating
functions. That'll follow in later commits.

Documentation for GUCs added, and for JIT in general, will be added in
later commits.

Author: Andres Freund, with contributions by Pierre Ducroquet
Testing-By: Thomas Munro, Peter Eisentraut
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
2018-03-22 11:05:22 -07:00