Commit Graph

560 Commits

Author SHA1 Message Date
Tom Lane 3c05284d83 Invent GENERIC_PLAN option for EXPLAIN.
This provides a very simple way to see the generic plan for a
parameterized query.  Without this, it's necessary to define
a prepared statement and temporarily change plan_cache_mode,
which is a bit tedious.

One thing that's a bit of a hack perhaps is that we disable
execution-time partition pruning when the GENERIC_PLAN option
is given.  That's because the pruning code may attempt to
fetch the value of one of the parameters, which would fail.

Laurenz Albe, reviewed by Julien Rouhaud, Christoph Berg,
Michel Pelletier, Jim Jones, and myself

Discussion: https://postgr.es/m/0a29b954b10b57f0d135fe12aa0909bd41883eb0.camel@cybertec.at
2023-03-24 17:07:22 -04:00
Tom Lane 2489d76c49 Make Vars be outer-join-aware.
Traditionally we used the same Var struct to represent the value
of a table column everywhere in parse and plan trees.  This choice
predates our support for SQL outer joins, and it's really a pretty
bad idea with outer joins, because the Var's value can depend on
where it is in the tree: it might go to NULL above an outer join.
So expression nodes that are equal() per equalfuncs.c might not
represent the same value, which is a huge correctness hazard for
the planner.

To improve this, decorate Var nodes with a bitmapset showing
which outer joins (identified by RTE indexes) may have nulled
them at the point in the parse tree where the Var appears.
This allows us to trust that equal() Vars represent the same value.
A certain amount of klugery is still needed to cope with cases
where we re-order two outer joins, but it's possible to make it
work without sacrificing that core principle.  PlaceHolderVars
receive similar decoration for the same reason.

In the planner, we include these outer join bitmapsets into the relids
that an expression is considered to depend on, and in consequence also
add outer-join relids to the relids of join RelOptInfos.  This allows
us to correctly perceive whether an expression can be calculated above
or below a particular outer join.

This change affects FDWs that want to plan foreign joins.  They *must*
follow suit when labeling foreign joins in order to match with the
core planner, but for many purposes (if postgres_fdw is any guide)
they'd prefer to consider only base relations within the join.
To support both requirements, redefine ForeignScan.fs_relids as
base+OJ relids, and add a new field fs_base_relids that's set up by
the core planner.

Large though it is, this commit just does the minimum necessary to
install the new mechanisms and get check-world passing again.
Follow-up patches will perform some cleanup.  (The README additions
and comments mention some stuff that will appear in the follow-up.)

Patch by me; thanks to Richard Guo for review.

Discussion: https://postgr.es/m/830269.1656693747@sss.pgh.pa.us
2023-01-30 13:16:20 -05:00
Michael Paquier 8eba3e3f02 Move queryjumble.c code to src/backend/nodes/
This will ease a follow-up move that will generate automatically this
code.  The C file is renamed, for consistency with the node-related
files whose code are generated by gen_node_support.pl:
- queryjumble.c -> queryjumblefuncs.c
- utils/queryjumble.h -> nodes/queryjumble.h

Per a suggestion from Peter Eisentraut.

Reviewed-by: Peter Eisentraut
Discussion: https://postgr.es/m/Y5BHOUhX3zTH/ig6@paquier.xyz
2023-01-21 11:48:37 +09:00
Bruce Momjian c8e1ba736b Update copyright for 2023
Backpatch-through: 11
2023-01-02 15:00:37 -05:00
Tom Lane adb5c32eb5 Suppress uninitialized-variable warning from a61b1f748.
Some compilers complain about sub_rteperminfos not being
initialized, evidently because they don't detect that it
is only used and set if isGeneralSelect is true.
Make it follow the long-established pattern for its
sibling variable sub_rtable.

Per reports from Pavel Stehule and the buildfarm.

Discussion: https://postgr.es/m/CAFj8pRDOvGOi-n616kM0Cc7qSbg_nGoS=-haB+D785sUXADqSg@mail.gmail.com
2022-12-27 18:07:48 -05:00
Alvaro Herrera a61b1f7482
Rework query relation permission checking
Currently, information about the permissions to be checked on relations
mentioned in a query is stored in their range table entries.  So the
executor must scan the entire range table looking for relations that
need to have permissions checked.  This can make the permission checking
part of the executor initialization needlessly expensive when many
inheritance children are present in the range range.  While the
permissions need not be checked on the individual child relations, the
executor still must visit every range table entry to filter them out.

This commit moves the permission checking information out of the range
table entries into a new plan node called RTEPermissionInfo.  Every
top-level (inheritance "root") RTE_RELATION entry in the range table
gets one and a list of those is maintained alongside the range table.
This new list is initialized by the parser when initializing the range
table.  The rewriter can add more entries to it as rules/views are
expanded.  Finally, the planner combines the lists of the individual
subqueries into one flat list that is passed to the executor for
checking.

To make it quick to find the RTEPermissionInfo entry belonging to a
given relation, RangeTblEntry gets a new Index field 'perminfoindex'
that stores the corresponding RTEPermissionInfo's index in the query's
list of the latter.

ExecutorCheckPerms_hook has gained another List * argument; the
signature is now:
typedef bool (*ExecutorCheckPerms_hook_type) (List *rangeTable,
					      List *rtePermInfos,
					      bool ereport_on_violation);
The first argument is no longer used by any in-core uses of the hook,
but we leave it in place because there may be other implementations that
do.  Implementations should likely scan the rtePermInfos list to
determine which operations to allow or deny.

Author: Amit Langote <amitlangote09@gmail.com>
Discussion: https://postgr.es/m/CA+HiwqGjJDmUhDSfv-U2qhKJjt9ST7Xh9JXC_irsAQ1TAUsJYg@mail.gmail.com
2022-12-06 16:09:24 +01:00
Dean Rasheed bcedd8f5fc Make subquery aliases optional in the FROM clause.
This allows aliases for sub-SELECTs and VALUES clauses in the FROM
clause to be omitted.

This is an extension of the SQL standard, supported by some other
database systems, and so eases the transition from such systems, as
well as removing the minor inconvenience caused by requiring these
aliases.

Patch by me, reviewed by Tom Lane.

Discussion: https://postgr.es/m/CAEZATCUCGCf82=hxd9N5n6xGHPyYpQnxW8HneeH+uP7yNALkWA@mail.gmail.com
2022-07-20 09:29:42 +01:00
Dean Rasheed 8d367a44d3 Fix alias matching in transformLockingClause().
When locking a specific named relation for a FOR [KEY] UPDATE/SHARE
clause, transformLockingClause() finds the relation to lock by
scanning the rangetable for an RTE with a matching eref->aliasname.
However, it failed to account for the visibility rules of a join RTE.

If a join RTE doesn't have a user-supplied alias, it will have a
generated eref->aliasname of "unnamed_join" that is not visible as a
relation name in the parse namespace. Such an RTE needs to be skipped,
otherwise it might be found in preference to a regular base relation
with a user-supplied alias of "unnamed_join", preventing it from being
locked.

In addition, if a join RTE doesn't have a user-supplied alias, but
does have a join_using_alias, then the RTE needs to be matched using
that alias rather than the generated eref->aliasname, otherwise a
misleading "relation not found" error will be reported rather than a
"join cannot be locked" error.

Backpatch all the way, except for the second part which only goes back
to 14, where JOIN USING aliases were added.

Dean Rasheed, reviewed by Tom Lane.

Discussion: https://postgr.es/m/CAEZATCUY_KOBnqxbTSPf=7fz9HWPnZ5Xgb9SwYzZ8rFXe7nb=w@mail.gmail.com
2022-07-07 13:08:08 +01:00
Tom Lane 23e7b38bfe Pre-beta mechanical code beautification.
Run pgindent, pgperltidy, and reformat-dat-files.
I manually fixed a couple of comments that pgindent uglified.
2022-05-12 15:17:30 -04:00
Tom Lane fe20afaee8 Fix core dump in transformValuesClause when there are no columns.
The parser code that transformed VALUES from row-oriented to
column-oriented lists failed if there were zero columns.
You can't write that straightforwardly (though probably you
should be able to), but the case can be reached by expanding
a "tab.*" reference to a zero-column table.

Per bug #17477 from Wang Ke.  Back-patch to all supported branches.

Discussion: https://postgr.es/m/17477-0af3c6ac6b0a6ae0@postgresql.org
2022-05-09 14:15:37 -04:00
Alvaro Herrera 7103ebb7aa
Add support for MERGE SQL command
MERGE performs actions that modify rows in the target table using a
source table or query. MERGE provides a single SQL statement that can
conditionally INSERT/UPDATE/DELETE rows -- a task that would otherwise
require multiple PL statements.  For example,

MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
  UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
  DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
  INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
  DO NOTHING;

MERGE works with regular tables, partitioned tables and inheritance
hierarchies, including column and row security enforcement, as well as
support for row and statement triggers and transition tables therein.

MERGE is optimized for OLTP and is parameterizable, though also useful
for large scale ETL/ELT. MERGE is not intended to be used in preference
to existing single SQL commands for INSERT, UPDATE or DELETE since there
is some overhead.  MERGE can be used from PL/pgSQL.

MERGE does not support targetting updatable views or foreign tables, and
RETURNING clauses are not allowed either.  These limitations are likely
fixable with sufficient effort.  Rewrite rules are also not supported,
but it's not clear that we'd want to support them.

Author: Pavan Deolasee <pavan.deolasee@gmail.com>
Author: Álvaro Herrera <alvherre@alvh.no-ip.org>
Author: Amit Langote <amitlangote09@gmail.com>
Author: Simon Riggs <simon.riggs@enterprisedb.com>
Reviewed-by: Peter Eisentraut <peter.eisentraut@enterprisedb.com>
Reviewed-by: Andres Freund <andres@anarazel.de> (earlier versions)
Reviewed-by: Peter Geoghegan <pg@bowt.ie> (earlier versions)
Reviewed-by: Robert Haas <robertmhaas@gmail.com> (earlier versions)
Reviewed-by: Japin Li <japinli@hotmail.com>
Reviewed-by: Justin Pryzby <pryzby@telsasoft.com>
Reviewed-by: Tomas Vondra <tomas.vondra@enterprisedb.com>
Reviewed-by: Zhihong Yu <zyu@yugabyte.com>
Discussion: https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.com
Discussion: https://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
Discussion: https://postgr.es/m/20201231134736.GA25392@alvherre.pgsql
2022-03-28 16:47:48 +02:00
Peter Eisentraut df4c3cbd8f Add parse_analyze_withcb()
This extracts code from pg_analyze_and_rewrite_withcb() into a
separate function that mirrors the existing
parse_analyze_fixedparams() and parse_analyze_varparams().

Reviewed-by: Nathan Bossart <bossartn@amazon.com>
Discussion: https://www.postgresql.org/message-id/flat/c67ce276-52b4-0239-dc0e-39875bf81840@enterprisedb.com
2022-03-09 11:08:16 +01:00
Peter Eisentraut 25751f54b8 Add pg_analyze_and_rewrite_varparams()
This new function extracts common code from PrepareQuery() and
exec_parse_message().  It is then exactly analogous to the existing
pg_analyze_and_rewrite_fixedparams() and
pg_analyze_and_rewrite_withcb().

To unify these two code paths, this makes PrepareQuery() now subject
to log_parser_stats.  Also, both paths now invoke
TRACE_POSTGRESQL_QUERY_REWRITE_START().  PrepareQuery() no longer
checks whether a utility statement was specified.  The grammar doesn't
allow that anyway, and exec_parse_message() supports it, so
restricting it doesn't seem necessary.

This also adds QueryEnvironment support to the *varparams functions,
for consistency with its cousins, even though it is not used right
now.

Reviewed-by: Nathan Bossart <bossartn@amazon.com>
Discussion: https://www.postgresql.org/message-id/flat/c67ce276-52b4-0239-dc0e-39875bf81840@enterprisedb.com
2022-03-07 08:13:30 +01:00
Peter Eisentraut 791b1b71da Parse/analyze function renaming
There are three parallel ways to call parse/analyze: with fixed
parameters, with variable parameters, and by supplying your own parser
callback.  Some of the involved functions were confusingly named and
made this API structure more confusing.  This patch renames some
functions to make this clearer:

parse_analyze() -> parse_analyze_fixedparams()
pg_analyze_and_rewrite() -> pg_analyze_and_rewrite_fixedparams()

(Otherwise one might think this variant doesn't accept parameters, but
in fact all three ways accept parameters.)

pg_analyze_and_rewrite_params() -> pg_analyze_and_rewrite_withcb()

(Before, and also when considering pg_analyze_and_rewrite(), one might
think this is the only way to pass parameters.  Moreover, the parser
callback doesn't necessarily need to parse only parameters, it's just
one of the things it could do.)

parse_fixed_parameters() -> setup_parse_fixed_parameters()
parse_variable_parameters() -> setup_parse_variable_parameters()

(These functions don't actually do any parsing, they just set up
callbacks to use during parsing later.)

This patch also adds some const decorations to the fixed-parameters
API, so the distinction from the variable-parameters API is more
clear.

Reviewed-by: Nathan Bossart <bossartn@amazon.com>
Discussion: https://www.postgresql.org/message-id/flat/c67ce276-52b4-0239-dc0e-39875bf81840@enterprisedb.com
2022-03-04 14:50:22 +01:00
Bruce Momjian 27b77ecf9f Update copyright for 2022
Backpatch-through: 10
2022-01-07 19:04:57 -05:00
Peter Eisentraut a3d2b1bbe9 Disable anonymous record hash support except in special cases
Commit 01e658fa74 added hash support for row types.  This also added
support for hashing anonymous record types, using the same approach
that the type cache uses for comparison support for record types: It
just reports that it works, but it might fail at run time if a
component type doesn't actually support the operation.  We get away
with that for comparison because most types support that.  But some
types don't support hashing, so the current state can result in
failures at run time where the planner chooses hashing over sorting,
whereas that previously worked if only sorting was an option.

We do, however, want the record hashing support for path tracking in
recursive unions, and the SEARCH and CYCLE clauses built on that.  In
that case, hashing is the only plan option.  So enable that, this
commit implements the following approach: The type cache does not
report that hashing is available for the record type.  This undoes
that part of 01e658fa74.  Instead, callers that require hashing no
matter what can override that result themselves.  This patch only
touches the callers to make the aforementioned recursive query cases
work, namely the parse analysis of unions, as well as the hash_array()
function.

Reported-by: Sait Talha Nisanci <sait.nisanci@microsoft.com>
Bug: #17158
Discussion: https://www.postgresql.org/message-id/flat/17158-8a2ba823982537a4%40postgresql.org
2021-09-08 09:55:04 +02:00
Tom Lane 8d2d6ec770 Avoid trying to lock OLD/NEW in a rule with FOR UPDATE.
transformLockingClause neglected to exclude the pseudo-RTEs for
OLD/NEW when processing a rule's query.  This led to odd errors
or even crashes later on.  This bug is very ancient, but it's
not terribly surprising that nobody noticed, since the use-case
for SELECT FOR UPDATE in a non-view rule is somewhere between
thin and non-existent.  Still, crashing is not OK.

Per bug #17151 from Zhiyong Wu.  Thanks to Masahiko Sawada
for analysis of the problem.

Discussion: https://postgr.es/m/17151-c03a3e6e4ec9aadb@postgresql.org
2021-08-19 12:12:35 -04:00
Tom Lane e56bce5d43 Reconsider the handling of procedure OUT parameters.
Commit 2453ea142 redefined pg_proc.proargtypes to include the types of
OUT parameters, for procedures only.  While that had some advantages
for implementing the SQL-spec behavior of DROP PROCEDURE, it was pretty
disastrous from a number of other perspectives.  Notably, since the
primary key of pg_proc is name + proargtypes, this made it possible to
have multiple procedures with identical names + input arguments and
differing output argument types.  That would make it impossible to call
any one of the procedures by writing just NULL (or "?", or any other
data-type-free notation) for the output argument(s).  The change also
seems likely to cause grave confusion for client applications that
examine pg_proc and expect the traditional definition of proargtypes.

Hence, revert the definition of proargtypes to what it was, and
undo a number of complications that had been added to support that.

To support the SQL-spec behavior of DROP PROCEDURE, when there are
no argmode markers in the command's parameter list, we perform the
lookup both ways (that is, matching against both proargtypes and
proallargtypes), succeeding if we get just one unique match.
In principle this could result in ambiguous-function failures
that would not happen when using only one of the two rules.
However, overloading of procedure names is thought to be a pretty
rare usage, so this shouldn't cause many problems in practice.
Postgres-specific code such as pg_dump can defend against any
possibility of such failures by being careful to specify argmodes
for all procedure arguments.

This also fixes a few other bugs in the area of CALL statements
with named parameters, and improves the documentation a little.

catversion bump forced because the representation of procedures
with OUT arguments changes.

Discussion: https://postgr.es/m/3742981.1621533210@sss.pgh.pa.us
2021-06-10 17:11:36 -04:00
Tom Lane 1103033aed Reject SELECT ... GROUP BY GROUPING SETS (()) FOR UPDATE.
This case should be disallowed, just as FOR UPDATE with a plain
GROUP BY is disallowed; FOR UPDATE only makes sense when each row
of the query result can be identified with a single table row.
However, we missed teaching CheckSelectLocking() to check
groupingSets as well as groupClause, so that it would allow
degenerate grouping sets.  That resulted in a bad plan and
a null-pointer dereference in the executor.

Looking around for other instances of the same bug, the only one
I found was in examine_simple_variable().  That'd just lead to
silly estimates, but it should be fixed too.

Per private report from Yaoguang Chen.
Back-patch to all supported branches.
2021-06-01 11:12:56 -04:00
Alvaro Herrera cafde58b33
Allow compute_query_id to be set to 'auto' and make it default
Allowing only on/off meant that all either all existing configuration
guides would become obsolete if we disabled it by default, or that we
would have to accept a performance loss in the default config if we
enabled it by default.  By allowing 'auto' as a middle ground, the
performance cost is only paid by those who enable pg_stat_statements and
similar modules.

I only edited the release notes to comment-out a paragraph that is now
factually wrong; further edits are probably needed to describe the
related change in more detail.

Author: Julien Rouhaud <rjuju123@gmail.com>
Reviewed-by: Justin Pryzby <pryzby@telsasoft.com>
Discussion: https://postgr.es/m/20210513002623.eugftm4nk2lvvks3@nol
2021-05-15 14:13:09 -04:00
Tom Lane def5b065ff Initial pgindent and pgperltidy run for v14.
Also "make reformat-dat-files".

The only change worthy of note is that pgindent messed up the formatting
of launcher.c's struct LogicalRepWorkerId, which led me to notice that
that struct wasn't used at all anymore, so I just took it out.
2021-05-12 13:14:10 -04:00
Bruce Momjian 9660834dd8 adjust query id feature to use pg_stat_activity.query_id
Previously, it was pg_stat_activity.queryid to match the
pg_stat_statements queryid column.  This is an adjustment to patch
4f0b0966c8.  This also adjusts some of the internal function calls to
match.  Catversion bumped.

Reported-by: Álvaro Herrera, Julien Rouhaud

Discussion: https://postgr.es/m/20210408032704.GA7498@alvherre.pgsql
2021-04-20 12:22:26 -04:00
Tom Lane 6c0373ab77 Allow table-qualified variable names in ON CONFLICT ... WHERE.
Previously you could only use unqualified variable names here.
While that's not a functional deficiency, since only the target
table can be referenced, it's a surprising inconsistency with the
rules for partial-index predicates, on which this syntax is
supposedly modeled.

The fix for that is no harder than passing addToRelNameSpace = true
to addNSItemToQuery.  However, it's really pretty bogus for
transformOnConflictArbiter and transformOnConflictClause to be
messing with the namespace item for the target table at all.
It's not theirs to manage, it results in duplicative creations of
namespace items, and transformOnConflictClause wasn't even doing
it quite correctly (that coding resulted in two nsitems for the
target table, since it hadn't cleaned out the existing one).
Hence, make transformInsertStmt responsible for setting up the
target nsitem once for both these clauses and RETURNING.

Also, arrange for ON CONFLICT ... UPDATE's "excluded" pseudo-relation
to be added to the rangetable before we run transformOnConflictArbiter.
This produces a more helpful HINT if someone writes "excluded.col"
in the arbiter expression.

Per bug #16958 from Lukas Eder.  Although I agree this is a bug,
the consequences are hardly severe, so no back-patch.

Discussion: https://postgr.es/m/16958-963f638020de271c@postgresql.org
2021-04-13 15:39:41 -04:00
Peter Eisentraut e717a9a18b SQL-standard function body
This adds support for writing CREATE FUNCTION and CREATE PROCEDURE
statements for language SQL with a function body that conforms to the
SQL standard and is portable to other implementations.

Instead of the PostgreSQL-specific AS $$ string literal $$ syntax,
this allows writing out the SQL statements making up the body
unquoted, either as a single statement:

    CREATE FUNCTION add(a integer, b integer) RETURNS integer
        LANGUAGE SQL
        RETURN a + b;

or as a block

    CREATE PROCEDURE insert_data(a integer, b integer)
    LANGUAGE SQL
    BEGIN ATOMIC
      INSERT INTO tbl VALUES (a);
      INSERT INTO tbl VALUES (b);
    END;

The function body is parsed at function definition time and stored as
expression nodes in a new pg_proc column prosqlbody.  So at run time,
no further parsing is required.

However, this form does not support polymorphic arguments, because
there is no more parse analysis done at call time.

Dependencies between the function and the objects it uses are fully
tracked.

A new RETURN statement is introduced.  This can only be used inside
function bodies.  Internally, it is treated much like a SELECT
statement.

psql needs some new intelligence to keep track of function body
boundaries so that it doesn't send off statements when it sees
semicolons that are inside a function body.

Tested-by: Jaime Casanova <jcasanov@systemguards.com.ec>
Reviewed-by: Julien Rouhaud <rjuju123@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/1c11f1eb-f00c-43b7-799d-2d44132c02d7@2ndquadrant.com
2021-04-07 21:47:55 +02:00
Bruce Momjian 4f0b0966c8 Make use of in-core query id added by commit 5fd9dfa5f5
Use the in-core query id computation for pg_stat_activity,
log_line_prefix, and EXPLAIN VERBOSE.

Similar to other fields in pg_stat_activity, only the queryid from the
top level statements are exposed, and if the backends status isn't
active then the queryid from the last executed statements is displayed.

Add a %Q placeholder to include the queryid in log_line_prefix, which
will also only expose top level statements.

For EXPLAIN VERBOSE, if a query identifier has been computed, either by
enabling compute_query_id or using a third-party module, display it.

Bump catalog version.

Discussion: https://postgr.es/m/20210407125726.tkvjdbw76hxnpwfi@nol

Author: Julien Rouhaud

Reviewed-by: Alvaro Herrera, Nitin Jadhav, Zhihong Yu
2021-04-07 14:04:06 -04:00
Bruce Momjian 5fd9dfa5f5 Move pg_stat_statements query jumbling to core.
Add compute_query_id GUC to control whether a query identifier should be
computed by the core (off by default).  It's thefore now possible to
disable core queryid computation and use pg_stat_statements with a
different algorithm to compute the query identifier by using a
third-party module.

To ensure that a single source of query identifier can be used and is
well defined, modules that calculate a query identifier should throw an
error if compute_query_id specified to compute a query id and if a query
idenfitier was already calculated.

Discussion: https://postgr.es/m/20210407125726.tkvjdbw76hxnpwfi@nol

Author: Julien Rouhaud

Reviewed-by: Alvaro Herrera, Nitin Jadhav, Zhihong Yu
2021-04-07 13:06:56 -04:00
Peter Eisentraut dd13ad9d39 Fix use of cursor sensitivity terminology
Documentation and comments in code and tests have been using the terms
sensitive/insensitive cursor incorrectly relative to the SQL standard.
(Cursor sensitivity is only relevant for changes made in the same
transaction as the cursor, not for concurrent changes in other
sessions.)  Moreover, some of the behavior of PostgreSQL is incorrect
according to the SQL standard, confusing the issue further.  (WHERE
CURRENT OF changes are not visible in insensitive cursors, but they
should be.)

This change corrects the terminology and removes the claim that
sensitive cursors are supported.  It also adds a test case that checks
the insensitive behavior in a "correct" way, using a change command
not using WHERE CURRENT OF.  Finally, it adds the ASENSITIVE cursor
option to select the default asensitive behavior, per SQL standard.

There are no changes to cursor behavior in this patch.

Discussion: https://www.postgresql.org/message-id/flat/96ee8b30-9889-9e1b-b053-90e10c050e85%40enterprisedb.com
2021-04-07 08:05:55 +02:00
Peter Eisentraut 055fee7eb4 Allow an alias to be attached to a JOIN ... USING
This allows something like

    SELECT ... FROM t1 JOIN t2 USING (a, b, c) AS x

where x has the columns a, b, c and unlike a regular alias it does not
hide the range variables of the tables being joined t1 and t2.

Per SQL:2016 feature F404 "Range variable for common column names".

Reviewed-by: Vik Fearing <vik.fearing@2ndquadrant.com>
Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
Discussion: https://www.postgresql.org/message-id/flat/454638cf-d563-ab76-a585-2564428062af@2ndquadrant.com
2021-03-31 17:10:50 +02:00
Tomas Vondra be45be9c33 Implement GROUP BY DISTINCT
With grouping sets, it's possible that some of the grouping sets are
duplicate.  This is especially common with CUBE and ROLLUP clauses. For
example GROUP BY CUBE (a,b), CUBE (b,c) is equivalent to

  GROUP BY GROUPING SETS (
    (a, b, c),
    (a, b, c),
    (a, b, c),
    (a, b),
    (a, b),
    (a, b),
    (a),
    (a),
    (a),
    (c, a),
    (c, a),
    (c, a),
    (c),
    (b, c),
    (b),
    ()
  )

Some of the grouping sets are calculated multiple times, which is mostly
unnecessary.  This commit implements a new GROUP BY DISTINCT feature, as
defined in the SQL standard, which eliminates the duplicate sets.

Author: Vik Fearing
Reviewed-by: Erik Rijkers, Georgios Kokolatos, Tomas Vondra
Discussion: https://postgr.es/m/bf3805a8-d7d1-ae61-fece-761b7ff41ecc@postgresfriends.org
2021-03-18 18:22:18 +01:00
Peter Eisentraut 3696a600e2 SEARCH and CYCLE clauses
This adds the SQL standard feature that adds the SEARCH and CYCLE
clauses to recursive queries to be able to do produce breadth- or
depth-first search orders and detect cycles.  These clauses can be
rewritten into queries using existing syntax, and that is what this
patch does in the rewriter.

Reviewed-by: Vik Fearing <vik@postgresfriends.org>
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/db80ceee-6f97-9b4a-8ee8-3ba0c58e5be2@2ndquadrant.com
2021-02-01 14:32:51 +01:00
Tom Lane 7cd9765f9b Re-allow DISTINCT in pl/pgsql expressions.
I'd omitted this from the grammar in commit c9d529848, figuring that
it wasn't worth supporting.  However we already have one complaint,
so it seems that judgment was wrong.  It doesn't require a huge
amount of code, so add it back.  (I'm still drawing the line at
UNION/INTERSECT/EXCEPT though: those'd require an unreasonable
amount of grammar refactoring, and the single-result-row restriction
makes them near useless anyway.)

Also rethink the documentation: this behavior is a property of
all pl/pgsql expressions, not just assignments.

Discussion: https://postgr.es/m/20210122134106.e94c5cd7@mail.verfriemelt.org
2021-01-22 16:26:22 -05:00
Tom Lane c9d5298485 Re-implement pl/pgsql's expression and assignment parsing.
Invent new RawParseModes that allow the core grammar to handle
pl/pgsql expressions and assignments directly, and thereby get rid
of a lot of hackery in pl/pgsql's parser.  This moves a good deal
of knowledge about pl/pgsql into the core code: notably, we have to
invent a CoercionContext that matches pl/pgsql's (rather dubious)
historical behavior for assignment coercions.  That's getting away
from the original idea of pl/pgsql as an arm's-length extension of
the core, but really we crossed that bridge a long time ago.

The main advantage of doing this is that we can now use the core
parser to generate FieldStore and/or SubscriptingRef nodes to handle
assignments to pl/pgsql variables that are records or arrays.  That
fixes a number of cases that had never been implemented in pl/pgsql
assignment, such as nested records and array slicing, and it allows
pl/pgsql assignment to support the datatype-specific subscripting
behaviors introduced in commit c7aba7c14.

There are cosmetic benefits too: when a syntax error occurs in a
pl/pgsql expression, the error report no longer includes the confusing
"SELECT" keyword that used to get prefixed to the expression text.
Also, there seem to be some small speed gains.

Discussion: https://postgr.es/m/4165684.1607707277@sss.pgh.pa.us
2021-01-04 11:52:00 -05:00
Bruce Momjian ca3b37487b Update copyright for 2021
Backpatch-through: 9.5
2021-01-02 13:06:25 -05:00
Peter Eisentraut c77f6f50e4 Fix cases of discarding result from list API functions
Two cases violated list APIs by throwing away the return value.  While
the code was technically correct, it relied on internal knowledge of
the list implementation, and the code wasn't really gaining anything
that way.  It is planned to make this a compiler warning in the
future, so just fix these cases by assigning the return value
properly.

Reviewed-by: Michael Paquier <michael@paquier.xyz>
Discussion: https://www.postgresql.org/message-id/flat/e3753562-99cd-b65f-5aca-687dfd1ec2fc@2ndquadrant.com
2020-11-11 08:03:51 +01:00
Tom Lane ad77039fad Calculate extraUpdatedCols in query rewriter, not parser.
It's unsafe to do this at parse time because addition of generated
columns to a table would not invalidate stored rules containing
UPDATEs on the table ... but there might now be dependent generated
columns that were not there when the rule was made.  This also fixes
an oversight that rewriteTargetView failed to update extraUpdatedCols
when transforming an UPDATE on an updatable view.  (Since the new
calculation is downstream of that, rewriteTargetView doesn't actually
need to do anything; but before, there was a demonstrable bug there.)

In v13 and HEAD, this leads to easily-visible bugs because (since
commit c6679e4fc) we won't recalculate generated columns that aren't
listed in extraUpdatedCols.  In v12 this bitmap is mostly just used
for trigger-firing decisions, so you'd only notice a problem if a
trigger cared whether a generated column had been updated.

I'd complained about this back in May, but then forgot about it
until bug #16671 from Michael Paul Killian revived the issue.

Back-patch to v12 where this field was introduced.  If existing
stored rules contain any extraUpdatedCols values, they'll be
ignored because the rewriter will overwrite them, so the bug will
be fixed even for existing rules.  (But note that if someone were
to update to 13.1 or 12.5, store some rules with UPDATEs on tables
having generated columns, and then downgrade to a prior minor version,
they might observe issues similar to what this patch fixes.  That
seems unlikely enough to not be worth going to a lot of effort to fix.)

Discussion: https://postgr.es/m/10206.1588964727@sss.pgh.pa.us
Discussion: https://postgr.es/m/16671-2fa55851859fb166@postgresql.org
2020-10-28 13:47:02 -04:00
Peter Eisentraut f893e68d76 Add select_common_typmod()
This accompanies select_common_type() and select_common_collation().
Typmods were previously combined using hand-coded logic in several
places.  The logic in select_common_typmod() isn't very exciting, but
it makes the code more compact and readable in a few locations, and in
the future we can perhaps do more complicated things if desired.

As a small enhancement, the type unification of the direct and
aggregate arguments of hypothetical-set aggregates now unifies the
typmod as well using this new function, instead of just dropping it.

Reviewed-by: Heikki Linnakangas <hlinnaka@iki.fi>
Discussion: https://www.postgresql.org/message-id/flat/97df3af9-8b5e-fb7f-a029-3eb7e80d7af9@2ndquadrant.com
2020-10-27 18:10:42 +01:00
Michael Paquier cc35d8933a Rename field "relkind" to "objtype" for CTAS and ALTER TABLE nodes
"relkind" normally refers to the char field from pg_class.  However, in
the parse nodes AlterTableStmt and CreateTableAsStmt, "relkind" was used
for a field of type enum ObjectType, that could refer to other object
types than those possible for a relkind.  Such fields being usually
named "objtype", switch the name in both structures to make things more
consistent.  Note that this led to some confusion in functions that
also operate on a RangeTableEntry object, which also has a field named
"relkind".

This naming goes back to commit 09d4e96, where only OBJECT_TABLE and
OBJECT_INDEX were used.  This got extended later to use as well
OBJECT_TYPE with e440e12, not really a relation kind.

Author: Mark Dilger
Reviewed-by: Daniel Gustafsson, Álvaro Herrera, Michael Paquier
Discussion: https://postgr.es/m/609181AE-E399-47C7-9221-856E0F96BF93@enterprisedb.com
2020-07-11 13:32:28 +09:00
Tom Lane fa27dd40d5 Run pgindent with new pg_bsd_indent version 2.1.1.
Thomas Munro fixed a longstanding annoyance in pg_bsd_indent, that
it would misformat lines containing IsA() macros on the assumption
that the IsA() call should be treated like a cast.  This improves
some other cases involving field/variable names that match typedefs,
too.  The only places that get worse are a couple of uses of the
OpenSSL macro STACK_OF(); we'll gladly take that trade-off.

Discussion: https://postgr.es/m/20200114221814.GA19630@alvherre.pgsql
2020-05-16 11:54:51 -04:00
Alvaro Herrera 357889eb17
Support FETCH FIRST WITH TIES
WITH TIES is an option to the FETCH FIRST N ROWS clause (the SQL
standard's spelling of LIMIT), where you additionally get rows that
compare equal to the last of those N rows by the columns in the
mandatory ORDER BY clause.

There was a proposal by Andrew Gierth to implement this functionality in
a more powerful way that would yield more features, but the other patch
had not been finished at this time, so we decided to use this one for
now in the spirit of incremental development.

Author: Surafel Temesgen <surafel3000@gmail.com>
Reviewed-by: Álvaro Herrera <alvherre@alvh.no-ip.org>
Reviewed-by: Tomas Vondra <tomas.vondra@2ndquadrant.com>
Discussion: https://postgr.es/m/CALAY4q9ky7rD_A4vf=FVQvCGngm3LOes-ky0J6euMrg=_Se+ag@mail.gmail.com
Discussion: https://postgr.es/m/87o8wvz253.fsf@news-spur.riddles.org.uk
2020-04-07 16:22:13 -04:00
Peter Eisentraut ad3ae64770 Fill in extraUpdatedCols in logical replication
The extraUpdatedCols field of the target RTE records which generated
columns are affected by an update.  This is used in a variety of
places, including per-column triggers and foreign data wrappers.  When
an update was initiated by a logical replication subscription, this
field was not filled in, so such an update would not affect generated
columns in a way that is consistent with normal updates.  To fix,
factor out some code from analyze.c to fill in extraUpdatedCols in the
logical replication worker as well.

Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/b05e781a-fa16-6b52-6738-761181204567@2ndquadrant.com
2020-02-17 15:20:57 +01:00
Tom Lane 9ce77d75c5 Reconsider the representation of join alias Vars.
The core idea of this patch is to make the parser generate join alias
Vars (that is, ones with varno pointing to a JOIN RTE) only when the
alias Var is actually different from any raw join input, that is a type
coercion and/or COALESCE is necessary to generate the join output value.
Otherwise just generate varno/varattno pointing to the relevant join
input column.

In effect, this means that the planner's flatten_join_alias_vars()
transformation is already done in the parser, for all cases except
(a) columns that are merged by JOIN USING and are transformed in the
process, and (b) whole-row join Vars.  In principle that would allow
us to skip doing flatten_join_alias_vars() in many more queries than
we do now, but we don't have quite enough infrastructure to know that
we can do so --- in particular there's no cheap way to know whether
there are any whole-row join Vars.  I'm not sure if it's worth the
trouble to add a Query-level flag for that, and in any case it seems
like fit material for a separate patch.  But even without skipping the
work entirely, this should make flatten_join_alias_vars() faster,
particularly where there are nested joins that it previously had to
flatten recursively.

An essential part of this change is to replace Var nodes'
varnoold/varoattno fields with varnosyn/varattnosyn, which have
considerably more tightly-defined meanings than the old fields: when
they differ from varno/varattno, they identify the Var's position in
an aliased JOIN RTE, and the join alias is what ruleutils.c should
print for the Var.  This is necessary because the varno change
destroyed ruleutils.c's ability to find the JOIN RTE from the Var's
varno.

Another way in which this change broke ruleutils.c is that it's no
longer feasible to determine, from a JOIN RTE's joinaliasvars list,
which join columns correspond to which columns of the join's immediate
input relations.  (If those are sub-joins, the joinaliasvars entries
may point to columns of their base relations, not the sub-joins.)
But that was a horrid mess requiring a lot of fragile assumptions
already, so let's just bite the bullet and add some more JOIN RTE
fields to make it more straightforward to figure that out.  I added
two integer-List fields containing the relevant column numbers from
the left and right input rels, plus a count of how many merged columns
there are.

This patch depends on the ParseNamespaceColumn infrastructure that
I added in commit 5815696bc.  The biggest bit of code change is
restructuring transformFromClauseItem's handling of JOINs so that
the ParseNamespaceColumn data is propagated upward correctly.

Other than that and the ruleutils fixes, everything pretty much
just works, though some processing is now inessential.  I grabbed
two pieces of low-hanging fruit in that line:

1. In find_expr_references, we don't need to recurse into join alias
Vars anymore.  There aren't any except for references to merged USING
columns, which are more properly handled when we scan the join's RTE.
This change actually fixes an edge-case issue: we will now record a
dependency on any type-coercion function present in a USING column's
joinaliasvar, even if that join column has no references in the query
text.  The odds of the missing dependency causing a problem seem quite
small: you'd have to posit somebody dropping an implicit cast between
two data types, without removing the types themselves, and then having
a stored rule containing a whole-row Var for a join whose USING merge
depends on that cast.  So I don't feel a great need to change this in
the back branches.  But in theory this way is more correct.

2. markRTEForSelectPriv and markTargetListOrigin don't need to recurse
into join alias Vars either, because the cases they care about don't
apply to alias Vars for USING columns that are semantically distinct
from the underlying columns.  This removes the only case in which
markVarForSelectPriv could be called with NULL for the RTE, so adjust
the comments to describe that hack as being strictly internal to
markRTEForSelectPriv.

catversion bump required due to changes in stored rules.

Discussion: https://postgr.es/m/7115.1577986646@sss.pgh.pa.us
2020-01-09 11:56:59 -05:00
Tom Lane 5815696bc6 Make parser rely more heavily on the ParseNamespaceItem data structure.
When I added the ParseNamespaceItem data structure (in commit 5ebaaa494),
it wasn't very tightly integrated into the parser's APIs.  In the wake of
adding p_rtindex to that struct (commit b541e9acc), there is a good reason
to make more use of it: by passing around ParseNamespaceItem pointers
instead of bare RTE pointers, we can get rid of various messy methods for
passing back or deducing the rangetable index of an RTE during parsing.
Hence, refactor the addRangeTableEntryXXX functions to build and return
a ParseNamespaceItem struct, not just the RTE proper; and replace
addRTEtoQuery with addNSItemToQuery, which is passed a ParseNamespaceItem
rather than building one internally.

Also, add per-column data (a ParseNamespaceColumn array) to each
ParseNamespaceItem.  These arrays are built during addRangeTableEntryXXX,
where we have column type data at hand so that it's nearly free to fill
the data structure.  Later, when we need to build Vars referencing RTEs,
we can use the ParseNamespaceColumn info to avoid the rather expensive
operations done in get_rte_attribute_type() or expandRTE().
get_rte_attribute_type() is indeed dead code now, so I've removed it.
This makes for a useful improvement in parse analysis speed, around 20%
in one moderately-complex test query.

The ParseNamespaceColumn structs also include Var identity information
(varno/varattno).  That info isn't actually being used in this patch,
except that p_varno == 0 is a handy test for a dropped column.
A follow-on patch will make more use of it.

Discussion: https://postgr.es/m/2461.1577764221@sss.pgh.pa.us
2020-01-02 11:29:01 -05:00
Bruce Momjian 7559d8ebfa Update copyrights for 2020
Backpatch-through: update all files in master, backpatch legal files through 9.4
2020-01-01 12:21:45 -05:00
Tom Lane b541e9accb Refactor parser's generation of Var nodes.
Instead of passing around a pointer to the RangeTblEntry that
provides the desired column, pass a pointer to the associated
ParseNamespaceItem.  The RTE is trivially reachable from the nsitem,
and having the ParseNamespaceItem allows access to additional
information.  As proof of concept for that, add the rangetable index
to ParseNamespaceItem, and use that to get rid of RTERangeTablePosn
searches.

(I have in mind to teach the parser to generate some different
representation for Vars that are nullable by outer joins, and
keeping the necessary information in ParseNamespaceItems seems
like a reasonable approach to that.  But whether that ever
happens or not, this seems like good cleanup.)

Also refactor the code around scanRTEForColumn so that the
"fuzzy match" stuff does not leak out of parse_relation.c.

Discussion: https://postgr.es/m/26144.1576858373@sss.pgh.pa.us
2019-12-26 11:16:42 -05:00
Tom Lane 1cff1b95ab Represent Lists as expansible arrays, not chains of cons-cells.
Originally, Postgres Lists were a more or less exact reimplementation of
Lisp lists, which consist of chains of separately-allocated cons cells,
each having a value and a next-cell link.  We'd hacked that once before
(commit d0b4399d8) to add a separate List header, but the data was still
in cons cells.  That makes some operations -- notably list_nth() -- O(N),
and it's bulky because of the next-cell pointers and per-cell palloc
overhead, and it's very cache-unfriendly if the cons cells end up
scattered around rather than being adjacent.

In this rewrite, we still have List headers, but the data is in a
resizable array of values, with no next-cell links.  Now we need at
most two palloc's per List, and often only one, since we can allocate
some values in the same palloc call as the List header.  (Of course,
extending an existing List may require repalloc's to enlarge the array.
But this involves just O(log N) allocations not O(N).)

Of course this is not without downsides.  The key difficulty is that
addition or deletion of a list entry may now cause other entries to
move, which it did not before.

For example, that breaks foreach() and sister macros, which historically
used a pointer to the current cons-cell as loop state.  We can repair
those macros transparently by making their actual loop state be an
integer list index; the exposed "ListCell *" pointer is no longer state
carried across loop iterations, but is just a derived value.  (In
practice, modern compilers can optimize things back to having just one
loop state value, at least for simple cases with inline loop bodies.)
In principle, this is a semantics change for cases where the loop body
inserts or deletes list entries ahead of the current loop index; but
I found no such cases in the Postgres code.

The change is not at all transparent for code that doesn't use foreach()
but chases lists "by hand" using lnext().  The largest share of such
code in the backend is in loops that were maintaining "prev" and "next"
variables in addition to the current-cell pointer, in order to delete
list cells efficiently using list_delete_cell().  However, we no longer
need a previous-cell pointer to delete a list cell efficiently.  Keeping
a next-cell pointer doesn't work, as explained above, but we can improve
matters by changing such code to use a regular foreach() loop and then
using the new macro foreach_delete_current() to delete the current cell.
(This macro knows how to update the associated foreach loop's state so
that no cells will be missed in the traversal.)

There remains a nontrivial risk of code assuming that a ListCell *
pointer will remain good over an operation that could now move the list
contents.  To help catch such errors, list.c can be compiled with a new
define symbol DEBUG_LIST_MEMORY_USAGE that forcibly moves list contents
whenever that could possibly happen.  This makes list operations
significantly more expensive so it's not normally turned on (though it
is on by default if USE_VALGRIND is on).

There are two notable API differences from the previous code:

* lnext() now requires the List's header pointer in addition to the
current cell's address.

* list_delete_cell() no longer requires a previous-cell argument.

These changes are somewhat unfortunate, but on the other hand code using
either function needs inspection to see if it is assuming anything
it shouldn't, so it's not all bad.

Programmers should be aware of these significant performance changes:

* list_nth() and related functions are now O(1); so there's no
major access-speed difference between a list and an array.

* Inserting or deleting a list element now takes time proportional to
the distance to the end of the list, due to moving the array elements.
(However, it typically *doesn't* require palloc or pfree, so except in
long lists it's probably still faster than before.)  Notably, lcons()
used to be about the same cost as lappend(), but that's no longer true
if the list is long.  Code that uses lcons() and list_delete_first()
to maintain a stack might usefully be rewritten to push and pop at the
end of the list rather than the beginning.

* There are now list_insert_nth...() and list_delete_nth...() functions
that add or remove a list cell identified by index.  These have the
data-movement penalty explained above, but there's no search penalty.

* list_concat() and variants now copy the second list's data into
storage belonging to the first list, so there is no longer any
sharing of cells between the input lists.  The second argument is
now declared "const List *" to reflect that it isn't changed.

This patch just does the minimum needed to get the new implementation
in place and fix bugs exposed by the regression tests.  As suggested
by the foregoing, there's a fair amount of followup work remaining to
do.

Also, the ENABLE_LIST_COMPAT macros are finally removed in this
commit.  Code using those should have been gone a dozen years ago.

Patch by me; thanks to David Rowley, Jesper Pedersen, and others
for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-07-15 13:41:58 -04:00
Michael Paquier c74d49d41c Fix many typos and inconsistencies
Author: Alexander Lakhin
Discussion: https://postgr.es/m/af27d1b3-a128-9d62-46e0-88f424397f44@gmail.com
2019-07-01 10:00:23 +09:00
Tom Lane 8255c7a5ee Phase 2 pgindent run for v12.
Switch to 2.1 version of pg_bsd_indent.  This formats
multiline function declarations "correctly", that is with
additional lines of parameter declarations indented to match
where the first line's left parenthesis is.

Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com
2019-05-22 13:04:48 -04:00
Alvaro Herrera 75445c1515 More message style fixes
Discussion: https://postgr.es/m/20190515183005.GA26486@alvherre.pgsql
2019-05-16 19:14:31 -04:00
Peter Eisentraut fc22b6623b Generated columns
This is an SQL-standard feature that allows creating columns that are
computed from expressions rather than assigned, similar to a view or
materialized view but on a column basis.

This implements one kind of generated column: stored (computed on
write).  Another kind, virtual (computed on read), is planned for the
future, and some room is left for it.

Reviewed-by: Michael Paquier <michael@paquier.xyz>
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/b151f851-4019-bdb1-699e-ebab07d2f40a@2ndquadrant.com
2019-03-30 08:15:57 +01:00
Tom Lane c94fb8e8ac Standardize some more loops that chase down parallel lists.
We have forboth() and forthree() macros that simplify iterating
through several parallel lists, but not everyplace that could
reasonably use those was doing so.  Also invent forfour() and
forfive() macros to do the same for four or five parallel lists,
and use those where applicable.

The immediate motivation for doing this is to reduce the number
of ad-hoc lnext() calls, to reduce the footprint of a WIP patch.
However, it seems like good cleanup and error-proofing anyway;
the places that were combining forthree() with a manually iterated
loop seem particularly illegible and bug-prone.

There was some speculation about restructuring related parsetree
representations to reduce the need for parallel list chasing of
this sort.  Perhaps that's a win, or perhaps not, but in any case
it would be considerably more invasive than this patch; and it's
not particularly related to my immediate goal of improving the
List infrastructure.  So I'll leave that question for another day.

Patch by me; thanks to David Rowley for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-02-28 14:25:01 -05:00