Commit Graph

182 Commits

Author SHA1 Message Date
Peter Geoghegan 2903f1404d Enable deduplication in system catalog indexes.
The "equality implies image equality" opclass infrastructure disallowed
deduplication in system catalog indexes and TOAST indexes before now.
That seemed like the right approach back when the infrastructure was
added by commit 612a1ab7, since ALTER INDEX cannot set deduplicate_items
to 'off' (due to an old implementation restriction).  But that decision
now seems arbitrary at best.  Remove special case handling implementing
this policy.

No catversion bump, since existing catalog indexes will still work.

Author: Peter Geoghegan <pg@bowt.ie>
Discussion: https://postgr.es/m/CAH2-Wz=rYQHFaJ3WYBdK=xgwxKzaiGMSSrh-ZCREa-pS-7Zjew@mail.gmail.com
2021-10-02 17:12:59 -07:00
Peter Geoghegan effdd3f3b6 Add back vacuum_cleanup_index_scale_factor parameter.
Commit 9f3665fb removed the vacuum_cleanup_index_scale_factor storage
parameter.  However, that creates dump/reload hazards when moving across
major versions.

Add back the vacuum_cleanup_index_scale_factor parameter (though not the
GUC of the same name) purely to avoid problems when using tools like
pg_upgrade.  The parameter remains disabled and undocumented.

No backpatch to Postgres 13, since vacuum_cleanup_index_scale_factor was
only disabled by REL_13_STABLE's version of master branch commit
9f3665fb in the first place -- the parameter already looks like this on
REL_13_STABLE.

Discussion: https://postgr.es/m/YEm/a3Ko3nKnBuVq@paquier.xyz
2021-03-11 12:42:46 -08:00
Peter Geoghegan 9f3665fbfc Don't consider newly inserted tuples in nbtree VACUUM.
Remove the entire idea of "stale stats" within nbtree VACUUM (stop
caring about stats involving the number of inserted tuples).  Also
remove the vacuum_cleanup_index_scale_factor GUC/param on the master
branch (though just disable them on postgres 13).

The vacuum_cleanup_index_scale_factor/stats interface made the nbtree AM
partially responsible for deciding when pg_class.reltuples stats needed
to be updated.  This seems contrary to the spirit of the index AM API,
though -- it is not actually necessary for an index AM's bulk delete and
cleanup callbacks to provide accurate stats when it happens to be
inconvenient.  The core code owns that.  (Index AMs have the authority
to perform or not perform certain kinds of deferred cleanup based on
their own considerations, such as page deletion and recycling, but that
has little to do with pg_class.reltuples/num_index_tuples.)

This issue was fairly harmless until the introduction of the
autovacuum_vacuum_insert_threshold feature by commit b07642db, which had
an undesirable interaction with the vacuum_cleanup_index_scale_factor
mechanism: it made insert-driven autovacuums perform full index scans,
even though there is no real benefit to doing so.  This has been tied to
a regression with an append-only insert benchmark [1].

Also have remaining cases that perform a full scan of an index during a
cleanup-only nbtree VACUUM indicate that the final tuple count is only
an estimate.  This prevents vacuumlazy.c from setting the index's
pg_class.reltuples in those cases (it will now only update pg_class when
vacuumlazy.c had TIDs for nbtree to bulk delete).  This arguably fixes
an oversight in deduplication-related bugfix commit 48e12913.

[1] https://smalldatum.blogspot.com/2021/01/insert-benchmark-postgres-is-still.html

Author: Peter Geoghegan <pg@bowt.ie>
Reviewed-By: Masahiko Sawada <sawada.mshk@gmail.com>
Discussion: https://postgr.es/m/CAD21AoA4WHthN5uU6+WScZ7+J_RcEjmcuH94qcoUPuB42ShXzg@mail.gmail.com
Backpatch: 13-, where autovacuum_vacuum_insert_threshold was added.
2021-03-10 16:27:01 -08:00
Bruce Momjian ca3b37487b Update copyright for 2021
Backpatch-through: 9.5
2021-01-02 13:06:25 -05:00
Peter Geoghegan cf2acaf4dc Deprecate nbtree's BTP_HAS_GARBAGE flag.
Streamline handling of the various strategies that we have to avoid a
page split in nbtinsert.c.  When it looks like a leaf page is about to
overflow, we now perform deleting LP_DEAD items and deduplication in one
central place.  This greatly simplifies _bt_findinsertloc().

This has an independently useful consequence: nbtree no longer relies on
the BTP_HAS_GARBAGE page level flag/hint for anything important.  We
still set and unset the flag in the same way as before, but it's no
longer treated as a gating condition when considering if we should check
for already-set LP_DEAD bits.  This happens at the point where the page
looks like it might have to be split anyway, so simply checking the
LP_DEAD bits in passing is practically free.  This avoids missing
LP_DEAD bits just because the page-level hint is unset, which is
probably reasonably common (e.g. it happens when VACUUM unsets the
page-level flag without actually removing index tuples whose LP_DEAD-bit
was set recently, after the VACUUM operation began but before it reached
the leaf page in question).

Note that this isn't a big behavioral change compared to PostgreSQL 13.
We were already checking for set LP_DEAD bits regardless of whether the
BTP_HAS_GARBAGE page level flag was set before we considered doing a
deduplication pass.  This commit only goes slightly further by doing the
same check for all indexes, even indexes where deduplication won't be
performed.

We don't completely remove the BTP_HAS_GARBAGE flag.  We still rely on
it as a gating condition with pg_upgrade'd indexes from before B-tree
version 4/PostgreSQL 12.  That makes sense because we sometimes have to
make a choice among pages full of duplicates when inserting a tuple with
pre version 4 indexes.  It probably still pays to avoid accessing the
line pointer array of a page there, since it won't yet be clear whether
we'll insert on to the page in question at all, let alone split it as a
result.

Author: Peter Geoghegan <pg@bowt.ie>
Reviewed-By: Victor Yegorov <vyegorov@gmail.com>
Discussion: https://postgr.es/m/CAH2-Wz%3DYpc1PDdk8OVJDChGJBjT06%3DA0Mbv9HyTLCsOknGcUFg%40mail.gmail.com
2020-11-17 09:45:56 -08:00
Peter Geoghegan 4a70f829d8 Add nbtree Valgrind buffer lock checks.
Holding just a buffer pin (with no buffer lock) on an nbtree buffer/page
provides very weak guarantees, especially compared to heapam, where it's
often safe to read a page while only holding a buffer pin.  This commit
has Valgrind enforce the following rule: it is never okay to access an
nbtree buffer without holding both a pin and a lock on the buffer.

A draft version of this patch detected questionable code that was
cleaned up by commits fa7ff642 and 7154aa16.  The code in question used
to access an nbtree buffer page's special/opaque area with no buffer
lock (only a buffer pin).  This practice (which isn't obviously unsafe)
is hereby formally disallowed in nbtree.  There doesn't seem to be any
reason to allow it, and banning it keeps things simple for Valgrind.

The new checks are implemented by adding custom nbtree client requests
(located in LockBuffer() wrapper functions); these requests are
"superimposed" on top of the generic bufmgr.c Valgrind client requests
added by commit 1e0dfd16.  No custom resource management cleanup code is
needed to undo the effects of marking buffers as non-accessible under
this scheme.

Author: Peter Geoghegan
Reviewed-By: Anastasia Lubennikova, Georgios Kokolatos
Discussion: https://postgr.es/m/CAH2-WzkLgyN3zBvRZ1pkNJThC=xi_0gpWRUb_45eexLH1+k2_Q@mail.gmail.com
2020-07-21 15:50:58 -07:00
Tom Lane e02ad575d8 Final pgindent run with pg_bsd_indent version 2.1.
This is just to provide a clean basis for comparison of the results
of the new version.  I did fix a typo that crept into 242dfcbaf.

Discussion: https://postgr.es/m/20200114221814.GA19630@alvherre.pgsql
2020-05-16 11:49:14 -04:00
Alvaro Herrera 242dfcbafa
Avoid killing btree items that are already dead
_bt_killitems marks btree items dead when a scan leaves the page where
they live, but it does so with only share lock (to improve concurrency).
This was historicall okay, since killing a dead item has no
consequences.  However, with the advent of data checksums and
wal_log_hints, this action incurs a WAL full-page-image record of the
page.  Multiple concurrent processes would write the same page several
times, leading to WAL bloat.  The probability of this happening can be
reduced by only killing items if they're not already dead, so change the
code to do that.

The problem could eliminated completely by having _bt_killitems upgrade
to exclusive lock upon seeing a killable item, but that would reduce
concurrency so it's considered a cure worse than the disease.

Backpatch all the way back to 9.5, since wal_log_hints was introduced in
9.4.

Author: Masahiko Sawada <masahiko.sawada@2ndquadrant.com>
Discussion: https://postgr.es/m/CA+fd4k6PeRj2CkzapWNrERkja5G0-6D-YQiKfbukJV+qZGFZ_Q@mail.gmail.com
2020-05-15 16:50:34 -04:00
Peter Geoghegan ab2343d4cb Remove redundant _bt_killitems() buffer check.
_bt_getbuf() cannot return an invalid buffer.

Oversight in commit 2ed5b87f96.
2020-04-29 18:17:49 -07:00
Peter Geoghegan bc3087b626 Harmonize nbtree page split point code.
An nbtree split point can be thought of as a point between two adjoining
tuples from an imaginary version of the page being split that includes
the incoming/new item (in addition to the items that really are on the
page).  These adjoining tuples are called the lastleft and firstright
tuples.

The variables that represent split points contained a field called
firstright, which is an offset number of the first data item from the
original page that goes on the new right page.  The corresponding tuple
from origpage was usually the same thing as the actual firstright tuple,
but not always: the firstright tuple is sometimes the new/incoming item
instead.  This situation seems unnecessarily confusing.

Make things clearer by renaming the origpage offset returned by
_bt_findsplitloc() to "firstrightoff".  We now have a firstright tuple
and a firstrightoff offset number which are comparable to the
newitem/lastleft tuples and the newitemoff/lastleftoff offset numbers
respectively.  Also make sure that we are consistent about how we
describe nbtree page split point state.

Push the responsibility for dealing with pg_upgrade'd !heapkeyspace
indexes down to lower level code, relieving _bt_split() from dealing
with it directly.  This means that we always have a palloc'd left page
high key on the leaf level, no matter what.  This enables simplifying
some of the code (and code comments) within _bt_split().

Finally, restructure the page split code to make it clearer why suffix
truncation (which only takes place during leaf page splits) is
completely different to the first data item truncation that takes place
during internal page splits.  Tuples are marked as having fewer
attributes stored in both cases, and the firstright tuple is truncated
in both cases, so it's easy to imagine somebody missing the distinction.
2020-04-13 16:39:55 -07:00
Peter Geoghegan 60cbd7751c Remove nbtree BTreeTupleSetAltHeapTID() function.
Since heap TID is supposed to be just another key attribute to the
implementation, it doesn't make much sense to have separate
BTreeTupleSetNAtts() and BTreeTupleSetAltHeapTID() functions.  Merge the
two functions together.  This slightly simplifies _bt_truncate().
2020-04-07 15:56:52 -07:00
Peter Geoghegan ce2cee0ade Fix nbtree kill_prior_tuple posting list assert.
An assertion added by commit 0d861bbb checked that _bt_killitems() only
processes a BTScanPosItem whose heap TID is contained in a posting list
tuple when its page offset number still matches what is on the page
(i.e. when it matches the posting list tuple's current offset number).
This was only correct in the common case where the page can't have
changed since we first read it.  It was not correct in cases where we
don't drop the buffer pin (and don't need to verify the page hasn't
changed using its LSN).  The latter category includes scans involving
unlogged tables, and scans that use a non-MVCC snapshot, per the logic
originally introduced by commit 2ed5b87f.

The assertion still seems helpful.  Fix it by taking cases where the
page may have been concurrently modified into account.

Reported-By: Anastasia Lubennikova, Alexander Lakhin
Discussion: https://postgr.es/m/c4e38e9a-0f9c-8e53-e639-adf343f94472@postgrespro.ru
2020-04-06 14:46:33 -07:00
Peter Geoghegan f01157e2ac Further simplify nbtree high key truncation.
Commit 7c2dbc69 reorganized _bt_truncate() in a way that enables a
further simplification that I (pgeoghegan) missed:  Since we mark the
tuple that is returned to the caller as a pivot tuple before the point
where its heap TID is set as of 7c2dbc69, it is possible to use the high
level BTreeTupleGetHeapTID() inline function to get an item pointer.  Do
it that way now.  This approach is clearer and more maintainable.
2020-03-30 17:34:12 -07:00
Peter Geoghegan 7c2dbc691c Refactor nbtree high key truncation.
Simplify _bt_truncate(), the routine that generates truncated leaf page
high keys.  Remove a micro-optimization that avoided a second palloc0()
call (this was used when a heap TID was needed in the final pivot tuple,
though only when the index happened to not be an INCLUDE index).

Removing this dubious micro-optimization allows _bt_truncate() to use
the index_truncate_tuple() indextuple.c utility routine in all cases.
This was already the common case.

This commit is a HEAD-only follow up to bugfix commit 4b42a899.
2020-03-30 15:52:39 -07:00
Peter Geoghegan 4b42a89938 Consistently truncate non-key suffix columns.
INCLUDE indexes failed to have their non-key attributes physically
truncated away in certain rare cases.  This led to physically larger
pivot tuples that contained useless non-key attribute values.  The
impact on users should be negligible, but this is still clearly a
regression (Postgres 11 supports INCLUDE indexes, and yet was not
affected).

The bug appeared in commit dd299df8, which introduced "true" suffix
truncation of key attributes.

Discussion: https://postgr.es/m/CAH2-Wz=E8pkV9ivRSFHtv812H5ckf8s1-yhx61_WrJbKccGcrQ@mail.gmail.com
Backpatch: 12-, where "true" suffix truncation was introduced.
2020-03-30 12:03:59 -07:00
Peter Geoghegan 0d861bbb70 Add deduplication to nbtree.
Deduplication reduces the storage overhead of duplicates in indexes that
use the standard nbtree index access method.  The deduplication process
is applied lazily, after the point where opportunistic deletion of
LP_DEAD-marked index tuples occurs.  Deduplication is only applied at
the point where a leaf page split would otherwise be required.  New
posting list tuples are formed by merging together existing duplicate
tuples.  The physical representation of the items on an nbtree leaf page
is made more space efficient by deduplication, but the logical contents
of the page are not changed.  Even unique indexes make use of
deduplication as a way of controlling bloat from duplicates whose TIDs
point to different versions of the same logical table row.

The lazy approach taken by nbtree has significant advantages over a GIN
style eager approach.  Most individual inserts of index tuples have
exactly the same overhead as before.  The extra overhead of
deduplication is amortized across insertions, just like the overhead of
page splits.  The key space of indexes works in the same way as it has
since commit dd299df8 (the commit that made heap TID a tiebreaker
column).

Testing has shown that nbtree deduplication can generally make indexes
with about 10 or 15 tuples for each distinct key value about 2.5X - 4X
smaller, even with single column integer indexes (e.g., an index on a
referencing column that accompanies a foreign key).  The final size of
single column nbtree indexes comes close to the final size of a similar
contrib/btree_gin index, at least in cases where GIN's posting list
compression isn't very effective.  This can significantly improve
transaction throughput, and significantly reduce the cost of vacuuming
indexes.

A new index storage parameter (deduplicate_items) controls the use of
deduplication.  The default setting is 'on', so all new B-Tree indexes
automatically use deduplication where possible.  This decision will be
reviewed at the end of the Postgres 13 beta period.

There is a regression of approximately 2% of transaction throughput with
synthetic workloads that consist of append-only inserts into a table
with several non-unique indexes, where all indexes have few or no
repeated values.  The underlying issue is that cycles are wasted on
unsuccessful attempts at deduplicating items in non-unique indexes.
There doesn't seem to be a way around it short of disabling
deduplication entirely.  Note that deduplication of items in unique
indexes is fairly well targeted in general, which avoids the problem
there (we can use a special heuristic to trigger deduplication passes in
unique indexes, since we're specifically targeting "version bloat").

Bump XLOG_PAGE_MAGIC because xl_btree_vacuum changed.

No bump in BTREE_VERSION, since the representation of posting list
tuples works in a way that's backwards compatible with version 4 indexes
(i.e. indexes built on PostgreSQL 12).  However, users must still
REINDEX a pg_upgrade'd index to use deduplication, regardless of the
Postgres version they've upgraded from.  This is the only way to set the
new nbtree metapage flag indicating that deduplication is generally
safe.

Author: Anastasia Lubennikova, Peter Geoghegan
Reviewed-By: Peter Geoghegan, Heikki Linnakangas
Discussion:
    https://postgr.es/m/55E4051B.7020209@postgrespro.ru
    https://postgr.es/m/4ab6e2db-bcee-f4cf-0916-3a06e6ccbb55@postgrespro.ru
2020-02-26 13:05:30 -08:00
Peter Geoghegan 612a1ab767 Add equalimage B-Tree support functions.
Invent the concept of a B-Tree equalimage ("equality implies image
equality") support function, registered as support function 4.  This
indicates whether it is safe (or not safe) to apply optimizations that
assume that any two datums considered equal by an operator class's order
method must be interchangeable without any loss of semantic information.
This is static information about an operator class and a collation.

Register an equalimage routine for almost all of the existing B-Tree
opclasses.  We only need two trivial routines for all of the opclasses
that are included with the core distribution.  There is one routine for
opclasses that index non-collatable types (which returns 'true'
unconditionally), plus another routine for collatable types (which
returns 'true' when the collation is a deterministic collation).

This patch is infrastructure for an upcoming patch that adds B-Tree
deduplication.

Author: Peter Geoghegan, Anastasia Lubennikova
Discussion: https://postgr.es/m/CAH2-Wzn3Ee49Gmxb7V1VJ3-AC8fWn-Fr8pfWQebHe8rYRxt5OQ@mail.gmail.com
2020-02-26 11:28:25 -08:00
Bruce Momjian 7559d8ebfa Update copyrights for 2020
Backpatch-through: update all files in master, backpatch legal files through 9.4
2020-01-01 12:21:45 -05:00
Michael Paquier 4cb658af70 Refactor reloption handling for index AMs in-core
This reworks the reloption parsing and build of a couple of index AMs by
creating new structures for each index AM's options.  This split was
already done for BRIN, GIN and GiST (which actually has a fillfactor
parameter), but not for hash, B-tree and SPGiST which relied on
StdRdOptions due to an overlap with the default option set.

This saves a couple of bytes for rd_options in each relcache entry with
indexes making use of relation options, and brings more consistency
between all index AMs.  While on it, add a couple of AssertMacro() calls
to make sure that utility macros to grab values of reloptions are used
with the expected index AM.

Author: Nikolay Shaplov
Reviewed-by: Amit Langote, Michael Paquier, Álvaro Herrera, Dent John
Discussion: https://postgr.es/m/4127670.gFlpRb6XCm@x200m
2019-11-25 09:40:53 +09:00
Peter Geoghegan 1f55ebae27 Make _bt_keep_natts_fast() use datum_image_eq().
An upcoming patch that adds deduplication to the nbtree AM will rely on
_bt_keep_natts_fast() understanding that differences in TOAST input
state can never affect its answer.  In particular, two opclass-equal
datums (with opclasses deemed safe for deduplication) should never be
treated as unequal by _bt_keep_natts_fast() due to TOAST input
differences.

This also seems like a good idea on general principle.  nbtsplitloc.c
will now occasionally make better decisions about where to split a leaf
page.  The behavior of _bt_keep_natts_fast() is now somewhat closer to
the behavior of _bt_keep_natts().

Discussion: https://postgr.es/m/CAH2-Wzn3Ee49Gmxb7V1VJ3-AC8fWn-Fr8pfWQebHe8rYRxt5OQ@mail.gmail.com
2019-11-12 13:08:41 -08:00
Thomas Munro 7815e7efdb Add reusable routine for making arrays unique.
Introduce qunique() and qunique_arg(), which can be used after qsort()
and qsort_arg() respectively to remove duplicate values.  Use it where
appropriate.

Author: Thomas Munro
Reviewed-by: Tom Lane (in an earlier version)
Discussion: https://postgr.es/m/CAEepm%3D2vmFTNpAmwbGGD2WaryM6T3hSDVKQPfUwjdD_5XY6vAA%40mail.gmail.com
2019-11-07 17:00:48 +13:00
Peter Geoghegan 1b9becd43c Remove redundant _bt_truncate() comment paragraph. 2019-09-12 09:51:27 -07:00
Peter Geoghegan b8b3a276d4 Remove obsolete nbtree page deletion comment.
Commit efada2b8e9, which made the nbtree page deletion algorithm more
robust, removed the concept of a half-dead internal page.  Remove a
comment about half dead parent pages that was overlooked.
2019-08-27 14:01:43 -07:00
Michael Paquier 66bde49d96 Fix inconsistencies and typos in the tree, take 10
This addresses some issues with unnecessary code comments, fixes various
typos in docs and comments, and removes some orphaned structures and
definitions.

Author: Alexander Lakhin
Discussion: https://postgr.es/m/9aabc775-5494-b372-8bcb-4dfc0bd37c68@gmail.com
2019-08-13 13:53:41 +09:00
Amit Kapila 9679345f3c Fix typos.
Reported-by: Alexander Lakhin
Author: Alexander Lakhin
Reviewed-by: Amit Kapila and Tom Lane
Discussion: https://postgr.es/m/7208de98-add8-8537-91c0-f8b089e2928c@gmail.com
2019-05-26 18:28:18 +05:30
Tom Lane 8255c7a5ee Phase 2 pgindent run for v12.
Switch to 2.1 version of pg_bsd_indent.  This formats
multiline function declarations "correctly", that is with
additional lines of parameter declarations indented to match
where the first line's left parenthesis is.

Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com
2019-05-22 13:04:48 -04:00
Tom Lane be76af171c Initial pgindent run for v12.
This is still using the 2.0 version of pg_bsd_indent.
I thought it would be good to commit this separately,
so as to document the differences between 2.0 and 2.1 behavior.

Discussion: https://postgr.es/m/16296.1558103386@sss.pgh.pa.us
2019-05-22 12:55:34 -04:00
Peter Geoghegan 9b10926263 Prevent O(N^2) unique index insertion edge case.
Commit dd299df8 made nbtree treat heap TID as a tiebreaker column,
establishing the principle that there is only one correct location (page
and page offset number) for every index tuple, no matter what.
Insertions of tuples into non-unique indexes proceed as if heap TID
(scan key's scantid) is just another user-attribute value, but
insertions into unique indexes are more delicate.  The TID value in
scantid must initially be omitted to ensure that the unique index
insertion visits every leaf page that duplicates could be on.  The
scantid is set once again after unique checking finishes successfully,
which can force _bt_findinsertloc() to step right one or more times, to
locate the leaf page that the new tuple must be inserted on.

Stepping right within _bt_findinsertloc() was assumed to occur no more
frequently than stepping right within _bt_check_unique(), but there was
one important case where that assumption was incorrect: inserting a
"duplicate" with NULL values.  Since _bt_check_unique() didn't do any
real work in this case, it wasn't appropriate for _bt_findinsertloc() to
behave as if it was finishing off a conventional unique insertion, where
any existing physical duplicate must be dead or recently dead.
_bt_findinsertloc() might have to grovel through a substantial portion
of all of the leaf pages in the index to insert a single tuple, even
when there were no dead tuples.

To fix, treat insertions of tuples with NULLs into a unique index as if
they were insertions into a non-unique index: never unset scantid before
calling _bt_search() to descend the tree, and bypass _bt_check_unique()
entirely.  _bt_check_unique() is no longer responsible for incoming
tuples with NULL values.

Discussion: https://postgr.es/m/CAH2-Wzm08nr+JPx4jMOa9CGqxWYDQ-_D4wtPBiKghXAUiUy-nQ@mail.gmail.com
2019-04-23 10:33:57 -07:00
Alvaro Herrera ab0dfc961b Report progress of CREATE INDEX operations
This uses the progress reporting infrastructure added by c16dc1aca5,
adding support for CREATE INDEX and CREATE INDEX CONCURRENTLY.

There are two pieces to this: one is index-AM-agnostic, and the other is
AM-specific.  The latter is fairly elaborate for btrees, including
reportage for parallel index builds and the separate phases that btree
index creation uses; other index AMs, which are much simpler in their
building procedures, have simplistic reporting only, but that seems
sufficient, at least for non-concurrent builds.

The index-AM-agnostic part is fairly complete, providing insight into
the CONCURRENTLY wait phases as well as block-based progress during the
index validation table scan.  (The index validation index scan requires
patching each AM, which has not been included here.)

Reviewers: Rahila Syed, Pavan Deolasee, Tatsuro Yamada
Discussion: https://postgr.es/m/20181220220022.mg63bhk26zdpvmcj@alvherre.pgsql
2019-04-02 15:18:08 -03:00
Peter Geoghegan 76a39f2295 Fix nbtree high key "continuescan" row compare bug.
Commit 29b64d1d mishandled skipping over truncated high key attributes
during row comparisons.  The row comparison key matching loop would loop
forever when a truncated attribute was encountered for a row compare
subkey.  Fix by following the example of other code in the loop: advance
the current subkey, or break out of the loop when the last subkey is
reached.

Add test coverage for the relevant _bt_check_rowcompare() code path.
The new test case is somewhat tied to nbtree implementation details,
which isn't ideal, but seems unavoidable.
2019-03-31 17:24:04 -07:00
Peter Geoghegan 29b64d1de7 Add nbtree high key "continuescan" optimization.
Teach nbtree forward index scans to check the high key before moving to
the right sibling page in the hope of finding that it isn't actually
necessary to do so.  The new check may indicate that the scan definitely
cannot find matching tuples to the right, ending the scan immediately.
We already opportunistically force a similar "continuescan orientated"
key check of the final non-pivot tuple when it's clear that it cannot be
returned to the scan due to being dead-to-all.  The new high key check
is complementary.

The new approach for forward scans is more effective than checking the
final non-pivot tuple, especially with composite indexes and non-unique
indexes.  The improvements to the logic for picking a split point added
by commit fab25024 make it likely that relatively dissimilar high keys
will appear on a page.  A distinguishing key value that can only appear
on non-pivot tuples on the right sibling page will often be present in
leaf page high keys.

Since forcing the final item to be key checked no longer makes any
difference in the case of forward scans, the existing extra key check is
now only used for backwards scans.  Backward scans continue to
opportunistically check the final non-pivot tuple, which is actually the
first non-pivot tuple on the page (not the last).

Note that even pg_upgrade'd v3 indexes make use of this optimization.

Author: Peter Geoghegan, Heikki Linnakangas
Reviewed-By: Heikki Linnakangas
Discussion: https://postgr.es/m/CAH2-WzkOmUduME31QnuTFpimejuQoiZ-HOf0pOWeFZNhTMctvA@mail.gmail.com
2019-03-23 11:01:53 -07:00
Peter Geoghegan fab2502433 Consider secondary factors during nbtree splits.
Teach nbtree to give some consideration to how "distinguishing"
candidate leaf page split points are.  This should not noticeably affect
the balance of free space within each half of the split, while still
making suffix truncation truncate away significantly more attributes on
average.

The logic for choosing a leaf split point now uses a fallback mode in
the case where the page is full of duplicates and it isn't possible to
find even a minimally distinguishing split point.  When the page is full
of duplicates, the split should pack the left half very tightly, while
leaving the right half mostly empty.  Our assumption is that logical
duplicates will almost always be inserted in ascending heap TID order
with v4 indexes.  This strategy leaves most of the free space on the
half of the split that will likely be where future logical duplicates of
the same value need to be placed.

The number of cycles added is not very noticeable.  This is important
because deciding on a split point takes place while at least one
exclusive buffer lock is held.  We avoid using authoritative insertion
scankey comparisons to save cycles, unlike suffix truncation proper.  We
use a faster binary comparison instead.

Note that even pg_upgrade'd v3 indexes make use of these optimizations.
Benchmarking has shown that even v3 indexes benefit, despite the fact
that suffix truncation will only truncate non-key attributes in INCLUDE
indexes.  Grouping relatively similar tuples together is beneficial in
and of itself, since it reduces the number of leaf pages that must be
accessed by subsequent index scans.

Author: Peter Geoghegan
Reviewed-By: Heikki Linnakangas
Discussion: https://postgr.es/m/CAH2-WzmmoLNQOj9mAD78iQHfWLJDszHEDrAzGTUMG3mVh5xWPw@mail.gmail.com
2019-03-20 10:12:19 -07:00
Peter Geoghegan dd299df818 Make heap TID a tiebreaker nbtree index column.
Make nbtree treat all index tuples as having a heap TID attribute.
Index searches can distinguish duplicates by heap TID, since heap TID is
always guaranteed to be unique.  This general approach has numerous
benefits for performance, and is prerequisite to teaching VACUUM to
perform "retail index tuple deletion".

Naively adding a new attribute to every pivot tuple has unacceptable
overhead (it bloats internal pages), so suffix truncation of pivot
tuples is added.  This will usually truncate away the "extra" heap TID
attribute from pivot tuples during a leaf page split, and may also
truncate away additional user attributes.  This can increase fan-out,
especially in a multi-column index.  Truncation can only occur at the
attribute granularity, which isn't particularly effective, but works
well enough for now.  A future patch may add support for truncating
"within" text attributes by generating truncated key values using new
opclass infrastructure.

Only new indexes (BTREE_VERSION 4 indexes) will have insertions that
treat heap TID as a tiebreaker attribute, or will have pivot tuples
undergo suffix truncation during a leaf page split (on-disk
compatibility with versions 2 and 3 is preserved).  Upgrades to version
4 cannot be performed on-the-fly, unlike upgrades from version 2 to
version 3.  contrib/amcheck continues to work with version 2 and 3
indexes, while also enforcing stricter invariants when verifying version
4 indexes.  These stricter invariants are the same invariants described
by "3.1.12 Sequencing" from the Lehman and Yao paper.

A later patch will enhance the logic used by nbtree to pick a split
point.  This patch is likely to negatively impact performance without
smarter choices around the precise point to split leaf pages at.  Making
these two mostly-distinct sets of enhancements into distinct commits
seems like it might clarify their design, even though neither commit is
particularly useful on its own.

The maximum allowed size of new tuples is reduced by an amount equal to
the space required to store an extra MAXALIGN()'d TID in a new high key
during leaf page splits.  The user-facing definition of the "1/3 of a
page" restriction is already imprecise, and so does not need to be
revised.  However, there should be a compatibility note in the v12
release notes.

Author: Peter Geoghegan
Reviewed-By: Heikki Linnakangas, Alexander Korotkov
Discussion: https://postgr.es/m/CAH2-WzkVb0Kom=R+88fDFb=JSxZMFvbHVC6Mn9LJ2n=X=kS-Uw@mail.gmail.com
2019-03-20 10:04:01 -07:00
Peter Geoghegan e5adcb789d Refactor nbtree insertion scankeys.
Use dedicated struct to represent nbtree insertion scan keys.  Having a
dedicated struct makes the difference between search type scankeys and
insertion scankeys a lot clearer, and simplifies the signature of
several related functions.  This is based on a suggestion by Andrey
Lepikhov.

Streamline how unique index insertions cache binary search progress.
Cache the state of in-progress binary searches within _bt_check_unique()
for later instead of having callers avoid repeating the binary search in
an ad-hoc manner.  This makes it easy to add a new optimization:
_bt_check_unique() now falls out of its loop immediately in the common
case where it's already clear that there couldn't possibly be a
duplicate.

The new _bt_check_unique() scheme makes it a lot easier to manage cached
binary search effort afterwards, from within _bt_findinsertloc().  This
is needed for the upcoming patch to make nbtree tuples unique by
treating heap TID as a final tiebreaker column.  Unique key binary
searches need to restore lower and upper bounds.  They cannot simply
continue to use the >= lower bound as the offset to insert at, because
the heap TID tiebreaker column must be used in comparisons for the
restored binary search (unlike the original _bt_check_unique() binary
search, where scankey's heap TID column must be omitted).

Author: Peter Geoghegan, Heikki Linnakangas
Reviewed-By: Heikki Linnakangas, Andrey Lepikhov
Discussion: https://postgr.es/m/CAH2-WzmE6AhUdk9NdWBf4K3HjWXZBX3+umC7mH7+WDrKcRtsOw@mail.gmail.com
2019-03-20 09:30:57 -07:00
Bruce Momjian 97c39498e5 Update copyright for 2019
Backpatch-through: certain files through 9.4
2019-01-02 12:44:25 -05:00
Tom Lane c87cb5f7a6 Allow btree comparison functions to return INT_MIN.
Historically we forbade datatype-specific comparison functions from
returning INT_MIN, so that it would be safe to invert the sort order
just by negating the comparison result.  However, this was never
really safe for comparison functions that directly return the result
of memcmp(), strcmp(), etc, as POSIX doesn't place any such restriction
on those library functions.  Buildfarm results show that at least on
recent Linux on s390x, memcmp() actually does return INT_MIN sometimes,
causing sort failures.

The agreed-on answer is to remove this restriction and fix relevant
call sites to not make such an assumption; code such as "res = -res"
should be replaced by "INVERT_COMPARE_RESULT(res)".  The same is needed
in a few places that just directly negated the result of memcmp or
strcmp.

To help find places having this problem, I've also added a compile option
to nbtcompare.c that causes some of the commonly used comparators to
return INT_MIN/INT_MAX instead of their usual -1/+1.  It'd likely be
a good idea to have at least one buildfarm member running with
"-DSTRESS_SORT_INT_MIN".  That's far from a complete test of course,
but it should help to prevent fresh introductions of such bugs.

This is a longstanding portability hazard, so back-patch to all supported
branches.

Discussion: https://postgr.es/m/20180928185215.ffoq2xrq5d3pafna@alap3.anarazel.de
2018-10-05 16:01:29 -04:00
Andrew Dunstan 1e9c858090 pgindent run prior to branching 2018-06-30 12:25:49 -04:00
Tom Lane bdf46af748 Post-feature-freeze pgindent run.
Discussion: https://postgr.es/m/15719.1523984266@sss.pgh.pa.us
2018-04-26 14:47:16 -04:00
Teodor Sigaev 075aade436 Adjust INCLUDE index truncation comments and code.
Add several assertions that ensure that we're dealing with a pivot tuple
without non-key attributes where that's expected.  Also, remove the
assertion within _bt_isequal(), restoring the v10 function signature.  A
similar check will be performed for the page highkey within
_bt_moveright() in most cases.  Also avoid dropping all objects within
regression tests, to increase pg_dump test coverage for INCLUDE indexes.

Rather than using infrastructure that's generally intended to be used
with reference counted heap tuple descriptors during truncation, use the
same function that was introduced to store flat TupleDescs in shared
memory (we use a temp palloc'd buffer).  This isn't strictly necessary,
but seems more future-proof than the old approach.  It also lets us
avoid including rel.h within indextuple.c, which was arguably a
modularity violation.  Also, we now call index_deform_tuple() with the
truncated TupleDesc, not the source TupleDesc, since that's more robust,
and saves a few cycles.

In passing, fix a memory leak by pfree'ing truncated pivot tuple memory
during CREATE INDEX.  Also pfree during a page split, just to be
consistent.

Refactor _bt_check_natts() to be more readable.

Author: Peter Geoghegan with some editorization by me
Reviewed by: Alexander Korotkov, Teodor Sigaev
Discussion: https://www.postgresql.org/message-id/CAH2-Wz%3DkCWuXeMrBCopC-tFs3FbiVxQNjjgNKdG2sHxZ5k2y3w%40mail.gmail.com
2018-04-19 08:45:58 +03:00
Heikki Linnakangas 55101549d5 Fix a few typos in comments and variable names.
Author: Michael Paquier
Discussion: https://www.postgresql.org/message-id/20180411075223.GB19732%40paquier.xyz
2018-04-17 11:54:57 -04:00
Teodor Sigaev 8224de4f42 Indexes with INCLUDE columns and their support in B-tree
This patch introduces INCLUDE clause to index definition.  This clause
specifies a list of columns which will be included as a non-key part in
the index.  The INCLUDE columns exist solely to allow more queries to
benefit from index-only scans.  Also, such columns don't need to have
appropriate operator classes.  Expressions are not supported as INCLUDE
columns since they cannot be used in index-only scans.

Index access methods supporting INCLUDE are indicated by amcaninclude flag
in IndexAmRoutine.  For now, only B-tree indexes support INCLUDE clause.

In B-tree indexes INCLUDE columns are truncated from pivot index tuples
(tuples located in non-leaf pages and high keys).  Therefore, B-tree indexes
now might have variable number of attributes.  This patch also provides
generic facility to support that: pivot tuples contain number of their
attributes in t_tid.ip_posid.  Free 13th bit of t_info is used for indicating
that.  This facility will simplify further support of index suffix truncation.
The changes of above are backward-compatible, pg_upgrade doesn't need special
handling of B-tree indexes for that.

Bump catalog version

Author: Anastasia Lubennikova with contribition by Alexander Korotkov and me
Reviewed by: Peter Geoghegan, Tomas Vondra, Antonin Houska, Jeff Janes,
			 David Rowley, Alexander Korotkov
Discussion: https://www.postgresql.org/message-id/flat/56168952.4010101@postgrespro.ru
2018-04-07 23:00:39 +03:00
Alvaro Herrera 272c2ab9fd Change some bogus PageGetLSN calls to BufferGetLSNAtomic
As src/backend/access/transam/README says, PageGetLSN may only be called
by processes holding either exclusive lock on buffer, or a shared lock
on buffer plus buffer header lock.  Therefore any place that only holds
a shared buffer lock must use BufferGetLSNAtomic instead of PageGetLSN,
which internally obtains buffer header lock prior to reading the LSN.

A few callsites failed to comply with this rule.  This was detected by
running all tests under a new (not committed) assertion that verifies
PageGetLSN locking contract.  All but one of the callsites that failed
the assertion are fixed by this patch.  Remaining callsites were
inspected manually and determined not to need any change.

The exception (unfixed callsite) is in TestForOldSnapshot, which only
has a Page argument, making it impossible to access the corresponding
Buffer from it.  Fixing that seems a much larger patch that will have to
be done separately; and that's just as well, since it was only
introduced in 9.6 and other bugs are much older.

Some of these bugs are ancient; backpatch all the way back to 9.3.

Authors: Jacob Champion, Asim Praveen, Ashwin Agrawal
Reviewed-by: Michaël Paquier
Discussion: https://postgr.es/m/CABAq_6GXgQDVu3u12mK9O5Xt5abBZWQ0V40LZCE+oUf95XyNFg@mail.gmail.com
2018-01-09 17:06:31 -03:00
Bruce Momjian 9d4649ca49 Update copyright for 2018
Backpatch-through: certain files through 9.3
2018-01-02 23:30:12 -05:00
Peter Eisentraut 2eb4a831e5 Change TRUE/FALSE to true/false
The lower case spellings are C and C++ standard and are used in most
parts of the PostgreSQL sources.  The upper case spellings are only used
in some files/modules.  So standardize on the standard spellings.

The APIs for ICU, Perl, and Windows define their own TRUE and FALSE, so
those are left as is when using those APIs.

In code comments, we use the lower-case spelling for the C concepts and
keep the upper-case spelling for the SQL concepts.

Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
2017-11-08 11:37:28 -05:00
Tom Lane 382ceffdf7 Phase 3 of pgindent updates.
Don't move parenthesized lines to the left, even if that means they
flow past the right margin.

By default, BSD indent lines up statement continuation lines that are
within parentheses so that they start just to the right of the preceding
left parenthesis.  However, traditionally, if that resulted in the
continuation line extending to the right of the desired right margin,
then indent would push it left just far enough to not overrun the margin,
if it could do so without making the continuation line start to the left of
the current statement indent.  That makes for a weird mix of indentations
unless one has been completely rigid about never violating the 80-column
limit.

This behavior has been pretty universally panned by Postgres developers.
Hence, disable it with indent's new -lpl switch, so that parenthesized
lines are always lined up with the preceding left paren.

This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.

Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 15:35:54 -04:00
Robert Haas 569174f1be btree: Support parallel index scans.
This isn't exposed to the optimizer or the executor yet; we'll add
support for those things in a separate patch.  But this puts the
basic mechanism in place: several processes can attach to a parallel
btree index scan, and each one will get a subset of the tuples that
would have been produced by a non-parallel scan.  Each index page
becomes the responsibility of a single worker, which then returns
all of the TIDs on that page.

Rahila Syed, Amit Kapila, Robert Haas, reviewed and tested by
Anastasia Lubennikova, Tushar Ahuja, and Haribabu Kommi.
2017-02-15 07:41:14 -05:00
Bruce Momjian 1d25779284 Update copyright via script for 2017 2017-01-03 13:48:53 -05:00
Tom Lane ea268cdc9a Add macros to make AllocSetContextCreate() calls simpler and safer.
I found that half a dozen (nearly 5%) of our AllocSetContextCreate calls
had typos in the context-sizing parameters.  While none of these led to
especially significant problems, they did create minor inefficiencies,
and it's now clear that expecting people to copy-and-paste those calls
accurately is not a great idea.  Let's reduce the risk of future errors
by introducing single macros that encapsulate the common use-cases.
Three such macros are enough to cover all but two special-purpose contexts;
those two calls can be left as-is, I think.

While this patch doesn't in itself improve matters for third-party
extensions, it doesn't break anything for them either, and they can
gradually adopt the simplified notation over time.

In passing, change TopMemoryContext to use the default allocation
parameters.  Formerly it could only be extended 8K at a time.  That was
probably reasonable when this code was written; but nowadays we create
many more contexts than we did then, so that it's not unusual to have a
couple hundred K in TopMemoryContext, even without considering various
dubious code that sticks other things there.  There seems no good reason
not to let it use growing blocks like most other contexts.

Back-patch to 9.6, mostly because that's still close enough to HEAD that
it's easy to do so, and keeping the branches in sync can be expected to
avoid some future back-patching pain.  The bugs fixed by these changes
don't seem to be significant enough to justify fixing them further back.

Discussion: <21072.1472321324@sss.pgh.pa.us>
2016-08-27 17:50:38 -04:00
Tom Lane ed0097e4f9 Add SQL-accessible functions for inspecting index AM properties.
Per discussion, we should provide such functions to replace the lost
ability to discover AM properties by inspecting pg_am (cf commit
65c5fcd35).  The added functionality is also meant to displace any code
that was looking directly at pg_index.indoption, since we'd rather not
believe that the bit meanings in that field are part of any client API
contract.

As future-proofing, define the SQL API to not assume that properties that
are currently AM-wide or index-wide will remain so unless they logically
must be; instead, expose them only when inquiring about a specific index
or even specific index column.  Also provide the ability for an index
AM to override the behavior.

In passing, document pg_am.amtype, overlooked in commit 473b93287.

Andrew Gierth, with kibitzing by me and others

Discussion: <87mvl5on7n.fsf@news-spur.riddles.org.uk>
2016-08-13 18:31:14 -04:00
Kevin Grittner a343e223a5 Revert no-op changes to BufferGetPage()
The reverted changes were intended to force a choice of whether any
newly-added BufferGetPage() calls needed to be accompanied by a
test of the snapshot age, to support the "snapshot too old"
feature.  Such an accompanying test is needed in about 7% of the
cases, where the page is being used as part of a scan rather than
positioning for other purposes (such as DML or vacuuming).  The
additional effort required for back-patching, and the doubt whether
the intended benefit would really be there, have indicated it is
best just to rely on developers to do the right thing based on
comments and existing usage, as we do with many other conventions.

This change should have little or no effect on generated executable
code.

Motivated by the back-patching pain of Tom Lane and Robert Haas
2016-04-20 08:31:19 -05:00