Commit Graph

22 Commits

Author SHA1 Message Date
Andres Freund b8d7f053c5 Faster expression evaluation and targetlist projection.
This replaces the old, recursive tree-walk based evaluation, with
non-recursive, opcode dispatch based, expression evaluation.
Projection is now implemented as part of expression evaluation.

This both leads to significant performance improvements, and makes
future just-in-time compilation of expressions easier.

The speed gains primarily come from:
- non-recursive implementation reduces stack usage / overhead
- simple sub-expressions are implemented with a single jump, without
  function calls
- sharing some state between different sub-expressions
- reduced amount of indirect/hard to predict memory accesses by laying
  out operation metadata sequentially; including the avoidance of
  nearly all of the previously used linked lists
- more code has been moved to expression initialization, avoiding
  constant re-checks at evaluation time

Future just-in-time compilation (JIT) has become easier, as
demonstrated by released patches intended to be merged in a later
release, for primarily two reasons: Firstly, due to a stricter split
between expression initialization and evaluation, less code has to be
handled by the JIT. Secondly, due to the non-recursive nature of the
generated "instructions", less performance-critical code-paths can
easily be shared between interpreted and compiled evaluation.

The new framework allows for significant future optimizations. E.g.:
- basic infrastructure for to later reduce the per executor-startup
  overhead of expression evaluation, by caching state in prepared
  statements.  That'd be helpful in OLTPish scenarios where
  initialization overhead is measurable.
- optimizing the generated "code". A number of proposals for potential
  work has already been made.
- optimizing the interpreter. Similarly a number of proposals have
  been made here too.

The move of logic into the expression initialization step leads to some
backward-incompatible changes:
- Function permission checks are now done during expression
  initialization, whereas previously they were done during
  execution. In edge cases this can lead to errors being raised that
  previously wouldn't have been, e.g. a NULL array being coerced to a
  different array type previously didn't perform checks.
- The set of domain constraints to be checked, is now evaluated once
  during expression initialization, previously it was re-built
  every time a domain check was evaluated. For normal queries this
  doesn't change much, but e.g. for plpgsql functions, which caches
  ExprStates, the old set could stick around longer.  The behavior
  around might still change.

Author: Andres Freund, with significant changes by Tom Lane,
	changes by Heikki Linnakangas
Reviewed-By: Tom Lane, Heikki Linnakangas
Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-25 14:52:06 -07:00
Andres Freund 9ba8a9ce45 Use the new castNode() macro in a number of places.
This is far from a pervasive conversion, but it's a good starting
point.

Author: Peter Eisentraut, with some minor changes by me
Reviewed-By: Tom Lane
Discussion: https://postgr.es/m/c5d387d9-3440-f5e0-f9d4-71d53b9fbe52@2ndquadrant.com
2017-01-26 16:47:03 -08:00
Andres Freund ea15e18677 Remove obsoleted code relating to targetlist SRF evaluation.
Since 69f4b9c plain expression evaluation (and thus normal projection)
can't return sets of tuples anymore. Thus remove code dealing with
that possibility.

This will require adjustments in external code using
ExecEvalExpr()/ExecProject() - that should neither be hard nor very
common.

Author: Andres Freund and Tom Lane
Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
2017-01-19 14:40:41 -08:00
Bruce Momjian 1d25779284 Update copyright via script for 2017 2017-01-03 13:48:53 -05:00
Tom Lane 96dd77d349 Be sure to rewind the tuplestore read pointer in non-leader CTEScan nodes.
ExecInitCteScan supposed that it didn't have to do anything to the extra
tuplestore read pointer it gets from tuplestore_alloc_read_pointer.
However, it needs this read pointer to be positioned at the start of the
tuplestore, while tuplestore_alloc_read_pointer is actually defined as
cloning the current position of read pointer 0.  In normal situations
that accidentally works because we initialize the whole plan tree at once,
before anything gets read.  But it fails in an EvalPlanQual recheck, as
illustrated in bug #14328 from Dima Pavlov.  To fix, just forcibly rewind
the pointer after tuplestore_alloc_read_pointer.  The cost of doing so is
negligible unless the tuplestore is already in TSS_READFILE state, which
wouldn't happen in normal cases.  We could consider altering tuplestore's
API to make that case cheaper, but that would make for a more invasive
back-patch and it doesn't seem worth it.

This has been broken probably for as long as we've had CTEs, so back-patch
to all supported branches.

Discussion: <32468.1474548308@sss.pgh.pa.us>
2016-09-22 11:35:03 -04:00
Bruce Momjian ee94300446 Update copyright for 2016
Backpatch certain files through 9.1
2016-01-02 13:33:40 -05:00
Bruce Momjian 4baaf863ec Update copyright for 2015
Backpatch certain files through 9.0
2015-01-06 11:43:47 -05:00
Bruce Momjian 7e04792a1c Update copyright for 2014
Update all files in head, and files COPYRIGHT and legal.sgml in all back
branches.
2014-01-07 16:05:30 -05:00
Bruce Momjian bd61a623ac Update copyrights for 2013
Fully update git head, and update back branches in ./COPYRIGHT and
legal.sgml files.
2013-01-01 17:15:01 -05:00
Tom Lane 4c5316931f Fix rescan logic in nodeCtescan.
The previous coding essentially assumed that nodes would be rescanned in
the same order they were initialized in; or at least that the "leader" of
a group of CTEscans would be rescanned before any others were required to
execute.  Unfortunately, that isn't even a little bit true.  It's possible
to devise queries in which the leader isn't rescanned until other CTEscans
on the same CTE have run to completion, or even in which the leader never
gets a rescan call at all.

The fix makes the leader specially responsible only for initial creation
and final destruction of the tuplestore; rescan resets are now a
symmetrically shared responsibility.  This means that we might reset the
tuplestore multiple times when restarting a plan subtree containing
multiple CTEscans; but resetting an already-empty tuplestore is cheap
enough that that doesn't seem like a problem.

Per report from Adam Mackler; the new regression test cases are based on
his example query.

Back-patch to 8.4 where CTE scans were introduced.
2012-08-15 19:02:33 -04:00
Bruce Momjian e126958c2e Update copyright notices for year 2012. 2012-01-01 18:01:58 -05:00
Bruce Momjian 5d950e3b0c Stamp copyrights for year 2011. 2011-01-01 13:18:15 -05:00
Magnus Hagander 9f2e211386 Remove cvs keywords from all files. 2010-09-20 22:08:53 +02:00
Tom Lane 53e757689c Make NestLoop plan nodes pass outer-relation variables into their inner
relation using the general PARAM_EXEC executor parameter mechanism, rather
than the ad-hoc kluge of passing the outer tuple down through ExecReScan.
The previous method was hard to understand and could never be extended to
handle parameters coming from multiple join levels.  This patch doesn't
change the set of possible plans nor have any significant performance effect,
but it's necessary infrastructure for future generalization of the concept
of an inner indexscan plan.

ExecReScan's second parameter is now unused, so it's removed.
2010-07-12 17:01:06 +00:00
Bruce Momjian 0239800893 Update copyright for the year 2010. 2010-01-02 16:58:17 +00:00
Tom Lane 9f2ee8f287 Re-implement EvalPlanQual processing to improve its performance and eliminate
a lot of strange behaviors that occurred in join cases.  We now identify the
"current" row for every joined relation in UPDATE, DELETE, and SELECT FOR
UPDATE/SHARE queries.  If an EvalPlanQual recheck is necessary, we jam the
appropriate row into each scan node in the rechecking plan, forcing it to emit
only that one row.  The former behavior could rescan the whole of each joined
relation for each recheck, which was terrible for performance, and what's much
worse could result in duplicated output tuples.

Also, the original implementation of EvalPlanQual could not re-use the recheck
execution tree --- it had to go through a full executor init and shutdown for
every row to be tested.  To avoid this overhead, I've associated a special
runtime Param with each LockRows or ModifyTable plan node, and arranged to
make every scan node below such a node depend on that Param.  Thus, by
signaling a change in that Param, the EPQ machinery can just rescan the
already-built test plan.

This patch also adds a prohibition on set-returning functions in the
targetlist of SELECT FOR UPDATE/SHARE.  This is needed to avoid the
duplicate-output-tuple problem.  It seems fairly reasonable since the
other restrictions on SELECT FOR UPDATE are meant to ensure that there
is a unique correspondence between source tuples and result tuples,
which an output SRF destroys as much as anything else does.
2009-10-26 02:26:45 +00:00
Tom Lane 421d7d8edb Remove no-longer-needed ExecCountSlots infrastructure. 2009-09-27 21:10:53 +00:00
Bruce Momjian d747140279 8.4 pgindent run, with new combined Linux/FreeBSD/MinGW typedef list
provided by Andrew.
2009-06-11 14:49:15 +00:00
Tom Lane 25bf7f8b9b Fix possible failures when a tuplestore switches from in-memory to on-disk
mode while callers hold pointers to in-memory tuples.  I reported this for
the case of nodeWindowAgg's primary scan tuple, but inspection of the code
shows that all of the calls in nodeWindowAgg and nodeCtescan are at risk.
For the moment, fix it with a rather brute-force approach of copying
whenever one of the at-risk callers requests a tuple.  Later we might
think of some sort of reference-count approach to reduce tuple copying.
2009-03-27 18:30:21 +00:00
Bruce Momjian 511db38ace Update copyright for 2009. 2009-01-01 17:24:05 +00:00
Tom Lane 7028c13557 Fix an oversight in two different recent patches: nodes that support SRFs
in their targetlists had better reset ps_TupFromTlist during ReScan calls.
There's no need to back-patch here since nodeAgg and nodeGroup didn't
even pretend to support SRFs in prior releases.
2008-10-23 15:29:23 +00:00
Tom Lane 44d5be0e53 Implement SQL-standard WITH clauses, including WITH RECURSIVE.
There are some unimplemented aspects: recursive queries must use UNION ALL
(should allow UNION too), and we don't have SEARCH or CYCLE clauses.
These might or might not get done for 8.4, but even without them it's a
pretty useful feature.

There are also a couple of small loose ends and definitional quibbles,
which I'll send a memo about to pgsql-hackers shortly.  But let's land
the patch now so we can get on with other development.

Yoshiyuki Asaba, with lots of help from Tatsuo Ishii and Tom Lane
2008-10-04 21:56:55 +00:00