Commit Graph

222 Commits

Author SHA1 Message Date
Michael Paquier d16773cdc8 Add macros in hash and btree AMs to get the special area of their pages
This makes the code more consistent with SpGiST, GiST and GIN, that
already use this style, and the idea is to make easier the introduction
of more sanity checks for each of these AM-specific macros.  BRIN uses a
different set of macros to get a page's type and flags, so it has no
need for something similar.

Author: Matthias van de Meent
Discussion: https://postgr.es/m/CAEze2WjE3+tGO9Fs9+iZMU+z6mMZKo54W1Zt98WKqbEUHbHOBg@mail.gmail.com
2022-04-01 13:24:50 +09:00
Peter Eisentraut 94aa7cc5f7 Add UNIQUE null treatment option
The SQL standard has been ambiguous about whether null values in
unique constraints should be considered equal or not.  Different
implementations have different behaviors.  In the SQL:202x draft, this
has been formalized by making this implementation-defined and adding
an option on unique constraint definitions UNIQUE [ NULLS [NOT]
DISTINCT ] to choose a behavior explicitly.

This patch adds this option to PostgreSQL.  The default behavior
remains UNIQUE NULLS DISTINCT.  Making this happen in the btree code
is pretty easy; most of the patch is just to carry the flag around to
all the places that need it.

The CREATE UNIQUE INDEX syntax extension is not from the standard,
it's my own invention.

I named all the internal flags, catalog columns, etc. in the negative
("nulls not distinct") so that the default PostgreSQL behavior is the
default if the flag is false.

Reviewed-by: Maxim Orlov <orlovmg@gmail.com>
Reviewed-by: Pavel Borisov <pashkin.elfe@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/84e5ee1b-387e-9a54-c326-9082674bde78@enterprisedb.com
2022-02-03 11:48:21 +01:00
Bruce Momjian 27b77ecf9f Update copyright for 2022
Backpatch-through: 10
2022-01-07 19:04:57 -05:00
Amit Kapila 0f0cfb4940 Fix parallel operations that prevent oldest xmin from advancing.
While determining xid horizons, we skip over backends that are running
Vacuum. We also ignore Create Index Concurrently, or Reindex Concurrently
for the purposes of computing Xmin for Vacuum. But we were not setting the
flags corresponding to these operations when they are performed in
parallel which was preventing Xid horizon from advancing.

The optimization related to skipping Create Index Concurrently, or Reindex
Concurrently operations was implemented in PG-14 but the fix is the same
for the Parallel Vacuum as well so back-patched till PG-13.

Author: Masahiko Sawada
Reviewed-by: Amit Kapila
Backpatch-through: 13
Discussion: https://postgr.es/m/CAD21AoCLQqgM1sXh9BrDFq0uzd3RBFKi=Vfo6cjjKODm0Onr5w@mail.gmail.com
2021-11-19 09:04:40 +05:30
Tom Lane f10f0ae420 Replace RelationOpenSmgr() with RelationGetSmgr().
The idea behind this patch is to design out bugs like the one fixed
by commit 9d523119f.  Previously, once one did RelationOpenSmgr(rel),
it was considered okay to access rel->rd_smgr directly for some
not-very-clear interval.  But since that pointer will be cleared by
relcache flushes, we had bugs arising from overreliance on a previous
RelationOpenSmgr call still being effective.

Now, very little code except that in rel.h and relcache.c should ever
touch the rd_smgr field directly.  The normal coding rule is to use
RelationGetSmgr(rel) and not expect the result to be valid for longer
than one smgr function call.  There are a couple of places where using
the function every single time seemed like overkill, but they are now
annotated with large warning comments.

Amul Sul, after an idea of mine.

Discussion: https://postgr.es/m/CANiYTQsU7yMFpQYnv=BrcRVqK_3U3mtAzAsJCaqtzsDHfsUbdQ@mail.gmail.com
2021-07-12 17:01:36 -04:00
Alvaro Herrera 5cc1cd5028
Report sort phase progress in parallel btree build
We were already reporting it, but only after the parallel workers were
finished, which is visibly much later than what happens in a serial
build.

With this change we report it when the leader starts its own sort phase
when participating in the build (the normal case).  Now this might
happen a little later than when the workers start their sorting phases,
but a) communicating the actual phase start from workers is likely to be
a hassle, and b) the sort phase start is pretty fuzzy anyway, since
sorting per se is actually initiated by tuplesort.c internally earlier
than tuplesort_performsort() is called.

Backpatch to pg12, where the progress reporting code for CREATE INDEX
went in.

Reported-by: Tomas Vondra <tomas.vondra@enterprisedb.com>
Author: Matthias van de Meent <boekewurm+postgres@gmail.com>
Reviewed-by: Greg Nancarrow <gregn4422@gmail.com>
Reviewed-by: Álvaro Herrera <alvherre@alvh.no-ip.org>
Discussion: https://postgr.es/m/1128176d-1eee-55d4-37ca-e63644422adb
2021-06-11 19:07:32 -04:00
Peter Geoghegan e5d8a99903 Use full 64-bit XIDs in deleted nbtree pages.
Otherwise we risk "leaking" deleted pages by making them non-recyclable
indefinitely.  Commit 6655a729 did the same thing for deleted pages in
GiST indexes.  That work was used as a starting point here.

Stop storing an XID indicating the oldest bpto.xact across all deleted
though unrecycled pages in nbtree metapages.  There is no longer any
reason to care about that condition/the oldest XID.  It only ever made
sense when wraparound was something _bt_vacuum_needs_cleanup() had to
consider.

The btm_oldest_btpo_xact metapage field has been repurposed and renamed.
It is now btm_last_cleanup_num_delpages, which is used to remember how
many non-recycled deleted pages remain from the last VACUUM (in practice
its value is usually the precise number of pages that were _newly
deleted_ during the specific VACUUM operation that last set the field).

The general idea behind storing btm_last_cleanup_num_delpages is to use
it to give _some_ consideration to non-recycled deleted pages inside
_bt_vacuum_needs_cleanup() -- though never too much.  We only really
need to avoid leaving a truly excessive number of deleted pages in an
unrecycled state forever.  We only do this to cover certain narrow cases
where no other factor makes VACUUM do a full scan, and yet the index
continues to grow (and so actually misses out on recycling existing
deleted pages).

These metapage changes result in a clear user-visible benefit: We no
longer trigger full index scans during VACUUM operations solely due to
the presence of only 1 or 2 known deleted (though unrecycled) blocks
from a very large index.  All that matters now is keeping the costs and
benefits in balance over time.

Fix an issue that has been around since commit 857f9c36, which added the
"skip full scan of index" mechanism (i.e. the _bt_vacuum_needs_cleanup()
logic).  The accuracy of btm_last_cleanup_num_heap_tuples accidentally
hinged upon _when_ the source value gets stored.  We now always store
btm_last_cleanup_num_heap_tuples in btvacuumcleanup().  This fixes the
issue because IndexVacuumInfo.num_heap_tuples (the source field) is
expected to accurately indicate the state of the table _after_ the
VACUUM completes inside btvacuumcleanup().

A backpatchable fix cannot easily be extracted from this commit.  A
targeted fix for the issue will follow in a later commit, though that
won't happen today.

I (pgeoghegan) have chosen to remove any mention of deleted pages in the
documentation of the vacuum_cleanup_index_scale_factor GUC/param, since
the presence of deleted (though unrecycled) pages is no longer of much
concern to users.  The vacuum_cleanup_index_scale_factor description in
the docs now seems rather unclear in any case, and it should probably be
rewritten in the near future.  Perhaps some passing mention of page
deletion will be added back at the same time.

Bump XLOG_PAGE_MAGIC due to nbtree WAL records using full XIDs now.

Author: Peter Geoghegan <pg@bowt.ie>
Reviewed-By: Masahiko Sawada <sawada.mshk@gmail.com>
Discussion: https://postgr.es/m/CAH2-WznpdHvujGUwYZ8sihX=d5u-tRYhi-F4wnV2uN2zHpMUXw@mail.gmail.com
2021-02-24 18:41:34 -08:00
Peter Eisentraut 1d71f3c83c Improve confusing variable names
The prototype calls the second argument of
pgstat_progress_update_multi_param() "index", and some callers name
their local variable that way.  But when the surrounding code deals
with index relations, this is confusing, and in at least one case
shadowed another variable that is referring to an index relation.
Adjust those call sites to have clearer local variable naming, similar
to existing callers in indexcmds.c.
2021-02-02 09:20:22 +01:00
Peter Geoghegan d168b66682 Enhance nbtree index tuple deletion.
Teach nbtree and heapam to cooperate in order to eagerly remove
duplicate tuples representing dead MVCC versions.  This is "bottom-up
deletion".  Each bottom-up deletion pass is triggered lazily in response
to a flood of versions on an nbtree leaf page.  This usually involves a
"logically unchanged index" hint (these are produced by the executor
mechanism added by commit 9dc718bd).

The immediate goal of bottom-up index deletion is to avoid "unnecessary"
page splits caused entirely by version duplicates.  It naturally has an
even more useful effect, though: it acts as a backstop against
accumulating an excessive number of index tuple versions for any given
_logical row_.  Bottom-up index deletion complements what we might now
call "top-down index deletion": index vacuuming performed by VACUUM.
Bottom-up index deletion responds to the immediate local needs of
queries, while leaving it up to autovacuum to perform infrequent clean
sweeps of the index.  The overall effect is to avoid certain
pathological performance issues related to "version churn" from UPDATEs.

The previous tableam interface used by index AMs to perform tuple
deletion (the table_compute_xid_horizon_for_tuples() function) has been
replaced with a new interface that supports certain new requirements.
Many (perhaps all) of the capabilities added to nbtree by this commit
could also be extended to other index AMs.  That is left as work for a
later commit.

Extend deletion of LP_DEAD-marked index tuples in nbtree by adding logic
to consider extra index tuples (that are not LP_DEAD-marked) for
deletion in passing.  This increases the number of index tuples deleted
significantly in many cases.  The LP_DEAD deletion process (which is now
called "simple deletion" to clearly distinguish it from bottom-up
deletion) won't usually need to visit any extra table blocks to check
these extra tuples.  We have to visit the same table blocks anyway to
generate a latestRemovedXid value (at least in the common case where the
index deletion operation's WAL record needs such a value).

Testing has shown that the "extra tuples" simple deletion enhancement
increases the number of index tuples deleted with almost any workload
that has LP_DEAD bits set in leaf pages.  That is, it almost never fails
to delete at least a few extra index tuples.  It helps most of all in
cases that happen to naturally have a lot of delete-safe tuples.  It's
not uncommon for an individual deletion operation to end up deleting an
order of magnitude more index tuples compared to the old naive approach
(e.g., custom instrumentation of the patch shows that this happens
fairly often when the regression tests are run).

Add a further enhancement that augments simple deletion and bottom-up
deletion in indexes that make use of deduplication: Teach nbtree's
_bt_delitems_delete() function to support granular TID deletion in
posting list tuples.  It is now possible to delete individual TIDs from
posting list tuples provided the TIDs have a tableam block number of a
table block that gets visited as part of the deletion process (visiting
the table block can be triggered directly or indirectly).  Setting the
LP_DEAD bit of a posting list tuple is still an all-or-nothing thing,
but that matters much less now that deletion only needs to start out
with the right _general_ idea about which index tuples are deletable.

Bump XLOG_PAGE_MAGIC because xl_btree_delete changed.

No bump in BTREE_VERSION, since there are no changes to the on-disk
representation of nbtree indexes.  Indexes built on PostgreSQL 12 or
PostgreSQL 13 will automatically benefit from bottom-up index deletion
(i.e. no reindexing required) following a pg_upgrade.  The enhancement
to simple deletion is available with all B-Tree indexes following a
pg_upgrade, no matter what PostgreSQL version the user upgrades from.

Author: Peter Geoghegan <pg@bowt.ie>
Reviewed-By: Heikki Linnakangas <hlinnaka@iki.fi>
Reviewed-By: Victor Yegorov <vyegorov@gmail.com>
Discussion: https://postgr.es/m/CAH2-Wzm+maE3apHB8NOtmM=p-DO65j2V5GzAWCOEEuy3JZgb2g@mail.gmail.com
2021-01-13 09:21:32 -08:00
Bruce Momjian ca3b37487b Update copyright for 2021
Backpatch-through: 9.5
2021-01-02 13:06:25 -05:00
Noah Misch f90e80b913 Reproduce debug_query_string==NULL on parallel workers.
Certain background workers initiate parallel queries while
debug_query_string==NULL, at which point they attempted strlen(NULL) and
died to SIGSEGV.  Older debug_query_string observers allow NULL, so do
likewise in these newer ones.  Back-patch to v11, where commit
7de4a1bcc5 introduced the first of these.

Discussion: https://postgr.es/m/20201014022636.GA1962668@rfd.leadboat.com
2020-10-31 08:43:28 -07:00
Peter Geoghegan 5da8bf8bbb Avoid CREATE INDEX unique index deduplication.
There is no advantage to attempting deduplication for a unique index
during CREATE INDEX, since there cannot possibly be any duplicates.
Doing so wastes cycles due to unnecessary copying.  Make sure that we
avoid it consistently.

We already avoided unique index deduplication in the case where there
were some spool2 tuples to merge.  That didn't account for the fact that
spool2 is removed early/unset in the common case where it has no tuples
that need to be merged (i.e. it failed to account for the "spool2 turns
out to be unnecessary" optimization in _bt_spools_heapscan()).

Oversight in commit 0d861bbb, which added nbtree deduplication

Backpatch: 13-, where nbtree deduplication was introduced.
2020-07-17 09:50:48 -07:00
Peter Geoghegan 28c16f4947 Remove unnecessary PageIsEmpty() nbtree build check.
nbtree index builds cannot write out an empty page.  That would mean
that there was no way to create a pivot tuple pointing to the page one
level up, since _bt_truncate() generates one based on page's firstright
tuple.

Replace the unnecessary PageIsEmpty() check with an assertion that
checks that the page has space for at least two line pointers (the
would-be high key line pointer, plus at least one valid "data item"
tuple line pointer).

The PageIsEmpty() check was added by commit 5d9f146c over 20 years ago.
It looks like it has always been unnecessary.
2020-07-06 13:47:29 -07:00
Peter Geoghegan be14f884d5 Fix deduplication "single value" strategy bug.
It was possible for deduplication's single value strategy to mistakenly
believe that a very small duplicate tuple counts as one of the six large
tuples that it aims to leave behind after the page finally splits.  This
could cause slightly suboptimal space utilization with very low
cardinality indexes, though only under fairly narrow conditions.

To fix, be particular about what kind of tuple counts as a
maxpostingsize-capped tuple.  This avoids confusion in the event of a
small tuple that gets "wedged" between two large tuples, where all
tuples on the page are duplicates of the same value.

Discussion: https://postgr.es/m/CAH2-Wz=Y+sgSFc-O3LpiZX-POx2bC+okec2KafERHuzdVa7-rQ@mail.gmail.com
Backpatch: 13-, where deduplication was introduced (by commit 0d861bbb)
2020-06-19 08:57:24 -07:00
Peter Geoghegan bc3087b626 Harmonize nbtree page split point code.
An nbtree split point can be thought of as a point between two adjoining
tuples from an imaginary version of the page being split that includes
the incoming/new item (in addition to the items that really are on the
page).  These adjoining tuples are called the lastleft and firstright
tuples.

The variables that represent split points contained a field called
firstright, which is an offset number of the first data item from the
original page that goes on the new right page.  The corresponding tuple
from origpage was usually the same thing as the actual firstright tuple,
but not always: the firstright tuple is sometimes the new/incoming item
instead.  This situation seems unnecessarily confusing.

Make things clearer by renaming the origpage offset returned by
_bt_findsplitloc() to "firstrightoff".  We now have a firstright tuple
and a firstrightoff offset number which are comparable to the
newitem/lastleft tuples and the newitemoff/lastleftoff offset numbers
respectively.  Also make sure that we are consistent about how we
describe nbtree page split point state.

Push the responsibility for dealing with pg_upgrade'd !heapkeyspace
indexes down to lower level code, relieving _bt_split() from dealing
with it directly.  This means that we always have a palloc'd left page
high key on the leaf level, no matter what.  This enables simplifying
some of the code (and code comments) within _bt_split().

Finally, restructure the page split code to make it clearer why suffix
truncation (which only takes place during leaf page splits) is
completely different to the first data item truncation that takes place
during internal page splits.  Tuples are marked as having fewer
attributes stored in both cases, and the firstright tuple is truncated
in both cases, so it's easy to imagine somebody missing the distinction.
2020-04-13 16:39:55 -07:00
Amit Kapila 5c71362174 Allow parallel create index to accumulate buffer usage stats.
Currently, we don't account for buffer usage incurred by parallel workers
for parallel create index.  This commit allows each worker to record the
buffer usage stats and leader backend to accumulate that stats at the
end of the operation.  This will allow pg_stat_statements to display
correct buffer usage stats for (parallel) create index command.

Reported-by: Julien Rouhaud
Author: Sawada Masahiko
Reviewed-by: Dilip Kumar, Julien Rouhaud and Amit Kapila
Backpatch-through: 11, where this was introduced
Discussion: https://postgr.es/m/20200328151721.GB12854@nol
2020-04-09 09:49:30 +05:30
Peter Geoghegan 60cbd7751c Remove nbtree BTreeTupleSetAltHeapTID() function.
Since heap TID is supposed to be just another key attribute to the
implementation, it doesn't make much sense to have separate
BTreeTupleSetNAtts() and BTreeTupleSetAltHeapTID() functions.  Merge the
two functions together.  This slightly simplifies _bt_truncate().
2020-04-07 15:56:52 -07:00
Noah Misch c6b92041d3 Skip WAL for new relfilenodes, under wal_level=minimal.
Until now, only selected bulk operations (e.g. COPY) did this.  If a
given relfilenode received both a WAL-skipping COPY and a WAL-logged
operation (e.g. INSERT), recovery could lose tuples from the COPY.  See
src/backend/access/transam/README section "Skipping WAL for New
RelFileNode" for the new coding rules.  Maintainers of table access
methods should examine that section.

To maintain data durability, just before commit, we choose between an
fsync of the relfilenode and copying its contents to WAL.  A new GUC,
wal_skip_threshold, guides that choice.  If this change slows a workload
that creates small, permanent relfilenodes under wal_level=minimal, try
adjusting wal_skip_threshold.  Users setting a timeout on COMMIT may
need to adjust that timeout, and log_min_duration_statement analysis
will reflect time consumption moving to COMMIT from commands like COPY.

Internally, this requires a reliable determination of whether
RollbackAndReleaseCurrentSubTransaction() would unlink a relation's
current relfilenode.  Introduce rd_firstRelfilenodeSubid.  Amend the
specification of rd_createSubid such that the field is zero when a new
rel has an old rd_node.  Make relcache.c retain entries for certain
dropped relations until end of transaction.

Bump XLOG_PAGE_MAGIC, since this introduces XLOG_GIST_ASSIGN_LSN.
Future servers accept older WAL, so this bump is discretionary.

Kyotaro Horiguchi, reviewed (in earlier, similar versions) by Robert
Haas.  Heikki Linnakangas and Michael Paquier implemented earlier
designs that materially clarified the problem.  Reviewed, in earlier
designs, by Andrew Dunstan, Andres Freund, Alvaro Herrera, Tom Lane,
Fujii Masao, and Simon Riggs.  Reported by Martijn van Oosterhout.

Discussion: https://postgr.es/m/20150702220524.GA9392@svana.org
2020-04-04 12:25:34 -07:00
Amit Kapila df3b181499 Add infrastructure to track WAL usage.
This allows gathering the WAL generation statistics for each statement
execution.  The three statistics that we collect are the number of WAL
records, the number of full page writes and the amount of WAL bytes
generated.

This helps the users who have write-intensive workload to see the impact
of I/O due to WAL.  This further enables us to see approximately what
percentage of overall WAL is due to full page writes.

In the future, we can extend this functionality to allow us to compute the
the exact amount of WAL data due to full page writes.

This patch in itself is just an infrastructure to compute WAL usage data.
The upcoming patches will expose this data via explain, auto_explain,
pg_stat_statements and verbose (auto)vacuum output.

Author: Kirill Bychik, Julien Rouhaud
Reviewed-by: Dilip Kumar, Fujii Masao and Amit Kapila
Discussion: https://postgr.es/m/CAB-hujrP8ZfUkvL5OYETipQwA=e3n7oqHFU=4ZLxWS_Cza3kQQ@mail.gmail.com
2020-04-04 10:02:08 +05:30
Peter Geoghegan 7dbe290da4 Add CREATE INDEX deduplication assertions.
Add two assertions that verify the assumptions about posting list tuple
space accounting and suffix truncation made within nbtsort.c.
2020-03-31 14:38:39 -07:00
Noah Misch de9396326e Revert "Skip WAL for new relfilenodes, under wal_level=minimal."
This reverts commit cb2fd7eac2.  Per
numerous buildfarm members, it was incompatible with parallel query, and
a test case assumed LP64.  Back-patch to 9.5 (all supported versions).

Discussion: https://postgr.es/m/20200321224920.GB1763544@rfd.leadboat.com
2020-03-22 09:24:09 -07:00
Noah Misch cb2fd7eac2 Skip WAL for new relfilenodes, under wal_level=minimal.
Until now, only selected bulk operations (e.g. COPY) did this.  If a
given relfilenode received both a WAL-skipping COPY and a WAL-logged
operation (e.g. INSERT), recovery could lose tuples from the COPY.  See
src/backend/access/transam/README section "Skipping WAL for New
RelFileNode" for the new coding rules.  Maintainers of table access
methods should examine that section.

To maintain data durability, just before commit, we choose between an
fsync of the relfilenode and copying its contents to WAL.  A new GUC,
wal_skip_threshold, guides that choice.  If this change slows a workload
that creates small, permanent relfilenodes under wal_level=minimal, try
adjusting wal_skip_threshold.  Users setting a timeout on COMMIT may
need to adjust that timeout, and log_min_duration_statement analysis
will reflect time consumption moving to COMMIT from commands like COPY.

Internally, this requires a reliable determination of whether
RollbackAndReleaseCurrentSubTransaction() would unlink a relation's
current relfilenode.  Introduce rd_firstRelfilenodeSubid.  Amend the
specification of rd_createSubid such that the field is zero when a new
rel has an old rd_node.  Make relcache.c retain entries for certain
dropped relations until end of transaction.

Back-patch to 9.5 (all supported versions).  This introduces a new WAL
record type, XLOG_GIST_ASSIGN_LSN, without bumping XLOG_PAGE_MAGIC.  As
always, update standby systems before master systems.  This changes
sizeof(RelationData) and sizeof(IndexStmt), breaking binary
compatibility for affected extensions.  (The most recent commit to
affect the same class of extensions was
089e4d405d0f3b94c74a2c6a54357a84a681754b.)

Kyotaro Horiguchi, reviewed (in earlier, similar versions) by Robert
Haas.  Heikki Linnakangas and Michael Paquier implemented earlier
designs that materially clarified the problem.  Reviewed, in earlier
designs, by Andrew Dunstan, Andres Freund, Alvaro Herrera, Tom Lane,
Fujii Masao, and Simon Riggs.  Reported by Martijn van Oosterhout.

Discussion: https://postgr.es/m/20150702220524.GA9392@svana.org
2020-03-21 09:38:26 -07:00
Peter Geoghegan 0d861bbb70 Add deduplication to nbtree.
Deduplication reduces the storage overhead of duplicates in indexes that
use the standard nbtree index access method.  The deduplication process
is applied lazily, after the point where opportunistic deletion of
LP_DEAD-marked index tuples occurs.  Deduplication is only applied at
the point where a leaf page split would otherwise be required.  New
posting list tuples are formed by merging together existing duplicate
tuples.  The physical representation of the items on an nbtree leaf page
is made more space efficient by deduplication, but the logical contents
of the page are not changed.  Even unique indexes make use of
deduplication as a way of controlling bloat from duplicates whose TIDs
point to different versions of the same logical table row.

The lazy approach taken by nbtree has significant advantages over a GIN
style eager approach.  Most individual inserts of index tuples have
exactly the same overhead as before.  The extra overhead of
deduplication is amortized across insertions, just like the overhead of
page splits.  The key space of indexes works in the same way as it has
since commit dd299df8 (the commit that made heap TID a tiebreaker
column).

Testing has shown that nbtree deduplication can generally make indexes
with about 10 or 15 tuples for each distinct key value about 2.5X - 4X
smaller, even with single column integer indexes (e.g., an index on a
referencing column that accompanies a foreign key).  The final size of
single column nbtree indexes comes close to the final size of a similar
contrib/btree_gin index, at least in cases where GIN's posting list
compression isn't very effective.  This can significantly improve
transaction throughput, and significantly reduce the cost of vacuuming
indexes.

A new index storage parameter (deduplicate_items) controls the use of
deduplication.  The default setting is 'on', so all new B-Tree indexes
automatically use deduplication where possible.  This decision will be
reviewed at the end of the Postgres 13 beta period.

There is a regression of approximately 2% of transaction throughput with
synthetic workloads that consist of append-only inserts into a table
with several non-unique indexes, where all indexes have few or no
repeated values.  The underlying issue is that cycles are wasted on
unsuccessful attempts at deduplicating items in non-unique indexes.
There doesn't seem to be a way around it short of disabling
deduplication entirely.  Note that deduplication of items in unique
indexes is fairly well targeted in general, which avoids the problem
there (we can use a special heuristic to trigger deduplication passes in
unique indexes, since we're specifically targeting "version bloat").

Bump XLOG_PAGE_MAGIC because xl_btree_vacuum changed.

No bump in BTREE_VERSION, since the representation of posting list
tuples works in a way that's backwards compatible with version 4 indexes
(i.e. indexes built on PostgreSQL 12).  However, users must still
REINDEX a pg_upgrade'd index to use deduplication, regardless of the
Postgres version they've upgraded from.  This is the only way to set the
new nbtree metapage flag indicating that deduplication is generally
safe.

Author: Anastasia Lubennikova, Peter Geoghegan
Reviewed-By: Peter Geoghegan, Heikki Linnakangas
Discussion:
    https://postgr.es/m/55E4051B.7020209@postgrespro.ru
    https://postgr.es/m/4ab6e2db-bcee-f4cf-0916-3a06e6ccbb55@postgrespro.ru
2020-02-26 13:05:30 -08:00
Thomas Munro d9fe702a2c Handle lack of DSM slots in parallel btree build, take 2.
Commit 74618e77 added a new check intended to fix a bug, but put
it in the wrong place so that parallel btree build was always
disabled.  Do the check after we've actually tried to create
a DSM segment.  Back-patch to 11, like the earlier commit.

Reviewed-by: Peter Geoghegan
Discussion: https://postgr.es/m/CAH2-WzmDABkJzrNnvf%2BOULK-_A_j9gkYg_Dz-H62jzNv4eKQTw%40mail.gmail.com
2020-02-05 12:27:00 +13:00
Thomas Munro 74618e77b4 Handle lack of DSM slots in parallel btree build.
If no DSM slots are available, a ParallelContext can still be
created, but its seg pointer is NULL.  Teach parallel btree build
to cope with that by falling back to a regular non-parallel build,
to avoid crashing with a segmentation fault.

Back-patch to 11, where parallel CREATE INDEX landed.

Reported-by: Nicola Contu
Reviewed-by: Peter Geoghegan
Discussion: https://postgr.es/m/CA%2BhUKGJgJEBnkuODBVomyK3MWFvDBbMVj%3Dgdt6DnRPU-5sQ6UQ%40mail.gmail.com
2020-01-31 10:25:34 +13:00
Bruce Momjian 7559d8ebfa Update copyrights for 2020
Backpatch-through: update all files in master, backpatch legal files through 9.4
2020-01-01 12:21:45 -05:00
Peter Geoghegan fcf3b6917b Rename nbtree tuple macros.
Rename two function-style macros, removing the word "inner".  This makes
things more consistent.
2019-12-16 17:49:45 -08:00
Michael Paquier 4cb658af70 Refactor reloption handling for index AMs in-core
This reworks the reloption parsing and build of a couple of index AMs by
creating new structures for each index AM's options.  This split was
already done for BRIN, GIN and GiST (which actually has a fillfactor
parameter), but not for hash, B-tree and SPGiST which relied on
StdRdOptions due to an overlap with the default option set.

This saves a couple of bytes for rd_options in each relcache entry with
indexes making use of relation options, and brings more consistency
between all index AMs.  While on it, add a couple of AssertMacro() calls
to make sure that utility macros to grab values of reloptions are used
with the expected index AM.

Author: Nikolay Shaplov
Reviewed-by: Amit Langote, Michael Paquier, Álvaro Herrera, Dent John
Discussion: https://postgr.es/m/4127670.gFlpRb6XCm@x200m
2019-11-25 09:40:53 +09:00
Peter Geoghegan 2110f71696 nbtree: Tweak _bt_pgaddtup() comments.
Make it clear that _bt_pgaddtup() truncates the first data item on an
internal page because its key is supposed to be treated as minus
infinity within _bt_compare().
2019-11-18 13:04:53 -08:00
Andres Freund aae50236e4 Pass ItemPointer not HeapTuple to IndexBuildCallback.
Not all AMs use HeapTuples internally, making it inconvenient to pass
a HeapTuple. As the index callbacks really only need the TID, not the
full tuple, modify callback to only take ItemPointer.

Author: Ashwin Agrawal
Reviewed-By: Andres Freund
Discussion: https://postgr.es/m/CALfoeis6=8ehuR=VNtHvj3z16cYfCwPdTcpaxU+sfSUJ5QgR3g@mail.gmail.com
2019-11-08 11:49:29 -08:00
Peter Geoghegan e86c8ef243 Use "low key" terminology in nbtsort.c.
nbtree index builds once stashed the "minimum key" for a page, which was
used as the basis of the pivot tuple that gets placed in the next level
up (i.e. the tuple that stores the downlink to the page in question).
It doesn't quite work that way anymore, so the "minimum key" terminology
now seems misleading (these days the minimum key is actually a straight
copy of the high key from the left sibling, which is a distinct thing in
subtle but important ways).  Rename this concept to "low key".  This
name is a lot clearer given that there is now a sharp distinction
between pivot and non-pivot tuples.  Also remove comments that describe
obsolete details about how the minimum key concept used to work.

Rather than generating the minus infinity item for the leftmost page on
a level by copying the new item and truncating that copy, simply
allocate a small buffer.  The old approach confusingly created the
impression that the new item had some kind of significance.  This was
another artifact of how things used to work before commits 8224de4f and
dd299df8.
2019-11-07 17:12:09 -08:00
Peter Geoghegan 091bd6befc Update comments on nbtree stack struct.
Adjust the struct comment that describes how page splits use their
descent stack to cascade up the tree from the leaf level.

In passing, fix up some unrelated nbtree comments that had typos or were
obsolete.
2019-08-21 13:50:27 -07:00
Peter Geoghegan af0ba49809 Use PageIndexTupleOverwrite() within nbtree.
Use the PageIndexTupleOverwrite() bufpage.c routine within nbtree
instead of deleting a tuple and re-inserting its replacement.  This
makes the intent of affected code slightly clearer.  It also makes
CREATE INDEX slightly faster, since there is no longer a need to shift
every leaf page's line pointer array back and forth during index builds.

Author: Peter Geoghegan, Anastasia Lubennikova
Reviewed-By: Anastasia Lubennikova
Discussion: https://postgr.es/m/CAH2-Wz=Zk=B9+Vwm376WuO7YTjFc2SSskifQm4Nme3RRRPtOSQ@mail.gmail.com
2019-08-13 11:54:26 -07:00
Michael Paquier 8548ddc61b Fix inconsistencies and typos in the tree, take 9
This addresses more issues with code comments, variable names and
unreferenced variables.

Author: Alexander Lakhin
Discussion: https://postgr.es/m/7ab243e0-116d-3e44-d120-76b3df7abefd@gmail.com
2019-08-05 12:14:58 +09:00
Tom Lane 8255c7a5ee Phase 2 pgindent run for v12.
Switch to 2.1 version of pg_bsd_indent.  This formats
multiline function declarations "correctly", that is with
additional lines of parameter declarations indented to match
where the first line's left parenthesis is.

Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com
2019-05-22 13:04:48 -04:00
Tom Lane be76af171c Initial pgindent run for v12.
This is still using the 2.0 version of pg_bsd_indent.
I thought it would be good to commit this separately,
so as to document the differences between 2.0 and 2.1 behavior.

Discussion: https://postgr.es/m/16296.1558103386@sss.pgh.pa.us
2019-05-22 12:55:34 -04:00
Peter Geoghegan d65b5ccad6 Correct obsolete nbtsort.c minimum key comment.
It is no longer possible under any circumstances for nbtree code to
reconstruct a strict lower bound key (parent page's pivot tuple key) for
a right sibling page by retrieving the first item in the right sibling
page.
2019-05-07 21:42:12 -07:00
Peter Geoghegan 6dd86c269d Fix nbtsort.c's page space accounting.
Commit dd299df818, which made heap TID a tiebreaker nbtree index
column, introduced new rules on page space management to make suffix
truncation safe.  In general, suffix truncation needs to have a small
amount of extra space available on the new left page when splitting a
leaf page.  This is needed in case it turns out that truncation cannot
even "truncate away the heap TID column", resulting in a
larger-than-firstright leaf high key with an explicit heap TID
representation.

Despite all this, CREATE INDEX/nbtsort.c did not account for the
possible need for extra heap TID space on leaf pages when deciding
whether or not a new item could fit on current page.  This could lead to
"failed to add item to the index page" errors when CREATE
INDEX/nbtsort.c tried to finish off a leaf page that lacked space for a
larger-than-firstright leaf high key (it only had space for firstright
tuple, which was just short of what was needed following "truncation").

Several conditions needed to be met all at once for CREATE INDEX to
fail.  The problem was in the hard limit on what will fit on a page,
which tends to be masked by the soft fillfactor-wise limit.  The easiest
way to recreate the problem seems to be a CREATE INDEX on a low
cardinality text column, with tuples that are of non-uniform width,
using a fillfactor of 100.

To fix, bring nbtsort.c in line with nbtsplitloc.c, which already
pessimistically assumes that all leaf page splits will have high keys
that have a heap TID appended.

Reported-By: Andreas Joseph Krogh
Discussion: https://postgr.es/m/VisenaEmail.c5.3ee7fe277d514162.16a6d785bea@tc7-visena
2019-05-02 12:33:35 -07:00
Alvaro Herrera 9a83afecb7 Widen tuple counter variables from long to int64
Mistake in ab0dfc961b6a; progress reporting would have wrapped around
for indexes created with more than 2^31 tuples.

Reported-by: Peter Geoghegan
Discussion: https://postgr.es/m/CAH2-Wz=WbNxc5ob5NJ9yqo2RMJ0q4HXDS30GVCobeCvC9A1L9A@mail.gmail.com
2019-04-30 10:27:38 -04:00
Alvaro Herrera ab0dfc961b Report progress of CREATE INDEX operations
This uses the progress reporting infrastructure added by c16dc1aca5,
adding support for CREATE INDEX and CREATE INDEX CONCURRENTLY.

There are two pieces to this: one is index-AM-agnostic, and the other is
AM-specific.  The latter is fairly elaborate for btrees, including
reportage for parallel index builds and the separate phases that btree
index creation uses; other index AMs, which are much simpler in their
building procedures, have simplistic reporting only, but that seems
sufficient, at least for non-concurrent builds.

The index-AM-agnostic part is fairly complete, providing insight into
the CONCURRENTLY wait phases as well as block-based progress during the
index validation table scan.  (The index validation index scan requires
patching each AM, which has not been included here.)

Reviewers: Rahila Syed, Pavan Deolasee, Tatsuro Yamada
Discussion: https://postgr.es/m/20181220220022.mg63bhk26zdpvmcj@alvherre.pgsql
2019-04-02 15:18:08 -03:00
Peter Geoghegan 9c7fb7e6d8 Tweak some nbtree-related code comments. 2019-03-29 12:29:05 -07:00
Andres Freund 2a96909a4a tableam: Support for an index build's initial table scan(s).
To support building indexes over tables of different AMs, the scans to
do so need to be routed through the table AM.  While moving a fair
amount of code, nearly all the changes are just moving code to below a
callback.

Currently the range based interface wouldn't make much sense for non
block based table AMs. But that seems aceptable for now.

Author: Andres Freund
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-03-27 19:59:06 -07:00
Andres Freund 71bdc99d0d tableam: Add helper for indexes to check if a corresponding table tuples exist.
This is, likely exclusively, useful to verify that conflicts detected
in a unique index are with live tuples, rather than dead ones.

Author: Andres Freund
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-03-25 16:52:55 -07:00
Peter Geoghegan dd299df818 Make heap TID a tiebreaker nbtree index column.
Make nbtree treat all index tuples as having a heap TID attribute.
Index searches can distinguish duplicates by heap TID, since heap TID is
always guaranteed to be unique.  This general approach has numerous
benefits for performance, and is prerequisite to teaching VACUUM to
perform "retail index tuple deletion".

Naively adding a new attribute to every pivot tuple has unacceptable
overhead (it bloats internal pages), so suffix truncation of pivot
tuples is added.  This will usually truncate away the "extra" heap TID
attribute from pivot tuples during a leaf page split, and may also
truncate away additional user attributes.  This can increase fan-out,
especially in a multi-column index.  Truncation can only occur at the
attribute granularity, which isn't particularly effective, but works
well enough for now.  A future patch may add support for truncating
"within" text attributes by generating truncated key values using new
opclass infrastructure.

Only new indexes (BTREE_VERSION 4 indexes) will have insertions that
treat heap TID as a tiebreaker attribute, or will have pivot tuples
undergo suffix truncation during a leaf page split (on-disk
compatibility with versions 2 and 3 is preserved).  Upgrades to version
4 cannot be performed on-the-fly, unlike upgrades from version 2 to
version 3.  contrib/amcheck continues to work with version 2 and 3
indexes, while also enforcing stricter invariants when verifying version
4 indexes.  These stricter invariants are the same invariants described
by "3.1.12 Sequencing" from the Lehman and Yao paper.

A later patch will enhance the logic used by nbtree to pick a split
point.  This patch is likely to negatively impact performance without
smarter choices around the precise point to split leaf pages at.  Making
these two mostly-distinct sets of enhancements into distinct commits
seems like it might clarify their design, even though neither commit is
particularly useful on its own.

The maximum allowed size of new tuples is reduced by an amount equal to
the space required to store an extra MAXALIGN()'d TID in a new high key
during leaf page splits.  The user-facing definition of the "1/3 of a
page" restriction is already imprecise, and so does not need to be
revised.  However, there should be a compatibility note in the v12
release notes.

Author: Peter Geoghegan
Reviewed-By: Heikki Linnakangas, Alexander Korotkov
Discussion: https://postgr.es/m/CAH2-WzkVb0Kom=R+88fDFb=JSxZMFvbHVC6Mn9LJ2n=X=kS-Uw@mail.gmail.com
2019-03-20 10:04:01 -07:00
Peter Geoghegan e5adcb789d Refactor nbtree insertion scankeys.
Use dedicated struct to represent nbtree insertion scan keys.  Having a
dedicated struct makes the difference between search type scankeys and
insertion scankeys a lot clearer, and simplifies the signature of
several related functions.  This is based on a suggestion by Andrey
Lepikhov.

Streamline how unique index insertions cache binary search progress.
Cache the state of in-progress binary searches within _bt_check_unique()
for later instead of having callers avoid repeating the binary search in
an ad-hoc manner.  This makes it easy to add a new optimization:
_bt_check_unique() now falls out of its loop immediately in the common
case where it's already clear that there couldn't possibly be a
duplicate.

The new _bt_check_unique() scheme makes it a lot easier to manage cached
binary search effort afterwards, from within _bt_findinsertloc().  This
is needed for the upcoming patch to make nbtree tuples unique by
treating heap TID as a final tiebreaker column.  Unique key binary
searches need to restore lower and upper bounds.  They cannot simply
continue to use the >= lower bound as the offset to insert at, because
the heap TID tiebreaker column must be used in comparisons for the
restored binary search (unlike the original _bt_check_unique() binary
search, where scankey's heap TID column must be omitted).

Author: Peter Geoghegan, Heikki Linnakangas
Reviewed-By: Heikki Linnakangas, Andrey Lepikhov
Discussion: https://postgr.es/m/CAH2-WzmE6AhUdk9NdWBf4K3HjWXZBX3+umC7mH7+WDrKcRtsOw@mail.gmail.com
2019-03-20 09:30:57 -07:00
Thomas Munro bb16aba50c Enable parallel query with SERIALIZABLE isolation.
Previously, the SERIALIZABLE isolation level prevented parallel query
from being used.  Allow the two features to be used together by
sharing the leader's SERIALIZABLEXACT with parallel workers.

An extra per-SERIALIZABLEXACT LWLock is introduced to make it safe to
share, and new logic is introduced to coordinate the early release
of the SERIALIZABLEXACT required for the SXACT_FLAG_RO_SAFE
optimization, as follows:

The first backend to observe the SXACT_FLAG_RO_SAFE flag (set by
some other transaction) will 'partially release' the SERIALIZABLEXACT,
meaning that the conflicts and locks it holds are released, but the
SERIALIZABLEXACT itself will remain active because other backends
might still have a pointer to it.

Whenever any backend notices the SXACT_FLAG_RO_SAFE flag, it clears
its own MySerializableXact variable and frees local resources so that
it can skip SSI checks for the rest of the transaction.  In the
special case of the leader process, it transfers the SERIALIZABLEXACT
to a new variable SavedSerializableXact, so that it can be completely
released at the end of the transaction after all workers have exited.

Remove the serializable_okay flag added to CreateParallelContext() by
commit 9da0cc35, because it's now redundant.

Author: Thomas Munro
Reviewed-by: Haribabu Kommi, Robert Haas, Masahiko Sawada, Kevin Grittner
Discussion: https://postgr.es/m/CAEepm=0gXGYhtrVDWOTHS8SQQy_=S9xo+8oCxGLWZAOoeJ=yzQ@mail.gmail.com
2019-03-15 17:47:04 +13:00
Andres Freund 8cacea7a72 Ensure sufficient alignment for ParallelTableScanDescData in BTShared.
Previously ParallelTableScanDescData was just a member in BTShared,
but after c2fe139c2 that doesn't guarantee sufficient alignment as
specific AMs might (are likely to) need atomic variables in the
struct.

One might think that MAXALIGNing would be sufficient, but as a
comment in shm_toc_allocate() explains, that's not enough. For now,
copy the hack described there.

For parallel sequential scans no such change is needed, as its
allocations go through shm_toc_allocate().

An alternative approach would have been to allocate the parallel scan
descriptor in a separate TOC entry, but there seems little benefit in
doing so.

Per buildfarm member dromedary.

Author: Andres Freund
Discussion: https://postgr.es/m/20190311203126.ty5gbfz42gjbm6i6@alap3.anarazel.de
2019-03-11 14:26:43 -07:00
Andres Freund c2fe139c20 tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:

1) Heap scans need to be generalized into table scans. Do this by
   introducing TableScanDesc, which will be the "base class" for
   individual AMs. This contains the AM independent fields from
   HeapScanDesc.

   The previous heap_{beginscan,rescan,endscan} et al. have been
   replaced with a table_ version.

   There's no direct replacement for heap_getnext(), as that returned
   a HeapTuple, which is undesirable for a other AMs. Instead there's
   table_scan_getnextslot().  But note that heap_getnext() lives on,
   it's still used widely to access catalog tables.

   This is achieved by new scan_begin, scan_end, scan_rescan,
   scan_getnextslot callbacks.

2) The portion of parallel scans that's shared between backends need
   to be able to do so without the user doing per-AM work. To achieve
   that new parallelscan_{estimate, initialize, reinitialize}
   callbacks are introduced, which operate on a new
   ParallelTableScanDesc, which again can be subclassed by AMs.

   As it is likely that several AMs are going to be block oriented,
   block oriented callbacks that can be shared between such AMs are
   provided and used by heap. table_block_parallelscan_{estimate,
   intiialize, reinitialize} as callbacks, and
   table_block_parallelscan_{nextpage, init} for use in AMs. These
   operate on a ParallelBlockTableScanDesc.

3) Index scans need to be able to access tables to return a tuple, and
   there needs to be state across individual accesses to the heap to
   store state like buffers. That's now handled by introducing a
   sort-of-scan IndexFetchTable, which again is intended to be
   subclassed by individual AMs (for heap IndexFetchHeap).

   The relevant callbacks for an AM are index_fetch_{end, begin,
   reset} to create the necessary state, and index_fetch_tuple to
   retrieve an indexed tuple.  Note that index_fetch_tuple
   implementations need to be smarter than just blindly fetching the
   tuples for AMs that have optimizations similar to heap's HOT - the
   currently alive tuple in the update chain needs to be fetched if
   appropriate.

   Similar to table_scan_getnextslot(), it's undesirable to continue
   to return HeapTuples. Thus index_fetch_heap (might want to rename
   that later) now accepts a slot as an argument. Core code doesn't
   have a lot of call sites performing index scans without going
   through the systable_* API (in contrast to loads of heap_getnext
   calls and working directly with HeapTuples).

   Index scans now store the result of a search in
   IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
   target is not generally a HeapTuple anymore that seems cleaner.

To be able to sensible adapt code to use the above, two further
callbacks have been introduced:

a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
   slots capable of holding a tuple of the AMs
   type. table_slot_callbacks() and table_slot_create() are based
   upon that, but have additional logic to deal with views, foreign
   tables, etc.

   While this change could have been done separately, nearly all the
   call sites that needed to be adapted for the rest of this commit
   also would have been needed to be adapted for
   table_slot_callbacks(), making separation not worthwhile.

b) tuple_satisfies_snapshot checks whether the tuple in a slot is
   currently visible according to a snapshot. That's required as a few
   places now don't have a buffer + HeapTuple around, but a
   slot (which in heap's case internally has that information).

Additionally a few infrastructure changes were needed:

I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
   internally uses a slot to keep track of tuples. While
   systable_getnext() still returns HeapTuples, and will so for the
   foreseeable future, the index API (see 1) above) now only deals with
   slots.

The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.

Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
    https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
    https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
2019-03-11 12:46:41 -07:00
Andres Freund b7eda3e0e3 Move generic snapshot related code from tqual.h to snapmgr.h.
The code in tqual.c is largely heap specific. Due to the upcoming
pluggable storage work, it therefore makes sense to move it into
access/heap/ (as the file's header notes, the tqual name isn't very
good).

But the various statically allocated snapshot and snapshot
initialization functions are now (see previous commit) generic and do
not depend on functions declared in tqual.h anymore. Therefore move.
Also move XidInMVCCSnapshot as that's useful for future AMs, and
already used outside of tqual.c.

Author: Andres Freund
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-01-21 17:06:41 -08:00
Andres Freund 63746189b2 Change snapshot type to be determined by enum rather than callback.
This is in preparation for allowing the same snapshot be used for
different table AMs. With the current callback based approach we would
need one callback for each supported AM, which clearly would not be
extensible.  Thus add a new Snapshot->snapshot_type field, and move
the dispatch into HeapTupleSatisfiesVisibility() (which is now a
function). Later work will then dispatch calls to
HeapTupleSatisfiesVisibility() and other AMs visibility functions
depending on the type of the table.  The central SnapshotType enum
also seems like a good location to centralize documentation about the
intended behaviour of various types of snapshots.

As tqual.h isn't included by bufmgr.h any more (as HeapTupleSatisfies*
isn't referenced by TestForOldSnapshot() anymore) a few files now need
to include it directly.

Author: Andres Freund, loosely based on earlier work by Haribabu Kommi
Discussion:
    https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
    https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
2019-01-21 17:03:15 -08:00