Commit Graph

440 Commits

Author SHA1 Message Date
Peter Eisentraut 251154bebe Remove T_Join and T_Plan
These are abstract node types that don't need to have a node tag
defined.

Discussion: https://www.postgresql.org/message-id/2592455.1657140387%40sss.pgh.pa.us
2022-07-08 10:40:44 +02:00
Tom Lane 55b8ac8172 Fix wrong field order in _readMergeWhenClause().
We hadn't noticed this because it's dead code: there is no
situation where we read raw parse trees from text format.
So maybe the right fix is to remove the function altogether,
but I'll forbear for now; it's not the only dead code in
readfuncs.c, I think.

Noted while comparing existing code to the results of
Peter's auto-generation script.
2022-07-06 17:26:42 -04:00
Tom Lane 3ab9a63cb6 Rename JsonIsPredicate.value_type, fix JSON backend/nodes/ infrastructure.
I started out with the intention to rename value_type to item_type to
avoid a collision with a typedef name that appears on some platforms.

Along the way, I noticed that the adjacent field "format" was not being
correctly handled by the backend/nodes/ infrastructure functions:
copyfuncs.c erroneously treated it as a scalar, while equalfuncs,
outfuncs, and readfuncs omitted handling it at all.  This looks like
it might be cosmetic at the moment because the field is always NULL
after parse analysis; but that's likely a bug in itself, and the code's
certainly not very future-proof.  Let's fix it while we can still do so
without forcing an initdb on beta testers.

Further study found a few other inconsistencies in the backend/nodes/
infrastructure for the recently-added JSON node types, so fix those too.

catversion bumped because of potential change in stored rules.

Discussion: https://postgr.es/m/526703.1652385613@sss.pgh.pa.us
2022-05-13 11:40:08 -04:00
Peter Eisentraut 51e8179405 Make node output prefix match node structure name
as done in e581360696
2022-04-12 16:18:01 +02:00
David Rowley 9d9c02ccd1 Teach planner and executor about monotonic window funcs
Window functions such as row_number() always return a value higher than
the previously returned value for tuples in any given window partition.

Traditionally queries such as;

SELECT * FROM (
   SELECT *, row_number() over (order by c) rn
   FROM t
) t WHERE rn <= 10;

were executed fairly inefficiently.  Neither the query planner nor the
executor knew that once rn made it to 11 that nothing further would match
the outer query's WHERE clause.  It would blindly continue until all
tuples were exhausted from the subquery.

Here we implement means to make the above execute more efficiently.

This is done by way of adding a pg_proc.prosupport function to various of
the built-in window functions and adding supporting code to allow the
support function to inform the planner if the window function is
monotonically increasing, monotonically decreasing, both or neither.  The
planner is then able to make use of that information and possibly allow
the executor to short-circuit execution by way of adding a "run condition"
to the WindowAgg to allow it to determine if some of its execution work
can be skipped.

This "run condition" is not like a normal filter.  These run conditions
are only built using quals comparing values to monotonic window functions.
For monotonic increasing functions, quals making use of the btree
operators for <, <= and = can be used (assuming the window function column
is on the left). You can see here that once such a condition becomes false
that a monotonic increasing function could never make it subsequently true
again.  For monotonically decreasing functions the >, >= and = btree
operators for the given type can be used for run conditions.

The best-case situation for this is when there is a single WindowAgg node
without a PARTITION BY clause.  Here when the run condition becomes false
the WindowAgg node can simply return NULL.  No more tuples will ever match
the run condition.  It's a little more complex when there is a PARTITION
BY clause.  In this case, we cannot return NULL as we must still process
other partitions.  To speed this case up we pull tuples from the outer
plan to check if they're from the same partition and simply discard them
if they are.  When we find a tuple belonging to another partition we start
processing as normal again until the run condition becomes false or we run
out of tuples to process.

When there are multiple WindowAgg nodes to evaluate then this complicates
the situation.  For intermediate WindowAggs we must ensure we always
return all tuples to the calling node.  Any filtering done could lead to
incorrect results in WindowAgg nodes above.  For all intermediate nodes,
we can still save some work when the run condition becomes false.  We've
no need to evaluate the WindowFuncs anymore.  Other WindowAgg nodes cannot
reference the value of these and these tuples will not appear in the final
result anyway.  The savings here are small in comparison to what can be
saved in the top-level WingowAgg, but still worthwhile.

Intermediate WindowAgg nodes never filter out tuples, but here we change
WindowAgg so that the top-level WindowAgg filters out tuples that don't
match the intermediate WindowAgg node's run condition.  Such filters
appear in the "Filter" clause in EXPLAIN for the top-level WindowAgg node.

Here we add prosupport functions to allow the above to work for;
row_number(), rank(), dense_rank(), count(*) and count(expr).  It appears
technically possible to do the same for min() and max(), however, it seems
unlikely to be useful enough, so that's not done here.

Bump catversion

Author: David Rowley
Reviewed-by: Andy Fan, Zhihong Yu
Discussion: https://postgr.es/m/CAApHDvqvp3At8++yF8ij06sdcoo1S_b2YoaT9D4Nf+MObzsrLQ@mail.gmail.com
2022-04-08 10:34:36 +12:00
Etsuro Fujita c2bb02bc2e Allow asynchronous execution in more cases.
In commit 27e1f1456, create_append_plan() only allowed the subplan
created from a given subpath to be executed asynchronously when it was
an async-capable ForeignPath.  To extend coverage, this patch handles
cases when the given subpath includes some other Path types as well that
can be omitted in the plan processing, such as a ProjectionPath directly
atop an async-capable ForeignPath, allowing asynchronous execution in
partitioned-scan/partitioned-join queries with non-Var tlist expressions
and more UNION queries.

Andrey Lepikhov and Etsuro Fujita, reviewed by Alexander Pyhalov and
Zhihong Yu.

Discussion: https://postgr.es/m/659c37a8-3e71-0ff2-394c-f04428c76f08%40postgrespro.ru
2022-04-06 15:45:00 +09:00
Andrew Dunstan fadb48b00e PLAN clauses for JSON_TABLE
These clauses allow the user to specify how data from nested paths are
joined, allowing considerable freedom in shaping the tabular output of
JSON_TABLE.

PLAN DEFAULT allows the user to specify the global strategies when
dealing with sibling or child nested paths. The is often sufficient to
achieve the necessary goal, and is considerably simpler than the full
PLAN clause, which allows the user to specify the strategy to be used
for each named nested path.

Nikita Glukhov

Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zhihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.

Discussion: https://postgr.es/m/7e2cb85d-24cf-4abb-30a5-1a33715959bd@postgrespro.ru
2022-04-05 14:17:08 -04:00
Andrew Dunstan 4e34747c88 JSON_TABLE
This feature allows jsonb data to be treated as a table and thus used in
a FROM clause like other tabular data. Data can be selected from the
jsonb using jsonpath expressions, and hoisted out of nested structures
in the jsonb to form multiple rows, more or less like an outer join.

Nikita Glukhov

Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zhihong Yu (whose
name I previously misspelled), Himanshu Upadhyaya, Daniel Gustafsson,
Justin Pryzby.

Discussion: https://postgr.es/m/7e2cb85d-24cf-4abb-30a5-1a33715959bd@postgrespro.ru
2022-04-04 16:03:47 -04:00
Andrew Dunstan 1a36bc9dba SQL/JSON query functions
This introduces the SQL/JSON functions for querying JSON data using
jsonpath expressions. The functions are:

JSON_EXISTS()
JSON_QUERY()
JSON_VALUE()

All of these functions only operate on jsonb. The workaround for now is
to cast the argument to jsonb.

JSON_EXISTS() tests if the jsonpath expression applied to the jsonb
value yields any values. JSON_VALUE() must return a single value, and an
error occurs if it tries to return multiple values. JSON_QUERY() must
return a json object or array, and there are various WRAPPER options for
handling scalar or multi-value results. Both these functions have
options for handling EMPTY and ERROR conditions.

Nikita Glukhov

Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.

Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
2022-03-29 16:57:13 -04:00
Andrew Dunstan 33a377608f IS JSON predicate
This patch intrdocuces the SQL standard IS JSON predicate. It operates
on text and bytea values representing JSON as well as on the json and
jsonb types. Each test has an IS and IS NOT variant. The tests are:

IS JSON [VALUE]
IS JSON ARRAY
IS JSON OBJECT
IS JSON SCALAR
IS JSON  WITH | WITHOUT UNIQUE KEYS

These are mostly self-explanatory, but note that IS JSON WITHOUT UNIQUE
KEYS is true whenever IS JSON is true, and IS JSON WITH UNIQUE KEYS is
true whenever IS JSON is true except it IS JSON OBJECT is true and there
are duplicate keys (which is never the case when applied to jsonb values).

Nikita Glukhov

Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.

Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
2022-03-28 15:37:08 -04:00
Alvaro Herrera 7103ebb7aa
Add support for MERGE SQL command
MERGE performs actions that modify rows in the target table using a
source table or query. MERGE provides a single SQL statement that can
conditionally INSERT/UPDATE/DELETE rows -- a task that would otherwise
require multiple PL statements.  For example,

MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
  UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
  DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
  INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
  DO NOTHING;

MERGE works with regular tables, partitioned tables and inheritance
hierarchies, including column and row security enforcement, as well as
support for row and statement triggers and transition tables therein.

MERGE is optimized for OLTP and is parameterizable, though also useful
for large scale ETL/ELT. MERGE is not intended to be used in preference
to existing single SQL commands for INSERT, UPDATE or DELETE since there
is some overhead.  MERGE can be used from PL/pgSQL.

MERGE does not support targetting updatable views or foreign tables, and
RETURNING clauses are not allowed either.  These limitations are likely
fixable with sufficient effort.  Rewrite rules are also not supported,
but it's not clear that we'd want to support them.

Author: Pavan Deolasee <pavan.deolasee@gmail.com>
Author: Álvaro Herrera <alvherre@alvh.no-ip.org>
Author: Amit Langote <amitlangote09@gmail.com>
Author: Simon Riggs <simon.riggs@enterprisedb.com>
Reviewed-by: Peter Eisentraut <peter.eisentraut@enterprisedb.com>
Reviewed-by: Andres Freund <andres@anarazel.de> (earlier versions)
Reviewed-by: Peter Geoghegan <pg@bowt.ie> (earlier versions)
Reviewed-by: Robert Haas <robertmhaas@gmail.com> (earlier versions)
Reviewed-by: Japin Li <japinli@hotmail.com>
Reviewed-by: Justin Pryzby <pryzby@telsasoft.com>
Reviewed-by: Tomas Vondra <tomas.vondra@enterprisedb.com>
Reviewed-by: Zhihong Yu <zyu@yugabyte.com>
Discussion: https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.com
Discussion: https://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
Discussion: https://postgr.es/m/20201231134736.GA25392@alvherre.pgsql
2022-03-28 16:47:48 +02:00
Andrew Dunstan f4fb45d15c SQL/JSON constructors
This patch introduces the SQL/JSON standard constructors for JSON:

JSON()
JSON_ARRAY()
JSON_ARRAYAGG()
JSON_OBJECT()
JSON_OBJECTAGG()

For the most part these functions provide facilities that mimic
existing json/jsonb functions. However, they also offer some useful
additional functionality. In addition to text input, the JSON() function
accepts bytea input, which it will decode and constuct a json value from.
The other functions provide useful options for handling duplicate keys
and null values.

This series of patches will be followed by a consolidated documentation
patch.

Nikita Glukhov

Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.

Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
2022-03-27 17:03:34 -04:00
Andrew Dunstan f79b803dcc Common SQL/JSON clauses
This introduces some of the building blocks used by the SQL/JSON
constructor and query functions. Specifically, it provides node
executor and grammar support for the FORMAT JSON [ENCODING foo]
clause, and values decorated with it, and for the RETURNING clause.

The following SQL/JSON patches will leverage these.

Nikita Glukhov (who probably deserves an award for perseverance).

Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.

Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
2022-03-27 17:03:33 -04:00
Andrew Dunstan 1460fc5942 Revert "Common SQL/JSON clauses"
This reverts commit 865fe4d5df.

This has caused issues with a significant number of buildfarm members
2022-03-22 19:56:14 -04:00
Andrew Dunstan 865fe4d5df Common SQL/JSON clauses
This introduces some of the building blocks used by the SQL/JSON
constructor and query functions. Specifically, it provides node
executor and grammar support for the FORMAT JSON [ENCODING foo]
clause, and values decorated with it, and for the RETURNING clause.

The following SQL/JSON patches will leverage these.

Nikita Glukhov (who probably deserves an award for perseverance).

Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup. Erik Rijkers, Zihong Yu and
Himanshu Upadhyaya.

Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
2022-03-22 17:32:54 -04:00
Bruce Momjian 27b77ecf9f Update copyright for 2022
Backpatch-through: 10
2022-01-07 19:04:57 -05:00
Tom Lane 9a3ddeb519 Fix index-only scan plans, take 2.
Commit 4ace45677 failed to fix the problem fully, because the
same issue of attempting to fetch a non-returnable index column
can occur when rechecking the indexqual after using a lossy index
operator.  Moreover, it broke EXPLAIN for such indexquals (which
indicates a gap in our test cases :-().

Revert the code changes of 4ace45677 in favor of adding a new field
to struct IndexOnlyScan, containing a version of the indexqual that
can be executed against the index-returned tuple without using any
non-returnable columns.  (The restrictions imposed by check_index_only
guarantee this is possible, although we may have to recompute indexed
expressions.)  Support construction of that during setrefs.c
processing by marking IndexOnlyScan.indextlist entries as resjunk
if they can't be returned, rather than removing them entirely.
(We could alternatively require setrefs.c to look up the IndexOptInfo
again, but abusing resjunk this way seems like a reasonably safe way
to avoid needing to do that.)

This solution isn't great from an API-stability standpoint: if there
are any extensions out there that build IndexOnlyScan structs directly,
they'll be broken in the next minor releases.  However, only a very
invasive extension would be likely to do such a thing.  There's no
change in the Path representation, so typical planner extensions
shouldn't have a problem.

As before, back-patch to all supported branches.

Discussion: https://postgr.es/m/3179992.1641150853@sss.pgh.pa.us
Discussion: https://postgr.es/m/17350-b5bdcf476e5badbb@postgresql.org
2022-01-03 15:42:27 -05:00
Peter Eisentraut 4965f75484 Remove unused include
"utils/builtins.h" was used for pg_strtouint64(), added by
cff440d368, removed by
3c6f8c011f.
2021-12-22 15:06:02 +01:00
Peter Eisentraut 2f4fd1a73b Remove unused include
"fmgr.h" was used for load_external_function(), added by
a05dc4d7fd, removed by
f9143d102f.
2021-12-22 15:05:58 +01:00
Peter Eisentraut 3c6f8c011f Simplify the general-purpose 64-bit integer parsing APIs
pg_strtouint64() is a wrapper around strtoull/strtoul/_strtoui64, but
it seems no longer necessary to have this indirection.
msvc/Solution.pm claims HAVE_STRTOULL, so the "MSVC only" part seems
unnecessary.  Also, we have code in c.h to substitute alternatives for
strtoull() if not found, and that would appear to cover all currently
supported platforms, so having a further fallback in pg_strtouint64()
seems unnecessary.

Therefore, we could remove pg_strtouint64(), and use strtoull()
directly in all call sites.  However, it seems useful to keep a
separate notation for parsing exactly 64-bit integers, matching the
type definition int64/uint64.  For that, add new macros strtoi64() and
strtou64() in c.h as thin wrappers around strtol()/strtoul() or
strtoll()/stroull().  This makes these functions available everywhere
instead of just in the server code, and it makes the function naming
notably different from the pg_strtointNN() functions in numutils.c,
which have a different API.

Discussion: https://www.postgresql.org/message-id/flat/a3df47c9-b1b4-29f2-7e91-427baf8b75a3%40enterprisedb.com
2021-12-17 06:32:07 +01:00
David Rowley 411137a429 Flush Memoize cache when non-key parameters change, take 2
It's possible that a subplan below a Memoize node contains a parameter
from above the Memoize node.  If this parameter changes then cache entries
may become out-dated due to the new parameter value.

Previously Memoize was mistakenly not aware of this.  We fix this here by
flushing the cache whenever a parameter that's not part of the cache
key changes.

Bug: #17213
Reported by: Elvis Pranskevichus
Author: David Rowley
Discussion: https://postgr.es/m/17213-988ed34b225a2862@postgresql.org
Backpatch-through: 14, where Memoize was added
2021-11-24 23:29:14 +13:00
David Rowley e502150f7d Allow Memoize to operate in binary comparison mode
Memoize would always use the hash equality operator for the cache key
types to determine if the current set of parameters were the same as some
previously cached set.  Certain types such as floating points where -0.0
and +0.0 differ in their binary representation but are classed as equal by
the hash equality operator may cause problems as unless the join uses the
same operator it's possible that whichever join operator is being used
would be able to distinguish the two values.  In which case we may
accidentally return in the incorrect rows out of the cache.

To fix this here we add a binary mode to Memoize to allow it to the
current set of parameters to previously cached values by comparing
bit-by-bit rather than logically using the hash equality operator.  This
binary mode is always used for LATERAL joins and it's used for normal
joins when any of the join operators are not hashable.

Reported-by: Tom Lane
Author: David Rowley
Discussion: https://postgr.es/m/3004308.1632952496@sss.pgh.pa.us
Backpatch-through: 14, where Memoize was added
2021-11-24 10:06:59 +13:00
Tom Lane e3ec3c00d8 Remove arbitrary 64K-or-so limit on rangetable size.
Up to now the size of a query's rangetable has been limited by the
constants INNER_VAR et al, which mustn't be equal to any real
rangetable index.  65000 doubtless seemed like enough for anybody,
and it still is orders of magnitude larger than the number of joins
we can realistically handle.  However, we need a rangetable entry
for each child partition that is (or might be) processed by a query.
Queries with a few thousand partitions are getting more realistic,
so that the day when that limit becomes a problem is in sight,
even if it's not here yet.  Hence, let's raise the limit.

Rather than just increase the values of INNER_VAR et al, this patch
adopts the approach of making them small negative values, so that
rangetables could theoretically become as long as INT_MAX.

The bulk of the patch is concerned with changing Var.varno and some
related variables from "Index" (unsigned int) to plain "int".  This
is basically cosmetic, with little actual effect other than to help
debuggers print their values nicely.  As such, I've only bothered
with changing places that could actually see INNER_VAR et al, which
the parser and most of the planner don't.  We do have to be careful
in places that are performing less/greater comparisons on varnos,
but there are very few such places, other than the IS_SPECIAL_VARNO
macro itself.

A notable side effect of this patch is that while it used to be
possible to add INNER_VAR et al to a Bitmapset, that will now
draw an error.  I don't see any likelihood that it wouldn't be a
bug to include these fake varnos in a bitmapset of real varnos,
so I think this is all to the good.

Although this touches outfuncs/readfuncs, I don't think a catversion
bump is required, since stored rules would never contain Vars
with these fake varnos.

Andrey Lepikhov and Tom Lane, after a suggestion by Peter Eisentraut

Discussion: https://postgr.es/m/43c7f2f5-1e27-27aa-8c65-c91859d15190@postgrespro.ru
2021-09-15 14:11:21 -04:00
Peter Eisentraut e581360696 Make node output prefix match node structure name
In most cases, the prefix string in a node output is the upper case of
the node structure name, e.g., MergeAppend -> MERGEAPPEND.  There were
a few exceptions that for either no apparent reason or perhaps minor
aesthetic reasons deviated from this.  In order to simplify this and
perhaps allow automatic generation without having to deal with
exception cases, make them all match.

Discussion: https://www.postgresql.org/message-id/c091e5cd-45f8-69ee-6a9b-de86912cc7e7@enterprisedb.com
2021-09-15 16:35:41 +02:00
Peter Eisentraut 2226b4189b Change SeqScan node to contain Scan node
This makes the structure of all Scan-derived nodes the same,
independent of whether they have additional fields.

Discussion: https://www.postgresql.org/message-id/flat/c1097590-a6a4-486a-64b1-e1f9cc0533ce@enterprisedb.com
2021-08-08 18:46:34 +02:00
David Rowley 83f4fcc655 Change the name of the Result Cache node to Memoize
"Result Cache" was never a great name for this node, but nobody managed
to come up with another name that anyone liked enough.  That was until
David Johnston mentioned "Node Memoization", which Tom Lane revised to
just "Memoize".  People seem to like "Memoize", so let's do the rename.

Reviewed-by: Justin Pryzby
Discussion: https://postgr.es/m/20210708165145.GG1176@momjian.us
Backpatch-through: 14, where Result Cache was introduced
2021-07-14 12:43:58 +12:00
David Rowley 29f45e299e Use a hash table to speed up NOT IN(values)
Similar to 50e17ad28, which allowed hash tables to be used for IN clauses
with a set of constants, here we add the same feature for NOT IN clauses.

NOT IN evaluates the same as: WHERE a <> v1 AND a <> v2 AND a <> v3.
Obviously, if we're using a hash table we must be exactly equivalent to
that and return the same result taking into account that either side of
the condition could contain a NULL.  This requires a little bit of
special handling to make work with the hash table version.

When processing NOT IN, the ScalarArrayOpExpr's operator will be the <>
operator.  To be able to build and lookup a hash table we must use the
<>'s negator operator.  The planner checks if that exists and is hashable
and sets the relevant fields in ScalarArrayOpExpr to instruct the executor
to use hashing.

Author: David Rowley, James Coleman
Reviewed-by: James Coleman, Zhihong Yu
Discussion: https://postgr.es/m/CAApHDvoF1mum_FRk6D621edcB6KSHBi2+GAgWmioj5AhOu2vwQ@mail.gmail.com
2021-07-07 16:29:17 +12:00
Noah Misch a2dee328bb Standardize nodes/*funcs.c cosmetics for ForeignScan.resultRelation.
catversion bump due to readfuncs.c field order change.
2021-06-06 00:08:21 -07:00
Tom Lane 049e1e2edb Fix mishandling of resjunk columns in ON CONFLICT ... UPDATE tlists.
It's unusual to have any resjunk columns in an ON CONFLICT ... UPDATE
list, but it can happen when MULTIEXPR_SUBLINK SubPlans are present.
If it happens, the ON CONFLICT UPDATE code path would end up storing
tuples that include the values of the extra resjunk columns.  That's
fairly harmless in the short run, but if new columns are added to
the table then the values would become accessible, possibly leading
to malfunctions if they don't match the datatypes of the new columns.

This had escaped notice through a confluence of missing sanity checks,
including

* There's no cross-check that a tuple presented to heap_insert or
heap_update matches the table rowtype.  While it's difficult to
check that fully at reasonable cost, we can easily add assertions
that there aren't too many columns.

* The output-column-assignment cases in execExprInterp.c lacked
any sanity checks on the output column numbers, which seems like
an oversight considering there are plenty of assertion checks on
input column numbers.  Add assertions there too.

* We failed to apply nodeModifyTable's ExecCheckPlanOutput() to
the ON CONFLICT UPDATE tlist.  That wouldn't have caught this
specific error, since that function is chartered to ignore resjunk
columns; but it sure seems like a bad omission now that we've seen
this bug.

In HEAD, the right way to fix this is to make the processing of
ON CONFLICT UPDATE tlists work the same as regular UPDATE tlists
now do, that is don't add "SET x = x" entries, and use
ExecBuildUpdateProjection to evaluate the tlist and combine it with
old values of the not-set columns.  This adds a little complication
to ExecBuildUpdateProjection, but allows removal of a comparable
amount of now-dead code from the planner.

In the back branches, the most expedient solution seems to be to
(a) use an output slot for the ON CONFLICT UPDATE projection that
actually matches the target table, and then (b) invent a variant of
ExecBuildProjectionInfo that can be told to not store values resulting
from resjunk columns, so it doesn't try to store into nonexistent
columns of the output slot.  (We can't simply ignore the resjunk columns
altogether; they have to be evaluated for MULTIEXPR_SUBLINK to work.)
This works back to v10.  In 9.6, projections work much differently and
we can't cheaply give them such an option.  The 9.6 version of this
patch works by inserting a JunkFilter when it's necessary to get rid
of resjunk columns.

In addition, v11 and up have the reverse problem when trying to
perform ON CONFLICT UPDATE on a partitioned table.  Through a
further oversight, adjust_partition_tlist() discarded resjunk columns
when re-ordering the ON CONFLICT UPDATE tlist to match a partition.
This accidentally prevented the storing-bogus-tuples problem, but
at the cost that MULTIEXPR_SUBLINK cases didn't work, typically
crashing if more than one row has to be updated.  Fix by preserving
resjunk columns in that routine.  (I failed to resist the temptation
to add more assertions there too, and to do some minor code
beautification.)

Per report from Andres Freund.  Back-patch to all supported branches.

Security: CVE-2021-32028
2021-05-10 11:02:29 -04:00
David Rowley 50e17ad281 Speedup ScalarArrayOpExpr evaluation
ScalarArrayOpExprs with "useOr=true" and a set of Consts on the righthand
side have traditionally been evaluated by using a linear search over the
array.  When these arrays contain large numbers of elements then this
linear search could become a significant part of execution time.

Here we add a new method of evaluating ScalarArrayOpExpr expressions to
allow them to be evaluated by first building a hash table containing each
element, then on subsequent evaluations, we just probe that hash table to
determine if there is a match.

The planner is in charge of determining when this optimization is possible
and it enables it by setting hashfuncid in the ScalarArrayOpExpr.  The
executor will only perform the hash table evaluation when the hashfuncid
is set.

This means that not all cases are optimized. For example CHECK constraints
containing an IN clause won't go through the planner, so won't get the
hashfuncid set.  We could maybe do something about that at some later
date.  The reason we're not doing it now is from fear that we may slow
down cases where the expression is evaluated only once.  Those cases can
be common, for example, a single row INSERT to a table with a CHECK
constraint containing an IN clause.

In the planner, we enable this when there are suitable hash functions for
the ScalarArrayOpExpr's operator and only when there is at least
MIN_ARRAY_SIZE_FOR_HASHED_SAOP elements in the array.  The threshold is
currently set to 9.

Author: James Coleman, David Rowley
Reviewed-by: David Rowley, Tomas Vondra, Heikki Linnakangas
Discussion: https://postgr.es/m/CAAaqYe8x62+=wn0zvNKCj55tPpg-JBHzhZFFc6ANovdqFw7-dA@mail.gmail.com
2021-04-08 23:51:22 +12:00
Peter Eisentraut e717a9a18b SQL-standard function body
This adds support for writing CREATE FUNCTION and CREATE PROCEDURE
statements for language SQL with a function body that conforms to the
SQL standard and is portable to other implementations.

Instead of the PostgreSQL-specific AS $$ string literal $$ syntax,
this allows writing out the SQL statements making up the body
unquoted, either as a single statement:

    CREATE FUNCTION add(a integer, b integer) RETURNS integer
        LANGUAGE SQL
        RETURN a + b;

or as a block

    CREATE PROCEDURE insert_data(a integer, b integer)
    LANGUAGE SQL
    BEGIN ATOMIC
      INSERT INTO tbl VALUES (a);
      INSERT INTO tbl VALUES (b);
    END;

The function body is parsed at function definition time and stored as
expression nodes in a new pg_proc column prosqlbody.  So at run time,
no further parsing is required.

However, this form does not support polymorphic arguments, because
there is no more parse analysis done at call time.

Dependencies between the function and the objects it uses are fully
tracked.

A new RETURN statement is introduced.  This can only be used inside
function bodies.  Internally, it is treated much like a SELECT
statement.

psql needs some new intelligence to keep track of function body
boundaries so that it doesn't send off statements when it sees
semicolons that are inside a function body.

Tested-by: Jaime Casanova <jcasanov@systemguards.com.ec>
Reviewed-by: Julien Rouhaud <rjuju123@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/1c11f1eb-f00c-43b7-799d-2d44132c02d7@2ndquadrant.com
2021-04-07 21:47:55 +02:00
David Rowley 9eacee2e62 Add Result Cache executor node (take 2)
Here we add a new executor node type named "Result Cache".  The planner
can include this node type in the plan to have the executor cache the
results from the inner side of parameterized nested loop joins.  This
allows caching of tuples for sets of parameters so that in the event that
the node sees the same parameter values again, it can just return the
cached tuples instead of rescanning the inner side of the join all over
again.  Internally, result cache uses a hash table in order to quickly
find tuples that have been previously cached.

For certain data sets, this can significantly improve the performance of
joins.  The best cases for using this new node type are for join problems
where a large portion of the tuples from the inner side of the join have
no join partner on the outer side of the join.  In such cases, hash join
would have to hash values that are never looked up, thus bloating the hash
table and possibly causing it to multi-batch.  Merge joins would have to
skip over all of the unmatched rows.  If we use a nested loop join with a
result cache, then we only cache tuples that have at least one join
partner on the outer side of the join.  The benefits of using a
parameterized nested loop with a result cache increase when there are
fewer distinct values being looked up and the number of lookups of each
value is large.  Also, hash probes to lookup the cache can be much faster
than the hash probe in a hash join as it's common that the result cache's
hash table is much smaller than the hash join's due to result cache only
caching useful tuples rather than all tuples from the inner side of the
join.  This variation in hash probe performance is more significant when
the hash join's hash table no longer fits into the CPU's L3 cache, but the
result cache's hash table does.  The apparent "random" access of hash
buckets with each hash probe can cause a poor L3 cache hit ratio for large
hash tables.  Smaller hash tables generally perform better.

The hash table used for the cache limits itself to not exceeding work_mem
* hash_mem_multiplier in size.  We maintain a dlist of keys for this cache
and when we're adding new tuples and realize we've exceeded the memory
budget, we evict cache entries starting with the least recently used ones
until we have enough memory to add the new tuples to the cache.

For parameterized nested loop joins, we now consider using one of these
result cache nodes in between the nested loop node and its inner node.  We
determine when this might be useful based on cost, which is primarily
driven off of what the expected cache hit ratio will be.  Estimating the
cache hit ratio relies on having good distinct estimates on the nested
loop's parameters.

For now, the planner will only consider using a result cache for
parameterized nested loop joins.  This works for both normal joins and
also for LATERAL type joins to subqueries.  It is possible to use this new
node for other uses in the future.  For example, to cache results from
correlated subqueries.  However, that's not done here due to some
difficulties obtaining a distinct estimation on the outer plan to
calculate the estimated cache hit ratio.  Currently we plan the inner plan
before planning the outer plan so there is no good way to know if a result
cache would be useful or not since we can't estimate the number of times
the subplan will be called until the outer plan is generated.

The functionality being added here is newly introducing a dependency on
the return value of estimate_num_groups() during the join search.
Previously, during the join search, we only ever needed to perform
selectivity estimations.  With this commit, we need to use
estimate_num_groups() in order to estimate what the hit ratio on the
result cache will be.   In simple terms, if we expect 10 distinct values
and we expect 1000 outer rows, then we'll estimate the hit ratio to be
99%.  Since cache hits are very cheap compared to scanning the underlying
nodes on the inner side of the nested loop join, then this will
significantly reduce the planner's cost for the join.   However, it's
fairly easy to see here that things will go bad when estimate_num_groups()
incorrectly returns a value that's significantly lower than the actual
number of distinct values.  If this happens then that may cause us to make
use of a nested loop join with a result cache instead of some other join
type, such as a merge or hash join.  Our distinct estimations have been
known to be a source of trouble in the past, so the extra reliance on them
here could cause the planner to choose slower plans than it did previous
to having this feature.  Distinct estimations are also fairly hard to
estimate accurately when several tables have been joined already or when a
WHERE clause filters out a set of values that are correlated to the
expressions we're estimating the number of distinct value for.

For now, the costing we perform during query planning for result caches
does put quite a bit of faith in the distinct estimations being accurate.
When these are accurate then we should generally see faster execution
times for plans containing a result cache.  However, in the real world, we
may find that we need to either change the costings to put less trust in
the distinct estimations being accurate or perhaps even disable this
feature by default.  There's always an element of risk when we teach the
query planner to do new tricks that it decides to use that new trick at
the wrong time and causes a regression.  Users may opt to get the old
behavior by turning the feature off using the enable_resultcache GUC.
Currently, this is enabled by default.  It remains to be seen if we'll
maintain that setting for the release.

Additionally, the name "Result Cache" is the best name I could think of
for this new node at the time I started writing the patch.  Nobody seems
to strongly dislike the name. A few people did suggest other names but no
other name seemed to dominate in the brief discussion that there was about
names. Let's allow the beta period to see if the current name pleases
enough people.  If there's some consensus on a better name, then we can
change it before the release.  Please see the 2nd discussion link below
for the discussion on the "Result Cache" name.

Author: David Rowley
Reviewed-by: Andy Fan, Justin Pryzby, Zhihong Yu, Hou Zhijie
Tested-By: Konstantin Knizhnik
Discussion: https://postgr.es/m/CAApHDvrPcQyQdWERGYWx8J%2B2DLUNgXu%2BfOSbQ1UscxrunyXyrQ%40mail.gmail.com
Discussion: https://postgr.es/m/CAApHDvq=yQXr5kqhRviT2RhNKwToaWr9JAN5t+5_PzhuRJ3wvg@mail.gmail.com
2021-04-02 14:10:56 +13:00
David Rowley 28b3e3905c Revert b6002a796
This removes "Add Result Cache executor node".  It seems that something
weird is going on with the tracking of cache hits and misses as
highlighted by many buildfarm animals.  It's not yet clear what the
problem is as other parts of the plan indicate that the cache did work
correctly, it's just the hits and misses that were being reported as 0.

This is especially a bad time to have the buildfarm so broken, so
reverting before too many more animals go red.

Discussion: https://postgr.es/m/CAApHDvq_hydhfovm4=izgWs+C5HqEeRScjMbOgbpC-jRAeK3Yw@mail.gmail.com
2021-04-01 13:33:23 +13:00
David Rowley b6002a796d Add Result Cache executor node
Here we add a new executor node type named "Result Cache".  The planner
can include this node type in the plan to have the executor cache the
results from the inner side of parameterized nested loop joins.  This
allows caching of tuples for sets of parameters so that in the event that
the node sees the same parameter values again, it can just return the
cached tuples instead of rescanning the inner side of the join all over
again.  Internally, result cache uses a hash table in order to quickly
find tuples that have been previously cached.

For certain data sets, this can significantly improve the performance of
joins.  The best cases for using this new node type are for join problems
where a large portion of the tuples from the inner side of the join have
no join partner on the outer side of the join.  In such cases, hash join
would have to hash values that are never looked up, thus bloating the hash
table and possibly causing it to multi-batch.  Merge joins would have to
skip over all of the unmatched rows.  If we use a nested loop join with a
result cache, then we only cache tuples that have at least one join
partner on the outer side of the join.  The benefits of using a
parameterized nested loop with a result cache increase when there are
fewer distinct values being looked up and the number of lookups of each
value is large.  Also, hash probes to lookup the cache can be much faster
than the hash probe in a hash join as it's common that the result cache's
hash table is much smaller than the hash join's due to result cache only
caching useful tuples rather than all tuples from the inner side of the
join.  This variation in hash probe performance is more significant when
the hash join's hash table no longer fits into the CPU's L3 cache, but the
result cache's hash table does.  The apparent "random" access of hash
buckets with each hash probe can cause a poor L3 cache hit ratio for large
hash tables.  Smaller hash tables generally perform better.

The hash table used for the cache limits itself to not exceeding work_mem
* hash_mem_multiplier in size.  We maintain a dlist of keys for this cache
and when we're adding new tuples and realize we've exceeded the memory
budget, we evict cache entries starting with the least recently used ones
until we have enough memory to add the new tuples to the cache.

For parameterized nested loop joins, we now consider using one of these
result cache nodes in between the nested loop node and its inner node.  We
determine when this might be useful based on cost, which is primarily
driven off of what the expected cache hit ratio will be.  Estimating the
cache hit ratio relies on having good distinct estimates on the nested
loop's parameters.

For now, the planner will only consider using a result cache for
parameterized nested loop joins.  This works for both normal joins and
also for LATERAL type joins to subqueries.  It is possible to use this new
node for other uses in the future.  For example, to cache results from
correlated subqueries.  However, that's not done here due to some
difficulties obtaining a distinct estimation on the outer plan to
calculate the estimated cache hit ratio.  Currently we plan the inner plan
before planning the outer plan so there is no good way to know if a result
cache would be useful or not since we can't estimate the number of times
the subplan will be called until the outer plan is generated.

The functionality being added here is newly introducing a dependency on
the return value of estimate_num_groups() during the join search.
Previously, during the join search, we only ever needed to perform
selectivity estimations.  With this commit, we need to use
estimate_num_groups() in order to estimate what the hit ratio on the
result cache will be.   In simple terms, if we expect 10 distinct values
and we expect 1000 outer rows, then we'll estimate the hit ratio to be
99%.  Since cache hits are very cheap compared to scanning the underlying
nodes on the inner side of the nested loop join, then this will
significantly reduce the planner's cost for the join.   However, it's
fairly easy to see here that things will go bad when estimate_num_groups()
incorrectly returns a value that's significantly lower than the actual
number of distinct values.  If this happens then that may cause us to make
use of a nested loop join with a result cache instead of some other join
type, such as a merge or hash join.  Our distinct estimations have been
known to be a source of trouble in the past, so the extra reliance on them
here could cause the planner to choose slower plans than it did previous
to having this feature.  Distinct estimations are also fairly hard to
estimate accurately when several tables have been joined already or when a
WHERE clause filters out a set of values that are correlated to the
expressions we're estimating the number of distinct value for.

For now, the costing we perform during query planning for result caches
does put quite a bit of faith in the distinct estimations being accurate.
When these are accurate then we should generally see faster execution
times for plans containing a result cache.  However, in the real world, we
may find that we need to either change the costings to put less trust in
the distinct estimations being accurate or perhaps even disable this
feature by default.  There's always an element of risk when we teach the
query planner to do new tricks that it decides to use that new trick at
the wrong time and causes a regression.  Users may opt to get the old
behavior by turning the feature off using the enable_resultcache GUC.
Currently, this is enabled by default.  It remains to be seen if we'll
maintain that setting for the release.

Additionally, the name "Result Cache" is the best name I could think of
for this new node at the time I started writing the patch.  Nobody seems
to strongly dislike the name. A few people did suggest other names but no
other name seemed to dominate in the brief discussion that there was about
names. Let's allow the beta period to see if the current name pleases
enough people.  If there's some consensus on a better name, then we can
change it before the release.  Please see the 2nd discussion link below
for the discussion on the "Result Cache" name.

Author: David Rowley
Reviewed-by: Andy Fan, Justin Pryzby, Zhihong Yu
Tested-By: Konstantin Knizhnik
Discussion: https://postgr.es/m/CAApHDvrPcQyQdWERGYWx8J%2B2DLUNgXu%2BfOSbQ1UscxrunyXyrQ%40mail.gmail.com
Discussion: https://postgr.es/m/CAApHDvq=yQXr5kqhRviT2RhNKwToaWr9JAN5t+5_PzhuRJ3wvg@mail.gmail.com
2021-04-01 12:32:22 +13:00
Tom Lane 86dc90056d Rework planning and execution of UPDATE and DELETE.
This patch makes two closely related sets of changes:

1. For UPDATE, the subplan of the ModifyTable node now only delivers
the new values of the changed columns (i.e., the expressions computed
in the query's SET clause) plus row identity information such as CTID.
ModifyTable must re-fetch the original tuple to merge in the old
values of any unchanged columns.  The core advantage of this is that
the changed columns are uniform across all tables of an inherited or
partitioned target relation, whereas the other columns might not be.
A secondary advantage, when the UPDATE involves joins, is that less
data needs to pass through the plan tree.  The disadvantage of course
is an extra fetch of each tuple to be updated.  However, that seems to
be very nearly free in context; even worst-case tests don't show it to
add more than a couple percent to the total query cost.  At some point
it might be interesting to combine the re-fetch with the tuple access
that ModifyTable must do anyway to mark the old tuple dead; but that
would require a good deal of refactoring and it seems it wouldn't buy
all that much, so this patch doesn't attempt it.

2. For inherited UPDATE/DELETE, instead of generating a separate
subplan for each target relation, we now generate a single subplan
that is just exactly like a SELECT's plan, then stick ModifyTable
on top of that.  To let ModifyTable know which target relation a
given incoming row refers to, a tableoid junk column is added to
the row identity information.  This gets rid of the horrid hack
that was inheritance_planner(), eliminating O(N^2) planning cost
and memory consumption in cases where there were many unprunable
target relations.

Point 2 of course requires point 1, so that there is a uniform
definition of the non-junk columns to be returned by the subplan.
We can't insist on uniform definition of the row identity junk
columns however, if we want to keep the ability to have both
plain and foreign tables in a partitioning hierarchy.  Since
it wouldn't scale very far to have every child table have its
own row identity column, this patch includes provisions to merge
similar row identity columns into one column of the subplan result.
In particular, we can merge the whole-row Vars typically used as
row identity by FDWs into one column by pretending they are type
RECORD.  (It's still okay for the actual composite Datums to be
labeled with the table's rowtype OID, though.)

There is more that can be done to file down residual inefficiencies
in this patch, but it seems to be committable now.

FDW authors should note several API changes:

* The argument list for AddForeignUpdateTargets() has changed, and so
has the method it must use for adding junk columns to the query.  Call
add_row_identity_var() instead of manipulating the parse tree directly.
You might want to reconsider exactly what you're adding, too.

* PlanDirectModify() must now work a little harder to find the
ForeignScan plan node; if the foreign table is part of a partitioning
hierarchy then the ForeignScan might not be the direct child of
ModifyTable.  See postgres_fdw for sample code.

* To check whether a relation is a target relation, it's no
longer sufficient to compare its relid to root->parse->resultRelation.
Instead, check it against all_result_relids or leaf_result_relids,
as appropriate.

Amit Langote and Tom Lane

Discussion: https://postgr.es/m/CA+HiwqHpHdqdDn48yCEhynnniahH78rwcrv1rEX65-fsZGBOLQ@mail.gmail.com
2021-03-31 11:52:37 -04:00
Peter Eisentraut 055fee7eb4 Allow an alias to be attached to a JOIN ... USING
This allows something like

    SELECT ... FROM t1 JOIN t2 USING (a, b, c) AS x

where x has the columns a, b, c and unlike a regular alias it does not
hide the range variables of the tables being joined t1 and t2.

Per SQL:2016 feature F404 "Range variable for common column names".

Reviewed-by: Vik Fearing <vik.fearing@2ndquadrant.com>
Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
Discussion: https://www.postgresql.org/message-id/flat/454638cf-d563-ab76-a585-2564428062af@2ndquadrant.com
2021-03-31 17:10:50 +02:00
Etsuro Fujita 27e1f14563 Add support for asynchronous execution.
This implements asynchronous execution, which runs multiple parts of a
non-parallel-aware Append concurrently rather than serially to improve
performance when possible.  Currently, the only node type that can be
run concurrently is a ForeignScan that is an immediate child of such an
Append.  In the case where such ForeignScans access data on different
remote servers, this would run those ForeignScans concurrently, and
overlap the remote operations to be performed simultaneously, so it'll
improve the performance especially when the operations involve
time-consuming ones such as remote join and remote aggregation.

We may extend this to other node types such as joins or aggregates over
ForeignScans in the future.

This also adds the support for postgres_fdw, which is enabled by the
table-level/server-level option "async_capable".  The default is false.

Robert Haas, Kyotaro Horiguchi, Thomas Munro, and myself.  This commit
is mostly based on the patch proposed by Robert Haas, but also uses
stuff from the patch proposed by Kyotaro Horiguchi and from the patch
proposed by Thomas Munro.  Reviewed by Kyotaro Horiguchi, Konstantin
Knizhnik, Andrey Lepikhov, Movead Li, Thomas Munro, Justin Pryzby, and
others.

Discussion: https://postgr.es/m/CA%2BTgmoaXQEt4tZ03FtQhnzeDEMzBck%2BLrni0UWHVVgOTnA6C1w%40mail.gmail.com
Discussion: https://postgr.es/m/CA%2BhUKGLBRyu0rHrDCMC4%3DRn3252gogyp1SjOgG8SEKKZv%3DFwfQ%40mail.gmail.com
Discussion: https://postgr.es/m/20200228.170650.667613673625155850.horikyota.ntt%40gmail.com
2021-03-31 18:45:00 +09:00
Amit Kapila 26acb54a13 Revert "Enable parallel SELECT for "INSERT INTO ... SELECT ..."."
To allow inserts in parallel-mode this feature has to ensure that all the
constraints, triggers, etc. are parallel-safe for the partition hierarchy
which is costly and we need to find a better way to do that. Additionally,
we could have used existing cached information in some cases like indexes,
domains, etc. to determine the parallel-safety.

List of commits reverted, in reverse chronological order:

ed62d3737c Doc: Update description for parallel insert reloption.
c8f78b6161 Add a new GUC and a reloption to enable inserts in parallel-mode.
c5be48f092 Improve FK trigger parallel-safety check added by 05c8482f7f.
e2cda3c20a Fix use of relcache TriggerDesc field introduced by commit 05c8482f7f.
e4e87a32cc Fix valgrind issue in commit 05c8482f7f.
05c8482f7f Enable parallel SELECT for "INSERT INTO ... SELECT ...".

Discussion: https://postgr.es/m/E1lMiB9-0001c3-SY@gemulon.postgresql.org
2021-03-24 11:29:15 +05:30
Tomas Vondra be45be9c33 Implement GROUP BY DISTINCT
With grouping sets, it's possible that some of the grouping sets are
duplicate.  This is especially common with CUBE and ROLLUP clauses. For
example GROUP BY CUBE (a,b), CUBE (b,c) is equivalent to

  GROUP BY GROUPING SETS (
    (a, b, c),
    (a, b, c),
    (a, b, c),
    (a, b),
    (a, b),
    (a, b),
    (a),
    (a),
    (a),
    (c, a),
    (c, a),
    (c, a),
    (c),
    (b, c),
    (b),
    ()
  )

Some of the grouping sets are calculated multiple times, which is mostly
unnecessary.  This commit implements a new GROUP BY DISTINCT feature, as
defined in the SQL standard, which eliminates the duplicate sets.

Author: Vik Fearing
Reviewed-by: Erik Rijkers, Georgios Kokolatos, Tomas Vondra
Discussion: https://postgr.es/m/bf3805a8-d7d1-ae61-fece-761b7ff41ecc@postgresfriends.org
2021-03-18 18:22:18 +01:00
Amit Kapila 05c8482f7f Enable parallel SELECT for "INSERT INTO ... SELECT ...".
Parallel SELECT can't be utilized for INSERT in the following cases:
- INSERT statement uses the ON CONFLICT DO UPDATE clause
- Target table has a parallel-unsafe: trigger, index expression or
  predicate, column default expression or check constraint
- Target table has a parallel-unsafe domain constraint on any column
- Target table is a partitioned table with a parallel-unsafe partition key
  expression or support function

The planner is updated to perform additional parallel-safety checks for
the cases listed above, for determining whether it is safe to run INSERT
in parallel-mode with an underlying parallel SELECT. The planner will
consider using parallel SELECT for "INSERT INTO ... SELECT ...", provided
nothing unsafe is found from the additional parallel-safety checks, or
from the existing parallel-safety checks for SELECT.

While checking parallel-safety, we need to check it for all the partitions
on the table which can be costly especially when we decide not to use a
parallel plan. So, in a separate patch, we will introduce a GUC and or a
reloption to enable/disable parallelism for Insert statements.

Prior to entering parallel-mode for the execution of INSERT with parallel
SELECT, a TransactionId is acquired and assigned to the current
transaction state. This is necessary to prevent the INSERT from attempting
to assign the TransactionId whilst in parallel-mode, which is not allowed.
This approach has a disadvantage in that if the underlying SELECT does not
return any rows, then the TransactionId is not used, however that
shouldn't happen in practice in many cases.

Author: Greg Nancarrow, Amit Langote, Amit Kapila
Reviewed-by: Amit Langote, Hou Zhijie, Takayuki Tsunakawa, Antonin Houska, Bharath Rupireddy, Dilip Kumar, Vignesh C, Zhihong Yu, Amit Kapila
Tested-by: Tang, Haiying
Discussion: https://postgr.es/m/CAJcOf-cXnB5cnMKqWEp2E2z7Mvcd04iLVmV=qpFJrR3AcrTS3g@mail.gmail.com
Discussion: https://postgr.es/m/CAJcOf-fAdj=nDKMsRhQzndm-O13NY4dL6xGcEvdX5Xvbbi0V7g@mail.gmail.com
2021-03-10 07:38:58 +05:30
David Rowley 977b2c0853 Add missing TidRangeScan readfunc
Mistakenly forgotten in bb437f995
2021-02-27 23:21:21 +13:00
Peter Eisentraut 3696a600e2 SEARCH and CYCLE clauses
This adds the SQL standard feature that adds the SEARCH and CYCLE
clauses to recursive queries to be able to do produce breadth- or
depth-first search orders and detect cycles.  These clauses can be
rewritten into queries using existing syntax, and that is what this
patch does in the rewriter.

Reviewed-by: Vik Fearing <vik@postgresfriends.org>
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/db80ceee-6f97-9b4a-8ee8-3ba0c58e5be2@2ndquadrant.com
2021-02-01 14:32:51 +01:00
Bruce Momjian ca3b37487b Update copyright for 2021
Backpatch-through: 9.5
2021-01-02 13:06:25 -05:00
Tom Lane c7aba7c14e Support subscripting of arbitrary types, not only arrays.
This patch generalizes the subscripting infrastructure so that any
data type can be subscripted, if it provides a handler function to
define what that means.  Traditional variable-length (varlena) arrays
all use array_subscript_handler(), while the existing fixed-length
types that support subscripting use raw_array_subscript_handler().
It's expected that other types that want to use subscripting notation
will define their own handlers.  (This patch provides no such new
features, though; it only lays the foundation for them.)

To do this, move the parser's semantic processing of subscripts
(including coercion to whatever data type is required) into a
method callback supplied by the handler.  On the execution side,
replace the ExecEvalSubscriptingRef* layer of functions with direct
calls to callback-supplied execution routines.  (Thus, essentially
no new run-time overhead should be caused by this patch.  Indeed,
there is room to remove some overhead by supplying specialized
execution routines.  This patch does a little bit in that line,
but more could be done.)

Additional work is required here and there to remove formerly
hard-wired assumptions about the result type, collation, etc
of a SubscriptingRef expression node; and to remove assumptions
that the subscript values must be integers.

One useful side-effect of this is that we now have a less squishy
mechanism for identifying whether a data type is a "true" array:
instead of wiring in weird rules about typlen, we can look to see
if pg_type.typsubscript == F_ARRAY_SUBSCRIPT_HANDLER.  For this
to be bulletproof, we have to forbid user-defined types from using
that handler directly; but there seems no good reason for them to
do so.

This patch also removes assumptions that the number of subscripts
is limited to MAXDIM (6), or indeed has any hard-wired limit.
That limit still applies to types handled by array_subscript_handler
or raw_array_subscript_handler, but to discourage other dependencies
on this constant, I've moved it from c.h to utils/array.h.

Dmitry Dolgov, reviewed at various times by Tom Lane, Arthur Zakirov,
Peter Eisentraut, Pavel Stehule

Discussion: https://postgr.es/m/CA+q6zcVDuGBv=M0FqBYX8DPebS3F_0KQ6OVFobGJPM507_SZ_w@mail.gmail.com
Discussion: https://postgr.es/m/CA+q6zcVovR+XY4mfk-7oNk-rF91gH0PebnNfuUjuuDsyHjOcVA@mail.gmail.com
2020-12-09 12:40:37 -05:00
Heikki Linnakangas 0a2bc5d61e Move per-agg and per-trans duplicate finding to the planner.
This has the advantage that the cost estimates for aggregates can count
the number of calls to transition and final functions correctly.

Bump catalog version, because views can contain Aggrefs.

Reviewed-by: Andres Freund
Discussion: https://www.postgresql.org/message-id/b2e3536b-1dbc-8303-c97e-89cb0b4a9a48%40iki.fi
2020-11-24 10:45:00 +02:00
Heikki Linnakangas 178f2d560d Include result relation info in direct modify ForeignScan nodes.
FDWs that can perform an UPDATE/DELETE remotely using the "direct modify"
set of APIs need to access the ResultRelInfo of the target table. That's
currently available in EState.es_result_relation_info, but the next
commit will remove that field.

This commit adds a new resultRelation field in ForeignScan, to store the
target relation's RT index, and the corresponding ResultRelInfo in
ForeignScanState. The FDW's PlanDirectModify callback is expected to set
'resultRelation' along with 'operation'. The core code doesn't need them
for anything, they are for the convenience of FDW's Begin- and
IterateDirectModify callbacks.

Authors: Amit Langote, Etsuro Fujita
Discussion: https://www.postgresql.org/message-id/CA%2BHiwqGEmiib8FLiHMhKB%2BCH5dRgHSLc5N5wnvc4kym%2BZYpQEQ%40mail.gmail.com
2020-10-14 10:58:38 +03:00
Heikki Linnakangas 1375422c78 Create ResultRelInfos later in InitPlan, index them by RT index.
Instead of allocating all the ResultRelInfos upfront in one big array,
allocate them in ExecInitModifyTable(). es_result_relations is now an
array of ResultRelInfo pointers, rather than an array of structs, and it
is indexed by the RT index.

This simplifies things: we get rid of the separate concept of a "result
rel index", and don't need to set it in setrefs.c anymore. This also
allows follow-up optimizations (not included in this commit yet) to skip
initializing ResultRelInfos for target relations that were not needed at
runtime, and removal of the es_result_relation_info pointer.

The EState arrays of regular result rels and root result rels are merged
into one array. Similarly, the resultRelations and rootResultRelations
lists in PlannedStmt are merged into one. It's not actually clear to me
why they were kept separate in the first place, but now that the
es_result_relations array is indexed by RT index, it certainly seems
pointless.

The PlannedStmt->resultRelations list is now only needed for
ExecRelationIsTargetRelation(). One visible effect of this change is that
ExecRelationIsTargetRelation() will now return 'true' also for the
partition root, if a partitioned table is updated. That seems like a good
thing, although the function isn't used in core code, and I don't see any
reason for an FDW to call it on a partition root.

Author: Amit Langote
Discussion: https://www.postgresql.org/message-id/CA%2BHiwqGEmiib8FLiHMhKB%2BCH5dRgHSLc5N5wnvc4kym%2BZYpQEQ%40mail.gmail.com
2020-10-13 12:57:02 +03:00
Noah Misch 587322de36 Reconcile nodes/*funcs.c.
The stmt_len changes do not affect behavior.  LimitPath has no other
support functions, so that part changes only debugging output.
2020-05-25 16:23:48 -07:00
Tom Lane 0da06d9faf Get rid of trailing semicolons in C macro definitions.
Writing a trailing semicolon in a macro is almost never the right thing,
because you almost always want to write a semicolon after each macro
call instead.  (Even if there was some reason to prefer not to, pgindent
would probably make a hash of code formatted that way; so within PG the
rule should basically be "don't do it".)  Thus, if we have a semi inside
the macro, the compiler sees "something;;".  Much of the time the extra
empty statement is harmless, but it could lead to mysterious syntax
errors at call sites.  In perhaps an overabundance of neatnik-ism, let's
run around and get rid of the excess semicolons whereever possible.

The only thing worse than a mysterious syntax error is a mysterious
syntax error that only happens in the back branches; therefore,
backpatch these changes where relevant, which is most of them because
most of these mistakes are old.  (The lack of reported problems shows
that this is largely a hypothetical issue, but still, it could bite
us in some future patch.)

John Naylor and Tom Lane

Discussion: https://postgr.es/m/CACPNZCs0qWTqJ2QUSGJ07B7uvAvzMb-KbG2q+oo+J3tsWN5cqw@mail.gmail.com
2020-05-01 17:28:00 -04:00
Alvaro Herrera 357889eb17
Support FETCH FIRST WITH TIES
WITH TIES is an option to the FETCH FIRST N ROWS clause (the SQL
standard's spelling of LIMIT), where you additionally get rows that
compare equal to the last of those N rows by the columns in the
mandatory ORDER BY clause.

There was a proposal by Andrew Gierth to implement this functionality in
a more powerful way that would yield more features, but the other patch
had not been finished at this time, so we decided to use this one for
now in the spirit of incremental development.

Author: Surafel Temesgen <surafel3000@gmail.com>
Reviewed-by: Álvaro Herrera <alvherre@alvh.no-ip.org>
Reviewed-by: Tomas Vondra <tomas.vondra@2ndquadrant.com>
Discussion: https://postgr.es/m/CALAY4q9ky7rD_A4vf=FVQvCGngm3LOes-ky0J6euMrg=_Se+ag@mail.gmail.com
Discussion: https://postgr.es/m/87o8wvz253.fsf@news-spur.riddles.org.uk
2020-04-07 16:22:13 -04:00