Commit Graph

130 Commits

Author SHA1 Message Date
Robert Haas fbe5a3fb73 Only try to push down foreign joins if the user mapping OIDs match.
Previously, the foreign join pushdown infrastructure left the question
of security entirely up to individual FDWs, but it would be easy for
a foreign data wrapper to inadvertently open up subtle security holes
that way.  So, make it the core code's job to determine which user
mapping OID is relevant, and don't attempt join pushdown unless it's
the same for all relevant relations.

Per a suggestion from Tom Lane.  Shigeru Hanada and Ashutosh Bapat,
reviewed by Etsuro Fujita and KaiGai Kohei, with some further
changes by me.
2016-01-28 14:05:36 -05:00
Robert Haas 45be99f8cd Support parallel joins, and make related improvements.
The core innovation of this patch is the introduction of the concept
of a partial path; that is, a path which if executed in parallel will
generate a subset of the output rows in each process.  Gathering a
partial path produces an ordinary (complete) path.  This allows us to
generate paths for parallel joins by joining a partial path for one
side (which at the baserel level is currently always a Partial Seq
Scan) to an ordinary path on the other side.  This is subject to
various restrictions at present, especially that this strategy seems
unlikely to be sensible for merge joins, so only nested loops and
hash joins paths are generated.

This also allows an Append node to be pushed below a Gather node in
the case of a partitioned table.

Testing revealed that early versions of this patch made poor decisions
in some cases, which turned out to be caused by the fact that the
original cost model for Parallel Seq Scan wasn't very good.  So this
patch tries to make some modest improvements in that area.

There is much more to be done in the area of generating good parallel
plans in all cases, but this seems like a useful step forward.

Patch by me, reviewed by Dilip Kumar and Amit Kapila.
2016-01-20 14:40:26 -05:00
Bruce Momjian ee94300446 Update copyright for 2016
Backpatch certain files through 9.1
2016-01-02 13:33:40 -05:00
Tom Lane 4fcf48450d Get rid of the planner's LateralJoinInfo data structure.
I originally modeled this data structure on SpecialJoinInfo, but after
commit acfcd45cac that looks like a pretty poor decision.
All we really need is relid sets identifying laterally-referenced rels;
and most of the time, what we want to know about includes indirect lateral
references, a case the LateralJoinInfo data was unsuited to compute with
any efficiency.  The previous commit redefined RelOptInfo.lateral_relids
as the transitive closure of lateral references, so that it easily supports
checking indirect references.  For the places where we really do want just
direct references, add a new RelOptInfo field direct_lateral_relids, which
is easily set up as a copy of lateral_relids before we perform the
transitive closure calculation.  Then we can just drop lateral_info_list
and LateralJoinInfo and the supporting code.  This makes the planner's
handling of lateral references noticeably more efficient, and shorter too.

Such a change can't be back-patched into stable branches for fear of
breaking extensions that might be looking at the planner's data structures;
but it seems not too late to push it into 9.5, so I've done so.
2015-12-11 15:52:38 -05:00
Tom Lane acfcd45cac Still more fixes for planner's handling of LATERAL references.
More fuzz testing by Andreas Seltenreich exposed that the planner did not
cope well with chains of lateral references.  If relation X references Y
laterally, and Y references Z laterally, then we will have to scan X on the
inside of a nestloop with Z, so for all intents and purposes X is laterally
dependent on Z too.  The planner did not understand this and would generate
intermediate joins that could not be used.  While that was usually harmless
except for wasting some planning cycles, under the right circumstances it
would lead to "failed to build any N-way joins" or "could not devise a
query plan" planner failures.

To fix that, convert the existing per-relation lateral_relids and
lateral_referencers relid sets into their transitive closures; that is,
they now show all relations on which a rel is directly or indirectly
laterally dependent.  This not only fixes the chained-reference problem
but allows some of the relevant tests to be made substantially simpler
and faster, since they can be reduced to simple bitmap manipulations
instead of searches of the LateralJoinInfo list.

Also, when a PlaceHolderVar that is due to be evaluated at a join contains
lateral references, we should treat those references as indirect lateral
dependencies of each of the join's base relations.  This prevents us from
trying to join any individual base relations to the lateral reference
source before the join is formed, which again cannot work.

Andreas' testing also exposed another oversight in the "dangerous
PlaceHolderVar" test added in commit 85e5e222b1.  Simply rejecting
unsafe join paths in joinpath.c is insufficient, because in some cases
we will end up rejecting *all* possible paths for a particular join, again
leading to "could not devise a query plan" failures.  The restriction has
to be known also to join_is_legal and its cohort functions, so that they
will not select a join for which that will happen.  I chose to move the
supporting logic into joinrels.c where the latter functions are.

Back-patch to 9.3 where LATERAL support was introduced.
2015-12-11 14:22:20 -05:00
Tom Lane edca44b152 Simplify LATERAL-related calculations within add_paths_to_joinrel().
While convincing myself that commit 7e19db0c09 would solve both of
the problems recently reported by Andreas Seltenreich, I realized that
add_paths_to_joinrel's handling of LATERAL restrictions could be made
noticeably simpler and faster if we were to retain the minimum possible
parameterization for each joinrel (that is, the set of relids supplying
unsatisfied lateral references in it).  We already retain that for
baserels, in RelOptInfo.lateral_relids, so we can use that field for
joinrels too.

I re-pgindent'd the files touched here, which affects some unrelated
comments.

This is, I believe, just a minor optimization not a bug fix, so no
back-patch.
2015-12-07 18:56:17 -05:00
Tom Lane 7e19db0c09 Fix another oversight in checking if a join with LATERAL refs is legal.
It was possible for the planner to decide to join a LATERAL subquery to
the outer side of an outer join before the outer join itself is completed.
Normally that's fine because of the associativity rules, but it doesn't
work if the subquery contains a lateral reference to the inner side of the
outer join.  In such a situation the outer join *must* be done first.
join_is_legal() missed this consideration and would allow the join to be
attempted, but the actual path-building code correctly decided that no
valid join path could be made, sometimes leading to planner errors such as
"failed to build any N-way joins".

Per report from Andreas Seltenreich.  Back-patch to 9.3 where LATERAL
support was added.
2015-12-07 17:42:11 -05:00
Robert Haas 80558c1f5a Generate parallel sequential scan plans in simple cases.
Add a new flag, consider_parallel, to each RelOptInfo, indicating
whether a plan for that relation could conceivably be run inside of
a parallel worker.  Right now, we're pretty conservative: for example,
it might be possible to defer applying a parallel-restricted qual
in a worker, and later do it in the leader, but right now we just
don't try to parallelize access to that relation.  That's probably
the right decision in most cases, anyway.

Using the new flag, generate parallel sequential scan plans for plain
baserels, meaning that we now have parallel sequential scan in
PostgreSQL.  The logic here is pretty unsophisticated right now: the
costing model probably isn't right in detail, and we can't push joins
beneath Gather nodes, so the number of plans that can actually benefit
from this is pretty limited right now.  Lots more work is needed.
Nevertheless, it seems time to enable this functionality so that all
this code can actually be tested easily by users and developers.

Note that, if you wish to test this functionality, it will be
necessary to set max_parallel_degree to a value greater than the
default of 0.  Once a few more loose ends have been tidied up here, we
might want to consider changing the default value of this GUC, but
I'm leaving it alone for now.

Along the way, fix a bug in cost_gather: the previous coding thought
that a Gather node's transfer overhead should be costed on the basis of
the relation size rather than the number of tuples that actually need
to be passed off to the leader.

Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 09:02:52 -05:00
Tom Lane 95f4e59c32 Remove an unsafe Assert, and explain join_clause_is_movable_into() better.
join_clause_is_movable_into() is approximate, in the sense that it might
sometimes return "false" when actually it would be valid to push the given
join clause down to the specified level.  This is okay ... but there was
an Assert in get_joinrel_parampathinfo() that's only safe if the answers
are always exact.  Comment out the Assert, and add a bunch of commentary
to clarify what's going on.

Per fuzz testing by Andreas Seltenreich.  The added regression test is
a pretty silly query, but it's based on his crasher example.

Back-patch to 9.2 where the faulty logic was introduced.
2015-07-28 13:20:39 -04:00
Tom Lane 3f59be836c Fix planner's cost estimation for SEMI/ANTI joins with inner indexscans.
When the inner side of a nestloop SEMI or ANTI join is an indexscan that
uses all the join clauses as indexquals, it can be presumed that both
matched and unmatched outer rows will be processed very quickly: for
matched rows, we'll stop after fetching one row from the indexscan, while
for unmatched rows we'll have an indexscan that finds no matching index
entries, which should also be quick.  The planner already knew about this,
but it was nonetheless charging for at least one full run of the inner
indexscan, as a consequence of concerns about the behavior of materialized
inner scans --- but those concerns don't apply in the fast case.  If the
inner side has low cardinality (many matching rows) this could make an
indexscan plan look far more expensive than it actually is.  To fix,
rearrange the work in initial_cost_nestloop/final_cost_nestloop so that we
don't add the inner scan cost until we've inspected the indexquals, and
then we can add either the full-run cost or just the first tuple's cost as
appropriate.

Experimentation with this fix uncovered another problem: add_path and
friends were coded to disregard cheap startup cost when considering
parameterized paths.  That's usually okay (and desirable, because it thins
the path herd faster); but in this fast case for SEMI/ANTI joins, it could
result in throwing away the desired plain indexscan path in favor of a
bitmap scan path before we ever get to the join costing logic.  In the
many-matching-rows cases of interest here, a bitmap scan will do a lot more
work than required, so this is a problem.  To fix, add a per-relation flag
consider_param_startup that works like the existing consider_startup flag,
but applies to parameterized paths, and set it for relations that are the
inside of a SEMI or ANTI join.

To make this patch reasonably safe to back-patch, care has been taken to
avoid changing the planner's behavior except in the very narrow case of
SEMI/ANTI joins with inner indexscans.  There are places in
compare_path_costs_fuzzily and add_path_precheck that are not terribly
consistent with the new approach, but changing them will affect planner
decisions at the margins in other cases, so we'll leave that for a
HEAD-only fix.

Back-patch to 9.3; before that, the consider_startup flag didn't exist,
meaning that the second aspect of the patch would be too invasive.

Per a complaint from Peter Holzer and analysis by Tomas Vondra.
2015-06-03 11:59:10 -04:00
Tom Lane 1a8a4e5cde Code review for foreign/custom join pushdown patch.
Commit e7cb7ee145 included some design
decisions that seem pretty questionable to me, and there was quite a lot
of stuff not to like about the documentation and comments.  Clean up
as follows:

* Consider foreign joins only between foreign tables on the same server,
rather than between any two foreign tables with the same underlying FDW
handler function.  In most if not all cases, the FDW would simply have had
to apply the same-server restriction itself (far more expensively, both for
lack of caching and because it would be repeated for each combination of
input sub-joins), or else risk nasty bugs.  Anyone who's really intent on
doing something outside this restriction can always use the
set_join_pathlist_hook.

* Rename fdw_ps_tlist/custom_ps_tlist to fdw_scan_tlist/custom_scan_tlist
to better reflect what they're for, and allow these custom scan tlists
to be used even for base relations.

* Change make_foreignscan() API to include passing the fdw_scan_tlist
value, since the FDW is required to set that.  Backwards compatibility
doesn't seem like an adequate reason to expect FDWs to set it in some
ad-hoc extra step, and anyway existing FDWs can just pass NIL.

* Change the API of path-generating subroutines of add_paths_to_joinrel,
and in particular that of GetForeignJoinPaths and set_join_pathlist_hook,
so that various less-used parameters are passed in a struct rather than
as separate parameter-list entries.  The objective here is to reduce the
probability that future additions to those parameter lists will result in
source-level API breaks for users of these hooks.  It's possible that this
is even a small win for the core code, since most CPU architectures can't
pass more than half a dozen parameters efficiently anyway.  I kept root,
joinrel, outerrel, innerrel, and jointype as separate parameters to reduce
code churn in joinpath.c --- in particular, putting jointype into the
struct would have been problematic because of the subroutines' habit of
changing their local copies of that variable.

* Avoid ad-hocery in ExecAssignScanProjectionInfo.  It was probably all
right for it to know about IndexOnlyScan, but if the list is to grow
we should refactor the knowledge out to the callers.

* Restore nodeForeignscan.c's previous use of the relcache to avoid
extra GetFdwRoutine lookups for base-relation scans.

* Lots of cleanup of documentation and missed comments.  Re-order some
code additions into more logical places.
2015-05-10 14:36:36 -04:00
Robert Haas e7cb7ee145 Allow FDWs and custom scan providers to replace joins with scans.
Foreign data wrappers can use this capability for so-called "join
pushdown"; that is, instead of executing two separate foreign scans
and then joining the results locally, they can generate a path which
performs the join on the remote server and then is scanned locally.
This commit does not extend postgres_fdw to take advantage of this
capability; it just provides the infrastructure.

Custom scan providers can use this in a similar way.  Previously,
it was only possible for a custom scan provider to scan a single
relation.  Now, it can scan an entire join tree, provided of course
that it knows how to produce the same results that the join would
have produced if executed normally.

KaiGai Kohei, reviewed by Shigeru Hanada, Ashutosh Bapat, and me.
2015-05-01 08:50:35 -04:00
Bruce Momjian 4baaf863ec Update copyright for 2015
Backpatch certain files through 9.0
2015-01-06 11:43:47 -05:00
Tom Lane 5a6c168c78 Fix some more problems with nested append relations.
As of commit a87c72915 (which later got backpatched as far as 9.1),
we're explicitly supporting the notion that append relations can be
nested; this can occur when UNION ALL constructs are nested, or when
a UNION ALL contains a table with inheritance children.

Bug #11457 from Nelson Page, as well as an earlier report from Elvis
Pranskevichus, showed that there were still nasty bugs associated with such
cases: in particular the EquivalenceClass mechanism could try to generate
"join" clauses connecting an appendrel child to some grandparent appendrel,
which would result in assertion failures or bogus plans.

Upon investigation I concluded that all current callers of
find_childrel_appendrelinfo() need to be fixed to explicitly consider
multiple levels of parent appendrels.  The most complex fix was in
processing of "broken" EquivalenceClasses, which are ECs for which we have
been unable to generate all the derived equality clauses we would like to
because of missing cross-type equality operators in the underlying btree
operator family.  That code path is more or less entirely untested by
the regression tests to date, because no standard opfamilies have such
holes in them.  So I wrote a new regression test script to try to exercise
it a bit, which turned out to be quite a worthwhile activity as it exposed
existing bugs in all supported branches.

The present patch is essentially the same as far back as 9.2, which is
where parameterized paths were introduced.  In 9.0 and 9.1, we only need
to back-patch a small fragment of commit 5b7b5518d, which fixes failure to
propagate out the original WHERE clauses when a broken EC contains constant
members.  (The regression test case results show that these older branches
are noticeably stupider than 9.2+ in terms of the quality of the plans
generated; but we don't really care about plan quality in such cases,
only that the plan not be outright wrong.  A more invasive fix in the
older branches would not be a good idea anyway from a plan-stability
standpoint.)
2014-10-01 19:31:12 -04:00
Bruce Momjian 0a78320057 pgindent run for 9.4
This includes removing tabs after periods in C comments, which was
applied to back branches, so this change should not effect backpatching.
2014-05-06 12:12:18 -04:00
Bruce Momjian 7e04792a1c Update copyright for 2014
Update all files in head, and files COPYRIGHT and legal.sgml in all back
branches.
2014-01-07 16:05:30 -05:00
Tom Lane 9e7e29c75a Fix planner problems with LATERAL references in PlaceHolderVars.
The planner largely failed to consider the possibility that a
PlaceHolderVar's expression might contain a lateral reference to a Var
coming from somewhere outside the PHV's syntactic scope.  We had a previous
report of a problem in this area, which I tried to fix in a quick-hack way
in commit 4da6439bd8, but Antonin Houska
pointed out that there were still some problems, and investigation turned
up other issues.  This patch largely reverts that commit in favor of a more
thoroughly thought-through solution.  The new theory is that a PHV's
ph_eval_at level cannot be higher than its original syntactic level.  If it
contains lateral references, those don't change the ph_eval_at level, but
rather they create a lateral-reference requirement for the ph_eval_at join
relation.  The code in joinpath.c needs to handle that.

Another issue is that createplan.c wasn't handling nested PlaceHolderVars
properly.

In passing, push knowledge of lateral-reference checks for join clauses
into join_clause_is_movable_to.  This is mainly so that FDWs don't need
to deal with it.

This patch doesn't fix the original join-qual-placement problem reported by
Jeremy Evans (and indeed, one of the new regression test cases shows the
wrong answer because of that).  But the PlaceHolderVar problems need to be
fixed before that issue can be addressed, so committing this separately
seems reasonable.
2013-08-17 20:22:37 -04:00
Tom Lane 3ced8837db Simplify query_planner's API by having it return the top-level RelOptInfo.
Formerly, query_planner returned one or possibly two Paths for the topmost
join relation, so that grouping_planner didn't see the join RelOptInfo
(at least not directly; it didn't have any hesitation about examining
cheapest_path->parent, though).  However, correct selection of the Paths
involved a significant amount of coupling between query_planner and
grouping_planner, a problem which has gotten worse over time.  It seems
best to give up on this API choice and instead return the topmost
RelOptInfo explicitly.  Then grouping_planner can pull out the Paths it
wants from the rel's path list.  In this way we can remove all knowledge
of grouping behaviors from query_planner.

The only real benefit of the old way is that in the case of an empty
FROM clause, we never made any RelOptInfos at all, just a Path.  Now
we have to gin up a dummy RelOptInfo to represent the empty FROM clause.
That's not a very big deal though.

While at it, simplify query_planner's API a bit more by having the caller
set up root->tuple_fraction and root->limit_tuples, rather than passing
those values as separate parameters.  Since query_planner no longer does
anything with either value, requiring it to fill the PlannerInfo fields
seemed pretty arbitrary.

This patch just rearranges code; it doesn't (intentionally) change any
behaviors.  Followup patches will do more interesting things.
2013-08-05 15:01:09 -04:00
Bruce Momjian bd61a623ac Update copyrights for 2013
Fully update git head, and update back branches in ./COPYRIGHT and
legal.sgml files.
2013-01-01 17:15:01 -05:00
Tom Lane 46c508fbcf Fix PARAM_EXEC assignment mechanism to be safe in the presence of WITH.
The planner previously assumed that parameter Vars having the same absolute
query level, varno, and varattno could safely be assigned the same runtime
PARAM_EXEC slot, even though they might be different Vars appearing in
different subqueries.  This was (probably) safe before the introduction of
CTEs, but the lazy-evalution mechanism used for CTEs means that a CTE can
be executed during execution of some other subquery, causing the lifespan
of Params at the same syntactic nesting level as the CTE to overlap with
use of the same slots inside the CTE.  In 9.1 we created additional hazards
by using the same parameter-assignment technology for nestloop inner scan
parameters, but it was broken before that, as illustrated by the added
regression test.

To fix, restructure the planner's management of PlannerParamItems so that
items having different semantic lifespans are kept rigorously separated.
This will probably result in complex queries using more runtime PARAM_EXEC
slots than before, but the slots are cheap enough that this hardly matters.
Also, stop generating PlannerParamItems containing Params for subquery
outputs: all we really need to do is reserve the PARAM_EXEC slot number,
and that now only takes incrementing a counter.  The planning code is
simpler and probably faster than before, as well as being more correct.

Per report from Vik Reykja.

These changes will mostly also need to be made in the back branches, but
I'm going to hold off on that until after 9.2.0 wraps.
2012-09-05 12:55:01 -04:00
Tom Lane 6d2c8c0e2a Drop cheap-startup-cost paths during add_path() if we don't need them.
We can detect whether the planner top level is going to care at all about
cheap startup cost (it will only do so if query_planner's tuple_fraction
argument is greater than zero).  If it isn't, we might as well discard
paths immediately whose only advantage over others is cheap startup cost.
This turns out to get rid of quite a lot of paths in complex queries ---
I saw planner runtime reduction of more than a third on one large query.

Since add_path isn't currently passed the PlannerInfo "root", the easiest
way to tell it whether to do this was to add a bool flag to RelOptInfo.
That's a bit redundant, since all relations in a given query level will
have the same setting.  But in the future it's possible that we'd refine
the control decision to work on a per-relation basis, so this seems like
a good arrangement anyway.

Per my suggestion of a few months ago.
2012-09-01 18:16:24 -04:00
Tom Lane 9ff79b9d4e Fix up planner infrastructure to support LATERAL properly.
This patch takes care of a number of problems having to do with failure
to choose valid join orders and incorrect handling of lateral references
pulled up from subqueries.  Notable changes:

* Add a LateralJoinInfo data structure similar to SpecialJoinInfo, to
represent join ordering constraints created by lateral references.
(I first considered extending the SpecialJoinInfo structure, but the
semantics are different enough that a separate data structure seems
better.)  Extend join_is_legal() and related functions to prevent trying
to form unworkable joins, and to ensure that we will consider joins that
satisfy lateral references even if the joins would be clauseless.

* Fill in the infrastructure needed for the last few types of relation scan
paths to support parameterization.  We'd have wanted this eventually
anyway, but it is necessary now because a relation that gets pulled up out
of a UNION ALL subquery may acquire a reltargetlist containing lateral
references, meaning that its paths *have* to be parameterized whether or
not we have any code that can push join quals down into the scan.

* Compute data about lateral references early in query_planner(), and save
in RelOptInfo nodes, to avoid repetitive calculations later.

* Assorted corner-case bug fixes.

There's probably still some bugs left, but this is a lot closer to being
real than it was before.
2012-08-26 22:50:23 -04:00
Bruce Momjian 927d61eeff Run pgindent on 9.2 source tree in preparation for first 9.3
commit-fest.
2012-06-10 15:20:04 -04:00
Tom Lane 5b7b5518d0 Revise parameterized-path mechanism to fix assorted issues.
This patch adjusts the treatment of parameterized paths so that all paths
with the same parameterization (same set of required outer rels) for the
same relation will have the same rowcount estimate.  We cache the rowcount
estimates to ensure that property, and hopefully save a few cycles too.
Doing this makes it practical for add_path_precheck to operate without
a rowcount estimate: it need only assume that paths with different
parameterizations never dominate each other, which is close enough to
true anyway for coarse filtering, because normally a more-parameterized
path should yield fewer rows thanks to having more join clauses to apply.

In add_path, we do the full nine yards of comparing rowcount estimates
along with everything else, so that we can discard parameterized paths that
don't actually have an advantage.  This fixes some issues I'd found with
add_path rejecting parameterized paths on the grounds that they were more
expensive than not-parameterized ones, even though they yielded many fewer
rows and hence would be cheaper once subsequent joining was considered.

To make the same-rowcounts assumption valid, we have to require that any
parameterized path enforce *all* join clauses that could be obtained from
the particular set of outer rels, even if not all of them are useful for
indexing.  This is required at both base scans and joins.  It's a good
thing anyway since the net impact is that join quals are checked at the
lowest practical level in the join tree.  Hence, discard the original
rather ad-hoc mechanism for choosing parameterization joinquals, and build
a better one that has a more principled rule for when clauses can be moved.
The original rule was actually buggy anyway for lack of knowledge about
which relations are part of an outer join's outer side; getting this right
requires adding an outer_relids field to RestrictInfo.
2012-04-19 15:53:47 -04:00
Tom Lane b14953932d Revise FDW planning API, again.
Further reflection shows that a single callback isn't very workable if we
desire to let FDWs generate multiple Paths, because that forces the FDW to
do all work necessary to generate a valid Plan node for each Path.  Instead
split the former PlanForeignScan API into three steps: GetForeignRelSize,
GetForeignPaths, GetForeignPlan.  We had already bit the bullet of breaking
the 9.1 FDW API for 9.2, so this shouldn't cause very much additional pain,
and it's substantially more flexible for complex FDWs.

Add an fdw_private field to RelOptInfo so that the new functions can save
state there rather than possibly having to recalculate information two or
three times.

In addition, we'd not thought through what would be needed to allow an FDW
to set up subexpressions of its choice for runtime execution.  We could
treat ForeignScan.fdw_private as an executable expression but that seems
likely to break existing FDWs unnecessarily (in particular, it would
restrict the set of node types allowable in fdw_private to those supported
by expression_tree_walker).  Instead, invent a separate field fdw_exprs
which will receive the postprocessing appropriate for expression trees.
(One field is enough since it can be a list of expressions; also, we assume
the corresponding expression state tree(s) will be held within fdw_state,
so we don't need to add anything to ForeignScanState.)

Per review of Hanada Shigeru's pgsql_fdw patch.  We may need to tweak this
further as we continue to work on that patch, but to me it feels a lot
closer to being right now.
2012-03-09 12:49:25 -05:00
Tom Lane e2fa76d80b Use parameterized paths to generate inner indexscans more flexibly.
This patch fixes the planner so that it can generate nestloop-with-
inner-indexscan plans even with one or more levels of joining between
the indexscan and the nestloop join that is supplying the parameter.
The executor was fixed to handle such cases some time ago, but the
planner was not ready.  This should improve our plans in many situations
where join ordering restrictions formerly forced complete table scans.

There is probably a fair amount of tuning work yet to be done, because
of various heuristics that have been added to limit the number of
parameterized paths considered.  However, we are not going to find out
what needs to be adjusted until the code gets some real-world use, so
it's time to get it in there where it can be tested easily.

Note API change for index AM amcostestimate functions.  I'm not aware of
any non-core index AMs, but if there are any, they will need minor
adjustments.
2012-01-27 19:26:38 -05:00
Bruce Momjian e126958c2e Update copyright notices for year 2012. 2012-01-01 18:01:58 -05:00
Tom Lane e6858e6657 Measure the number of all-visible pages for use in index-only scan costing.
Add a column pg_class.relallvisible to remember the number of pages that
were all-visible according to the visibility map as of the last VACUUM
(or ANALYZE, or some other operations that update pg_class.relpages).
Use relallvisible/relpages, instead of an arbitrary constant, to estimate
how many heap page fetches can be avoided during an index-only scan.

This is pretty primitive and will no doubt see refinements once we've
acquired more field experience with the index-only scan mechanism, but
it's way better than using a constant.

Note: I had to adjust an underspecified query in the window.sql regression
test, because it was changing answers when the plan changed to use an
index-only scan.  Some of the adjacent tests perhaps should be adjusted
as well, but I didn't do that here.
2011-10-14 17:23:46 -04:00
Tom Lane b3aaf9081a Rearrange planner to save the whole PlannerInfo (subroot) for a subquery.
Formerly, set_subquery_pathlist and other creators of plans for subqueries
saved only the rangetable and rowMarks lists from the lower-level
PlannerInfo.  But there's no reason not to remember the whole PlannerInfo,
and indeed this turns out to simplify matters in a number of places.

The immediate reason for doing this was so that the subroot will still be
accessible when we're trying to extract column statistics out of an
already-planned subquery.  But now that I've done it, it seems like a good
code-beautification effort in its own right.

I also chose to get rid of the transient subrtable and subrowmark fields in
SubqueryScan nodes, in favor of having setrefs.c look up the subquery's
RelOptInfo.  That required changing all the APIs in setrefs.c to pass
PlannerInfo not PlannerGlobal, which was a large but quite mechanical
transformation.

One side-effect not foreseen at the beginning is that this finally broke
inheritance_planner's assumption that replanning the same subquery RTE N
times would necessarily give interchangeable results each time.  That
assumption was always pretty risky, but now we really have to make a
separate RTE for each instance so that there's a place to carry the
separate subroots.
2011-09-03 15:36:24 -04:00
Bruce Momjian 6416a82a62 Remove unnecessary #include references, per pgrminclude script. 2011-09-01 10:04:27 -04:00
Bruce Momjian 5d950e3b0c Stamp copyrights for year 2011. 2011-01-01 13:18:15 -05:00
Magnus Hagander 9f2e211386 Remove cvs keywords from all files. 2010-09-20 22:08:53 +02:00
Bruce Momjian 65e806cba1 pgindent run for 9.0 2010-02-26 02:01:40 +00:00
Bruce Momjian 0239800893 Update copyright for the year 2010. 2010-01-02 16:58:17 +00:00
Tom Lane 1a95f12702 Eliminate a lot of list-management overhead within join_search_one_level
by adding a requirement that build_join_rel add new join RelOptInfos to the
appropriate list immediately at creation.  Per report from Robert Haas,
the list_concat_unique_ptr() calls that this change eliminates were taking
the lion's share of the runtime in larger join problems.  This doesn't do
anything to fix the fundamental combinatorial explosion in large join
problems, but it should push out the threshold of pain a bit further.

Note: because this changes the order in which joinrel lists are built,
it might result in changes in selected plans in cases where different
alternatives have exactly the same costs.  There is one example in the
regression tests.
2009-11-28 00:46:19 +00:00
Tom Lane 0adaf4cb31 Move the handling of SELECT FOR UPDATE locking and rechecking out of
execMain.c and into a new plan node type LockRows.  Like the recent change
to put table updating into a ModifyTable plan node, this increases planning
flexibility by allowing the operations to occur below the top level of the
plan tree.  It's necessary in any case to restore the previous behavior of
having FOR UPDATE locking occur before ModifyTable does.

This partially refactors EvalPlanQual to allow multiple rows-under-test
to be inserted into the EPQ machinery before starting an EPQ test query.
That isn't sufficient to fix EPQ's general bogosity in the face of plans
that return multiple rows per test row, though.  Since this patch is
mostly about getting some plan node infrastructure in place and not about
fixing ten-year-old bugs, I will leave EPQ improvements for another day.

Another behavioral change that we could now think about is doing FOR UPDATE
before LIMIT, but that too seems like it should be treated as a followon
patch.
2009-10-12 18:10:51 +00:00
Bruce Momjian d747140279 8.4 pgindent run, with new combined Linux/FreeBSD/MinGW typedef list
provided by Andrew.
2009-06-11 14:49:15 +00:00
Bruce Momjian 511db38ace Update copyright for 2009. 2009-01-01 17:24:05 +00:00
Tom Lane e6ae3b5dbf Add a concept of "placeholder" variables to the planner. These are variables
that represent some expression that we desire to compute below the top level
of the plan, and then let that value "bubble up" as though it were a plain
Var (ie, a column value).

The immediate application is to allow sub-selects to be flattened even when
they are below an outer join and have non-nullable output expressions.
Formerly we couldn't flatten because such an expression wouldn't properly
go to NULL when evaluated above the outer join.  Now, we wrap it in a
PlaceHolderVar and arrange for the actual evaluation to occur below the outer
join.  When the resulting Var bubbles up through the join, it will be set to
NULL if necessary, yielding the correct results.  This fixes a planner
limitation that's existed since 7.1.

In future we might want to use this mechanism to re-introduce some form of
Hellerstein's "expensive functions" optimization, ie place the evaluation of
an expensive function at the most suitable point in the plan tree.
2008-10-21 20:42:53 +00:00
Tom Lane 44d5be0e53 Implement SQL-standard WITH clauses, including WITH RECURSIVE.
There are some unimplemented aspects: recursive queries must use UNION ALL
(should allow UNION too), and we don't have SEARCH or CYCLE clauses.
These might or might not get done for 8.4, but even without them it's a
pretty useful feature.

There are also a couple of small loose ends and definitional quibbles,
which I'll send a memo about to pgsql-hackers shortly.  But let's land
the patch now so we can get on with other development.

Yoshiyuki Asaba, with lots of help from Tatsuo Ishii and Tom Lane
2008-10-04 21:56:55 +00:00
Tom Lane e006a24ad1 Implement SEMI and ANTI joins in the planner and executor. (Semijoins replace
the old JOIN_IN code, but antijoins are new functionality.)  Teach the planner
to convert appropriate EXISTS and NOT EXISTS subqueries into semi and anti
joins respectively.  Also, LEFT JOINs with suitable upper-level IS NULL
filters are recognized as being anti joins.  Unify the InClauseInfo and
OuterJoinInfo infrastructure into "SpecialJoinInfo".  With that change,
it becomes possible to associate a SpecialJoinInfo with every join attempt,
which permits some cleanup of join selectivity estimation.  That needs to be
taken much further than this patch does, but the next step is to change the
API for oprjoin selectivity functions, which seems like material for a
separate patch.  So for the moment the output size estimates for semi and
especially anti joins are quite bogus.
2008-08-14 18:48:00 +00:00
Bruce Momjian 9098ab9e32 Update copyrights in source tree to 2008. 2008-01-01 19:46:01 +00:00
Bruce Momjian fdf5a5efb7 pgindent run for 8.3. 2007-11-15 21:14:46 +00:00
Tom Lane afcf09dd90 Some further performance tweaks for planning large inheritance trees that
are mostly excluded by constraints: do the CE test a bit earlier to save
some adjust_appendrel_attrs() work on excluded children, and arrange to
use array indexing rather than rt_fetch() to fetch RTEs in the main body
of the planner.  The latter is something I'd wanted to do for awhile anyway,
but seeing list_nth_cell() as 35% of the runtime gets one's attention.
2007-04-21 21:01:45 +00:00
Tom Lane eab6b8b27e Turn the rangetable used by the executor into a flat list, and avoid storing
useless substructure for its RangeTblEntry nodes.  (I chose to keep using the
same struct node type and just zero out the link fields for unneeded info,
rather than making a separate ExecRangeTblEntry type --- it seemed too
fragile to have two different rangetable representations.)

Along the way, put subplans into a list in the toplevel PlannedStmt node,
and have SubPlan nodes refer to them by list index instead of direct pointers.
Vadim wanted to do that years ago, but I never understood what he was on about
until now.  It makes things a *whole* lot more robust, because we can stop
worrying about duplicate processing of subplans during expression tree
traversals.  That's been a constant source of bugs, and it's finally gone.

There are some consequent simplifications yet to be made, like not using
a separate EState for subplans in the executor, but I'll tackle that later.
2007-02-22 22:00:26 +00:00
Tom Lane f41803bb39 Refactor planner's pathkeys data structure to create a separate, explicit
representation of equivalence classes of variables.  This is an extensive
rewrite, but it brings a number of benefits:
* planner no longer fails in the presence of "incomplete" operator families
that don't offer operators for every possible combination of datatypes.
* avoid generating and then discarding redundant equality clauses.
* remove bogus assumption that derived equalities always use operators
named "=".
* mergejoins can work with a variety of sort orders (e.g., descending) now,
instead of tying each mergejoinable operator to exactly one sort order.
* better recognition of redundant sort columns.
* can make use of equalities appearing underneath an outer join.
2007-01-20 20:45:41 +00:00
Bruce Momjian 29dccf5fe0 Update CVS HEAD for 2007 copyright. Back branches are typically not
back-stamped for this.
2007-01-05 22:20:05 +00:00
Bruce Momjian f99a569a2e pgindent run for 8.2. 2006-10-04 00:30:14 +00:00
Tom Lane b74c543685 Improve usage of effective_cache_size parameter by assuming that all the
tables in the query compete for cache space, not just the one we are
currently costing an indexscan for.  This seems more realistic, and it
definitely will help in examples recently exhibited by Stefan
Kaltenbrunner.  To get the total size of all the tables involved, we must
tweak the handling of 'append relations' a bit --- formerly we looked up
information about the child tables on-the-fly during set_append_rel_pathlist,
but it needs to be done before we start doing any cost estimation, so
push it into the add_base_rels_to_query scan.
2006-09-19 22:49:53 +00:00
Joe Conway 9caafda579 Add support for multi-row VALUES clauses as part of INSERT statements
(e.g. "INSERT ... VALUES (...), (...), ...") and elsewhere as allowed
by the spec. (e.g. similar to a FROM clause subselect). initdb required.
Joe Conway and Tom Lane.
2006-08-02 01:59:48 +00:00