Commit Graph

359 Commits

Author SHA1 Message Date
Amit Kapila cac8ce4a73 Fix typo.
Reported-by: Amit Langote
Author: Amit Langote
Backpatch-through: 9.6, where it was introduced
Discussion: https://postgr.es/m/CA+HiwqFNADeukaaGRmTqANbed9Fd81gLi08AWe_F86_942Gspw@mail.gmail.com
2020-02-06 15:57:02 +05:30
Bruce Momjian 7559d8ebfa Update copyrights for 2020
Backpatch-through: update all files in master, backpatch legal files through 9.4
2020-01-01 12:21:45 -05:00
Tom Lane 5ee190f8ec Rationalize use of list_concat + list_copy combinations.
In the wake of commit 1cff1b95a, the result of list_concat no longer
shares the ListCells of the second input.  Therefore, we can replace
"list_concat(x, list_copy(y))" with just "list_concat(x, y)".

To improve call sites that were list_copy'ing the first argument,
or both arguments, invent "list_concat_copy()" which produces a new
list sharing no ListCells with either input.  (This is a bit faster
than "list_concat(list_copy(x), y)" because it makes the result list
the right size to start with.)

In call sites that were not list_copy'ing the second argument, the new
semantics mean that we are usually leaking the second List's storage,
since typically there is no remaining pointer to it.  We considered
inventing another list_copy variant that would list_free the second
input, but concluded that for most call sites it isn't worth worrying
about, given the relative compactness of the new List representation.
(Note that in cases where such leakage would happen, the old code
already leaked the second List's header; so we're only discussing
the size of the leak not whether there is one.  I did adjust two or
three places that had been troubling to free that header so that
they manually free the whole second List.)

Patch by me; thanks to David Rowley for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-08-12 11:20:18 -04:00
Tom Lane 1cff1b95ab Represent Lists as expansible arrays, not chains of cons-cells.
Originally, Postgres Lists were a more or less exact reimplementation of
Lisp lists, which consist of chains of separately-allocated cons cells,
each having a value and a next-cell link.  We'd hacked that once before
(commit d0b4399d8) to add a separate List header, but the data was still
in cons cells.  That makes some operations -- notably list_nth() -- O(N),
and it's bulky because of the next-cell pointers and per-cell palloc
overhead, and it's very cache-unfriendly if the cons cells end up
scattered around rather than being adjacent.

In this rewrite, we still have List headers, but the data is in a
resizable array of values, with no next-cell links.  Now we need at
most two palloc's per List, and often only one, since we can allocate
some values in the same palloc call as the List header.  (Of course,
extending an existing List may require repalloc's to enlarge the array.
But this involves just O(log N) allocations not O(N).)

Of course this is not without downsides.  The key difficulty is that
addition or deletion of a list entry may now cause other entries to
move, which it did not before.

For example, that breaks foreach() and sister macros, which historically
used a pointer to the current cons-cell as loop state.  We can repair
those macros transparently by making their actual loop state be an
integer list index; the exposed "ListCell *" pointer is no longer state
carried across loop iterations, but is just a derived value.  (In
practice, modern compilers can optimize things back to having just one
loop state value, at least for simple cases with inline loop bodies.)
In principle, this is a semantics change for cases where the loop body
inserts or deletes list entries ahead of the current loop index; but
I found no such cases in the Postgres code.

The change is not at all transparent for code that doesn't use foreach()
but chases lists "by hand" using lnext().  The largest share of such
code in the backend is in loops that were maintaining "prev" and "next"
variables in addition to the current-cell pointer, in order to delete
list cells efficiently using list_delete_cell().  However, we no longer
need a previous-cell pointer to delete a list cell efficiently.  Keeping
a next-cell pointer doesn't work, as explained above, but we can improve
matters by changing such code to use a regular foreach() loop and then
using the new macro foreach_delete_current() to delete the current cell.
(This macro knows how to update the associated foreach loop's state so
that no cells will be missed in the traversal.)

There remains a nontrivial risk of code assuming that a ListCell *
pointer will remain good over an operation that could now move the list
contents.  To help catch such errors, list.c can be compiled with a new
define symbol DEBUG_LIST_MEMORY_USAGE that forcibly moves list contents
whenever that could possibly happen.  This makes list operations
significantly more expensive so it's not normally turned on (though it
is on by default if USE_VALGRIND is on).

There are two notable API differences from the previous code:

* lnext() now requires the List's header pointer in addition to the
current cell's address.

* list_delete_cell() no longer requires a previous-cell argument.

These changes are somewhat unfortunate, but on the other hand code using
either function needs inspection to see if it is assuming anything
it shouldn't, so it's not all bad.

Programmers should be aware of these significant performance changes:

* list_nth() and related functions are now O(1); so there's no
major access-speed difference between a list and an array.

* Inserting or deleting a list element now takes time proportional to
the distance to the end of the list, due to moving the array elements.
(However, it typically *doesn't* require palloc or pfree, so except in
long lists it's probably still faster than before.)  Notably, lcons()
used to be about the same cost as lappend(), but that's no longer true
if the list is long.  Code that uses lcons() and list_delete_first()
to maintain a stack might usefully be rewritten to push and pop at the
end of the list rather than the beginning.

* There are now list_insert_nth...() and list_delete_nth...() functions
that add or remove a list cell identified by index.  These have the
data-movement penalty explained above, but there's no search penalty.

* list_concat() and variants now copy the second list's data into
storage belonging to the first list, so there is no longer any
sharing of cells between the input lists.  The second argument is
now declared "const List *" to reflect that it isn't changed.

This patch just does the minimum needed to get the new implementation
in place and fix bugs exposed by the regression tests.  As suggested
by the foregoing, there's a fair amount of followup work remaining to
do.

Also, the ENABLE_LIST_COMPAT macros are finally removed in this
commit.  Code using those should have been gone a dozen years ago.

Patch by me; thanks to David Rowley, Jesper Pedersen, and others
for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-07-15 13:41:58 -04:00
Tom Lane 8255c7a5ee Phase 2 pgindent run for v12.
Switch to 2.1 version of pg_bsd_indent.  This formats
multiline function declarations "correctly", that is with
additional lines of parameter declarations indented to match
where the first line's left parenthesis is.

Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com
2019-05-22 13:04:48 -04:00
Tom Lane 959d00e9db Use Append rather than MergeAppend for scanning ordered partitions.
If we need ordered output from a scan of a partitioned table, but
the ordering matches the partition ordering, then we don't need to
use a MergeAppend to combine the pre-ordered per-partition scan
results: a plain Append will produce the same results.  This
both saves useless comparison work inside the MergeAppend proper,
and allows us to start returning tuples after istarting up just
the first child node not all of them.

However, all is not peaches and cream, because if some of the
child nodes have high startup costs then there will be big
discontinuities in the tuples-returned-versus-elapsed-time curve.
The planner's cost model cannot handle that (yet, anyway).
If we model the Append's startup cost as being just the first
child's startup cost, we may drastically underestimate the cost
of fetching slightly more tuples than are available from the first
child.  Since we've had bad experiences with over-optimistic choices
of "fast start" plans for ORDER BY LIMIT queries, that seems scary.
As a klugy workaround, set the startup cost estimate for an ordered
Append to be the sum of its children's startup costs (as MergeAppend
would).  This doesn't really describe reality, but it's less likely
to cause a bad plan choice than an underestimated startup cost would.
In practice, the cases where we really care about this optimization
will have child plans that are IndexScans with zero startup cost,
so that the overly conservative estimate is still just zero.

David Rowley, reviewed by Julien Rouhaud and Antonin Houska

Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-05 19:20:43 -04:00
Tom Lane 428b260f87 Speed up planning when partitions can be pruned at plan time.
Previously, the planner created RangeTblEntry and RelOptInfo structs
for every partition of a partitioned table, even though many of them
might later be deemed uninteresting thanks to partition pruning logic.
This incurred significant overhead when there are many partitions.
Arrange to postpone creation of these data structures until after
we've processed the query enough to identify restriction quals for
the partitioned table, and then apply partition pruning before not
after creation of each partition's data structures.  In this way
we need not open the partition relations at all for partitions that
the planner has no real interest in.

For queries that can be proven at plan time to access only a small
number of partitions, this patch improves the practical maximum
number of partitions from under 100 to perhaps a few thousand.

Amit Langote, reviewed at various times by Dilip Kumar, Jesper Pedersen,
Yoshikazu Imai, and David Rowley

Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp
2019-03-30 18:58:55 -04:00
Tom Lane 7ad6498fd5 Avoid crash in partitionwise join planning under GEQO.
While trying to plan a partitionwise join, we may be faced with cases
where one or both input partitions for a particular segment of the join
have been pruned away.  In HEAD and v11, this is problematic because
earlier processing didn't bother to make a pruned RelOptInfo fully
valid.  With an upcoming patch to make partition pruning more efficient,
this'll be even more problematic because said RelOptInfo won't exist at
all.

The existing code attempts to deal with this by retroactively making the
RelOptInfo fully valid, but that causes crashes under GEQO because join
planning is done in a short-lived memory context.  In v11 we could
probably have fixed this by switching to the planner's main context
while fixing up the RelOptInfo, but that idea doesn't scale well to the
upcoming patch.  It would be better not to mess with the base-relation
data structures during join planning, anyway --- that's just a recipe
for order-of-operations bugs.

In many cases, though, we don't actually need the child RelOptInfo,
because if the input is certainly empty then the join segment's result
is certainly empty, so we can skip making a join plan altogether.  (The
existing code ultimately arrives at the same conclusion, but only after
doing a lot more work.)  This approach works except when the pruned-away
partition is on the nullable side of a LEFT, ANTI, or FULL join, and the
other side isn't pruned.  But in those cases the existing code leaves a
lot to be desired anyway --- the correct output is just the result of
the unpruned side of the join, but we were emitting a useless outer join
against a dummy Result.  Pending somebody writing code to handle that
more nicely, let's just abandon the partitionwise-join optimization in
such cases.

When the modified code skips making a join plan, it doesn't make a
join RelOptInfo either; this requires some upper-level code to
cope with nulls in part_rels[] arrays.  We would have had to have
that anyway after the upcoming patch.

Back-patch to v11 since the crash is demonstrable there.

Discussion: https://postgr.es/m/8305.1553884377@sss.pgh.pa.us
2019-03-30 12:48:32 -04:00
Tom Lane 53bcf5e3db Build "other rels" of appendrel baserels in a separate step.
Up to now, otherrel RelOptInfos were built at the same time as baserel
RelOptInfos, thanks to recursion in build_simple_rel().  However,
nothing in query_planner's preprocessing cares at all about otherrels,
only baserels, so we don't really need to build them until just before
we enter make_one_rel.  This has two benefits:

* create_lateral_join_info did a lot of extra work to propagate
lateral-reference information from parents to the correct children.
But if we delay creation of the children till after that, it's
trivial (and much harder to break, too).

* Since we have all the restriction quals correctly assigned to
parent appendrels by this point, it'll be possible to do plan-time
pruning and never make child RelOptInfos at all for partitions that
can be pruned away.  That's not done here, but will be later on.

Amit Langote, reviewed at various times by Dilip Kumar, Jesper Pedersen,
Yoshikazu Imai, and David Rowley

Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp
2019-03-26 18:21:10 -04:00
Tom Lane 8edd0e7946 Suppress Append and MergeAppend plan nodes that have a single child.
If there's only one child relation, the Append or MergeAppend isn't
doing anything useful, and can be elided.  It does have a purpose
during planning though, which is to serve as a buffer between parent
and child Var numbering.  Therefore we keep it all the way through
to setrefs.c, and get rid of it only after fixing references in the
plan level(s) above it.  This works largely the same as setrefs.c's
ancient hack to get rid of no-op SubqueryScan nodes, and can even
share some code with that.

Note the change to make setrefs.c use apply_tlist_labeling rather than
ad-hoc code.  This has the effect of propagating the child's resjunk
and ressortgroupref labels, which formerly weren't propagated when
removing a SubqueryScan.  Doing that is demonstrably necessary for
the [Merge]Append cases, and seems harmless for SubqueryScan, if only
because trivial_subqueryscan is afraid to collapse cases where the
resjunk marking differs.  (I suspect that restriction could now be
removed, though it's unclear that it'd make any new matches possible,
since the outer query can't have references to a child resjunk column.)

David Rowley, reviewed by Alvaro Herrera and Tomas Vondra

Discussion: https://postgr.es/m/CAKJS1f_7u8ATyJ1JGTMHFoKDvZdeF-iEBhs+sM_SXowOr9cArg@mail.gmail.com
2019-03-25 15:42:35 -04:00
Tom Lane 0a9d7e1f6d Ensure dummy paths have correct required_outer if rel is parameterized.
The assertions added by commits 34ea1ab7f et al found another problem:
set_dummy_rel_pathlist and mark_dummy_rel were failing to label
the dummy paths they create with the correct outer_relids, in case
the relation is necessarily parameterized due to having lateral
references in its tlist.  It's likely that this has no user-visible
consequences in production builds, at the moment; but still an assertion
failure is a bad thing, so back-patch the fix.

Per bug #15694 from Roman Zharkov (via Alexander Lakhin)
and an independent report by Tushar Ahuja.

Discussion: https://postgr.es/m/15694-74f2ca97e7044f7f@postgresql.org
Discussion: https://postgr.es/m/7d72ab20-c725-3ce2-f99d-4e64dd8a0de6@enterprisedb.com
2019-03-14 12:16:36 -04:00
Tom Lane 1d33858406 Fix handling of targetlist SRFs when scan/join relation is known empty.
When we introduced separate ProjectSetPath nodes for application of
set-returning functions in v10, we inadvertently broke some cases where
we're supposed to recognize that the result of a subquery is known to be
empty (contain zero rows).  That's because IS_DUMMY_REL was just looking
for a childless AppendPath without allowing for a ProjectSetPath being
possibly stuck on top.  In itself, this didn't do anything much worse
than produce slightly worse plans for some corner cases.

Then in v11, commit 11cf92f6e rearranged things to allow the scan/join
targetlist to be applied directly to partial paths before they get
gathered.  But it inserted a short-circuit path for dummy relations
that was a little too short: it failed to insert a ProjectSetPath node
at all for a targetlist containing set-returning functions, resulting in
bogus "set-valued function called in context that cannot accept a set"
errors, as reported in bug #15669 from Madelaine Thibaut.

The best way to fix this mess seems to be to reimplement IS_DUMMY_REL
so that it drills down through any ProjectSetPath nodes that might be
there (and it seems like we'd better allow for ProjectionPath as well).

While we're at it, make it look at rel->pathlist not cheapest_total_path,
so that it gives the right answer independently of whether set_cheapest
has been done lately.  That dependency looks pretty shaky in the context
of code like apply_scanjoin_target_to_paths, and even if it's not broken
today it'd certainly bite us at some point.  (Nastily, unsafe use of the
old coding would almost always work; the hazard comes down to possibly
looking through a dangling pointer, and only once in a blue moon would
you find something there that resulted in the wrong answer.)

It now looks like it was a mistake for IS_DUMMY_REL to be a macro: if
there are any extensions using it, they'll continue to use the old
inadequate logic until they're recompiled, after which they'll fail
to load into server versions predating this fix.  Hopefully there are
few such extensions.

Having fixed IS_DUMMY_REL, the special path for dummy rels in
apply_scanjoin_target_to_paths is unnecessary as well as being wrong,
so we can just drop it.

Also change a few places that were testing for partitioned-ness of a
planner relation but not using IS_PARTITIONED_REL for the purpose; that
seems unsafe as well as inconsistent, plus it required an ugly hack in
apply_scanjoin_target_to_paths.

In passing, save a few cycles in apply_scanjoin_target_to_paths by
skipping processing of pre-existing paths for partitioned rels,
and do some cosmetic cleanup and comment adjustment in that function.

I renamed IS_DUMMY_PATH to IS_DUMMY_APPEND with the intention of breaking
any code that might be using it, since in almost every case that would
be wrong; IS_DUMMY_REL is what to be using instead.

In HEAD, also make set_dummy_rel_pathlist static (since it's no longer
used from outside allpaths.c), and delete is_dummy_plan, since it's no
longer used anywhere.

Back-patch as appropriate into v11 and v10.

Tom Lane and Julien Rouhaud

Discussion: https://postgr.es/m/15669-02fb3296cca26203@postgresql.org
2019-03-07 14:22:13 -05:00
Tom Lane 6401583863 Call set_rel_pathlist_hook before generate_gather_paths, not after.
The previous ordering of these steps satisfied the nominal requirement
that set_rel_pathlist_hook could editorialize on the whole set of Paths
constructed for a base relation.  In practice, though, trying to change
the set of partial paths was impossible.  Adding one didn't work because
(a) it was too late to be included in Gather paths made by the core code,
and (b) calling add_partial_path after generate_gather_paths is unsafe,
because it might try to delete a path it thinks is dominated, but that
is already embedded in some Gather path(s).  Nor could the hook safely
remove partial paths, for the same reason that they might already be
embedded in Gathers.

Better to call extensions first, let them add partial paths as desired,
and then gather.  In v11 and up, we already doubled down on that ordering
by postponing gathering even further for single-relation queries; so even
if the hook wished to editorialize on Gather path construction, it could
not.

Report and patch by KaiGai Kohei.  Back-patch to 9.6 where Gather paths
were added.

Discussion: https://postgr.es/m/CAOP8fzahwpKJRTVVTqo2AE=mDTz_efVzV6Get_0=U3SO+-ha1A@mail.gmail.com
2019-02-09 11:41:09 -05:00
Alvaro Herrera 80579f9bb1 Move building of child base quals out into a new function
An upcoming patch which changes how inheritance planning works requires
adding a new function that does a similar job to set_append_rel_size() but
for child target relations.  To save it from having to duplicate the qual
building code, move that to a separate function first.

Here we also change things so that we never attempt to build security quals
after detecting some const false child quals.  We needlessly used to do this
just before we marked the child relation as a dummy rel.

In passing, this also moves the partition pruned check to before the qual
building code.  We don't need to build the child quals before we check if
the partition has been pruned.

Author: David Rowley
Discussion: https://postgr.es/m/CAKJS1f_i+jrrD+if8qC7KPuTAAWsd=dtepgY_7u=P86GDEwm7A@mail.gmail.com
2019-02-01 06:47:49 -03:00
Tom Lane f09346a9c6 Refactor planner's header files.
Create a new header optimizer/optimizer.h, which exposes just the
planner functions that can be used "at arm's length", without need
to access Paths or the other planner-internal data structures defined
in nodes/relation.h.  This is intended to provide the whole planner
API seen by most of the rest of the system; although FDWs still need
to use additional stuff, and more thought is also needed about just
what selfuncs.c should rely on.

The main point of doing this now is to limit the amount of new
#include baggage that will be needed by "planner support functions",
which I expect to introduce later, and which will be in relevant
datatype modules rather than anywhere near the planner.

This commit just moves relevant declarations into optimizer.h from
other header files (a couple of which go away because everything
got moved), and adjusts #include lists to match.  There's further
cleanup that could be done if we want to decide that some stuff
being exposed by optimizer.h doesn't belong in the planner at all,
but I'll leave that for another day.

Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
2019-01-29 15:48:51 -05:00
Tom Lane 4be058fe9e In the planner, replace an empty FROM clause with a dummy RTE.
The fact that "SELECT expression" has no base relations has long been a
thorn in the side of the planner.  It makes it hard to flatten a sub-query
that looks like that, or is a trivial VALUES() item, because the planner
generally uses relid sets to identify sub-relations, and such a sub-query
would have an empty relid set if we flattened it.  prepjointree.c contains
some baroque logic that works around this in certain special cases --- but
there is a much better answer.  We can replace an empty FROM clause with a
dummy RTE that acts like a table of one row and no columns, and then there
are no such corner cases to worry about.  Instead we need some logic to
get rid of useless dummy RTEs, but that's simpler and covers more cases
than what was there before.

For really trivial cases, where the query is just "SELECT expression" and
nothing else, there's a hazard that adding the extra RTE makes for a
noticeable slowdown; even though it's not much processing, there's not
that much for the planner to do overall.  However testing says that the
penalty is very small, close to the noise level.  In more complex queries,
this is able to find optimizations that we could not find before.

The new RTE type is called RTE_RESULT, since the "scan" plan type it
gives rise to is a Result node (the same plan we produced for a "SELECT
expression" query before).  To avoid confusion, rename the old ResultPath
path type to GroupResultPath, reflecting that it's only used in degenerate
grouping cases where we know the query produces just one grouped row.
(It wouldn't work to unify the two cases, because there are different
rules about where the associated quals live during query_planner.)

Note: although this touches readfuncs.c, I don't think a catversion
bump is required, because the added case can't occur in stored rules,
only plans.

Patch by me, reviewed by David Rowley and Mark Dilger

Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
2019-01-28 17:54:23 -05:00
Etsuro Fujita 8d8dcead12 Postpone generating tlists and EC members for inheritance dummy children.
Previously, in set_append_rel_size(), we generated tlists and EC members
for dummy children for possible use by partition-wise join, even if
partition-wise join was disabled or the top parent was not a partitioned
table, but adding such EC members causes noticeable planning speed
degradation for queries with certain kinds of join quals like
"(foo.x + bar.y) = constant" where foo and bar are partitioned tables in
cases where there are lots of dummy children, as the EC members lists
grow huge, especially for the ECs derived from such join quals, which
makes the search for the parent EC members in add_child_rel_equivalences()
very time-consuming.  Postpone the work until such children are actually
involved in a partition-wise join.

Reported-by: Sanyo Capobiango
Analyzed-by: Justin Pryzby and Alvaro Herrera
Author: Amit Langote, with a few additional changes by me
Reviewed-by: Ashutosh Bapat
Backpatch-through: v11 where partition-wise join was added
Discussion: https://postgr.es/m/CAO698qZnrxoZu7MEtfiJmpmUtz3AVYFVnwzR%2BpqjF%3DrmKBTgpw%40mail.gmail.com
2019-01-21 17:12:40 +09:00
Alvaro Herrera b60c397599 Move inheritance expansion code into its own file
This commit moves expand_inherited_tables and underlings from
optimizer/prep/prepunionc.c to optimizer/utils/inherit.c.
Also, all of the AppendRelInfo-based expression manipulation routines
are moved to optimizer/utils/appendinfo.c.

No functional code changes.  One exception is the introduction of
make_append_rel_info, but that's still just moving around code.

Also, stop including <limits.h> in prepunion.c, which no longer needs
it since 3fc6e2d7f5.  I (Álvaro) noticed this because Amit was copying
that to inherit.c, which likewise doesn't need it.

Author: Amit Langote
Discussion: https://postgr.es/m/3be67028-a00a-502c-199a-da00eec8fb6e@lab.ntt.co.jp
2019-01-10 14:54:31 -03:00
Bruce Momjian 97c39498e5 Update copyright for 2019
Backpatch-through: certain files through 9.4
2019-01-02 12:44:25 -05:00
Tom Lane c6e4133fae Postpone calculating total_table_pages until after pruning/exclusion.
The planner doesn't make any use of root->total_table_pages until it
estimates costs of indexscans, so we don't need to compute it as
early as that's currently done.  By doing the calculation between
set_base_rel_sizes and set_base_rel_pathlists, we can omit relations
that get removed from the query by partition pruning or constraint
exclusion, which seems like a more accurate basis for costing.

(Historical note: I think at the time this code was written, there
was not a separation between the "set sizes" and "set pathlists"
steps, so that this approach would have been impossible at the time.
But now that we have that separation, this is clearly the better way
to do things.)

David Rowley, reviewed by Edmund Horner

Discussion: https://postgr.es/m/CAKJS1f-NG1mRM0VOtkAG7=ZLQWihoqees9R4ki3CKBB0-fRfCA@mail.gmail.com
2018-11-07 12:12:56 -05:00
Amit Kapila 75f9c4ca5a Don't allow LIMIT/OFFSET clause within sub-selects to be pushed to workers.
Allowing sub-select containing LIMIT/OFFSET in workers can lead to
inconsistent results at the top-level as there is no guarantee that the
row order will be fully deterministic.  The fix is to prohibit pushing
LIMIT/OFFSET within sub-selects to workers.

Reported-by: Andrew Fletcher
Bug: 15324
Author: Amit Kapila
Reviewed-by: Dilip Kumar
Backpatch-through: 9.6
Discussion: https://postgr.es/m/153417684333.10284.11356259990921828616@wrigleys.postgresql.org
2018-09-14 09:36:30 +05:30
Etsuro Fujita 7cfdc77023 Disable support for partitionwise joins in problematic cases.
Commit f49842d, which added support for partitionwise joins, built the
child's tlist by applying adjust_appendrel_attrs() to the parent's.  So in
the case where the parent's included a whole-row Var for the parent, the
child's contained a ConvertRowtypeExpr.  To cope with that, that commit
added code to the planner, such as setrefs.c, but some code paths still
assumed that the tlist for a scan (or join) rel would only include Vars
and PlaceHolderVars, which was true before that commit, causing errors:

* When creating an explicit sort node for an input path for a mergejoin
  path for a child join, prepare_sort_from_pathkeys() threw the 'could not
  find pathkey item to sort' error.
* When deparsing a relation participating in a pushed down child join as a
  subquery in contrib/postgres_fdw, get_relation_column_alias_ids() threw
  the 'unexpected expression in subquery output' error.
* When performing set_plan_references() on a local join plan generated by
  contrib/postgres_fdw for EvalPlanQual support for a pushed down child
  join, fix_join_expr() threw the 'variable not found in subplan target
  lists' error.

To fix these, two approaches have been proposed: one by Ashutosh Bapat and
one by me.  While the former keeps building the child's tlist with a
ConvertRowtypeExpr, the latter builds it with a whole-row Var for the
child not to violate the planner assumption, and tries to fix it up later,
But both approaches need more work, so refuse to generate partitionwise
join paths when whole-row Vars are involved, instead.  We don't need to
handle ConvertRowtypeExprs in the child's tlists for now, so this commit
also removes the changes to the planner.

Previously, partitionwise join computed attr_needed data for each child
separately, and built the child join's tlist using that data, which also
required an extra step for adding PlaceHolderVars to that tlist, but it
would be more efficient to build it from the parent join's tlist through
the adjust_appendrel_attrs() transformation.  So this commit builds that
list that way, and simplifies build_joinrel_tlist() and placeholder.c as
well as part of set_append_rel_size() to basically what they were before
partitionwise join went in.

Back-patch to PG11 where partitionwise join was introduced.

Report by Rajkumar Raghuwanshi.  Analysis by Ashutosh Bapat, who also
provided some of regression tests.  Patch by me, reviewed by Robert Haas.

Discussion: https://postgr.es/m/CAKcux6ktu-8tefLWtQuuZBYFaZA83vUzuRd7c1YHC-yEWyYFpg@mail.gmail.com
2018-08-31 20:34:06 +09:00
Tom Lane 1c2cb2744b Fix run-time partition pruning for appends with multiple source rels.
The previous coding here supposed that if run-time partitioning applied to
a particular Append/MergeAppend plan, then all child plans of that node
must be members of a single partitioning hierarchy.  This is totally wrong,
since an Append could be formed from a UNION ALL: we could have multiple
hierarchies sharing the same Append, or child plans that aren't part of any
hierarchy.

To fix, restructure the related plan-time and execution-time data
structures so that we can have a separate list or array for each
partitioning hierarchy.  Also track subplans that are not part of any
hierarchy, and make sure they don't get pruned.

Per reports from Phil Florent and others.  Back-patch to v11, since
the bug originated there.

David Rowley, with a lot of cosmetic adjustments by me; thanks also
to Amit Langote for review.

Discussion: https://postgr.es/m/HE1PR03MB17068BB27404C90B5B788BCABA7B0@HE1PR03MB1706.eurprd03.prod.outlook.com
2018-08-01 19:42:52 -04:00
Michael Paquier b33ef397a1 Fix print of Path nodes when using OPTIMIZER_DEBUG
GatherMergePath (introduced in 10) and CustomPath (introduced in 9.5)
have gone missing.  The order of the Path nodes was inconsistent with
what is listed in nodes.h, so make the order consistent at the same time
to ease future checks and additions.

Author: Sawada Masahiko
Reviewed-by: Michael Paquier
Discussion: https://postgr.es/m/CAD21AoBQMLoc=ohH-oocuAPsELrmk8_EsRJjOyR8FQLZkbE0wA@mail.gmail.com
2018-07-19 09:54:39 +09:00
Amit Kapila 403318b71f Don't consider parallel append for parallel unsafe paths.
Commit ab72716778 allowed Parallel Append paths to be generated for a
relation that is not parallel safe.  Prevent that from happening.

Initial analysis by Tom Lane.

Reported-by: Rajkumar Raghuwanshi
Author: Amit Kapila and Rajkumar Raghuwanshi
Reviewed-by: Amit Khandekar and Robert Haas
Discussion:https://postgr.es/m/CAKcux6=tPJ6nJ08r__nU_pmLQiC0xY15Fn0HvG1Cprsjdd9s_Q@mail.gmail.com
2018-06-20 07:51:42 +05:30
Tom Lane 4e23236403 Improve commentary about run-time partition pruning data structures.
No code changes except for a couple of new Asserts.

David Rowley and Tom Lane

Discussion: https://postgr.es/m/CAKJS1f-6GODRNgEtdPxCnAPme2h2hTztB6LmtfdmcYAAOE0kQg@mail.gmail.com
2018-06-11 17:35:53 -04:00
Tom Lane bdf46af748 Post-feature-freeze pgindent run.
Discussion: https://postgr.es/m/15719.1523984266@sss.pgh.pa.us
2018-04-26 14:47:16 -04:00
Robert Haas dc1057fcd8 Prevent generation of bogus subquery scan paths.
Commit 0927d2f46d didn't check that
consider_parallel was set for the target relation or account for
the possibility that required_outer might be non-empty.

To prevent future bugs of this ilk, add some assertions to
add_partial_path and do a bit of future-proofing of the code
recently added to recurse_set_operations.

Report by Andreas Seltenreich.  Patch by Jeevan Chalke.  Review
by Amit Kapila and by me.

Discussion: http://postgr.es/m/CAM2+6=U+9otsyF2fYB8x_2TBeHTR90itarqW=qAEjN-kHaC7kw@mail.gmail.com
2018-04-25 15:25:55 -04:00
Alvaro Herrera 055fb8d33d Add GUC enable_partition_pruning
This controls both plan-time and execution-time new-style partition
pruning.  While finer-grain control is possible (maybe using an enum GUC
instead of boolean), there doesn't seem to be much need for that.

This new parameter controls partition pruning for all queries:
trivially, SELECT queries that affect partitioned tables are naturally
under its control since they are using the new technology.  However,
while UPDATE/DELETE queries do not use the new code, we make the new GUC
control their behavior also (stealing control from
constraint_exclusion), because it is more natural, and it leads to a
more natural transition to the future in which those queries will also
use the new pruning code.

Constraint exclusion still controls pruning for regular inheritance
situations (those not involving partitioned tables).

Author: David Rowley
Review: Amit Langote, Ashutosh Bapat, Justin Pryzby, David G. Johnston
Discussion: https://postgr.es/m/CAKJS1f_0HwsxJG9m+nzU+CizxSdGtfe6iF_ykPYBiYft302DCw@mail.gmail.com
2018-04-23 17:57:43 -03:00
Alvaro Herrera 499be013de Support partition pruning at execution time
Existing partition pruning is only able to work at plan time, for query
quals that appear in the parsed query.  This is good but limiting, as
there can be parameters that appear later that can be usefully used to
further prune partitions.

This commit adds support for pruning subnodes of Append which cannot
possibly contain any matching tuples, during execution, by evaluating
Params to determine the minimum set of subnodes that can possibly match.
We support more than just simple Params in WHERE clauses. Support
additionally includes:

1. Parameterized Nested Loop Joins: The parameter from the outer side of the
   join can be used to determine the minimum set of inner side partitions to
   scan.

2. Initplans: Once an initplan has been executed we can then determine which
   partitions match the value from the initplan.

Partition pruning is performed in two ways.  When Params external to the plan
are found to match the partition key we attempt to prune away unneeded Append
subplans during the initialization of the executor.  This allows us to bypass
the initialization of non-matching subplans meaning they won't appear in the
EXPLAIN or EXPLAIN ANALYZE output.

For parameters whose value is only known during the actual execution
then the pruning of these subplans must wait.  Subplans which are
eliminated during this stage of pruning are still visible in the EXPLAIN
output.  In order to determine if pruning has actually taken place, the
EXPLAIN ANALYZE must be viewed.  If a certain Append subplan was never
executed due to the elimination of the partition then the execution
timing area will state "(never executed)".  Whereas, if, for example in
the case of parameterized nested loops, the number of loops stated in
the EXPLAIN ANALYZE output for certain subplans may appear lower than
others due to the subplan having been scanned fewer times.  This is due
to the list of matching subnodes having to be evaluated whenever a
parameter which was found to match the partition key changes.

This commit required some additional infrastructure that permits the
building of a data structure which is able to perform the translation of
the matching partition IDs, as returned by get_matching_partitions, into
the list index of a subpaths list, as exist in node types such as
Append, MergeAppend and ModifyTable.  This allows us to translate a list
of clauses into a Bitmapset of all the subpath indexes which must be
included to satisfy the clause list.

Author: David Rowley, based on an earlier effort by Beena Emerson
Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi,
Jesper Pedersen
Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
2018-04-07 17:54:39 -03:00
Alvaro Herrera 9fdb675fc5 Faster partition pruning
Add a new module backend/partitioning/partprune.c, implementing a more
sophisticated algorithm for partition pruning.  The new module uses each
partition's "boundinfo" for pruning instead of constraint exclusion,
based on an idea proposed by Robert Haas of a "pruning program": a list
of steps generated from the query quals which are run iteratively to
obtain a list of partitions that must be scanned in order to satisfy
those quals.

At present, this targets planner-time partition pruning, but there exist
further patches to apply partition pruning at execution time as well.

This commit also moves some definitions from include/catalog/partition.h
to a new file include/partitioning/partbounds.h, in an attempt to
rationalize partitioning related code.

Authors: Amit Langote, David Rowley, Dilip Kumar
Reviewers: Robert Haas, Kyotaro Horiguchi, Ashutosh Bapat, Jesper Pedersen.
Discussion: https://postgr.es/m/098b9c71-1915-1a2a-8d52-1a7a50ce79e8@lab.ntt.co.jp
2018-04-06 16:44:05 -03:00
Robert Haas 3f90ec8597 Postpone generate_gather_paths for topmost scan/join rel.
Don't call generate_gather_paths for the topmost scan/join relation
when it is initially populated with paths.  Instead, do the work in
grouping_planner.  By itself, this gains nothing; in fact it loses
slightly because we end up calling set_cheapest() for the topmost
scan/join rel twice rather than once.  However, it paves the way for
a future commit which will postpone generate_gather_paths for the
topmost scan/join relation even further, allowing more accurate
costing of parallel paths.

Amit Kapila and Robert Haas.  Earlier versions of this patch (which
different substantially) were reviewed by Dilip Kumar, Amit
Khandekar, Marina Polyakova, and Ashutosh Bapat.
2018-03-29 15:40:40 -04:00
Robert Haas e2f1eb0ee3 Implement partition-wise grouping/aggregation.
If the partition keys of input relation are part of the GROUP BY
clause, all the rows belonging to a given group come from a single
partition.  This allows aggregation/grouping over a partitioned
relation to be broken down * into aggregation/grouping on each
partition.  This should be no worse, and often better, than the normal
approach.

If the GROUP BY clause does not contain all the partition keys, we can
still perform partial aggregation for each partition and then finalize
aggregation after appending the partial results.  This is less certain
to be a win, but it's still useful.

Jeevan Chalke, Ashutosh Bapat, Robert Haas.  The larger patch series
of which this patch is a part was also reviewed and tested by Antonin
Houska, Rajkumar Raghuwanshi, David Rowley, Dilip Kumar, Konstantin
Knizhnik, Pascal Legrand, and Rafia Sabih.

Discussion: http://postgr.es/m/CAM2+6=V64_xhstVHie0Rz=KPEQnLJMZt_e314P0jaT_oJ9MR8A@mail.gmail.com
2018-03-22 12:49:48 -04:00
Stephen Frost 1f7b8967ef Fix typo in add_paths_to_append_rel()
The comment should have been referring to the number of workers, not the
number of paths.

Author: Ashutosh Bapat
Discussion: https://postgr.es/m/CAFjFpRcbp4702jcp387PExt3fNCt62QJN8++DQGwBhsW6wRHWA@mail.gmail.com
2018-03-14 13:51:14 -04:00
Robert Haas 0927d2f46d Let Parallel Append over simple UNION ALL have partial subpaths.
A simple UNION ALL gets flattened into an appendrel of subquery
RTEs, but up until now it's been impossible for the appendrel to use
the partial paths for the subqueries, so we can implement the
appendrel as a Parallel Append but only one with non-partial paths
as children.

There are three separate obstacles to removing that limitation.
First, when planning a subquery, propagate any partial paths to the
final_rel so that they are potentially visible to outer query levels
(but not if they have initPlans attached, because that wouldn't be
safe).  Second, after planning a subquery, propagate any partial paths
for the final_rel to the subquery RTE in the outer query level in the
same way we do for non-partial paths.  Third, teach finalize_plan() to
account for the possibility that the fake parameter we use for rescan
signalling when the plan contains a Gather (Merge) node may be
propagated from an outer query level.

Patch by me, reviewed and tested by Amit Khandekar, Rajkumar
Raghuwanshi, and Ashutosh Bapat.  Test cases based on examples by
Rajkumar Raghuwanshi.

Discussion: http://postgr.es/m/CA+Tgmoa6L9A1nNCk3aTDVZLZ4KkHDn1+tm7mFyFvP+uQPS7bAg@mail.gmail.com
2018-03-13 16:34:08 -04:00
Robert Haas 3bf05e096b Add a new upper planner relation for partially-aggregated results.
Up until now, we've abused grouped_rel->partial_pathlist as a place to
store partial paths that have been partially aggregate, but that's
really not correct, because a partial path for a relation is supposed
to be one which produces the correct results with the addition of only
a Gather or Gather Merge node, and these paths also require a Finalize
Aggregate step.  Instead, add a new partially_group_rel which can hold
either partial paths (which need to be gathered and then have
aggregation finalized) or non-partial paths (which only need to have
aggregation finalized).  This allows us to reuse generate_gather_paths
for partially_grouped_rel instead of writing new code, so that this
patch actually basically no net new code while making things cleaner,
simplifying things for pending patches for partition-wise aggregate.

Robert Haas and Jeevan Chalke.  The larger patch series of which this
patch is a part was also reviewed and tested by Antonin Houska,
Rajkumar Raghuwanshi, David Rowley, Dilip Kumar, Konstantin Knizhnik,
Pascal Legrand, Rafia Sabih, and me.

Discussion: http://postgr.es/m/CA+TgmobrzFYS3+U8a_BCy3-hOvh5UyJbC18rEcYehxhpw5=ETA@mail.gmail.com
Discussion: http://postgr.es/m/CA+TgmoZyQEjdBNuoG9-wC5GQ5GrO4544Myo13dVptvx+uLg9uQ@mail.gmail.com
2018-02-26 09:32:32 -05:00
Peter Eisentraut 2fb1abaeb0 Rename enable_partition_wise_join to enable_partitionwise_join
Discussion: https://www.postgresql.org/message-id/flat/ad24e4f4-6481-066e-e3fb-6ef4a3121882%402ndquadrant.com
2018-02-16 10:33:59 -05:00
Robert Haas f069c91a57 Fix possible crash in partition-wise join.
The previous code assumed that we'd always succeed in creating
child-joins for a joinrel for which partition-wise join was considered,
but that's not guaranteed, at least in the case where dummy rels
are involved.

Ashutosh Bapat, with some wordsmithing by me.

Discussion: http://postgr.es/m/CAFjFpRf8=uyMYYfeTBjWDMs1tR5t--FgOe2vKZPULxxdYQ4RNw@mail.gmail.com
2018-02-05 17:31:57 -05:00
Robert Haas 9da0cc3528 Support parallel btree index builds.
To make this work, tuplesort.c and logtape.c must also support
parallelism, so this patch adds that infrastructure and then applies
it to the particular case of parallel btree index builds.  Testing
to date shows that this can often be 2-3x faster than a serial
index build.

The model for deciding how many workers to use is fairly primitive
at present, but it's better than not having the feature.  We can
refine it as we get more experience.

Peter Geoghegan with some help from Rushabh Lathia.  While Heikki
Linnakangas is not an author of this patch, he wrote other patches
without which this feature would not have been possible, and
therefore the release notes should possibly credit him as an author
of this feature.  Reviewed by Claudio Freire, Heikki Linnakangas,
Thomas Munro, Tels, Amit Kapila, me.

Discussion: http://postgr.es/m/CAM3SWZQKM=Pzc=CAHzRixKjp2eO5Q0Jg1SoFQqeXFQ647JiwqQ@mail.gmail.com
Discussion: http://postgr.es/m/CAH2-Wz=AxWqDoVvGU7dq856S4r6sJAj6DBn7VMtigkB33N5eyg@mail.gmail.com
2018-02-02 13:32:44 -05:00
Robert Haas 2f17844104 Allow UPDATE to move rows between partitions.
When an UPDATE causes a row to no longer match the partition
constraint, try to move it to a different partition where it does
match the partition constraint.  In essence, the UPDATE is split into
a DELETE from the old partition and an INSERT into the new one.  This
can lead to surprising behavior in concurrency scenarios because
EvalPlanQual rechecks won't work as they normally did; the known
problems are documented.  (There is a pending patch to improve the
situation further, but it needs more review.)

Amit Khandekar, reviewed and tested by Amit Langote, David Rowley,
Rajkumar Raghuwanshi, Dilip Kumar, Amul Sul, Thomas Munro, Álvaro
Herrera, Amit Kapila, and me.  A few final revisions by me.

Discussion: http://postgr.es/m/CAJ3gD9do9o2ccQ7j7+tSgiE1REY65XRiMb=yJO3u3QhyP8EEPQ@mail.gmail.com
2018-01-19 15:33:06 -05:00
Robert Haas 2fd58096f0 Add missing "return" statement to accumulate_append_subpath.
Without this, Parallel Append can end up with extra children.

Report by Rajkumar Raghuwanshi.  Fix by Amit Khandekar.  Brown
paper bag bug by me.

Discussion: http://postgr.es/m/CAKcux6mBF-NiddyEe9LwymoUC5+wh8bQJ=uk2gGkOE+L8cv=LA@mail.gmail.com
2018-01-10 11:21:20 -05:00
Bruce Momjian 9d4649ca49 Update copyright for 2018
Backpatch-through: certain files through 9.3
2018-01-02 23:30:12 -05:00
Robert Haas d329dc2ea4 Remove bug from OPTIMIZER_DEBUG code for partition-wise join.
Etsuro Fujita, reviewed by Ashutosh Bapat

Discussion: http://postgr.es/m/5A2A60E6.6000008@lab.ntt.co.jp
2017-12-12 10:52:15 -05:00
Robert Haas ab72716778 Support Parallel Append plan nodes.
When we create an Append node, we can spread out the workers over the
subplans instead of piling on to each subplan one at a time, which
should typically be a bit more efficient, both because the startup
cost of any plan executed entirely by one worker is paid only once and
also because of reduced contention.  We can also construct Append
plans using a mix of partial and non-partial subplans, which may allow
for parallelism in places that otherwise couldn't support it.
Unfortunately, this patch doesn't handle the important case of
parallelizing UNION ALL by running each branch in a separate worker;
the executor infrastructure is added here, but more planner work is
needed.

Amit Khandekar, Robert Haas, Amul Sul, reviewed and tested by
Ashutosh Bapat, Amit Langote, Rafia Sabih, Amit Kapila, and
Rajkumar Raghuwanshi.

Discussion: http://postgr.es/m/CAJ3gD9dy0K_E8r727heqXoBmWZ83HwLFwdcaSSmBQ1+S+vRuUQ@mail.gmail.com
2017-12-05 17:28:39 -05:00
Tom Lane 801386af62 Clarify old comment about qual_is_pushdown_safe's handling of subplans.
This comment glossed over the difference between initplans and subplans,
but they are indeed different for our purposes here.
2017-11-28 23:32:17 -05:00
Peter Eisentraut 2eb4a831e5 Change TRUE/FALSE to true/false
The lower case spellings are C and C++ standard and are used in most
parts of the PostgreSQL sources.  The upper case spellings are only used
in some files/modules.  So standardize on the standard spellings.

The APIs for ICU, Perl, and Windows define their own TRUE and FALSE, so
those are left as is when using those APIs.

In code comments, we use the lower-case spelling for the C concepts and
keep the upper-case spelling for the SQL concepts.

Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
2017-11-08 11:37:28 -05:00
Robert Haas cf7ab13bfb Fix code related to partitioning schemes for dropped columns.
The entry in appinfo->translated_vars can be NULL; if so, we must avoid
dereferencing it.

Ashutosh Bapat

Discussion: http://postgr.es/m/CAFjFpReL7+1ien=-21rhjpO3bV7aAm1rQ8XgLVk2csFagSzpZQ@mail.gmail.com
2017-10-31 14:43:05 +05:30
Magnus Hagander 752871b6de Fix typos
David Rowley
2017-10-19 13:58:30 +02:00
Robert Haas f49842d1ee Basic partition-wise join functionality.
Instead of joining two partitioned tables in their entirety we can, if
it is an equi-join on the partition keys, join the matching partitions
individually.  This involves teaching the planner about "other join"
rels, which are related to regular join rels in the same way that
other member rels are related to baserels.  This can use significantly
more CPU time and memory than regular join planning, because there may
now be a set of "other" rels not only for every base relation but also
for every join relation.  In most practical cases, this probably
shouldn't be a problem, because (1) it's probably unusual to join many
tables each with many partitions using the partition keys for all
joins and (2) if you do that scenario then you probably have a big
enough machine to handle the increased memory cost of planning and (3)
the resulting plan is highly likely to be better, so what you spend in
planning you'll make up on the execution side.  All the same, for now,
turn this feature off by default.

Currently, we can only perform joins between two tables whose
partitioning schemes are absolutely identical.  It would be nice to
cope with other scenarios, such as extra partitions on one side or the
other with no match on the other side, but that will have to wait for
a future patch.

Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit
Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit
Khandekar, and by me.  A few final adjustments by me.

Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com
Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
2017-10-06 11:11:10 -04:00
Robert Haas 7f3a3312ab Fix typo.
Thomas Munro

Discussion: http://postgr.es/m/CAEepm=2j-HAgnBUrAazwS0ry7Z_ihk+d7g+Ye3u99+6WbiGt_Q@mail.gmail.com
2017-09-20 10:07:53 -04:00