Commit Graph

19 Commits

Author SHA1 Message Date
Tom Lane c7aba7c14e Support subscripting of arbitrary types, not only arrays.
This patch generalizes the subscripting infrastructure so that any
data type can be subscripted, if it provides a handler function to
define what that means.  Traditional variable-length (varlena) arrays
all use array_subscript_handler(), while the existing fixed-length
types that support subscripting use raw_array_subscript_handler().
It's expected that other types that want to use subscripting notation
will define their own handlers.  (This patch provides no such new
features, though; it only lays the foundation for them.)

To do this, move the parser's semantic processing of subscripts
(including coercion to whatever data type is required) into a
method callback supplied by the handler.  On the execution side,
replace the ExecEvalSubscriptingRef* layer of functions with direct
calls to callback-supplied execution routines.  (Thus, essentially
no new run-time overhead should be caused by this patch.  Indeed,
there is room to remove some overhead by supplying specialized
execution routines.  This patch does a little bit in that line,
but more could be done.)

Additional work is required here and there to remove formerly
hard-wired assumptions about the result type, collation, etc
of a SubscriptingRef expression node; and to remove assumptions
that the subscript values must be integers.

One useful side-effect of this is that we now have a less squishy
mechanism for identifying whether a data type is a "true" array:
instead of wiring in weird rules about typlen, we can look to see
if pg_type.typsubscript == F_ARRAY_SUBSCRIPT_HANDLER.  For this
to be bulletproof, we have to forbid user-defined types from using
that handler directly; but there seems no good reason for them to
do so.

This patch also removes assumptions that the number of subscripts
is limited to MAXDIM (6), or indeed has any hard-wired limit.
That limit still applies to types handled by array_subscript_handler
or raw_array_subscript_handler, but to discourage other dependencies
on this constant, I've moved it from c.h to utils/array.h.

Dmitry Dolgov, reviewed at various times by Tom Lane, Arthur Zakirov,
Peter Eisentraut, Pavel Stehule

Discussion: https://postgr.es/m/CA+q6zcVDuGBv=M0FqBYX8DPebS3F_0KQ6OVFobGJPM507_SZ_w@mail.gmail.com
Discussion: https://postgr.es/m/CA+q6zcVovR+XY4mfk-7oNk-rF91gH0PebnNfuUjuuDsyHjOcVA@mail.gmail.com
2020-12-09 12:40:37 -05:00
Andres Freund df99ddc70b jit: Reference function pointer types via llvmjit_types.c.
It is error prone (see 5da871bfa1) and verbose to manually create function
types. Add a helper that can reference a function pointer type via
llvmjit_types.c and and convert existing instances of manual creation.

Author: Andres Freund <andres@anarazel.de>
Reviewed-By: Tom Lane <tgl@sss.pgh.pa.us>
Discussion: https://postgr.es/m/20201207212142.wz5tnbk2jsaqzogb@alap3.anarazel.de
2020-12-08 16:55:20 -08:00
Tom Lane 41efb83408 Move resolution of AlternativeSubPlan choices to the planner.
When commit bd3daddaf introduced AlternativeSubPlans, I had some
ambitions towards allowing the choice of subplan to change during
execution.  That has not happened, or even been thought about, in the
ensuing twelve years; so it seems like a failed experiment.  So let's
rip that out and resolve the choice of subplan at the end of planning
(in setrefs.c) rather than during executor startup.  This has a number
of positive benefits:

* Removal of a few hundred lines of executor code, since
AlternativeSubPlans need no longer be supported there.

* Removal of executor-startup overhead (particularly, initialization
of subplans that won't be used).

* Removal of incidental costs of having a larger plan tree, such as
tree-scanning and copying costs in the plancache; not to mention
setrefs.c's own costs of processing the discarded subplans.

* EXPLAIN no longer has to print a weird (and undocumented)
representation of an AlternativeSubPlan choice; it sees only the
subplan actually used.  This should mean less confusion for users.

* Since setrefs.c knows which subexpression of a plan node it's
working on at any instant, it's possible to adjust the estimated
number of executions of the subplan based on that.  For example,
we should usually estimate more executions of a qual expression
than a targetlist expression.  The implementation used here is
pretty simplistic, because we don't want to expend a lot of cycles
on the issue; but it's better than ignoring the point entirely,
as the executor had to.

That last point might possibly result in shifting the choice
between hashed and non-hashed EXISTS subplans in a few cases,
but in general this patch isn't meant to change planner choices.
Since we're doing the resolution so late, it's really impossible
to change any plan choices outside the AlternativeSubPlan itself.

Patch by me; thanks to David Rowley for review.

Discussion: https://postgr.es/m/1992952.1592785225@sss.pgh.pa.us
2020-09-27 12:51:28 -04:00
Andres Freund b059d2f456 jit: Reference expression step functions via llvmjit_types.
The main benefit of doing so is that this allows llvm to ensure that
types match - previously that'd only be detected by a crash within the
called function. There were a number of cases where we passed a
superfluous parameter...

To avoid needing to add all the functions to llvmjit.{c,h}, instead
get them from the llvm module for llvmjit_types.c. Also use that for
the functions from llvmjit_types already in llvmjit.h.

Author: Soumyadeep Chakraborty and Andres Freund
Discussion: https://postgr.es/m/CADwEdooww3wZv-sXSfatzFRwMuwa186LyTwkBfwEW6NjtooBPA@mail.gmail.com
2020-02-06 22:29:14 -08:00
Bruce Momjian 7559d8ebfa Update copyrights for 2020
Backpatch-through: update all files in master, backpatch legal files through 9.4
2020-01-01 12:21:45 -05:00
Alvaro Herrera 558d77f20e Renaming for new subscripting mechanism
Over at patch https://commitfest.postgresql.org/21/1062/ Dmitry wants to
introduce a more generic subscription mechanism, which allows
subscripting not only arrays but also other object types such as JSONB.
That functionality is introduced in a largish invasive patch, out of
which this internal renaming patch was extracted.

Author: Dmitry Dolgov
Reviewed-by: Tom Lane, Arthur Zakirov
Discussion: https://postgr.es/m/CA+q6zcUK4EqPAu7XRRO5CCjMwhz5zvg+rfWuLzVoxp_5sKS6=w@mail.gmail.com
2019-02-01 12:50:32 -03:00
Andres Freund a9c35cf85c Change function call information to be variable length.
Before this change FunctionCallInfoData, the struct arguments etc for
V1 function calls are stored in, always had space for
FUNC_MAX_ARGS/100 arguments, storing datums and their nullness in two
arrays.  For nearly every function call 100 arguments is far more than
needed, therefore wasting memory. Arg and argnull being two separate
arrays also guarantees that to access a single argument, two
cachelines have to be touched.

Change the layout so there's a single variable-length array with pairs
of value / isnull. That drastically reduces memory consumption for
most function calls (on x86-64 a two argument function now uses
64bytes, previously 936 bytes), and makes it very likely that argument
value and its nullness are on the same cacheline.

Arguments are stored in a new NullableDatum struct, which, due to
padding, needs more memory per argument than before. But as usually
far fewer arguments are stored, and individual arguments are cheaper
to access, that's still a clear win.  It's likely that there's other
places where conversion to NullableDatum arrays would make sense,
e.g. TupleTableSlots, but that's for another commit.

Because the function call information is now variable-length
allocations have to take the number of arguments into account. For
heap allocations that can be done with SizeForFunctionCallInfoData(),
for on-stack allocations there's a new LOCAL_FCINFO(name, nargs) macro
that helps to allocate an appropriately sized and aligned variable.

Some places with stack allocation function call information don't know
the number of arguments at compile time, and currently variably sized
stack allocations aren't allowed in postgres. Therefore allow for
FUNC_MAX_ARGS space in these cases. They're not that common, so for
now that seems acceptable.

Because of the need to allocate FunctionCallInfo of the appropriate
size, older extensions may need to update their code. To avoid subtle
breakages, the FunctionCallInfoData struct has been renamed to
FunctionCallInfoBaseData. Most code only references FunctionCallInfo,
so that shouldn't cause much collateral damage.

This change is also a prerequisite for more efficient expression JIT
compilation (by allocating the function call information on the stack,
allowing LLVM to optimize it away); previously the size of the call
information caused problems inside LLVM's optimizer.

Author: Andres Freund
Reviewed-By: Tom Lane
Discussion: https://postgr.es/m/20180605172952.x34m5uz6ju6enaem@alap3.anarazel.de
2019-01-26 14:17:52 -08:00
Andres Freund 774a975c9a Make naming of tupdesc related structs more consistent with the rest of PG.
We usually don't change the name of structs between the struct name
itself and the name of the typedef. Additionally, structs that are
usually used via a typedef that hides being a pointer, are commonly
suffixed Data.  Change tupdesc code to follow those convention.

This is triggered by a future patch that intends to forward declare
TupleDescData in another header - keeping with the naming scheme makes
that easier to understand.

Author: Andres Freund
Discussion: https://postgr.es/m/20190114000701.y4ttcb74jpskkcfb@alap3.anarazel.de
2019-01-14 16:25:50 -08:00
Bruce Momjian 97c39498e5 Update copyright for 2019
Backpatch-through: certain files through 9.4
2019-01-02 12:44:25 -05:00
Andres Freund 4da597edf1 Make TupleTableSlots extensible, finish split of existing slot type.
This commit completes the work prepared in 1a0586de36, splitting the
old TupleTableSlot implementation (which could store buffer, heap,
minimal and virtual slots) into four different slot types.  As
described in the aforementioned commit, this is done with the goal of
making tuple table slots extensible, to allow for pluggable table
access methods.

To achieve runtime extensibility for TupleTableSlots, operations on
slots that can differ between types of slots are performed using the
TupleTableSlotOps struct provided at slot creation time.  That
includes information from the size of TupleTableSlot struct to be
allocated, initialization, deforming etc.  See the struct's definition
for more detailed information about callbacks TupleTableSlotOps.

I decided to rename TTSOpsBufferTuple to TTSOpsBufferHeapTuple and
ExecCopySlotTuple to ExecCopySlotHeapTuple, as that seems more
consistent with other naming introduced in recent patches.

There's plenty optimization potential in the slot implementation, but
according to benchmarking the state after this commit has similar
performance characteristics to before this set of changes, which seems
sufficient.

There's a few changes in execReplication.c that currently need to poke
through the slot abstraction, that'll be repaired once the pluggable
storage patchset provides the necessary infrastructure.

Author: Andres Freund and  Ashutosh Bapat, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-16 16:35:15 -08:00
Andres Freund a7aa608e0f Inline hot path of slot_getsomeattrs().
This yields a minor speedup, which roughly balances the loss from the
upcoming introduction of callbacks to do some operations on slots.

Author: Andres Freund
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-16 10:29:01 -08:00
Andres Freund b84a6dafbf Move EEOP_*_SYSVAR evaluation out of line.
This mainly de-duplicates code. As evaluating a system variable isn't
the hottest path and the current inline implementation ends up calling
out to an external function anyway, this is OK from a performance POV.

The main motivation for de-duplicating is the upcoming slot
abstraction work, after which there's not guaranteed to be a HeapTuple
backing the slot.

Author: Andres Freund, Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-07 11:08:45 -08:00
Alexander Korotkov edf59c40dd Fix more wrong paths in header comments
It appears that there are more files, whose header comment paths are
wrong.  So, fix those paths.  No backpatching per proposal of Tom Lane.

Discussion: https://postgr.es/m/CAPpHfdsJyYbOj59MOQL%2B4XxdcomLSLfLqBtAvwR%2BpsCqj3ELdQ%40mail.gmail.com
2018-07-11 17:57:04 +03:00
Andres Freund f4f5845b31 Quick adaption of JIT tuple deforming to the fast default patch.
Instead using memset to set tts_isnull, call the new
slot_getmissingattrs().

Also fix a bug (= instead of >=) in the code generation. Normally = is
correct, but when repeatedly deforming fields not in a
tuple (e.g. deform up to natts + 1 and then natts + 2) >= is needed.

Discussion: https://postgr.es/m/20180328010053.i2qvsuuusst4lgmc@alap3.anarazel.de
2018-03-27 21:03:10 -07:00
Andres Freund 96b5eac918 Correct some typos in the new JIT code.
Author: Thomas Munro
2018-03-26 12:58:17 -07:00
Andres Freund 32af96b2b1 JIT tuple deforming in LLVM JIT provider.
Performing JIT compilation for deforming gains performance benefits
over unJITed deforming from compile-time knowledge of the tuple
descriptor. Fixed column widths, NOT NULLness, etc can be taken
advantage of.

Right now the JITed deforming is only used when deforming tuples as
part of expression evaluation (and obviously only if the descriptor is
known). It's likely to be beneficial in other cases, too.

By default tuple deforming is JITed whenever an expression is JIT
compiled. There's a separate boolean GUC controlling it, but that's
expected to be primarily useful for development and benchmarking.

Docs will follow in a later commit containing docs for the whole JIT
feature.

Author: Andres Freund
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
2018-03-26 12:57:19 -07:00
Andres Freund 2111a48a0c Adapt expression JIT to stdbool.h introduction.
The LLVM JIT provider uses clang to synchronize types between normal C
code and runtime generated code. Clang represents stdbool.h style
booleans in return values & parameters differently from booleans
stored in variables.

Thus the expression compilation code from 2a0faed9d needs to be
adapted to 9a95a77d9. Instead of hardcoding i8 as the type for
booleans (which already was wrong on some edge case platforms!), use
postgres' notion of a boolean as used for storage and for parameters.

Per buildfarm animal xenodermus.

Author: Andres Freund
2018-03-22 22:15:51 -07:00
Andres Freund fb46ac26fe Expand list of synchronized types and functions in LLVM JIT provider.
Author: Andres Freund
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
2018-03-22 14:45:59 -07:00
Andres Freund b96d550eb0 Support for optimizing and emitting code in LLVM JIT provider.
This commit introduces the ability to actually generate code using
LLVM. In particular, this adds:

- Ability to emit code both in heavily optimized and largely
  unoptimized fashion
- Batching facility to allow functions to be defined in small
  increments, but optimized and emitted in executable form in larger
  batches (for performance and memory efficiency)
- Type and function declaration synchronization between runtime
  generated code and normal postgres code. This is critical to be able
  to access struct fields etc.
- Developer oriented jit_dump_bitcode GUC, for inspecting / debugging
  the generated code.
- per JitContext statistics of number of functions, time spent
  generating code, optimizing, and emitting it.  This will later be
  employed for EXPLAIN support.

This commit doesn't yet contain any code actually generating
functions. That'll follow in later commits.

Documentation for GUCs added, and for JIT in general, will be added in
later commits.

Author: Andres Freund, with contributions by Pierre Ducroquet
Testing-By: Thomas Munro, Peter Eisentraut
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
2018-03-22 11:05:22 -07:00