Commit Graph

405 Commits

Author SHA1 Message Date
Peter Eisentraut b9986551e0 Fix plan cache issue in PL/pgSQL CALL
If we are not going to save the plan, then we need to unset expr->plan
after we are done, also in error cases.  Otherwise, we get a dangling
pointer next time around.

This is not the ideal solution.  It would be better if we could convince
SPI not to associate a cached plan with a resource owner, and then we
could just save the plan in all cases.  But that would require bigger
surgery.

Reported-by: Pavel Stehule <pavel.stehule@gmail.com>
2018-04-05 14:51:56 -04:00
Simon Riggs d204ef6377 MERGE SQL Command following SQL:2016
MERGE performs actions that modify rows in the target table
using a source table or query. MERGE provides a single SQL
statement that can conditionally INSERT/UPDATE/DELETE rows
a task that would other require multiple PL statements.
e.g.

MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
  UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
  DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
  INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
  DO NOTHING;

MERGE works with regular and partitioned tables, including
column and row security enforcement, as well as support for
row, statement and transition triggers.

MERGE is optimized for OLTP and is parameterizable, though
also useful for large scale ETL/ELT. MERGE is not intended
to be used in preference to existing single SQL commands
for INSERT, UPDATE or DELETE since there is some overhead.
MERGE can be used statically from PL/pgSQL.

MERGE does not yet support inheritance, write rules,
RETURNING clauses, updatable views or foreign tables.
MERGE follows SQL Standard per the most recent SQL:2016.

Includes full tests and documentation, including full
isolation tests to demonstrate the concurrent behavior.

This version written from scratch in 2017 by Simon Riggs,
using docs and tests originally written in 2009. Later work
from Pavan Deolasee has been both complex and deep, leaving
the lead author credit now in his hands.
Extensive discussion of concurrency from Peter Geoghegan,
with thanks for the time and effort contributed.

Various issues reported via sqlsmith by Andreas Seltenreich

Authors: Pavan Deolasee, Simon Riggs
Reviewer: Peter Geoghegan, Amit Langote, Tomas Vondra, Simon Riggs

Discussion:
https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.com
https://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
2018-04-03 09:28:16 +01:00
Simon Riggs 7cf8a5c302 Revert "Modified files for MERGE"
This reverts commit 354f13855e.
2018-04-02 21:34:15 +01:00
Simon Riggs 354f13855e Modified files for MERGE 2018-04-02 21:12:47 +01:00
Peter Eisentraut 056a5a3f63 Allow committing inside cursor loop
Previously, committing or aborting inside a cursor loop was prohibited
because that would close and remove the cursor.  To allow that,
automatically convert such cursors to holdable cursors so they survive
commits or rollbacks.  Portals now have a new state "auto-held", which
means they have been converted automatically from pinned.  An auto-held
portal is kept on transaction commit or rollback, but is still removed
when returning to the main loop on error.

This supports all languages that have cursor loop constructs: PL/pgSQL,
PL/Python, PL/Perl.

Reviewed-by: Ildus Kurbangaliev <i.kurbangaliev@postgrespro.ru>
2018-03-28 19:03:26 -04:00
Peter Eisentraut d92bc83c48 PL/pgSQL: Nested CALL with transactions
So far, a nested CALL or DO in PL/pgSQL would not establish a context
where transaction control statements were allowed.  This fixes that by
handling CALL and DO specially in PL/pgSQL, passing the atomic/nonatomic
execution context through and doing the required management around
transaction boundaries.

Reviewed-by: Tomas Vondra <tomas.vondra@2ndquadrant.com>
2018-03-28 13:31:27 -04:00
Tom Lane 2dbee9f19f Fix overflow handling in plpgsql's integer FOR loops.
The test to exit the loop if the integer control value would overflow
an int32 turns out not to work on some ICC versions, as it's dependent
on the assumption that the compiler will execute the code as written
rather than "optimize" it.  ICC lacks any equivalent of gcc's -fwrapv
switch, so it was optimizing on the assumption of no integer overflow,
and that breaks this.  Rewrite into a form that in fact does not
do any overflowing computations.

Per Tomas Vondra and buildfarm member fulmar.  It's been like this
for a long time, although it was not till we added a regression test
case covering the behavior (in commit dd2243f2a) that the problem
became apparent.  Back-patch to all supported versions.

Discussion: https://postgr.es/m/50562fdc-0876-9843-c883-15b8566c7511@2ndquadrant.com
2018-03-17 15:38:15 -04:00
Peter Eisentraut 8df5a1c868 Fix compiler warning 2018-03-14 16:43:40 -04:00
Peter Eisentraut 33803f67f1 Support INOUT arguments in procedures
In a top-level CALL, the values of INOUT arguments will be returned as a
result row.  In PL/pgSQL, the values are assigned back to the input
arguments.  In other languages, the same convention as for return a
record from a function is used.  That does not require any code changes
in the PL implementations.

Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
2018-03-14 12:07:28 -04:00
Peter Eisentraut f7c7f67fec PL/pgSQL: Simplify RETURN checking for procedures
Check at compile time that RETURN in a procedure does not specify a
parameter, rather than at run time.
2018-03-04 10:35:23 -05:00
Peter Eisentraut fd1a421fe6 Add prokind column, replacing proisagg and proiswindow
The new column distinguishes normal functions, procedures, aggregates,
and window functions.  This replaces the existing columns proisagg and
proiswindow, and replaces the convention that procedures are indicated
by prorettype == 0.  Also change prorettype to be VOIDOID for procedures.

Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
Reviewed-by: Michael Paquier <michael@paquier.xyz>
2018-03-02 13:48:33 -05:00
Peter Eisentraut 964bddf1e8 Fix typo in internal error message 2018-02-26 11:54:00 -05:00
Tom Lane 51db0d18fb Fix plpgsql to enforce domain checks when returning a NULL domain value.
If a plpgsql function is declared to return a domain type, and the domain's
constraints forbid a null value, it was nonetheless possible to return
NULL, because we didn't bother to check the constraints for a null result.
I'd noticed this while fooling with domains-over-composite, but had not
gotten around to fixing it immediately.

Add a regression test script exercising this and various other domain
cases, largely borrowed from the plpython_types test.

Although this is clearly a bug fix, I'm not sure whether anyone would
thank us for changing the behavior in stable branches, so I'm inclined
not to back-patch.
2018-02-15 16:25:19 -05:00
Tom Lane f9263006d8 Support CONSTANT/NOT NULL/initial value for plpgsql composite variables.
These features were never implemented previously for composite or record
variables ... not that the documentation admitted it, so there's no doc
updates here.

This also fixes some issues concerning enforcing DOMAIN NOT NULL
constraints against plpgsql variables, although I'm not sure that
that topic is completely dealt with.

I created a new plpgsql test file for these features, and moved the
one relevant existing test case into that file.

Tom Lane, reviewed by Daniel Gustafsson

Discussion: https://postgr.es/m/18362.1514605650@sss.pgh.pa.us
2018-02-13 22:15:08 -05:00
Tom Lane fd333bc763 Speed up plpgsql trigger startup by introducing "promises".
Over the years we've accreted quite a few special variables that are
predefined in plpgsql trigger functions.  The cost of initializing these
variables to their defined values turns out to be a significant part of
the runtime of simple triggers; but, undoubtedly, most real-world triggers
never examine the values of most of these variables.

To improve matters, invent the notion of a variable that has a "promise"
attached to it, specifying which of the predetermined values should be
assigned to the variable if anything ever reads it.  This eliminates all
the unneeded startup overhead, in return for a small penalty on accesses
to these variables.

Tom Lane, reviewed by Pavel Stehule

Discussion: https://postgr.es/m/11986.1514407114@sss.pgh.pa.us
2018-02-13 19:20:37 -05:00
Tom Lane 40301c1c8b Speed up plpgsql function startup by doing fewer pallocs.
Previously, copy_plpgsql_datum did a separate palloc for each variable
needing instance-local storage.  In simple benchmarks this made for a
noticeable fraction of the total runtime.  Improve it by precalculating
the space needed for all of a function's variables and doing just one
palloc for all of them.

In passing, remove PLPGSQL_DTYPE_EXPR from the list of plpgsql "datum"
types, since in fact it has nothing in common with the others, and there
is noplace that needs to discriminate on the basis of dtype between an
expression and any type of datum.  And add comments clarifying which
datum struct fields are generic and which aren't.

Tom Lane, reviewed by Pavel Stehule

Discussion: https://postgr.es/m/11986.1514407114@sss.pgh.pa.us
2018-02-13 19:10:43 -05:00
Tom Lane 4b93f57999 Make plpgsql use its DTYPE_REC code paths for composite-type variables.
Formerly, DTYPE_REC was used only for variables declared as "record";
variables of named composite types used DTYPE_ROW, which is faster for
some purposes but much less flexible.  In particular, the ROW code paths
are entirely incapable of dealing with DDL-caused changes to the number
or data types of the columns of a row variable, once a particular plpgsql
function has been parsed for the first time in a session.  And, since the
stored representation of a ROW isn't a tuple, there wasn't any easy way
to deal with variables of domain-over-composite types, since the domain
constraint checking code would expect the value to be checked to be a
tuple.  A lesser, but still real, annoyance is that ROW format cannot
represent a true NULL composite value, only a row of per-field NULL
values, which is not exactly the same thing.

Hence, switch to using DTYPE_REC for all composite-typed variables,
whether "record", named composite type, or domain over named composite
type.  DTYPE_ROW remains but is used only for its native purpose, to
represent a fixed-at-compile-time list of variables, for instance the
targets of an INTO clause.

To accomplish this without taking significant performance losses, introduce
infrastructure that allows storing composite-type variables as "expanded
objects", similar to the "expanded array" infrastructure introduced in
commit 1dc5ebc90.  A composite variable's value is thereby kept (most of
the time) in the form of separate Datums, so that field accesses and
updates are not much more expensive than they were in the ROW format.
This holds the line, more or less, on performance of variables of named
composite types in field-access-intensive microbenchmarks, and makes
variables declared "record" perform much better than before in similar
tests.  In addition, the logic involved with enforcing composite-domain
constraints against updates of individual fields is in the expanded
record infrastructure not plpgsql proper, so that it might be reusable
for other purposes.

In further support of this, introduce a typcache feature for assigning a
unique-within-process identifier to each distinct tuple descriptor of
interest; in particular, DDL alterations on composite types result in a new
identifier for that type.  This allows very cheap detection of the need to
refresh tupdesc-dependent data.  This improves on the "tupDescSeqNo" idea
I had in commit 687f096ea: that assigned identifying sequence numbers to
successive versions of individual composite types, but the numbers were not
unique across different types, nor was there support for assigning numbers
to registered record types.

In passing, allow plpgsql functions to accept as well as return type
"record".  There was no good reason for the old restriction, and it
was out of step with most of the other PLs.

Tom Lane, reviewed by Pavel Stehule

Discussion: https://postgr.es/m/8962.1514399547@sss.pgh.pa.us
2018-02-13 18:52:21 -05:00
Peter Eisentraut 8561e4840c Transaction control in PL procedures
In each of the supplied procedural languages (PL/pgSQL, PL/Perl,
PL/Python, PL/Tcl), add language-specific commit and rollback
functions/commands to control transactions in procedures in that
language.  Add similar underlying functions to SPI.  Some additional
cleanup so that transaction commit or abort doesn't blow away data
structures still used by the procedure call.  Add execution context
tracking to CALL and DO statements so that transaction control commands
can only be issued in top-level procedure and block calls, not function
calls or other procedure or block calls.

- SPI

Add a new function SPI_connect_ext() that is like SPI_connect() but
allows passing option flags.  The only option flag right now is
SPI_OPT_NONATOMIC.  A nonatomic SPI connection can execute transaction
control commands, otherwise it's not allowed.  This is meant to be
passed down from CALL and DO statements which themselves know in which
context they are called.  A nonatomic SPI connection uses different
memory management.  A normal SPI connection allocates its memory in
TopTransactionContext.  For nonatomic connections we use PortalContext
instead.  As the comment in SPI_connect_ext() (previously SPI_connect())
indicates, one could potentially use PortalContext in all cases, but it
seems safest to leave the existing uses alone, because this stuff is
complicated enough already.

SPI also gets new functions SPI_start_transaction(), SPI_commit(), and
SPI_rollback(), which can be used by PLs to implement their transaction
control logic.

- portalmem.c

Some adjustments were made in the code that cleans up portals at
transaction abort.  The portal code could already handle a command
*committing* a transaction and continuing (e.g., VACUUM), but it was not
quite prepared for a command *aborting* a transaction and continuing.

In AtAbort_Portals(), remove the code that marks an active portal as
failed.  As the comment there already predicted, this doesn't work if
the running command wants to keep running after transaction abort.  And
it's actually not necessary, because pquery.c is careful to run all
portal code in a PG_TRY block and explicitly runs MarkPortalFailed() if
there is an exception.  So the code in AtAbort_Portals() is never used
anyway.

In AtAbort_Portals() and AtCleanup_Portals(), we need to be careful not
to clean up active portals too much.  This mirrors similar code in
PreCommit_Portals().

- PL/Perl

Gets new functions spi_commit() and spi_rollback()

- PL/pgSQL

Gets new commands COMMIT and ROLLBACK.

Update the PL/SQL porting example in the documentation to reflect that
transactions are now possible in procedures.

- PL/Python

Gets new functions plpy.commit and plpy.rollback.

- PL/Tcl

Gets new commands commit and rollback.

Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
2018-01-22 08:43:06 -05:00
Peter Eisentraut b48b2f8793 Revert "Move portal pinning from PL/pgSQL to SPI"
This reverts commit b3617cdfbb.

This broke returning unnamed cursors from PL/pgSQL functions.
Apparently, there are no test cases for this.
2018-01-10 16:01:17 -05:00
Peter Eisentraut b3617cdfbb Move portal pinning from PL/pgSQL to SPI
PL/pgSQL "pins" internally generated (unnamed) portals so that user code
cannot close them by guessing their names.  This logic is also useful in
other languages and really for any code.  So move that logic into SPI.
An unnamed portal obtained through SPI_cursor_open() and related
functions is now automatically pinned, and SPI_cursor_close()
automatically unpins a portal that is pinned.

In the core distribution, this affects PL/Perl and PL/Python, preventing
users from manually closing cursors created by spi_query and
plpy.cursor, respectively.  (PL/Tcl does not currently offer any cursor
functionality.)

Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
2018-01-10 10:20:51 -05:00
Bruce Momjian 9d4649ca49 Update copyright for 2018
Backpatch-through: certain files through 9.3
2018-01-02 23:30:12 -05:00
Tom Lane 3e724aac74 Merge coding of return/exit/continue cases in plpgsql's loop statements.
plpgsql's five different loop control statements contained three distinct
implementations of the same (or what ought to be the same, at least)
logic for handling return/exit/continue result codes from their child
statements.  At best, that's trouble waiting to happen, and there seems
no very good reason for the coding to be so different.  Refactor so that
all the common logic is expressed in a single macro.

Discussion: https://postgr.es/m/26314.1514670401@sss.pgh.pa.us
2017-12-31 17:20:17 -05:00
Tom Lane 6719b238e8 Rearrange execution of PARAM_EXTERN Params for plpgsql's benefit.
This patch does three interrelated things:

* Create a new expression execution step type EEOP_PARAM_CALLBACK
and add the infrastructure needed for add-on modules to generate that.
As discussed, the best control mechanism for that seems to be to add
another hook function to ParamListInfo, which will be called by
ExecInitExpr if it's supplied and a PARAM_EXTERN Param is found.
For stand-alone expressions, we add a new entry point to allow the
ParamListInfo to be specified directly, since it can't be retrieved
from the parent plan node's EState.

* Redesign the API for the ParamListInfo paramFetch hook so that the
ParamExternData array can be entirely virtual.  This also lets us get rid
of ParamListInfo.paramMask, instead leaving it to the paramFetch hook to
decide which param IDs should be accessible or not.  plpgsql_param_fetch
was already doing the identical masking check, so having callers do it too
seemed redundant.  While I was at it, I added a "speculative" flag to
paramFetch that the planner can specify as TRUE to avoid unwanted failures.
This solves an ancient problem for plpgsql that it couldn't provide values
of non-DTYPE_VAR variables to the planner for fear of triggering premature
"record not assigned yet" or "field not found" errors during planning.

* Rework plpgsql to get rid of the need for "unshared" parameter lists,
by dint of turning the single ParamListInfo per estate into a nearly
read-only data structure that doesn't instantiate any per-variable data.
Instead, the paramFetch hook controls access to per-variable data and can
make the right decisions on the fly, replacing the cases that we used to
need multiple ParamListInfos for.  This might perhaps have been a
performance loss on its own, but by using a paramCompile hook we can
bypass plpgsql_param_fetch entirely during normal query execution.
(It's now only called when, eg, we copy the ParamListInfo into a cursor
portal.  copyParamList() or SerializeParamList() effectively instantiate
the virtual parameter array as a simple physical array without a
paramFetch hook, which is what we want in those cases.)  This allows
reverting most of commit 6c82d8d1f, though I kept the cosmetic
code-consolidation aspects of that (eg the assign_simple_var function).

Performance testing shows this to be at worst a break-even change,
and it can provide wins ranging up to 20% in test cases involving
accesses to fields of "record" variables.  The fact that values of
such variables can now be exposed to the planner might produce wins
in some situations, too, but I've not pursued that angle.

In passing, remove the "parent" pointer from the arguments to
ExecInitExprRec and related functions, instead storing that pointer in a
transient field in ExprState.  The ParamListInfo pointer for a stand-alone
expression is handled the same way; we'd otherwise have had to add
yet another recursively-passed-down argument in expression compilation.

Discussion: https://postgr.es/m/32589.1513706441@sss.pgh.pa.us
2017-12-21 12:57:45 -05:00
Tom Lane 390d58135b Fix plpgsql to reinitialize record variables at block re-entry.
If one exits and re-enters a DECLARE ... BEGIN ... END block within a
single execution of a plpgsql function, perhaps due to a surrounding loop,
the declared variables are supposed to get re-initialized to null (or
whatever their initializer is).  But this failed to happen for variables
of type "record", because while exec_stmt_block() expected such variables
to be included in the block's initvarnos list, plpgsql_add_initdatums()
only adds DTYPE_VAR variables to that list.  This bug appears to have
been there since the aboriginal addition of plpgsql to our tree.

Fix by teaching plpgsql_add_initdatums() to include DTYPE_REC variables
as well.  (We don't need to consider other DTYPEs because they don't
represent separately-stored values.)  I failed to resist the temptation
to make some nearby cosmetic adjustments, too.

No back-patch, because there have not been field complaints, and it
seems possible that somewhere out there someone has code depending
on the incorrect behavior.  In any case this change would have no
impact on correctly-written code.

Discussion: https://postgr.es/m/22994.1512800671@sss.pgh.pa.us
2017-12-09 12:03:04 -05:00
Tom Lane dd759b96ea In plpgsql, unify duplicate variables for record and row cases.
plpgsql's function exec_move_row() handles assignment of a composite
source value to either a PLpgSQL_rec or PLpgSQL_row target variable.
Oddly, rather than taking a single target argument which it could do
run-time type detection on, it was coded to take two separate arguments
(only one of which is allowed to be non-NULL).  This choice had then
back-propagated into storing two separate target variables in various
plpgsql statement nodes, with lots of duplicative coding and awkward
interface logic to support that.  Simplify matters by folding those
pairs down to single variables, distinguishing the two cases only
where we must ... which turns out to be only in exec_move_row itself.
This is purely refactoring and should not change any behavior.

In passing, remove unused field PLpgSQL_stmt_open.returntype.

Discussion: https://postgr.es/m/11787.1512713374@sss.pgh.pa.us
2017-12-08 11:20:58 -05:00
Peter Eisentraut e4128ee767 SQL procedures
This adds a new object type "procedure" that is similar to a function
but does not have a return type and is invoked by the new CALL statement
instead of SELECT or similar.  This implementation is aligned with the
SQL standard and compatible with or similar to other SQL implementations.

This commit adds new commands CALL, CREATE/ALTER/DROP PROCEDURE, as well
as ALTER/DROP ROUTINE that can refer to either a function or a
procedure (or an aggregate function, as an extension to SQL).  There is
also support for procedures in various utility commands such as COMMENT
and GRANT, as well as support in pg_dump and psql.  Support for defining
procedures is available in all the languages supplied by the core
distribution.

While this commit is mainly syntax sugar around existing functionality,
future features will rely on having procedures as a separate object
type.

Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
2017-11-30 11:03:20 -05:00
Robert Haas eaedf0df71 Update typedefs.list and re-run pgindent
Discussion: http://postgr.es/m/CA+TgmoaA9=1RWKtBWpDaj+sF3Stgc8sHgf5z=KGtbjwPLQVDMA@mail.gmail.com
2017-11-29 09:24:24 -05:00
Peter Eisentraut 2eb4a831e5 Change TRUE/FALSE to true/false
The lower case spellings are C and C++ standard and are used in most
parts of the PostgreSQL sources.  The upper case spellings are only used
in some files/modules.  So standardize on the standard spellings.

The APIs for ICU, Perl, and Windows define their own TRUE and FALSE, so
those are left as is when using those APIs.

In code comments, we use the lower-case spelling for the C concepts and
keep the upper-case spelling for the SQL concepts.

Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
2017-11-08 11:37:28 -05:00
Robert Haas 682ce911f8 Allow parallel query for prepared statements with generic plans.
This was always intended to work, but due to an oversight in
max_parallel_hazard_walker, it didn't.  In testing, we missed the
fact that it was only working for custom plans, where the parameter
value has been substituted for the parameter itself early enough
that everything worked.  In a generic plan, the Param node survives
and must be treated as parallel-safe.  SerializeParamList provides
for the transmission of parameter values to workers.

Amit Kapila with help from Kuntal Ghosh.  Some changes by me.

Discussion: http://postgr.es/m/CAA4eK1+_BuZrmVCeua5Eqnm4Co9DAXdM5HPAOE2J19ePbR912Q@mail.gmail.com
2017-10-27 22:22:39 +02:00
Andres Freund 2cd7084524 Change tupledesc->attrs[n] to TupleDescAttr(tupledesc, n).
This is a mechanical change in preparation for a later commit that
will change the layout of TupleDesc.  Introducing a macro to abstract
the details of where attributes are stored will allow us to change
that in separate step and revise it in future.

Author: Thomas Munro, editorialized by Andres Freund
Reviewed-By: Andres Freund
Discussion: https://postgr.es/m/CAEepm=0ZtQ-SpsgCyzzYpsXS6e=kZWqk3g5Ygn3MDV7A8dabUA@mail.gmail.com
2017-08-20 11:19:07 -07:00
Tom Lane b73f1b5c29 Make simpler-simple-expressions code cope with a Gather plan.
Commit 00418c612 expected that the plan generated for a simple-expression
query would always be a plain Result node.  However, if force_parallel_mode
is on, the planner might stick a Gather atop that.  Cope by looking through
the Gather.  For safety, assert that the Gather's tlist is trivial.

Per buildfarm.

Discussion: https://postgr.es/m/23425.1502822098@sss.pgh.pa.us
2017-08-15 16:49:52 -04:00
Tom Lane 00418c6124 Simplify plpgsql's check for simple expressions.
plpgsql wants to recognize expressions that it can execute directly
via ExecEvalExpr() instead of going through the full SPI machinery.
Originally the test for this consisted of recursively groveling through
the post-planning expression tree to see if it contained only nodes that
plpgsql recognized as safe.  That was a major maintenance headache, since
it required updating plpgsql every time we added any kind of expression
node.  It was also kind of expensive, so over time we added various
pre-planning checks to try to short-circuit having to do that.
Robert Haas pointed out that as of the SRF-processing changes in v10,
particularly the addition of Query.hasTargetSRFs, there really isn't
any reason to make the recursive scan at all: the initial checks cover
everything we really care about.  We do have to make sure that those
checks agree with what inline_function() considers, so that inlining
of a function that formerly wasn't inlined can't cause an expression
considered simple to become non-simple.

Hence, delete the recursive function exec_simple_check_node(), and tweak
those other tests to more exactly agree with inline_function().  Adjust
some comments and function naming to match.

Discussion: https://postgr.es/m/CA+TgmoZGZpwdEV2FQWaVxA_qZXsQE1DAS5Fu8fwxXDNvfndiUQ@mail.gmail.com
2017-08-15 12:28:39 -04:00
Tom Lane 382ceffdf7 Phase 3 of pgindent updates.
Don't move parenthesized lines to the left, even if that means they
flow past the right margin.

By default, BSD indent lines up statement continuation lines that are
within parentheses so that they start just to the right of the preceding
left parenthesis.  However, traditionally, if that resulted in the
continuation line extending to the right of the desired right margin,
then indent would push it left just far enough to not overrun the margin,
if it could do so without making the continuation line start to the left of
the current statement indent.  That makes for a weird mix of indentations
unless one has been completely rigid about never violating the 80-column
limit.

This behavior has been pretty universally panned by Postgres developers.
Hence, disable it with indent's new -lpl switch, so that parenthesized
lines are always lined up with the preceding left paren.

This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.

Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 15:35:54 -04:00
Tom Lane c7b8998ebb Phase 2 of pgindent updates.
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.

Commit e3860ffa4d wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code.  The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there.  BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs.  So the
net result is that in about half the cases, such comments are placed
one tab stop left of before.  This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.

Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.

This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.

Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 15:19:25 -04:00
Tom Lane e3860ffa4d Initial pgindent run with pg_bsd_indent version 2.0.
The new indent version includes numerous fixes thanks to Piotr Stefaniak.
The main changes visible in this commit are:

* Nicer formatting of function-pointer declarations.
* No longer unexpectedly removes spaces in expressions using casts,
  sizeof, or offsetof.
* No longer wants to add a space in "struct structname *varname", as
  well as some similar cases for const- or volatile-qualified pointers.
* Declarations using PG_USED_FOR_ASSERTS_ONLY are formatted more nicely.
* Fixes bug where comments following declarations were sometimes placed
  with no space separating them from the code.
* Fixes some odd decisions for comments following case labels.
* Fixes some cases where comments following code were indented to less
  than the expected column 33.

On the less good side, it now tends to put more whitespace around typedef
names that are not listed in typedefs.list.  This might encourage us to
put more effort into typedef name collection; it's not really a bug in
indent itself.

There are more changes coming after this round, having to do with comment
indentation and alignment of lines appearing within parentheses.  I wanted
to limit the size of the diffs to something that could be reviewed without
one's eyes completely glazing over, so it seemed better to split up the
changes as much as practical.

Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 14:39:04 -04:00
Tom Lane 8f0530f580 Improve castNode notation by introducing list-extraction-specific variants.
This extends the castNode() notation introduced by commit 5bcab1114 to
provide, in one step, extraction of a list cell's pointer and coercion to
a concrete node type.  For example, "lfirst_node(Foo, lc)" is the same
as "castNode(Foo, lfirst(lc))".  Almost half of the uses of castNode
that have appeared so far include a list extraction call, so this is
pretty widely useful, and it saves a few more keystrokes compared to the
old way.

As with the previous patch, back-patch the addition of these macros to
pg_list.h, so that the notation will be available when back-patching.

Patch by me, after an idea of Andrew Gierth's.

Discussion: https://postgr.es/m/14197.1491841216@sss.pgh.pa.us
2017-04-10 13:51:53 -04:00
Kevin Grittner 5ebeb579b9 Follow-on cleanup for the transition table patch.
Commit 59702716 added transition table support to PL/pgsql so that
SQL queries in trigger functions could access those transient
tables.  In order to provide the same level of support for PL/perl,
PL/python and PL/tcl, refactor the relevant code into a new
function SPI_register_trigger_data.  Call the new function in the
trigger handler of all four PLs, and document it as a public SPI
function so that authors of out-of-tree PLs can do the same.

Also get rid of a second QueryEnvironment object that was
maintained by PL/pgsql.  That was previously used to deal with
cursors, but the same approach wasn't appropriate for PLs that are
less tangled up with core code.  Instead, have SPI_cursor_open
install the connection's current QueryEnvironment, as already
happens for SPI_execute_plan.

While in the docs, remove the note that transition tables were only
supported in C and PL/pgSQL triggers, and correct some ommissions.

Thomas Munro with some work by Kevin Grittner (mostly docs)
2017-04-04 18:36:39 -05:00
Kevin Grittner 5970271632 Add transition table support to plpgsql.
Kevin Grittner and Thomas Munro
Reviewed by Heikki Linnakangas, David Fetter, and Thomas Munro
with valuable comments and suggestions from many others
2017-03-31 23:30:08 -05:00
Tom Lane 244dd95ce9 Update some obsolete comments.
Fix a few stray references to expression eval functions that don't
exist anymore or don't take the same input representation they used to.
2017-03-26 11:36:46 -04:00
Andres Freund b8d7f053c5 Faster expression evaluation and targetlist projection.
This replaces the old, recursive tree-walk based evaluation, with
non-recursive, opcode dispatch based, expression evaluation.
Projection is now implemented as part of expression evaluation.

This both leads to significant performance improvements, and makes
future just-in-time compilation of expressions easier.

The speed gains primarily come from:
- non-recursive implementation reduces stack usage / overhead
- simple sub-expressions are implemented with a single jump, without
  function calls
- sharing some state between different sub-expressions
- reduced amount of indirect/hard to predict memory accesses by laying
  out operation metadata sequentially; including the avoidance of
  nearly all of the previously used linked lists
- more code has been moved to expression initialization, avoiding
  constant re-checks at evaluation time

Future just-in-time compilation (JIT) has become easier, as
demonstrated by released patches intended to be merged in a later
release, for primarily two reasons: Firstly, due to a stricter split
between expression initialization and evaluation, less code has to be
handled by the JIT. Secondly, due to the non-recursive nature of the
generated "instructions", less performance-critical code-paths can
easily be shared between interpreted and compiled evaluation.

The new framework allows for significant future optimizations. E.g.:
- basic infrastructure for to later reduce the per executor-startup
  overhead of expression evaluation, by caching state in prepared
  statements.  That'd be helpful in OLTPish scenarios where
  initialization overhead is measurable.
- optimizing the generated "code". A number of proposals for potential
  work has already been made.
- optimizing the interpreter. Similarly a number of proposals have
  been made here too.

The move of logic into the expression initialization step leads to some
backward-incompatible changes:
- Function permission checks are now done during expression
  initialization, whereas previously they were done during
  execution. In edge cases this can lead to errors being raised that
  previously wouldn't have been, e.g. a NULL array being coerced to a
  different array type previously didn't perform checks.
- The set of domain constraints to be checked, is now evaluated once
  during expression initialization, previously it was re-built
  every time a domain check was evaluated. For normal queries this
  doesn't change much, but e.g. for plpgsql functions, which caches
  ExprStates, the old set could stick around longer.  The behavior
  around might still change.

Author: Andres Freund, with significant changes by Tom Lane,
	changes by Heikki Linnakangas
Reviewed-By: Tom Lane, Heikki Linnakangas
Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-25 14:52:06 -07:00
Robert Haas 61c2e1a95f Improve access to parallel query from procedural languages.
In SQL, the ability to use parallel query was previous contingent on
fcache->readonly_func, which is only set for non-volatile functions;
but the volatility of a function has no bearing on whether queries
inside it can use parallelism.  Remove that condition.

SPI_execute and SPI_execute_with_args always run the plan just once,
though not necessarily to completion.  Given the changes in commit
691b8d5928, it's sensible to pass
CURSOR_OPT_PARALLEL_OK here, so do that.  This improves access to
parallelism for any caller that uses these functions to execute
queries.  Such callers include plperl, plpython, pltcl, and plpgsql,
though it's not the case that they all use these functions
exclusively.

In plpgsql, allow parallel query for plain SELECT queries (as
opposed to PERFORM, which already worked) and for plain expressions
(which probably won't go through the executor at all, because they
will likely be simple expressions, but if they do then this helps).

Rafia Sabih and Robert Haas, reviewed by Dilip Kumar and Amit Kapila

Discussion: http://postgr.es/m/CAOGQiiMfJ+4SQwgG=6CVHWoisiU0+7jtXSuiyXBM3y=A=eJzmg@mail.gmail.com
2017-03-24 14:46:33 -04:00
Robert Haas f120b614e0 plpgsql: Don't generate parallel plans for RETURN QUERY.
Commit 7aea8e4f2d allowed a parallel
plan to be generated when for a RETURN QUERY or RETURN QUERY EXECUTE
statement in a PL/pgsql block, but that's a bad idea because plplgsql
asks the executor for 50 rows at a time.  That means that we'll always
be running serially a plan that was intended for parallel execution,
which is not a good idea.  Fix by not requesting a parallel plan from
the outset.

Per discussion, back-patch to 9.6.  There is a slight risk that, due
to optimizer error, somebody could have a case where the parallel plan
executed serially is actually faster than the supposedly-best serial
plan, but the consensus seems to be that that's not sufficient
justification for leaving 9.6 unpatched.

Discussion: http://postgr.es/m/CA+TgmoZ_ZuH+auEeeWnmtorPsgc_SmP+XWbDsJ+cWvWBSjNwDQ@mail.gmail.com
Discussion: http://postgr.es/m/CA+TgmobXEhvHbJtWDuPZM9bVSLiTj-kShxQJ2uM5GPDze9fRYA@mail.gmail.com
2017-03-24 12:30:39 -04:00
Peter Eisentraut f97a028d8e Spelling fixes in code comments
From: Josh Soref <jsoref@gmail.com>
2017-03-14 12:58:39 -04:00
Tom Lane 08da52859a Bring plpgsql into line with header inclusion policy.
We have a project policy that every .c file should start by including
postgres.h, postgres_fe.h, or c.h as appropriate; and then there is no
need for any .h file to explicitly include any of these.  (The core
reason for this policy is to make it easy to verify that pg_config_os.h
is included before any system headers such as <stdio.h>; without that,
we have portability issues on some platforms due to variation in largefile
options across different modules in the backend.  Also, if .h files were
responsible for choosing which of these key headers to include, .h files
that need to be includable in either frontend or backend compiles would be
in trouble.)

plpgsql was blithely ignoring this policy, so whack it upside the head
until it complies.  I also chose to standardize on including plpgsql's
own .h files after all core-system headers that it pulls in.  That
could've been done either way, but this way seems saner.

Discussion: https://postgr.es/m/CAEepm=2zCoeq3QxVwhS5DFeUh=yU6z81pbWMgfOB8OzyiBwxzw@mail.gmail.com
Discussion: https://postgr.es/m/11634.1488932128@sss.pgh.pa.us
2017-03-08 17:21:08 -05:00
Tom Lane 7afd56c3c6 Use castNode() in a bunch of statement-list-related code.
When I wrote commit ab1f0c822, I really missed the castNode() macro that
Peter E. had proposed shortly before.  This back-fills the uses I would
have put it to.  It's probably not all that significant, but there are
more assertions here than there were before, and conceivably they will
help catch any bugs associated with those representation changes.

I left behind a number of usages like "(Query *) copyObject(query_var)".
Those could have been converted as well, but Peter has proposed another
notational improvement that would handle copyObject cases automatically,
so I let that be for now.
2017-01-26 22:09:34 -05:00
Andres Freund ea15e18677 Remove obsoleted code relating to targetlist SRF evaluation.
Since 69f4b9c plain expression evaluation (and thus normal projection)
can't return sets of tuples anymore. Thus remove code dealing with
that possibility.

This will require adjustments in external code using
ExecEvalExpr()/ExecProject() - that should neither be hard nor very
common.

Author: Andres Freund and Tom Lane
Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
2017-01-19 14:40:41 -08:00
Tom Lane ab1f0c8225 Change representation of statement lists, and add statement location info.
This patch makes several changes that improve the consistency of
representation of lists of statements.  It's always been the case
that the output of parse analysis is a list of Query nodes, whatever
the types of the individual statements in the list.  This patch brings
similar consistency to the outputs of raw parsing and planning steps:

* The output of raw parsing is now always a list of RawStmt nodes;
the statement-type-dependent nodes are one level down from that.

* The output of pg_plan_queries() is now always a list of PlannedStmt
nodes, even for utility statements.  In the case of a utility statement,
"planning" just consists of wrapping a CMD_UTILITY PlannedStmt around
the utility node.  This list representation is now used in Portal and
CachedPlan plan lists, replacing the former convention of intermixing
PlannedStmts with bare utility-statement nodes.

Now, every list of statements has a consistent head-node type depending
on how far along it is in processing.  This allows changing many places
that formerly used generic "Node *" pointers to use a more specific
pointer type, thus reducing the number of IsA() tests and casts needed,
as well as improving code clarity.

Also, the post-parse-analysis representation of DECLARE CURSOR is changed
so that it looks more like EXPLAIN, PREPARE, etc.  That is, the contained
SELECT remains a child of the DeclareCursorStmt rather than getting flipped
around to be the other way.  It's now true for both Query and PlannedStmt
that utilityStmt is non-null if and only if commandType is CMD_UTILITY.
That allows simplifying a lot of places that were testing both fields.
(I think some of those were just defensive programming, but in many places,
it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.)

Because PlannedStmt carries a canSetTag field, we're also able to get rid
of some ad-hoc rules about how to reconstruct canSetTag for a bare utility
statement; specifically, the assumption that a utility is canSetTag if and
only if it's the only one in its list.  While I see no near-term need for
relaxing that restriction, it's nice to get rid of the ad-hocery.

The API of ProcessUtility() is changed so that what it's passed is the
wrapper PlannedStmt not just the bare utility statement.  This will affect
all users of ProcessUtility_hook, but the changes are pretty trivial; see
the affected contrib modules for examples of the minimum change needed.
(Most compilers should give pointer-type-mismatch warnings for uncorrected
code.)

There's also a change in the API of ExplainOneQuery_hook, to pass through
cursorOptions instead of expecting hook functions to know what to pick.
This is needed because of the DECLARE CURSOR changes, but really should
have been done in 9.6; it's unlikely that any extant hook functions
know about using CURSOR_OPT_PARALLEL_OK.

Finally, teach gram.y to save statement boundary locations in RawStmt
nodes, and pass those through to Query and PlannedStmt nodes.  This allows
more intelligent handling of cases where a source query string contains
multiple statements.  This patch doesn't actually do anything with the
information, but a follow-on patch will.  (Passing this information through
cleanly is the true motivation for these changes; while I think this is all
good cleanup, it's unlikely we'd have bothered without this end goal.)

catversion bump because addition of location fields to struct Query
affects stored rules.

This patch is by me, but it owes a good deal to Fabien Coelho who did
a lot of preliminary work on the problem, and also reviewed the patch.

Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
2017-01-14 16:02:35 -05:00
Bruce Momjian 1d25779284 Update copyright via script for 2017 2017-01-03 13:48:53 -05:00
Tom Lane 1833f1a1c3 Simplify code by getting rid of SPI_push, SPI_pop, SPI_restore_connection.
The idea behind SPI_push was to allow transitioning back into an
"unconnected" state when a SPI-using procedure calls unrelated code that
might or might not invoke SPI.  That sounds good, but in practice the only
thing it does for us is to catch cases where a called SPI-using function
forgets to call SPI_connect --- which is a highly improbable failure mode,
since it would be exposed immediately by direct testing of said function.
As against that, we've had multiple bugs induced by forgetting to call
SPI_push/SPI_pop around code that might invoke SPI-using functions; these
are much harder to catch and indeed have gone undetected for years in some
cases.  And we've had to band-aid around some problems of this ilk by
introducing conditional push/pop pairs in some places, which really kind
of defeats the purpose altogether; if we can't draw bright lines between
connected and unconnected code, what's the point?

Hence, get rid of SPI_push[_conditional], SPI_pop[_conditional], and the
underlying state variable _SPI_curid.  It turns out SPI_restore_connection
can go away too, which is a nice side benefit since it was never more than
a kluge.  Provide no-op macros for the deleted functions so as to avoid an
API break for external modules.

A side effect of this removal is that SPI_palloc and allied functions no
longer permit being called when unconnected; they'll throw an error
instead.  The apparent usefulness of the previous behavior was a mirage
as well, because it was depended on by only a few places (which I fixed in
preceding commits), and it posed a risk of allocations being unexpectedly
long-lived if someone forgot a SPI_push call.

Discussion: <20808.1478481403@sss.pgh.pa.us>
2016-11-08 17:39:57 -05:00
Tom Lane 9257f07872 Replace uses of SPI_modifytuple that intend to allocate in current context.
Invent a new function heap_modify_tuple_by_cols() that is functionally
equivalent to SPI_modifytuple except that it always allocates its result
by simple palloc.  I chose however to make the API details a bit more
like heap_modify_tuple: pass a tupdesc rather than a Relation, and use
bool convention for the isnull array.

Use this function in place of SPI_modifytuple at all call sites where the
intended behavior is to allocate in current context.  (There actually are
only two call sites left that depend on the old behavior, which makes me
wonder if we should just drop this function rather than keep it.)

This new function is easier to use than heap_modify_tuple() for purposes
of replacing a single column (or, really, any fixed number of columns).
There are a number of places where it would simplify the code to change
over, but I resisted that temptation for the moment ... everywhere except
in plpgsql's exec_assign_value(); changing that might offer some small
performance benefit, so I did it.

This is on the way to removing SPI_push/SPI_pop, but it seems like
good code cleanup in its own right.

Discussion: <9633.1478552022@sss.pgh.pa.us>
2016-11-08 15:36:44 -05:00