Commit Graph

497 Commits

Author SHA1 Message Date
David Rowley
dece64a941 Fix incorrect comment for get_agg_clause_costs
Adjust the header comment in get_agg_clause_costs so that it matches what
the function currently does.  No recursive searching has been done ever
since 0a2bc5d61.  It also does not determine the aggtranstype like the
comment claimed. That's all done in preprocess_aggref().
preprocess_aggref also now determines the numOrderedAggs, so remove the
mention that get_agg_clause_costs also calculates "counts".

Normally, since this is just an adjustment of a comment it might not be
worth back-patching, but since this code is new to PG14 and that version
is still in beta, then it seems worth having the comments match.

Discussion: https://postgr.es/m/CAApHDvrrGrTJFPELrjx0CnDtz9B7Jy2XYW3Z2BKifAWLSaJYwQ@mail.gmail.com
Backpatch-though: 14
2021-07-26 14:56:09 +12:00
Tom Lane
b154ee63bb Get rid of artificial restriction on hash table sizes on Windows.
The point of introducing the hash_mem_multiplier GUC was to let users
reproduce the old behavior of hash aggregation, i.e. that it could use
more than work_mem at need.  However, the implementation failed to get
the job done on Win64, where work_mem is clamped to 2GB to protect
various places that calculate memory sizes using "long int".  As
written, the same clamp was applied to hash_mem.  This resulted in
severe performance regressions for queries requiring a bit more than
2GB for hash aggregation, as they now spill to disk and there's no
way to stop that.

Getting rid of the work_mem restriction seems like a good idea, but
it's a big job and could not conceivably be back-patched.  However,
there's only a fairly small number of places that are concerned with
the hash_mem value, and it turns out to be possible to remove the
restriction there without too much code churn or any ABI breaks.
So, let's do that for now to fix the regression, and leave the
larger task for another day.

This patch does introduce a bit more infrastructure that should help
with the larger task, namely pg_bitutils.h support for working with
size_t values.

Per gripe from Laurent Hasson.  Back-patch to v13 where the
behavior change came in.

Discussion: https://postgr.es/m/997817.1627074924@sss.pgh.pa.us
Discussion: https://postgr.es/m/MN2PR15MB25601E80A9B6D1BA6F592B1985E39@MN2PR15MB2560.namprd15.prod.outlook.com
2021-07-25 14:02:27 -04:00
Tom Lane
1d98fdaed8 Avoid creating a RESULT RTE that's marked LATERAL.
Commit 7266d0997 added code to pull up simple constant function
results, converting the RTE_FUNCTION RTE to a dummy RTE_RESULT
RTE since it no longer need be scanned.  But I forgot to clear
the LATERAL flag if the RTE has it set.  If the function reduced
to a constant, it surely contains no lateral references so this
simplification is logically OK.  It's needed because various other
places will Assert that RESULT RTEs aren't LATERAL.

Per bug #17097 from Yaoguang Chen.  Back-patch to v13 where the
faulty code came in.

Discussion: https://postgr.es/m/17097-3372ef9f798fc94f@postgresql.org
2021-07-09 13:38:24 -04:00
Tom Lane
def5b065ff Initial pgindent and pgperltidy run for v14.
Also "make reformat-dat-files".

The only change worthy of note is that pgindent messed up the formatting
of launcher.c's struct LogicalRepWorkerId, which led me to notice that
that struct wasn't used at all anymore, so I just took it out.
2021-05-12 13:14:10 -04:00
Tom Lane
049e1e2edb Fix mishandling of resjunk columns in ON CONFLICT ... UPDATE tlists.
It's unusual to have any resjunk columns in an ON CONFLICT ... UPDATE
list, but it can happen when MULTIEXPR_SUBLINK SubPlans are present.
If it happens, the ON CONFLICT UPDATE code path would end up storing
tuples that include the values of the extra resjunk columns.  That's
fairly harmless in the short run, but if new columns are added to
the table then the values would become accessible, possibly leading
to malfunctions if they don't match the datatypes of the new columns.

This had escaped notice through a confluence of missing sanity checks,
including

* There's no cross-check that a tuple presented to heap_insert or
heap_update matches the table rowtype.  While it's difficult to
check that fully at reasonable cost, we can easily add assertions
that there aren't too many columns.

* The output-column-assignment cases in execExprInterp.c lacked
any sanity checks on the output column numbers, which seems like
an oversight considering there are plenty of assertion checks on
input column numbers.  Add assertions there too.

* We failed to apply nodeModifyTable's ExecCheckPlanOutput() to
the ON CONFLICT UPDATE tlist.  That wouldn't have caught this
specific error, since that function is chartered to ignore resjunk
columns; but it sure seems like a bad omission now that we've seen
this bug.

In HEAD, the right way to fix this is to make the processing of
ON CONFLICT UPDATE tlists work the same as regular UPDATE tlists
now do, that is don't add "SET x = x" entries, and use
ExecBuildUpdateProjection to evaluate the tlist and combine it with
old values of the not-set columns.  This adds a little complication
to ExecBuildUpdateProjection, but allows removal of a comparable
amount of now-dead code from the planner.

In the back branches, the most expedient solution seems to be to
(a) use an output slot for the ON CONFLICT UPDATE projection that
actually matches the target table, and then (b) invent a variant of
ExecBuildProjectionInfo that can be told to not store values resulting
from resjunk columns, so it doesn't try to store into nonexistent
columns of the output slot.  (We can't simply ignore the resjunk columns
altogether; they have to be evaluated for MULTIEXPR_SUBLINK to work.)
This works back to v10.  In 9.6, projections work much differently and
we can't cheaply give them such an option.  The 9.6 version of this
patch works by inserting a JunkFilter when it's necessary to get rid
of resjunk columns.

In addition, v11 and up have the reverse problem when trying to
perform ON CONFLICT UPDATE on a partitioned table.  Through a
further oversight, adjust_partition_tlist() discarded resjunk columns
when re-ordering the ON CONFLICT UPDATE tlist to match a partition.
This accidentally prevented the storing-bogus-tuples problem, but
at the cost that MULTIEXPR_SUBLINK cases didn't work, typically
crashing if more than one row has to be updated.  Fix by preserving
resjunk columns in that routine.  (I failed to resist the temptation
to add more assertions there too, and to do some minor code
beautification.)

Per report from Andres Freund.  Back-patch to all supported branches.

Security: CVE-2021-32028
2021-05-10 11:02:29 -04:00
David Rowley
50e17ad281 Speedup ScalarArrayOpExpr evaluation
ScalarArrayOpExprs with "useOr=true" and a set of Consts on the righthand
side have traditionally been evaluated by using a linear search over the
array.  When these arrays contain large numbers of elements then this
linear search could become a significant part of execution time.

Here we add a new method of evaluating ScalarArrayOpExpr expressions to
allow them to be evaluated by first building a hash table containing each
element, then on subsequent evaluations, we just probe that hash table to
determine if there is a match.

The planner is in charge of determining when this optimization is possible
and it enables it by setting hashfuncid in the ScalarArrayOpExpr.  The
executor will only perform the hash table evaluation when the hashfuncid
is set.

This means that not all cases are optimized. For example CHECK constraints
containing an IN clause won't go through the planner, so won't get the
hashfuncid set.  We could maybe do something about that at some later
date.  The reason we're not doing it now is from fear that we may slow
down cases where the expression is evaluated only once.  Those cases can
be common, for example, a single row INSERT to a table with a CHECK
constraint containing an IN clause.

In the planner, we enable this when there are suitable hash functions for
the ScalarArrayOpExpr's operator and only when there is at least
MIN_ARRAY_SIZE_FOR_HASHED_SAOP elements in the array.  The threshold is
currently set to 9.

Author: James Coleman, David Rowley
Reviewed-by: David Rowley, Tomas Vondra, Heikki Linnakangas
Discussion: https://postgr.es/m/CAAaqYe8x62+=wn0zvNKCj55tPpg-JBHzhZFFc6ANovdqFw7-dA@mail.gmail.com
2021-04-08 23:51:22 +12:00
Tom Lane
86dc90056d Rework planning and execution of UPDATE and DELETE.
This patch makes two closely related sets of changes:

1. For UPDATE, the subplan of the ModifyTable node now only delivers
the new values of the changed columns (i.e., the expressions computed
in the query's SET clause) plus row identity information such as CTID.
ModifyTable must re-fetch the original tuple to merge in the old
values of any unchanged columns.  The core advantage of this is that
the changed columns are uniform across all tables of an inherited or
partitioned target relation, whereas the other columns might not be.
A secondary advantage, when the UPDATE involves joins, is that less
data needs to pass through the plan tree.  The disadvantage of course
is an extra fetch of each tuple to be updated.  However, that seems to
be very nearly free in context; even worst-case tests don't show it to
add more than a couple percent to the total query cost.  At some point
it might be interesting to combine the re-fetch with the tuple access
that ModifyTable must do anyway to mark the old tuple dead; but that
would require a good deal of refactoring and it seems it wouldn't buy
all that much, so this patch doesn't attempt it.

2. For inherited UPDATE/DELETE, instead of generating a separate
subplan for each target relation, we now generate a single subplan
that is just exactly like a SELECT's plan, then stick ModifyTable
on top of that.  To let ModifyTable know which target relation a
given incoming row refers to, a tableoid junk column is added to
the row identity information.  This gets rid of the horrid hack
that was inheritance_planner(), eliminating O(N^2) planning cost
and memory consumption in cases where there were many unprunable
target relations.

Point 2 of course requires point 1, so that there is a uniform
definition of the non-junk columns to be returned by the subplan.
We can't insist on uniform definition of the row identity junk
columns however, if we want to keep the ability to have both
plain and foreign tables in a partitioning hierarchy.  Since
it wouldn't scale very far to have every child table have its
own row identity column, this patch includes provisions to merge
similar row identity columns into one column of the subplan result.
In particular, we can merge the whole-row Vars typically used as
row identity by FDWs into one column by pretending they are type
RECORD.  (It's still okay for the actual composite Datums to be
labeled with the table's rowtype OID, though.)

There is more that can be done to file down residual inefficiencies
in this patch, but it seems to be committable now.

FDW authors should note several API changes:

* The argument list for AddForeignUpdateTargets() has changed, and so
has the method it must use for adding junk columns to the query.  Call
add_row_identity_var() instead of manipulating the parse tree directly.
You might want to reconsider exactly what you're adding, too.

* PlanDirectModify() must now work a little harder to find the
ForeignScan plan node; if the foreign table is part of a partitioning
hierarchy then the ForeignScan might not be the direct child of
ModifyTable.  See postgres_fdw for sample code.

* To check whether a relation is a target relation, it's no
longer sufficient to compare its relid to root->parse->resultRelation.
Instead, check it against all_result_relids or leaf_result_relids,
as appropriate.

Amit Langote and Tom Lane

Discussion: https://postgr.es/m/CA+HiwqHpHdqdDn48yCEhynnniahH78rwcrv1rEX65-fsZGBOLQ@mail.gmail.com
2021-03-31 11:52:37 -04:00
David Rowley
ed934d4fa3 Allow estimate_num_groups() to pass back further details about the estimation
Here we add a new output parameter to estimate_num_groups() to allow it to
inform the caller of additional, possibly useful information about the
estimation.

The new output parameter is a struct that currently contains just a single
field with a set of flags.  This was done rather than having the flags as
an output parameter to allow future fields to be added without having to
change the signature of the function at a later date when we want to pass
back further information that might not be suitable to store in the flags
field.

It seems reasonable that one day in the future that the planner would want
to know more about the estimation. For example, how many individual sets
of statistics was the estimation generated from?  The planner may want to
take that into account if we ever want to consider risks as well as costs
when generating plans.

For now, there's only 1 flag we set in the flags field.  This is to
indicate if the estimation fell back on using the hard-coded constants in
any part of the estimation. Callers may like to change their behavior if
this is set, and this gives them the ability to do so.  Callers may pass
the flag pointer as NULL if they have no interest in obtaining any
additional information about the estimate.

We're not adding any actual usages of these flags here.  Some follow-up
commits will make use of this feature.  Additionally, we're also not
making any changes to add support for clauselist_selectivity() and
clauselist_selectivity_ext().  However, if this is required in the future
then the same struct being added here should be fine to use as a new
output argument for those functions too.

Author: David Rowley
Discussion: https://postgr.es/m/CAApHDvqQqpk=1W-G_ds7A9CsXX3BggWj_7okinzkLVhDubQzjA@mail.gmail.com
2021-03-30 20:52:46 +13:00
Michael Paquier
bcf2667bf6 Fix some typos, grammar and style in docs and comments
The portions fixing the documentation are backpatched where needed.

Author: Justin Pryzby
Discussion: https://postgr.es/m/20210210235557.GQ20012@telsasoft.com
backpatch-through: 9.6
2021-02-24 16:13:17 +09:00
Tom Lane
f003a7522b Remove [Merge]AppendPath.partitioned_rels.
It turns out that the calculation of [Merge]AppendPath.partitioned_rels
in allpaths.c is faulty and sometimes omits relevant non-leaf partitions,
allowing an assertion added by commit a929e17e5a to trigger.  Rather
than fix that, it seems better to get rid of those fields altogether.
We don't really need the info until create_plan time, and calculating
it once for the selected plan should be cheaper than calculating it
for each append path we consider.

The preceding two commits did away with all use of the partitioned_rels
values; this commit just mechanically removes the fields and the code
that calculated them.

Discussion: https://postgr.es/m/87sg8tqhsl.fsf@aurora.ydns.eu
Discussion: https://postgr.es/m/CAJKUy5gCXDSmFs2c=R+VGgn7FiYcLCsEFEuDNNLGfoha=pBE_g@mail.gmail.com
2021-02-01 14:43:54 -05:00
Tom Lane
55dc86eca7 Fix pull_varnos' miscomputation of relids set for a PlaceHolderVar.
Previously, pull_varnos() took the relids of a PlaceHolderVar as being
equal to the relids in its contents, but that fails to account for the
possibility that we have to postpone evaluation of the PHV due to outer
joins.  This could result in a malformed plan.  The known cases end up
triggering the "failed to assign all NestLoopParams to plan nodes"
sanity check in createplan.c, but other symptoms may be possible.

The right value to use is the join level we actually intend to evaluate
the PHV at.  We can get that from the ph_eval_at field of the associated
PlaceHolderInfo.  However, there are some places that call pull_varnos()
before the PlaceHolderInfos have been created; in that case, fall back
to the conservative assumption that the PHV will be evaluated at its
syntactic level.  (In principle this might result in missing some legal
optimization, but I'm not aware of any cases where it's an issue in
practice.)  Things are also a bit ticklish for calls occurring during
deconstruct_jointree(), but AFAICS the ph_eval_at fields should have
reached their final values by the time we need them.

The main problem in making this work is that pull_varnos() has no
way to get at the PlaceHolderInfos.  We can fix that easily, if a
bit tediously, in HEAD by passing it the planner "root" pointer.
In the back branches that'd cause an unacceptable API/ABI break for
extensions, so leave the existing entry points alone and add new ones
with the additional parameter.  (If an old entry point is called and
encounters a PHV, it'll fall back to using the syntactic level,
again possibly missing some valid optimization.)

Back-patch to v12.  The computation is surely also wrong before that,
but it appears that we cannot reach a bad plan thanks to join order
restrictions imposed on the subquery that the PlaceHolderVar came from.
The error only became reachable when commit 4be058fe9 allowed trivial
subqueries to be collapsed out completely, eliminating their join order
restrictions.

Per report from Stephan Springl.

Discussion: https://postgr.es/m/171041.1610849523@sss.pgh.pa.us
2021-01-21 15:37:23 -05:00
Bruce Momjian
ca3b37487b Update copyright for 2021
Backpatch-through: 9.5
2021-01-02 13:06:25 -05:00
Tom Lane
e98c900993 Fix missed step in removal of useless RESULT RTEs in the planner.
Commit 4be058fe9 forgot that the append_rel_list would already be
populated at the time we remove useless result RTEs, and it might contain
PlaceHolderVars that need to be adjusted like the ones in the main parse
tree.  This could lead to "no relation entry for relid N" failures later
on, when the planner tries to do something with an unadjusted PHV.

Per report from Tom Ellis.  Back-patch to v12 where the bug came in.

Discussion: https://postgr.es/m/20201205173056.GF30712@cloudinit-builder
2020-12-05 16:16:13 -05:00
Heikki Linnakangas
0a2bc5d61e Move per-agg and per-trans duplicate finding to the planner.
This has the advantage that the cost estimates for aggregates can count
the number of calls to transition and final functions correctly.

Bump catalog version, because views can contain Aggrefs.

Reviewed-by: Andres Freund
Discussion: https://www.postgresql.org/message-id/b2e3536b-1dbc-8303-c97e-89cb0b4a9a48%40iki.fi
2020-11-24 10:45:00 +02:00
Tom Lane
2072932407 Suppress unnecessary RelabelType nodes in yet more cases.
Commit a477bfc1d fixed eval_const_expressions() to ensure that it
didn't generate unnecessary RelabelType nodes, but I failed to notice
that some other places in the planner had the same issue.  Really
noplace in the planner should be using plain makeRelabelType(), for
fear of generating expressions that should be equal() to semantically
equivalent trees, but aren't.

An example is that because canonicalize_ec_expression() failed
to be careful about this, we could end up with an equivalence class
containing both a plain Const, and a Const-with-RelabelType
representing exactly the same value.  So far as I can tell this led to
no visible misbehavior, but we did waste a bunch of cycles generating
and evaluating "Const = Const-with-RelabelType" to prove such entries
are redundant.

Hence, move the support function added by a477bfc1d to where it can
be more generally useful, and use it in the places where planner code
previously used makeRelabelType.

Back-patch to v12, like the previous patch.  While I have no concrete
evidence of any real misbehavior here, it's certainly possible that
I overlooked a case where equivalent expressions that aren't equal()
could cause a user-visible problem.  In any case carrying extra
RelabelType nodes through planning to execution isn't very desirable.

Discussion: https://postgr.es/m/1311836.1597781384@sss.pgh.pa.us
2020-08-19 14:07:49 -04:00
Peter Geoghegan
d6c08e29e7 Add hash_mem_multiplier GUC.
Add a GUC that acts as a multiplier on work_mem.  It gets applied when
sizing executor node hash tables that were previously size constrained
using work_mem alone.

The new GUC can be used to preferentially give hash-based nodes more
memory than the generic work_mem limit.  It is intended to enable admin
tuning of the executor's memory usage.  Overall system throughput and
system responsiveness can be improved by giving hash-based executor
nodes more memory (especially over sort-based alternatives, which are
often much less sensitive to being memory constrained).

The default value for hash_mem_multiplier is 1.0, which is also the
minimum valid value.  This means that hash-based nodes continue to apply
work_mem in the traditional way by default.

hash_mem_multiplier is generally useful.  However, it is being added now
due to concerns about hash aggregate performance stability for users
that upgrade to Postgres 13 (which added disk-based hash aggregation in
commit 1f39bce0).  While the old hash aggregate behavior risked
out-of-memory errors, it is nevertheless likely that many users actually
benefited.  Hash agg's previous indifference to work_mem during query
execution was not just faster; it also accidentally made aggregation
resilient to grouping estimate problems (at least in cases where this
didn't create destabilizing memory pressure).

hash_mem_multiplier can provide a certain kind of continuity with the
behavior of Postgres 12 hash aggregates in cases where the planner
incorrectly estimates that all groups (plus related allocations) will
fit in work_mem/hash_mem.  This seems necessary because hash-based
aggregation is usually much slower when only a small fraction of all
groups can fit.  Even when it isn't possible to totally avoid hash
aggregates that spill, giving hash aggregation more memory will reliably
improve performance (the same cannot be said for external sort
operations, which appear to be almost unaffected by memory availability
provided it's at least possible to get a single merge pass).

The PostgreSQL 13 release notes should advise users that increasing
hash_mem_multiplier can help with performance regressions associated
with hash aggregation.  That can be taken care of by a later commit.

Author: Peter Geoghegan
Reviewed-By: Álvaro Herrera, Jeff Davis
Discussion: https://postgr.es/m/20200625203629.7m6yvut7eqblgmfo@alap3.anarazel.de
Discussion: https://postgr.es/m/CAH2-WzmD%2Bi1pG6rc1%2BCjc4V6EaFJ_qSuKCCHVnH%3DoruqD-zqow%40mail.gmail.com
Backpatch: 13-, where disk-based hash aggregation was introduced.
2020-07-29 14:14:58 -07:00
Peter Geoghegan
b1d79127ed Correct obsolete UNION hash aggs comment.
Oversight in commit 1f39bce0, which added disk-based hash aggregation.

Backpatch: 13-, where disk-based hash aggregation was introduced.
2020-07-28 17:14:07 -07:00
Jeff Davis
1f39bce021 Disk-based Hash Aggregation.
While performing hash aggregation, track memory usage when adding new
groups to a hash table. If the memory usage exceeds work_mem, enter
"spill mode".

In spill mode, new groups are not created in the hash table(s), but
existing groups continue to be advanced if input tuples match. Tuples
that would cause a new group to be created are instead spilled to a
logical tape to be processed later.

The tuples are spilled in a partitioned fashion. When all tuples from
the outer plan are processed (either by advancing the group or
spilling the tuple), finalize and emit the groups from the hash
table. Then, create new batches of work from the spilled partitions,
and select one of the saved batches and process it (possibly spilling
recursively).

Author: Jeff Davis
Reviewed-by: Tomas Vondra, Adam Lee, Justin Pryzby, Taylor Vesely, Melanie Plageman
Discussion: https://postgr.es/m/507ac540ec7c20136364b5272acbcd4574aa76ef.camel@j-davis.com
2020-03-18 15:42:02 -07:00
Bruce Momjian
7559d8ebfa Update copyrights for 2020
Backpatch-through: update all files in master, backpatch legal files through 9.4
2020-01-01 12:21:45 -05:00
Tom Lane
6ea364e7e7 Prevent overly-aggressive collapsing of joins to RTE_RESULT relations.
The RTE_RESULT simplification logic added by commit 4be058fe9 had a
flaw: it would collapse out a RTE_RESULT that is due to compute a
PlaceHolderVar, and reassign the PHV to the parent join level, even if
another input relation of the join contained a lateral reference to
the PHV.  That can't work because the PHV would be computed too late.
In practice it led to failures of internal sanity checks later in
planning (either assertion failures or errors such as "failed to
construct the join relation").

To fix, add code to check for the presence of such PHVs in relevant
portions of the query tree.  Notably, this required refactoring
range_table_walker so that a caller could ask to walk individual RTEs
not the whole list.  (It might be a good idea to refactor
range_table_mutator in the same way, if only to keep those functions
looking similar; but I didn't do so here as it wasn't necessary for
the bug fix.)

This exercise also taught me that find_dependent_phvs(), as it stood,
could only safely be used on the entire Query, not on subtrees.
Adjust its API to reflect that; which in passing allows it to have
a fast path for the common case of no PHVs anywhere.

Per report from Will Leinweber.  Back-patch to v12 where the bug
was introduced.

Discussion: https://postgr.es/m/CALLb-4xJMd4GZt2YCecMC95H-PafuWNKcmps4HLRx2NHNBfB4g@mail.gmail.com
2019-12-14 13:49:15 -05:00
Tom Lane
ce76c0ba53 Add a reverse-translation column number array to struct AppendRelInfo.
This provides for cheaper mapping of child columns back to parent
columns.  The one existing use-case in examine_simple_variable()
would hardly justify this by itself; but an upcoming bug fix will
make use of this array in a mainstream code path, and it seems
likely that we'll find other uses for it as we continue to build
out the partitioning infrastructure.

Discussion: https://postgr.es/m/12424.1575168015@sss.pgh.pa.us
2019-12-02 18:05:29 -05:00
Amit Kapila
14aec03502 Make the order of the header file includes consistent in backend modules.
Similar to commits 7e735035f2 and dddf4cdc33, this commit makes the order
of header file inclusion consistent for backend modules.

In the passing, removed a couple of duplicate inclusions.

Author: Vignesh C
Reviewed-by: Kuntal Ghosh and Amit Kapila
Discussion: https://postgr.es/m/CALDaNm2Sznv8RR6Ex-iJO6xAdsxgWhCoETkaYX=+9DW3q0QCfA@mail.gmail.com
2019-11-12 08:30:16 +05:30
Andres Freund
01368e5d9d Split all OBJS style lines in makefiles into one-line-per-entry style.
When maintaining or merging patches, one of the most common sources
for conflicts are the list of objects in makefiles. Especially when
the split across lines has been changed on both sides, which is
somewhat common due to attempting to stay below 80 columns, those
conflicts are unnecessarily laborious to resolve.

By splitting, and alphabetically sorting, OBJS style lines into one
object per line, conflicts should be less frequent, and easier to
resolve when they still occur.

Author: Andres Freund
Discussion: https://postgr.es/m/20191029200901.vww4idgcxv74cwes@alap3.anarazel.de
2019-11-05 14:41:07 -08:00
Tom Lane
a9ae99d019 Prevent bogus pullup of constant-valued functions returning composite.
Fix an oversight in commit 7266d0997: as it stood, the code failed
when a function-in-FROM returns composite and can be simplified
to a composite constant.

For the moment, just test for composite result and abandon pullup
if we see one.  To make it actually work, we'd have to decompose
the composite constant into per-column constants; which is surely
do-able, but I'm not convinced it's worth the code space.

Per report from Raúl Marín Rodríguez.

Discussion: https://postgr.es/m/CAM6_UM4isP+buRA5sWodO_MUEgutms-KDfnkwGmryc5DGj9XuQ@mail.gmail.com
2019-09-24 12:11:32 -04:00
Tom Lane
5ee190f8ec Rationalize use of list_concat + list_copy combinations.
In the wake of commit 1cff1b95a, the result of list_concat no longer
shares the ListCells of the second input.  Therefore, we can replace
"list_concat(x, list_copy(y))" with just "list_concat(x, y)".

To improve call sites that were list_copy'ing the first argument,
or both arguments, invent "list_concat_copy()" which produces a new
list sharing no ListCells with either input.  (This is a bit faster
than "list_concat(list_copy(x), y)" because it makes the result list
the right size to start with.)

In call sites that were not list_copy'ing the second argument, the new
semantics mean that we are usually leaking the second List's storage,
since typically there is no remaining pointer to it.  We considered
inventing another list_copy variant that would list_free the second
input, but concluded that for most call sites it isn't worth worrying
about, given the relative compactness of the new List representation.
(Note that in cases where such leakage would happen, the old code
already leaked the second List's header; so we're only discussing
the size of the leak not whether there is one.  I did adjust two or
three places that had been troubling to free that header so that
they manually free the whole second List.)

Patch by me; thanks to David Rowley for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-08-12 11:20:18 -04:00
Tom Lane
1661a40505 Cosmetic improvements in setup of planner's per-RTE arrays.
Merge setup_append_rel_array into setup_simple_rel_arrays.  There's no
particularly good reason to keep them separate, and it's inconsistent
with the lack of separation in expand_planner_arrays.  The only apparent
benefit was that the fast path for trivial queries in query_planner()
doesn't need to set up the append_rel_array; but all we're saving there
is an if-test and NULL assignment, which surely ought to be negligible.

Also improve some obsolete comments.

Discussion: https://postgr.es/m/17220.1565301350@sss.pgh.pa.us
2019-08-09 12:33:43 -04:00
Tom Lane
7266d0997d Allow functions-in-FROM to be pulled up if they reduce to constants.
This allows simplification of the plan tree in some common usage
patterns: we can get rid of a join to the function RTE.

In principle we could pull up any immutable expression, but restricting
it to Consts avoids the risk that multiple evaluations of the expression
might cost more than we can save.  (Possibly this could be improved in
future --- but we've more or less promised people that putting a function
in FROM guarantees single evaluation, so we'd have to tread carefully.)

To do this, we need to rearrange when eval_const_expressions()
happens for expressions in function RTEs.  I moved it to
inline_set_returning_functions(), which already has to iterate over
every function RTE, and in consequence renamed that function to
preprocess_function_rtes().  A useful consequence is that
inline_set_returning_function() no longer has to do this for itself,
simplifying that code.

In passing, break out pull_up_simple_subquery's code that knows where
everything that needs pullup_replace_vars() processing is, so that
the new pull_up_constant_function() routine can share it.  We'd
gotten away with one-and-a-half copies of that code so far, since
pull_up_simple_values() could assume that a lot of cases didn't apply
to it --- but I don't think pull_up_constant_function() can make any
simplifying assumptions.  Might as well make pull_up_simple_values()
use it too.

(Possibly this refactoring should go further: maybe we could share
some of the code to fill in the pullup_replace_vars_context struct?
For now, I left it that the callers fill that completely.)

Note: the one existing test case that this patch changes has to be
changed because inlining its function RTEs would destroy the point
of the test, namely to check join order.

Alexander Kuzmenkov and Aleksandr Parfenov, reviewed by
Antonin Houska and Anastasia Lubennikova, and whacked around
some more by me

Discussion: https://postgr.es/m/402356c32eeb93d4fed01f66d6c7fe2d@postgrespro.ru
2019-08-01 18:50:22 -04:00
David Rowley
3373c71553 Speed up finding EquivalenceClasses for a given set of rels
Previously in order to determine which ECs a relation had members in, we
had to loop over all ECs stored in PlannerInfo's eq_classes and check if
ec_relids mentioned the relation.  For the most part, this was fine, as
generally, unless queries were fairly complex, the overhead of performing
the lookup would have not been that significant.  However, when queries
contained large numbers of joins and ECs, the overhead to find the set of
classes matching a given set of relations could become a significant
portion of the overall planning effort.

Here we allow a much more efficient method to access the ECs which match a
given relation or set of relations.  A new Bitmapset field in RelOptInfo
now exists to store the indexes into PlannerInfo's eq_classes list which
each relation is mentioned in.  This allows very fast lookups to find all
ECs belonging to a single relation.  When we need to lookup ECs belonging
to a given pair of relations, we can simply bitwise-AND the Bitmapsets from
each relation and use the result to perform the lookup.

We also take the opportunity to write a new implementation of
generate_join_implied_equalities which makes use of the new indexes.
generate_join_implied_equalities_for_ecs must remain as is as it can be
given a custom list of ECs, which we can't easily determine the indexes of.

This was originally intended to fix the performance penalty of looking up
foreign keys matching a join condition which was introduced by 100340e2d.
However, we're speeding up much more than just that here.

Author: David Rowley, Tom Lane
Reviewed-by: Tom Lane, Tomas Vondra
Discussion: https://postgr.es/m/6970.1545327857@sss.pgh.pa.us
2019-07-21 17:30:58 +12:00
Michael Paquier
0896ae561b Fix inconsistencies and typos in the tree
This is numbered take 7, and addresses a set of issues around:
- Fixes for typos and incorrect reference names.
- Removal of unneeded comments.
- Removal of unreferenced functions and structures.
- Fixes regarding variable name consistency.

Author: Alexander Lakhin
Discussion: https://postgr.es/m/10bfd4ac-3e7c-40ab-2b2e-355ed15495e8@gmail.com
2019-07-16 13:23:53 +09:00
Tom Lane
1cff1b95ab Represent Lists as expansible arrays, not chains of cons-cells.
Originally, Postgres Lists were a more or less exact reimplementation of
Lisp lists, which consist of chains of separately-allocated cons cells,
each having a value and a next-cell link.  We'd hacked that once before
(commit d0b4399d8) to add a separate List header, but the data was still
in cons cells.  That makes some operations -- notably list_nth() -- O(N),
and it's bulky because of the next-cell pointers and per-cell palloc
overhead, and it's very cache-unfriendly if the cons cells end up
scattered around rather than being adjacent.

In this rewrite, we still have List headers, but the data is in a
resizable array of values, with no next-cell links.  Now we need at
most two palloc's per List, and often only one, since we can allocate
some values in the same palloc call as the List header.  (Of course,
extending an existing List may require repalloc's to enlarge the array.
But this involves just O(log N) allocations not O(N).)

Of course this is not without downsides.  The key difficulty is that
addition or deletion of a list entry may now cause other entries to
move, which it did not before.

For example, that breaks foreach() and sister macros, which historically
used a pointer to the current cons-cell as loop state.  We can repair
those macros transparently by making their actual loop state be an
integer list index; the exposed "ListCell *" pointer is no longer state
carried across loop iterations, but is just a derived value.  (In
practice, modern compilers can optimize things back to having just one
loop state value, at least for simple cases with inline loop bodies.)
In principle, this is a semantics change for cases where the loop body
inserts or deletes list entries ahead of the current loop index; but
I found no such cases in the Postgres code.

The change is not at all transparent for code that doesn't use foreach()
but chases lists "by hand" using lnext().  The largest share of such
code in the backend is in loops that were maintaining "prev" and "next"
variables in addition to the current-cell pointer, in order to delete
list cells efficiently using list_delete_cell().  However, we no longer
need a previous-cell pointer to delete a list cell efficiently.  Keeping
a next-cell pointer doesn't work, as explained above, but we can improve
matters by changing such code to use a regular foreach() loop and then
using the new macro foreach_delete_current() to delete the current cell.
(This macro knows how to update the associated foreach loop's state so
that no cells will be missed in the traversal.)

There remains a nontrivial risk of code assuming that a ListCell *
pointer will remain good over an operation that could now move the list
contents.  To help catch such errors, list.c can be compiled with a new
define symbol DEBUG_LIST_MEMORY_USAGE that forcibly moves list contents
whenever that could possibly happen.  This makes list operations
significantly more expensive so it's not normally turned on (though it
is on by default if USE_VALGRIND is on).

There are two notable API differences from the previous code:

* lnext() now requires the List's header pointer in addition to the
current cell's address.

* list_delete_cell() no longer requires a previous-cell argument.

These changes are somewhat unfortunate, but on the other hand code using
either function needs inspection to see if it is assuming anything
it shouldn't, so it's not all bad.

Programmers should be aware of these significant performance changes:

* list_nth() and related functions are now O(1); so there's no
major access-speed difference between a list and an array.

* Inserting or deleting a list element now takes time proportional to
the distance to the end of the list, due to moving the array elements.
(However, it typically *doesn't* require palloc or pfree, so except in
long lists it's probably still faster than before.)  Notably, lcons()
used to be about the same cost as lappend(), but that's no longer true
if the list is long.  Code that uses lcons() and list_delete_first()
to maintain a stack might usefully be rewritten to push and pop at the
end of the list rather than the beginning.

* There are now list_insert_nth...() and list_delete_nth...() functions
that add or remove a list cell identified by index.  These have the
data-movement penalty explained above, but there's no search penalty.

* list_concat() and variants now copy the second list's data into
storage belonging to the first list, so there is no longer any
sharing of cells between the input lists.  The second argument is
now declared "const List *" to reflect that it isn't changed.

This patch just does the minimum needed to get the new implementation
in place and fix bugs exposed by the regression tests.  As suggested
by the foregoing, there's a fair amount of followup work remaining to
do.

Also, the ENABLE_LIST_COMPAT macros are finally removed in this
commit.  Code using those should have been gone a dozen years ago.

Patch by me; thanks to David Rowley, Jesper Pedersen, and others
for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-07-15 13:41:58 -04:00
Tom Lane
8255c7a5ee Phase 2 pgindent run for v12.
Switch to 2.1 version of pg_bsd_indent.  This formats
multiline function declarations "correctly", that is with
additional lines of parameter declarations indented to match
where the first line's left parenthesis is.

Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com
2019-05-22 13:04:48 -04:00
Tom Lane
959d00e9db Use Append rather than MergeAppend for scanning ordered partitions.
If we need ordered output from a scan of a partitioned table, but
the ordering matches the partition ordering, then we don't need to
use a MergeAppend to combine the pre-ordered per-partition scan
results: a plain Append will produce the same results.  This
both saves useless comparison work inside the MergeAppend proper,
and allows us to start returning tuples after istarting up just
the first child node not all of them.

However, all is not peaches and cream, because if some of the
child nodes have high startup costs then there will be big
discontinuities in the tuples-returned-versus-elapsed-time curve.
The planner's cost model cannot handle that (yet, anyway).
If we model the Append's startup cost as being just the first
child's startup cost, we may drastically underestimate the cost
of fetching slightly more tuples than are available from the first
child.  Since we've had bad experiences with over-optimistic choices
of "fast start" plans for ORDER BY LIMIT queries, that seems scary.
As a klugy workaround, set the startup cost estimate for an ordered
Append to be the sum of its children's startup costs (as MergeAppend
would).  This doesn't really describe reality, but it's less likely
to cause a bad plan choice than an underestimated startup cost would.
In practice, the cases where we really care about this optimization
will have child plans that are IndexScans with zero startup cost,
so that the overly conservative estimate is still just zero.

David Rowley, reviewed by Julien Rouhaud and Antonin Houska

Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-05 19:20:43 -04:00
Tom Lane
428b260f87 Speed up planning when partitions can be pruned at plan time.
Previously, the planner created RangeTblEntry and RelOptInfo structs
for every partition of a partitioned table, even though many of them
might later be deemed uninteresting thanks to partition pruning logic.
This incurred significant overhead when there are many partitions.
Arrange to postpone creation of these data structures until after
we've processed the query enough to identify restriction quals for
the partitioned table, and then apply partition pruning before not
after creation of each partition's data structures.  In this way
we need not open the partition relations at all for partitions that
the planner has no real interest in.

For queries that can be proven at plan time to access only a small
number of partitions, this patch improves the practical maximum
number of partitions from under 100 to perhaps a few thousand.

Amit Langote, reviewed at various times by Dilip Kumar, Jesper Pedersen,
Yoshikazu Imai, and David Rowley

Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp
2019-03-30 18:58:55 -04:00
Tom Lane
c94fb8e8ac Standardize some more loops that chase down parallel lists.
We have forboth() and forthree() macros that simplify iterating
through several parallel lists, but not everyplace that could
reasonably use those was doing so.  Also invent forfour() and
forfive() macros to do the same for four or five parallel lists,
and use those where applicable.

The immediate motivation for doing this is to reduce the number
of ad-hoc lnext() calls, to reduce the footprint of a WIP patch.
However, it seems like good cleanup and error-proofing anyway;
the places that were combining forthree() with a manually iterated
loop seem particularly illegible and bug-prone.

There was some speculation about restructuring related parsetree
representations to reduce the need for parallel list chasing of
this sort.  Perhaps that's a win, or perhaps not, but in any case
it would be considerably more invasive than this patch; and it's
not particularly related to my immediate goal of improving the
List infrastructure.  So I'll leave that question for another day.

Patch by me; thanks to David Rowley for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-02-28 14:25:01 -05:00
Tom Lane
24114e8b4d Remove unnecessary "inline" marker introduced in commit 4be058fe9.
Some of our older buildfarm members bleat about this coding,
along the lines of

prepjointree.c:112: warning: 'get_result_relid' declared inline after being called
prepjointree.c:112: warning: previous declaration of 'get_result_relid' was here

Modern compilers will probably inline this function without being
prompted, so rather than move the function, let's just drop the
marking.
2019-02-04 21:45:39 -05:00
Tom Lane
f09346a9c6 Refactor planner's header files.
Create a new header optimizer/optimizer.h, which exposes just the
planner functions that can be used "at arm's length", without need
to access Paths or the other planner-internal data structures defined
in nodes/relation.h.  This is intended to provide the whole planner
API seen by most of the rest of the system; although FDWs still need
to use additional stuff, and more thought is also needed about just
what selfuncs.c should rely on.

The main point of doing this now is to limit the amount of new
#include baggage that will be needed by "planner support functions",
which I expect to introduce later, and which will be in relevant
datatype modules rather than anywhere near the planner.

This commit just moves relevant declarations into optimizer.h from
other header files (a couple of which go away because everything
got moved), and adjusts #include lists to match.  There's further
cleanup that could be done if we want to decide that some stuff
being exposed by optimizer.h doesn't belong in the planner at all,
but I'll leave that for another day.

Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
2019-01-29 15:48:51 -05:00
Tom Lane
a1b8c41e99 Make some small planner API cleanups.
Move a few very simple node-creation and node-type-testing functions
from the planner's clauses.c to nodes/makefuncs and nodes/nodeFuncs.
There's nothing planner-specific about them, as evidenced by the
number of other places that were using them.

While at it, rename and_clause() etc to is_andclause() etc, to clarify
that they are node-type-testing functions not node-creation functions.
And use "static inline" implementations for the shortest ones.

Also, modify flatten_join_alias_vars() and some subsidiary functions
to take a Query not a PlannerInfo to define the join structure that
Vars should be translated according to.  They were only using the
"parse" field of the PlannerInfo anyway, so this just requires removing
one level of indirection.  The advantage is that now parse_agg.c can
use flatten_join_alias_vars() without the horrid kluge of creating an
incomplete PlannerInfo, which will allow that file to be decoupled from
relation.h in a subsequent patch.

Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
2019-01-29 15:26:44 -05:00
Tom Lane
4be058fe9e In the planner, replace an empty FROM clause with a dummy RTE.
The fact that "SELECT expression" has no base relations has long been a
thorn in the side of the planner.  It makes it hard to flatten a sub-query
that looks like that, or is a trivial VALUES() item, because the planner
generally uses relid sets to identify sub-relations, and such a sub-query
would have an empty relid set if we flattened it.  prepjointree.c contains
some baroque logic that works around this in certain special cases --- but
there is a much better answer.  We can replace an empty FROM clause with a
dummy RTE that acts like a table of one row and no columns, and then there
are no such corner cases to worry about.  Instead we need some logic to
get rid of useless dummy RTEs, but that's simpler and covers more cases
than what was there before.

For really trivial cases, where the query is just "SELECT expression" and
nothing else, there's a hazard that adding the extra RTE makes for a
noticeable slowdown; even though it's not much processing, there's not
that much for the planner to do overall.  However testing says that the
penalty is very small, close to the noise level.  In more complex queries,
this is able to find optimizations that we could not find before.

The new RTE type is called RTE_RESULT, since the "scan" plan type it
gives rise to is a Result node (the same plan we produced for a "SELECT
expression" query before).  To avoid confusion, rename the old ResultPath
path type to GroupResultPath, reflecting that it's only used in degenerate
grouping cases where we know the query produces just one grouped row.
(It wouldn't work to unify the two cases, because there are different
rules about where the associated quals live during query_planner.)

Note: although this touches readfuncs.c, I don't think a catversion
bump is required, because the added case can't occur in stored rules,
only plans.

Patch by me, reviewed by David Rowley and Mark Dilger

Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
2019-01-28 17:54:23 -05:00
Andres Freund
e0c4ec0728 Replace uses of heap_open et al with the corresponding table_* function.
Author: Andres Freund
Discussion: https://postgr.es/m/20190111000539.xbv7s6w7ilcvm7dp@alap3.anarazel.de
2019-01-21 10:51:37 -08:00
Andres Freund
111944c5ee Replace heapam.h includes with {table, relation}.h where applicable.
A lot of files only included heapam.h for relation_open, heap_open etc
- replace the heapam.h include in those files with the narrower
header.

Author: Andres Freund
Discussion: https://postgr.es/m/20190111000539.xbv7s6w7ilcvm7dp@alap3.anarazel.de
2019-01-21 10:51:37 -08:00
Andres Freund
1845ca2cfd Remove heapam.h include made superfluous by b60c397599.
Noticed this while working on another patch.

Author: Andres Freund
2019-01-12 22:27:35 -08:00
Alvaro Herrera
b60c397599 Move inheritance expansion code into its own file
This commit moves expand_inherited_tables and underlings from
optimizer/prep/prepunionc.c to optimizer/utils/inherit.c.
Also, all of the AppendRelInfo-based expression manipulation routines
are moved to optimizer/utils/appendinfo.c.

No functional code changes.  One exception is the introduction of
make_append_rel_info, but that's still just moving around code.

Also, stop including <limits.h> in prepunion.c, which no longer needs
it since 3fc6e2d7f5.  I (Álvaro) noticed this because Amit was copying
that to inherit.c, which likewise doesn't need it.

Author: Amit Langote
Discussion: https://postgr.es/m/3be67028-a00a-502c-199a-da00eec8fb6e@lab.ntt.co.jp
2019-01-10 14:54:31 -03:00
Bruce Momjian
97c39498e5 Update copyright for 2019
Backpatch-through: certain files through 9.4
2019-01-02 12:44:25 -05:00
Amit Kapila
3abb11e55b Remove extra semicolons.
Reported-by: David Rowley
Author: David Rowley
Reviewed-by: Amit Kapila
Backpatch-through: 10
Discussion: https://postgr.es/m/CAKJS1f8EneeYyzzvdjahVZ6gbAHFkHbSFB5m_C0Y6TUJs9Dgdg@mail.gmail.com
2018-12-17 14:32:25 +05:30
Alvaro Herrera
3f2393edef Redesign initialization of partition routing structures
This speeds up write operations (INSERT, UPDATE, DELETE, COPY, as well
as the future MERGE) on partitioned tables.

This changes the setup for tuple routing so that it does far less work
during the initial setup and pushes more work out to when partitions
receive tuples.  PartitionDispatchData structs for sub-partitioned
tables are only created when a tuple gets routed through it.  The
possibly large arrays in the PartitionTupleRouting struct have largely
been removed.  The partitions[] array remains but now never contains any
NULL gaps.  Previously the NULLs had to be skipped during
ExecCleanupTupleRouting(), which could add a large overhead to the
cleanup when the number of partitions was large.  The partitions[] array
is allocated small to start with and only enlarged when we route tuples
to enough partitions that it runs out of space. This allows us to keep
simple single-row partition INSERTs running quickly.  Redesign

The arrays in PartitionTupleRouting which stored the tuple translation maps
have now been removed.  These have been moved out into a
PartitionRoutingInfo struct which is an additional field in ResultRelInfo.

The find_all_inheritors() call still remains by far the slowest part of
ExecSetupPartitionTupleRouting(). This commit just removes the other slow
parts.

In passing also rename the tuple translation maps from being ParentToChild
and ChildToParent to being RootToPartition and PartitionToRoot. The old
names mislead you into thinking that a partition of some sub-partitioned
table would translate to the rowtype of the sub-partitioned table rather
than the root partitioned table.

Authors: David Rowley and Amit Langote, heavily revised by Álvaro Herrera
Testing help from Jesper Pedersen and Kato Sho.
Discussion: https://postgr.es/m/CAKJS1f_1RJyFquuCKRFHTdcXqoPX-PYqAd7nz=GVBwvGh4a6xA@mail.gmail.com
2018-11-16 15:01:05 -03:00
Tom Lane
7d4a10e260 Use PlaceHolderVars within the quals of a FULL JOIN.
This prevents failures in cases where we pull up a constant or var-free
expression from a subquery and put it into a full join's qual.  That can
result in not recognizing the qual as containing a mergejoin-able or
hashjoin-able condition.  A PHV prevents the problem because it is still
recognized as belonging to the side of the join the subquery is in.

I'm not very sure about the net effect of this change on plan quality.
In "typical" cases where the join keys are Vars, nothing changes.
In an affected case, the PHV-wrapped expression is less likely to be seen
as equal to PHV-less instances below the join, but more likely to be seen
as equal to similar expressions above the join, so it may end up being a
wash.  In the one existing case where there's any visible change in a
regression-test plan, it amounts to referencing a lower computation of a
COALESCE result instead of recomputing it, which seems like a win.

Given my uncertainty about that and the lack of field complaints,
no back-patch, even though this is a very ancient problem.

Discussion: https://postgr.es/m/32090.1539378124@sss.pgh.pa.us
2018-10-14 13:07:29 -04:00
Tom Lane
6e35939feb Change rewriter/planner/executor/plancache to depend on RTE rellockmode.
Instead of recomputing the required lock levels in all these places,
just use what commit fdba460a2 made the parser store in the RTE fields.
This already simplifies the code measurably in these places, and
follow-on changes will remove a bunch of no-longer-needed infrastructure.

In a few cases, this change causes us to acquire a higher lock level
than we did before.  This is OK primarily because said higher lock level
should've been acquired already at query parse time; thus, we're saving
a useless extra trip through the shared lock manager to acquire a lesser
lock alongside the original lock.  The only known exception to this is
that re-execution of a previously planned SELECT FOR UPDATE/SHARE query,
for a table that uses ROW_MARK_REFERENCE or ROW_MARK_COPY methods, might
have gotten only AccessShareLock before.  Now it will get RowShareLock
like the first execution did, which seems fine.

While there's more to do, push it in this state anyway, to let the
buildfarm help verify that nothing bad happened.

Amit Langote, reviewed by David Rowley and Jesper Pedersen,
and whacked around a bit more by me

Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
2018-10-02 14:43:09 -04:00
Tom Lane
db1071d4ee Fix some minor issues exposed by outfuncs/readfuncs testing.
A test patch to pass parse and plan trees through outfuncs + readfuncs
exposed several issues that need to be fixed to get clean matches:

Query.withCheckOptions failed to get copied; it's intentionally ignored
by outfuncs/readfuncs on the grounds that it'd always be NIL anyway in
stored rules.  This seems less than future-proof, and it's not even
saving very much, so just undo the decision and treat the field like
all others.

Several places that convert a view RTE into a subquery RTE, or similar
manipulations, failed to clear out fields that were specific to the
original RTE type and should be zero in a subquery RTE.  Since readfuncs.c
will leave such fields as zero, equalfuncs.c thinks the nodes are different
leading to a reported mismatch.  It seems like a good idea to clear out the
no-longer-needed fields, even though in principle nothing should look at
them; the node ought to be indistinguishable from how it would look if
we'd built a new node instead of scribbling on the old one.

BuildOnConflictExcludedTargetlist randomly set the resname of some
TargetEntries to "" not NULL.  outfuncs/readfuncs don't distinguish those
cases, and so the string will read back in as NULL ... but equalfuncs.c
does distinguish.  Perhaps we ought to try to make things more consistent
in this area --- but it's just useless extra code space for
BuildOnConflictExcludedTargetlist to not use NULL here, so I fixed it for
now by making it do that.

catversion bumped because the change in handling of Query.withCheckOptions
affects stored rules.

Discussion: https://postgr.es/m/17114.1537138992@sss.pgh.pa.us
2018-09-18 15:08:28 -04:00
Heikki Linnakangas
42f70cd9c3 Improve performance of tuple conversion map generation
Previously convert_tuples_by_name_map naively performed a search of each
outdesc column starting at the first column in indesc and searched each
indesc column until a match was found.  When partitioned tables had many
columns this could result in slow generation of the tuple conversion maps.
For INSERT and UPDATE statements that touched few rows, this could mean a
very large overhead indeed.

We can do a bit better with this loop.  It's quite likely that the columns
in partitioned tables and their partitions are in the same order, so it
makes sense to start searching for each column outer column at the inner
column position 1 after where the previous match was found (per idea from
Alexander Kuzmenkov). This makes the best case search O(N) instead of
O(N^2).  The worst case is still O(N^2), but it seems unlikely that would
happen.

Likewise, in the planner, make_inh_translation_list's search for the
matching column could often end up falling back on an O(N^2) type search.
This commit also improves that by first checking the column that follows
the previous match, instead of the column with the same attnum.  If we
fail to match here we fallback on the syscache's hashtable lookup.

Author: David Rowley
Reviewed-by: Alexander Kuzmenkov
Discussion: https://www.postgresql.org/message-id/CAKJS1f9-wijVgMdRp6_qDMEQDJJ%2BA_n%3DxzZuTmLx5Fz6cwf%2B8A%40mail.gmail.com
2018-07-13 19:54:05 +03:00
Michael Paquier
fc057b2b8f Remove dead code for temporary relations in partition planning
Since recent commit 1c7c317c, temporary relations cannot be mixed with
permanent relations within the same partition tree, and the same counts
for temporary relations created by other sessions, which the planner
simply discarded.  Instead be paranoid and issue an error, as those
should be blocked at definition time, at least for now.

At the same time, a test case is added to stress what has been moved
when expand_partitioned_rtentry gets called recursively but bumps on a
partitioned relation with no partitions which should be handled the same
way as the non-inheritance case.  This code may be reworked in a close
future, and covering this code path will limit surprises.

Reported-by: David Rowley
Author: David Rowley
Reviewed-by: Amit Langote, Robert Haas, Michael Paquier
Discussion: https://postgr.es/m/CAKJS1f_HyV1txn_4XSdH5EOhBMYaCwsXyAj6bHXk9gOu4JKsbw@mail.gmail.com
2018-07-04 10:37:40 +09:00