Commit Graph

238 Commits

Author SHA1 Message Date
Alvaro Herrera a288d94c91
Remove redundant variable
Author: Amul Sul <sulamul@gmail.com>
Reviewed-by: Jeevan Ladhe <jeevan.ladhe@enterprisedb.com>
Reviewed-by: Bharath Rupireddy <bharath.rupireddyforpostgres@gmail.com>
Reviewed-by: Justin Pryzby <pryzby@telsasoft.com>
Discussion: https://postgr.es/m/CAAJ_b94HaNcrPVREUuB9-qUn2uB+gfcoX3FG_Vx0S6aFse+yhw@mail.gmail.com
2021-05-06 17:28:36 -04:00
Tom Lane 091e22b2e6 Clean up treatment of missing default and CHECK-constraint records.
Andrew Gierth reported that it's possible to crash the backend if no
pg_attrdef record is found to match an attribute that has atthasdef set.
AttrDefaultFetch warns about this situation, but then leaves behind
a relation tupdesc that has null "adbin" pointer(s), which most places
don't guard against.

We considered promoting the warning to an error, but throwing errors
during relcache load is pretty drastic: it effectively locks one out
of using the relation at all.  What seems better is to leave the
load-time behavior as a warning, but then throw an error in any code
path that wants to use a default and can't find it.  This confines
the error to a subset of INSERT/UPDATE operations on the table, and
in particular will at least allow a pg_dump to succeed.

Also, we should fix AttrDefaultFetch to not leave any null pointers
in the tupdesc, because that just creates an untested bug hazard.

While at it, apply the same philosophy of "warn at load, throw error
only upon use of the known-missing info" to CHECK constraints.
CheckConstraintFetch is very nearly the same logic as AttrDefaultFetch,
but for reasons lost in the mists of time, it was throwing ERROR for
the same cases that AttrDefaultFetch treats as WARNING.  Make the two
functions more nearly alike.

In passing, get rid of potentially-O(N^2) loops in equalTupleDesc
by making AttrDefaultFetch sort the entries after fetching them,
so that equalTupleDesc can assume that entries in two equal tupdescs
must be in matching order.  (CheckConstraintFetch already was sorting
CHECK constraints, but equalTupleDesc hadn't been told about it.)

There's some argument for back-patching this, but with such a small
number of field reports, I'm content to fix it in HEAD.

Discussion: https://postgr.es/m/87pmzaq4gx.fsf@news-spur.riddles.org.uk
2021-04-06 10:34:39 -04:00
Tomas Vondra a4d75c86bf Extended statistics on expressions
Allow defining extended statistics on expressions, not just just on
simple column references.  With this commit, expressions are supported
by all existing extended statistics kinds, improving the same types of
estimates. A simple example may look like this:

  CREATE TABLE t (a int);
  CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t;
  ANALYZE t;

The collected statistics are useful e.g. to estimate queries with those
expressions in WHERE or GROUP BY clauses:

  SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0;

  SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20);

This introduces new internal statistics kind 'e' (expressions) which is
built automatically when the statistics object definition includes any
expressions. This represents single-expression statistics, as if there
was an expression index (but without the index maintenance overhead).
The statistics is stored in pg_statistics_ext_data as an array of
composite types, which is possible thanks to 79f6a942bd.

CREATE STATISTICS allows building statistics on a single expression, in
which case in which case it's not possible to specify statistics kinds.

A new system view pg_stats_ext_exprs can be used to display expression
statistics, similarly to pg_stats and pg_stats_ext views.

ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it
treats indexes, i.e. it drops and recreates the statistics. This means
all statistics are reset, and we no longer try to preserve at least the
functional dependencies. This should not be a major issue in practice,
as the functional dependencies actually rely on per-column statistics,
which were always reset anyway.

Author: Tomas Vondra
Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu
Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-27 00:01:11 +01:00
Robert Haas bbe0a81db6 Allow configurable LZ4 TOAST compression.
There is now a per-column COMPRESSION option which can be set to pglz
(the default, and the only option in up until now) or lz4. Or, if you
like, you can set the new default_toast_compression GUC to lz4, and
then that will be the default for new table columns for which no value
is specified. We don't have lz4 support in the PostgreSQL code, so
to use lz4 compression, PostgreSQL must be built --with-lz4.

In general, TOAST compression means compression of individual column
values, not the whole tuple, and those values can either be compressed
inline within the tuple or compressed and then stored externally in
the TOAST table, so those properties also apply to this feature.

Prior to this commit, a TOAST pointer has two unused bits as part of
the va_extsize field, and a compessed datum has two unused bits as
part of the va_rawsize field. These bits are unused because the length
of a varlena is limited to 1GB; we now use them to indicate the
compression type that was used. This means we only have bit space for
2 more built-in compresison types, but we could work around that
problem, if necessary, by introducing a new vartag_external value for
any further types we end up wanting to add. Hopefully, it won't be
too important to offer a wide selection of algorithms here, since
each one we add not only takes more coding but also adds a build
dependency for every packager. Nevertheless, it seems worth doing
at least this much, because LZ4 gets better compression than PGLZ
with less CPU usage.

It's possible for LZ4-compressed datums to leak into composite type
values stored on disk, just as it is for PGLZ. It's also possible for
LZ4-compressed attributes to be copied into a different table via SQL
commands such as CREATE TABLE AS or INSERT .. SELECT.  It would be
expensive to force such values to be decompressed, so PostgreSQL has
never done so. For the same reasons, we also don't force recompression
of already-compressed values even if the target table prefers a
different compression method than was used for the source data.  These
architectural decisions are perhaps arguable but revisiting them is
well beyond the scope of what seemed possible to do as part of this
project.  However, it's relatively cheap to recompress as part of
VACUUM FULL or CLUSTER, so this commit adjusts those commands to do
so, if the configured compression method of the table happens not to
match what was used for some column value stored therein.

Dilip Kumar. The original patches on which this work was based were
written by Ildus Kurbangaliev, and those were patches were based on
even earlier work by Nikita Glukhov, but the design has since changed
very substantially, since allow a potentially large number of
compression methods that could be added and dropped on a running
system proved too problematic given some of the architectural issues
mentioned above; the choice of which specific compression method to
add first is now different; and a lot of the code has been heavily
refactored.  More recently, Justin Przyby helped quite a bit with
testing and reviewing and this version also includes some code
contributions from him. Other design input and review from Tomas
Vondra, Álvaro Herrera, Andres Freund, Oleg Bartunov, Alexander
Korotkov, and me.

Discussion: http://postgr.es/m/20170907194236.4cefce96%40wp.localdomain
Discussion: http://postgr.es/m/CAFiTN-uUpX3ck%3DK0mLEk-G_kUQY%3DSNOTeqdaNRR9FMdQrHKebw%40mail.gmail.com
2021-03-19 15:10:38 -04:00
Tom Lane f52c5d6749 Forbid marking an identity column as nullable.
GENERATED ALWAYS AS IDENTITY implies NOT NULL, but the code failed
to complain if you overrode that with "GENERATED ALWAYS AS IDENTITY
NULL".  One might think the old behavior was a feature, but it was
inconsistent because the outcome varied depending on the order of
the clauses, so it seems to have been just an oversight.

Per bug #16913 from Pavel Boev.  Back-patch to v10 where identity
columns were introduced.

Vik Fearing (minor tweaks by me)

Discussion: https://postgr.es/m/16913-3b5198410f67d8c6@postgresql.org
2021-03-12 11:08:42 -05:00
Peter Eisentraut 0e392fcc0d Use errmsg_internal for debug messages
An inconsistent set of debug-level messages was not using
errmsg_internal(), thus uselessly exposing the messages to translation
work.  Fix those.
2021-02-17 11:33:25 +01:00
Bruce Momjian ca3b37487b Update copyright for 2021
Backpatch-through: 9.5
2021-01-02 13:06:25 -05:00
Tom Lane f7f83a55bf Ensure that expandTableLikeClause() re-examines the same table.
As it stood, expandTableLikeClause() re-did the same relation_openrv
call that transformTableLikeClause() had done.  However there are
scenarios where this would not find the same table as expected.
We hold lock on the LIKE source table, so it can't be renamed or
dropped, but another table could appear before it in the search path.
This explains the odd behavior reported in bug #16758 when cloning a
table as a temp table of the same name.  This case worked as expected
before commit 502898192 introduced the need to open the source table
twice, so we should fix it.

To make really sure we get the same table, let's re-open it by OID not
name.  That requires adding an OID field to struct TableLikeClause,
which is a little nervous-making from an ABI standpoint, but as long
as it's at the end I don't think there's any serious risk.

Per bug #16758 from Marc Boeren.  Like the previous patch,
back-patch to all supported branches.

Discussion: https://postgr.es/m/16758-840e84a6cfab276d@postgresql.org
2020-12-01 14:02:27 -05:00
Tom Lane 97390fe8a6 Further fixes for CREATE TABLE LIKE: cope with self-referential FKs.
Commit 502898192 was too careless about the order of execution of the
additional ALTER TABLE operations generated by expandTableLikeClause.
It just stuck them all at the end, which seems okay for most purposes.
But it falls down in the case where LIKE is importing a primary key
or unique index and the outer CREATE TABLE includes a FOREIGN KEY
constraint that needs to depend on that index.  Weird as that is,
it used to work, so we ought to keep it working.

To fix, make parse_utilcmd.c insert LIKE clauses between index-creation
and FK-creation commands in the transformed list of commands, and change
utility.c so that the commands generated by expandTableLikeClause are
executed immediately not at the end.  One could imagine scenarios where
this wouldn't work either; but currently expandTableLikeClause only
makes column default expressions, CHECK constraints, and indexes, and
this ordering seems fine for those.

Per bug #16730 from Sofoklis Papasofokli.  Like the previous patch,
back-patch to all supported branches.

Discussion: https://postgr.es/m/16730-b902f7e6e0276b30@postgresql.org
2020-11-19 15:03:17 -05:00
Tom Lane 40c24bfef9 Improve our ability to regurgitate SQL-syntax function calls.
The SQL spec calls out nonstandard syntax for certain function calls,
for example substring() with numeric position info is supposed to be
spelled "SUBSTRING(string FROM start FOR count)".  We accept many
of these things, but up to now would not print them in the same format,
instead simplifying down to "substring"(string, start, count).
That's long annoyed me because it creates an interoperability
problem: we're gratuitously injecting Postgres-specific syntax into
what might otherwise be a perfectly spec-compliant view definition.
However, the real reason for addressing it right now is to support
a planned change in the semantics of EXTRACT() a/k/a date_part().
When we switch that to returning numeric, we'll have the parser
translate EXTRACT() to some new function name (might as well be
"extract" if you ask me) and then teach ruleutils.c to reverse-list
that per SQL spec.  In this way existing calls to date_part() will
continue to have the old semantics.

To implement this, invent a new CoercionForm value COERCE_SQL_SYNTAX,
and make the parser insert that rather than COERCE_EXPLICIT_CALL when
the input has SQL-spec decoration.  (But if the input has the form of
a plain function call, continue to mark it COERCE_EXPLICIT_CALL, even
if it's calling one of these functions.)  Then ruleutils.c recognizes
COERCE_SQL_SYNTAX as a cue to emit SQL call syntax.  It can know
which decoration to emit using hard-wired knowledge about the
functions that could be called this way.  (While this solution isn't
extensible without manual additions, neither is the grammar, so this
doesn't seem unmaintainable.)  Notice that this solution will
reverse-list a function call with SQL decoration only if it was
entered that way; so dump-and-reload will not by itself produce any
changes in the appearance of views.

This requires adding a CoercionForm field to struct FuncCall.
(I couldn't resist the temptation to rearrange that struct's
field order a tad while I was at it.)  FuncCall doesn't appear
in stored rules, so that change isn't a reason for a catversion
bump, but I did one anyway because the new enum value for
CoercionForm fields could confuse old backend code.

Possible future work:

* Perhaps CoercionForm should now be renamed to DisplayForm,
or something like that, to reflect its more general meaning.
This'd require touching a couple hundred places, so it's not
clear it's worth the code churn.

* The SQLValueFunction node type, which was invented partly for
the same goal of improving SQL-compatibility of view output,
could perhaps be replaced with regular function calls marked
with COERCE_SQL_SYNTAX.  It's unclear if this would be a net
code savings, however.

Discussion: https://postgr.es/m/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
2020-11-04 12:34:50 -05:00
David Rowley e7c2b95d37 Optimize a few list_delete_ptr calls
There is a handful of places where we called list_delete_ptr() to remove
some element from a List.  In many of these places we know, or with very
little additional effort know the index of the ListCell that we need to
remove.

Here we change all of those places to instead either use one of;
list_delete_nth_cell(), foreach_delete_current() or list_delete_last().
Each of these saves from having to iterate over the list to search for the
element to remove by its pointer value.

There are some small performance gains to be had by doing this, but in the
general case, none of these lists are likely to be very large, so the
lookup was probably never that expensive anyway.  However, some of the
calls are in fairly hot code paths, e.g process_equivalence().  So any
small gains there are useful.

Author: Zhijie Hou and David Rowley
Discussion: https://postgr.es/m/b3517353ec7c4f87aa560678fbb1034b@G08CNEXMBPEKD05.g08.fujitsu.local
2020-10-22 14:36:32 +13:00
Tom Lane 72647ac3bf Assign collations in partition bound expressions.
Failure to do this can result in errors during evaluation of
the bound expression, as illustrated by the new regression test.

Back-patch to v12 where the ability for partition bounds to be
expressions was added.

Discussion: https://postgr.es/m/CAJV4CdrZ5mKuaEsRSbLf2URQ3h6iMtKD=hik8MaF5WwdmC9uZw@mail.gmail.com
2020-09-28 14:12:38 -04:00
Tom Lane 2dfa3fea88 Remove complaints about COLLATE clauses in partition bound values.
transformPartitionBoundValue went out of its way to do the wrong
thing: there is no reason to complain about a non-matching COLLATE
clause in a partition boundary expression.  We're coercing the
bound expression to the target column type as though by an
implicit assignment, and the rules for implicit assignment say
that collations can be implicitly converted.

What we *do* need to do, and the code is not doing, is apply
assign_expr_collations() to the bound expression.  While this is
merely a definition disagreement, that is a bug that needs to be
back-patched, so I'll commit it separately.

Discussion: https://postgr.es/m/CAJV4CdrZ5mKuaEsRSbLf2URQ3h6iMtKD=hik8MaF5WwdmC9uZw@mail.gmail.com
2020-09-28 13:44:01 -04:00
Tom Lane 6b2c4e59d0 Improve error cursor positions for problems with partition bounds.
We failed to pass down the query string to check_new_partition_bound,
so that its attempts to provide error cursor positions were for naught;
one must have the query string to get parser_errposition to do anything.
Adjust its API to require a ParseState to be passed down.

Also, improve the logic inside check_new_partition_bound so that the
cursor points at the partition bound for the specific column causing
the issue, when one can be identified.

That part is also for naught if we can't determine the query position of
the column with the problem.  Improve transformPartitionBoundValue so
that it makes sure that const-simplified partition expressions will be
properly labeled with positions.  In passing, skip calling evaluate_expr
if the value is already a Const, which is surely the most common case.

Alexandra Wang, Ashwin Agrawal, Amit Langote; reviewed by Ashutosh Bapat

Discussion: https://postgr.es/m/CACiyaSopZoqssfMzgHk6fAkp01cL6vnqBdmTw2C5_KJaFR_aMg@mail.gmail.com
Discussion: https://postgr.es/m/CAJV4CdrZ5mKuaEsRSbLf2URQ3h6iMtKD=hik8MaF5WwdmC9uZw@mail.gmail.com
2020-09-23 18:04:53 -04:00
Tom Lane 38a2d70329 Remove some more useless assignments.
Found with clang's scan-build tool.  It also whines about a lot of
other dead stores that we should *not* change IMO, either as a matter
of style or future-proofing.  But these places seem like clear
oversights.

Discussion: https://postgr.es/m/CAEudQAo1+AcGppxDSg8k+zF4+Kv+eJyqzEDdbpDg58-=MQcerQ@mail.gmail.com
2020-09-04 14:32:19 -04:00
Tom Lane 5028981923 Fix handling of CREATE TABLE LIKE with inheritance.
If a CREATE TABLE command uses both LIKE and traditional inheritance,
Vars in CHECK constraints and expression indexes that are absorbed
from a LIKE parent table tended to get mis-numbered, resulting in
wrong answers and/or bizarre error messages (though probably not any
actual crashes, thanks to validation occurring in the executor).

In v12 and up, the same could happen to Vars in GENERATED expressions,
even in cases with no LIKE clause but multiple traditional-inheritance
parents.

The cause of the problem for LIKE is that parse_utilcmd.c supposed
it could renumber such Vars correctly during transformCreateStmt(),
which it cannot since we have not yet accounted for columns added via
inheritance.  Fix that by postponing processing of LIKE INCLUDING
CONSTRAINTS, DEFAULTS, GENERATED, INDEXES till after we've performed
DefineRelation().

The error with GENERATED and multiple inheritance is a simple oversight
in MergeAttributes(); it knows it has to renumber Vars in inherited
CHECK constraints, but forgot to apply the same processing to inherited
GENERATED expressions (a/k/a defaults).

Per bug #16272 from Tom Gottfried.  The non-GENERATED variants of the
issue are ancient, presumably dating right back to the addition of
CREATE TABLE LIKE; hence back-patch to all supported branches.

Discussion: https://postgr.es/m/16272-6e32da020e9a9381@postgresql.org
2020-08-21 15:00:47 -04:00
Michael Paquier cc35d8933a Rename field "relkind" to "objtype" for CTAS and ALTER TABLE nodes
"relkind" normally refers to the char field from pg_class.  However, in
the parse nodes AlterTableStmt and CreateTableAsStmt, "relkind" was used
for a field of type enum ObjectType, that could refer to other object
types than those possible for a relkind.  Such fields being usually
named "objtype", switch the name in both structures to make things more
consistent.  Note that this led to some confusion in functions that
also operate on a RangeTableEntry object, which also has a field named
"relkind".

This naming goes back to commit 09d4e96, where only OBJECT_TABLE and
OBJECT_INDEX were used.  This got extended later to use as well
OBJECT_TYPE with e440e12, not really a relation kind.

Author: Mark Dilger
Reviewed-by: Daniel Gustafsson, Álvaro Herrera, Michael Paquier
Discussion: https://postgr.es/m/609181AE-E399-47C7-9221-856E0F96BF93@enterprisedb.com
2020-07-11 13:32:28 +09:00
Tom Lane 5cbfce562f Initial pgindent and pgperltidy run for v13.
Includes some manual cleanup of places that pgindent messed up,
most of which weren't per project style anyway.

Notably, it seems some people didn't absorb the style rules of
commit c9d297751, because there were a bunch of new occurrences
of function calls with a newline just after the left paren, all
with faulty expectations about how the rest of the call would get
indented.
2020-05-14 13:06:50 -04:00
Alvaro Herrera 17cc133f01
Dial back -Wimplicit-fallthrough to level 3
The additional pain from level 4 is excessive for the gain.

Also revert all the source annotation changes to their original
wordings, to avoid back-patching pain.

Discussion: https://postgr.es/m/31166.1589378554@sss.pgh.pa.us
2020-05-13 15:31:14 -04:00
Alvaro Herrera 3e9744465d
Add -Wimplicit-fallthrough to CFLAGS and CXXFLAGS
Use it at level 4, a bit more restrictive than the default level, and
tweak our commanding comments to FALLTHROUGH.

(However, leave zic.c alone, since it's external code; to avoid the
warnings that would appear there, change CFLAGS for that file in the
Makefile.)

Author: Julien Rouhaud <rjuju123@gmail.com>
Author: Álvaro Herrera <alvherre@alvh.no-ip.org>
Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
Discussion: https://postgr.es/m/20200412081825.qyo5vwwco3fv4gdo@nol
Discussion: https://postgr.es/m/flat/E1fDenm-0000C8-IJ@gemulon.postgresql.org
2020-05-12 16:07:30 -04:00
Peter Eisentraut e92e4a2b68 Fix CREATE TABLE LIKE INCLUDING GENERATED column order issue
CREATE TABLE LIKE INCLUDING GENERATED would fail if a generated column
referred to a column with a higher attribute number.  This is because
the column mapping mechanism created the mapping incrementally as
columns are added.  This was sufficient for previous uses of that
mechanism (omitting dropped columns), and it also happened to work if
generated columns only referred to columns with lower attribute
numbers, but here it failed.

This fix is to build the attribute mapping in a separate loop before
processing the columns in detail.

Bug: #16342
Reported-by: Ethan Waldo <ewaldo@healthetechs.com>
Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
2020-04-09 16:36:45 +02:00
Michael Paquier c0187869a0 Fix crash when using COLLATE in partition bound expressions
Attempting to use a COLLATE clause with a type that it not collatable in
a partition bound expression could crash the server.  This commit fixes
the code by adding more checks similar to what is done when computing
index or partition attributes by making sure that there is a collation
iff the type is collatable.

Backpatch down to 12, as 7c079d7 introduced this problem.

Reported-by: Alexander Lakhin
Author: Dmitry Dolgov
Discussion: https://postgr.es/m/16325-809194cf742313ab@postgresql.org
Backpatch-through: 12
2020-04-08 15:04:51 +09:00
Noah Misch c6b92041d3 Skip WAL for new relfilenodes, under wal_level=minimal.
Until now, only selected bulk operations (e.g. COPY) did this.  If a
given relfilenode received both a WAL-skipping COPY and a WAL-logged
operation (e.g. INSERT), recovery could lose tuples from the COPY.  See
src/backend/access/transam/README section "Skipping WAL for New
RelFileNode" for the new coding rules.  Maintainers of table access
methods should examine that section.

To maintain data durability, just before commit, we choose between an
fsync of the relfilenode and copying its contents to WAL.  A new GUC,
wal_skip_threshold, guides that choice.  If this change slows a workload
that creates small, permanent relfilenodes under wal_level=minimal, try
adjusting wal_skip_threshold.  Users setting a timeout on COMMIT may
need to adjust that timeout, and log_min_duration_statement analysis
will reflect time consumption moving to COMMIT from commands like COPY.

Internally, this requires a reliable determination of whether
RollbackAndReleaseCurrentSubTransaction() would unlink a relation's
current relfilenode.  Introduce rd_firstRelfilenodeSubid.  Amend the
specification of rd_createSubid such that the field is zero when a new
rel has an old rd_node.  Make relcache.c retain entries for certain
dropped relations until end of transaction.

Bump XLOG_PAGE_MAGIC, since this introduces XLOG_GIST_ASSIGN_LSN.
Future servers accept older WAL, so this bump is discretionary.

Kyotaro Horiguchi, reviewed (in earlier, similar versions) by Robert
Haas.  Heikki Linnakangas and Michael Paquier implemented earlier
designs that materially clarified the problem.  Reviewed, in earlier
designs, by Andrew Dunstan, Andres Freund, Alvaro Herrera, Tom Lane,
Fujii Masao, and Simon Riggs.  Reported by Martijn van Oosterhout.

Discussion: https://postgr.es/m/20150702220524.GA9392@svana.org
2020-04-04 12:25:34 -07:00
Alexander Korotkov 911e702077 Implement operator class parameters
PostgreSQL provides set of template index access methods, where opclasses have
much freedom in the semantics of indexing.  These index AMs are GiST, GIN,
SP-GiST and BRIN.  There opclasses define representation of keys, operations on
them and supported search strategies.  So, it's natural that opclasses may be
faced some tradeoffs, which require user-side decision.  This commit implements
opclass parameters allowing users to set some values, which tell opclass how to
index the particular dataset.

This commit doesn't introduce new storage in system catalog.  Instead it uses
pg_attribute.attoptions, which is used for table column storage options but
unused for index attributes.

In order to evade changing signature of each opclass support function, we
implement unified way to pass options to opclass support functions.  Options
are set to fn_expr as the constant bytea expression.  It's possible due to the
fact that opclass support functions are executed outside of expressions, so
fn_expr is unused for them.

This commit comes with some examples of opclass options usage.  We parametrize
signature length in GiST.  That applies to multiple opclasses: tsvector_ops,
gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and
gist_hstore_ops.  Also we parametrize maximum number of integer ranges for
gist__int_ops.  However, the main future usage of this feature is expected
to be json, where users would be able to specify which way to index particular
json parts.

Catversion is bumped.

Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru
Author: Nikita Glukhov, revised by me
Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
2020-03-30 19:17:23 +03:00
Noah Misch de9396326e Revert "Skip WAL for new relfilenodes, under wal_level=minimal."
This reverts commit cb2fd7eac2.  Per
numerous buildfarm members, it was incompatible with parallel query, and
a test case assumed LP64.  Back-patch to 9.5 (all supported versions).

Discussion: https://postgr.es/m/20200321224920.GB1763544@rfd.leadboat.com
2020-03-22 09:24:09 -07:00
Noah Misch cb2fd7eac2 Skip WAL for new relfilenodes, under wal_level=minimal.
Until now, only selected bulk operations (e.g. COPY) did this.  If a
given relfilenode received both a WAL-skipping COPY and a WAL-logged
operation (e.g. INSERT), recovery could lose tuples from the COPY.  See
src/backend/access/transam/README section "Skipping WAL for New
RelFileNode" for the new coding rules.  Maintainers of table access
methods should examine that section.

To maintain data durability, just before commit, we choose between an
fsync of the relfilenode and copying its contents to WAL.  A new GUC,
wal_skip_threshold, guides that choice.  If this change slows a workload
that creates small, permanent relfilenodes under wal_level=minimal, try
adjusting wal_skip_threshold.  Users setting a timeout on COMMIT may
need to adjust that timeout, and log_min_duration_statement analysis
will reflect time consumption moving to COMMIT from commands like COPY.

Internally, this requires a reliable determination of whether
RollbackAndReleaseCurrentSubTransaction() would unlink a relation's
current relfilenode.  Introduce rd_firstRelfilenodeSubid.  Amend the
specification of rd_createSubid such that the field is zero when a new
rel has an old rd_node.  Make relcache.c retain entries for certain
dropped relations until end of transaction.

Back-patch to 9.5 (all supported versions).  This introduces a new WAL
record type, XLOG_GIST_ASSIGN_LSN, without bumping XLOG_PAGE_MAGIC.  As
always, update standby systems before master systems.  This changes
sizeof(RelationData) and sizeof(IndexStmt), breaking binary
compatibility for affected extensions.  (The most recent commit to
affect the same class of extensions was
089e4d405d0f3b94c74a2c6a54357a84a681754b.)

Kyotaro Horiguchi, reviewed (in earlier, similar versions) by Robert
Haas.  Heikki Linnakangas and Michael Paquier implemented earlier
designs that materially clarified the problem.  Reviewed, in earlier
designs, by Andrew Dunstan, Andres Freund, Alvaro Herrera, Tom Lane,
Fujii Masao, and Simon Riggs.  Reported by Martijn van Oosterhout.

Discussion: https://postgr.es/m/20150702220524.GA9392@svana.org
2020-03-21 09:38:26 -07:00
Tom Lane cacef17223 Ensure that CREATE TABLE LIKE copies any NO INHERIT constraint property.
Since the documentation about LIKE doesn't say that a copied constraint
has properties different from the original, it seems that ignoring
a NO INHERIT property doesn't meet the principle of least surprise.
So make it copy that.

(Note, however, that we still don't copy a NOT VALID property;
CREATE TABLE offers no way to do that, plus it seems pointless.)

Arguably this is a bug fix; but no back-patch, as it seems barely
possible somebody is depending on the current behavior.

Ildar Musin and Chris Travers; reviewed by Amit Langote and myself

Discussion: https://postgr.es/m/CAONYFtMC6C+3AWCVp7Yd8H87Zn0GxG1_iQG6_bQKbaqYZY0=-g@mail.gmail.com
2020-03-10 14:54:00 -04:00
Tom Lane 3ed2005ff5 Introduce macros for typalign and typstorage constants.
Our usual practice for "poor man's enum" catalog columns is to define
macros for the possible values and use those, not literal constants,
in C code.  But for some reason lost in the mists of time, this was
never done for typalign/attalign or typstorage/attstorage.  It's never
too late to make it better though, so let's do that.

The reason I got interested in this right now is the need to duplicate
some uses of the TYPSTORAGE constants in an upcoming ALTER TYPE patch.
But in general, this sort of change aids greppability and readability,
so it's a good idea even without any specific motivation.

I may have missed a few places that could be converted, and it's even
more likely that pending patches will re-introduce some hard-coded
references.  But that's not fatal --- there's no expectation that
we'd actually change any of these values.  We can clean up stragglers
over time.

Discussion: https://postgr.es/m/16457.1583189537@sss.pgh.pa.us
2020-03-04 10:34:25 -05:00
Michael Paquier 0b48f1335d Fix assertion failure with ALTER TABLE ATTACH PARTITION and indexes
Using ALTER TABLE ATTACH PARTITION causes an assertion failure when
attempting to work on a partitioned index, because partitioned indexes
cannot have partition bounds.

The grammar of ALTER TABLE ATTACH PARTITION requires partition bounds,
but not ALTER INDEX, so mixing ALTER TABLE with partitioned indexes is
confusing.  Hence, on HEAD, prevent ALTER TABLE to attach a partition if
the relation involved is a partitioned index.  On back-branches, as
applications may rely on the existing behavior, just remove the
culprit assertion.

Reported-by: Alexander Lakhin
Author: Amit Langote, Michael Paquier
Discussion: https://postgr.es/m/16276-5cd1dcc8fb8be7b5@postgresql.org
Backpatch-through: 11
2020-03-03 13:55:41 +09:00
Tom Lane 1281a5c907 Restructure ALTER TABLE execution to fix assorted bugs.
We've had numerous bug reports about how (1) IF NOT EXISTS clauses in
ALTER TABLE don't behave as-expected, and (2) combining certain actions
into one ALTER TABLE doesn't work, though executing the same actions as
separate statements does.  This patch cleans up all of the cases so far
reported from the field, though there are still some oddities associated
with identity columns.

The core problem behind all of these bugs is that we do parse analysis
of ALTER TABLE subcommands too soon, before starting execution of the
statement.  The root of the bugs in group (1) is that parse analysis
schedules derived commands (such as a CREATE SEQUENCE for a serial
column) before it's known whether the IF NOT EXISTS clause should cause
a subcommand to be skipped.  The root of the bugs in group (2) is that
earlier subcommands may change the catalog state that later subcommands
need to be parsed against.

Hence, postpone parse analysis of ALTER TABLE's subcommands, and do
that one subcommand at a time, during "phase 2" of ALTER TABLE which
is the phase that does catalog rewrites.  Thus the catalog effects
of earlier subcommands are already visible when we analyze later ones.
(The sole exception is that we do parse analysis for ALTER COLUMN TYPE
subcommands during phase 1, so that their USING expressions can be
parsed against the table's original state, which is what we need.
Arguably, these bugs stem from falsely concluding that because ALTER
COLUMN TYPE must do early parse analysis, every other command subtype
can too.)

This means that ALTER TABLE itself must deal with execution of any
non-ALTER-TABLE derived statements that are generated by parse analysis.
Add a suitable entry point to utility.c to accept those recursive
calls, and create a struct to pass through the information needed by
the recursive call, rather than making the argument lists of
AlterTable() and friends even longer.

Getting this to work correctly required a little bit of fiddling
with the subcommand pass structure, in particular breaking up
AT_PASS_ADD_CONSTR into multiple passes.  But otherwise it's mostly
a pretty straightforward application of the above ideas.

Fixing the residual issues for identity columns requires refactoring of
where the dependency link from an identity column to its sequence gets
set up.  So that seems like suitable material for a separate patch,
especially since this one is pretty big already.

Discussion: https://postgr.es/m/10365.1558909428@sss.pgh.pa.us
2020-01-15 18:49:24 -05:00
Tom Lane 5815696bc6 Make parser rely more heavily on the ParseNamespaceItem data structure.
When I added the ParseNamespaceItem data structure (in commit 5ebaaa494),
it wasn't very tightly integrated into the parser's APIs.  In the wake of
adding p_rtindex to that struct (commit b541e9acc), there is a good reason
to make more use of it: by passing around ParseNamespaceItem pointers
instead of bare RTE pointers, we can get rid of various messy methods for
passing back or deducing the rangetable index of an RTE during parsing.
Hence, refactor the addRangeTableEntryXXX functions to build and return
a ParseNamespaceItem struct, not just the RTE proper; and replace
addRTEtoQuery with addNSItemToQuery, which is passed a ParseNamespaceItem
rather than building one internally.

Also, add per-column data (a ParseNamespaceColumn array) to each
ParseNamespaceItem.  These arrays are built during addRangeTableEntryXXX,
where we have column type data at hand so that it's nearly free to fill
the data structure.  Later, when we need to build Vars referencing RTEs,
we can use the ParseNamespaceColumn info to avoid the rather expensive
operations done in get_rte_attribute_type() or expandRTE().
get_rte_attribute_type() is indeed dead code now, so I've removed it.
This makes for a useful improvement in parse analysis speed, around 20%
in one moderately-complex test query.

The ParseNamespaceColumn structs also include Var identity information
(varno/varattno).  That info isn't actually being used in this patch,
except that p_varno == 0 is a handy test for a dropped column.
A follow-on patch will make more use of it.

Discussion: https://postgr.es/m/2461.1577764221@sss.pgh.pa.us
2020-01-02 11:29:01 -05:00
Bruce Momjian 7559d8ebfa Update copyrights for 2020
Backpatch-through: update all files in master, backpatch legal files through 9.4
2020-01-01 12:21:45 -05:00
Michael Paquier 7854e07f25 Revert "Rename files and headers related to index AM"
This follows multiple complains from Peter Geoghegan, Andres Freund and
Alvaro Herrera that this issue ought to be dug more before actually
happening, if it happens.

Discussion: https://postgr.es/m/20191226144606.GA5659@alvherre.pgsql
2019-12-27 08:09:00 +09:00
Michael Paquier 8ce3aa9b59 Rename files and headers related to index AM
The following renaming is done so as source files related to index
access methods are more consistent with table access methods (the
original names used for index AMs ware too generic, and could be
confused as including features related to table AMs):
- amapi.h -> indexam.h.
- amapi.c -> indexamapi.c.  Here we have an equivalent with
backend/access/table/tableamapi.c.
- amvalidate.c -> indexamvalidate.c.
- amvalidate.h -> indexamvalidate.h.
- genam.c -> indexgenam.c.
- genam.h -> indexgenam.h.

This has been discussed during the development of v12 when table AM was
worked on, but the renaming never happened.

Author: Michael Paquier
Reviewed-by: Fabien Coelho, Julien Rouhaud
Discussion: https://postgr.es/m/20191223053434.GF34339@paquier.xyz
2019-12-25 10:23:39 +09:00
Michael Paquier e1551f96e6 Refactor attribute mappings used in logical tuple conversion
Tuple conversion support in tupconvert.c is able to convert rowtypes
between two relations, inner and outer, which are logically equivalent
but have a different ordering or even dropped columns (used mainly for
inheritance tree and partitions).  This makes use of attribute mappings,
which are simple arrays made of AttrNumber elements with a length
matching the number of attributes of the outer relation.  The length of
the attribute mapping has been treated as completely independent of the
mapping itself until now, making it easy to pass down an incorrect
mapping length.

This commit refactors the code related to attribute mappings and moves
it into an independent facility called attmap.c, extracted from
tupconvert.c.  This merges the attribute mapping with its length,
avoiding to try to guess what is the length of a mapping to use as this
is computed once, when the map is built.

This will avoid mistakes like what has been fixed in dc816e58, which has
used an incorrect mapping length by matching it with the number of
attributes of an inner relation (a child partition) instead of an outer
relation (a partitioned table).

Author: Michael Paquier
Reviewed-by: Amit Langote
Discussion: https://postgr.es/m/20191121042556.GD153437@paquier.xyz
2019-12-18 16:23:02 +09:00
Tom Lane fbbf68094c Disallow non-default collation in ADD PRIMARY KEY/UNIQUE USING INDEX.
When creating a uniqueness constraint using a pre-existing index,
we have always required that the index have the same properties you'd
get if you just let a new index get built.  However, when collations
were added, we forgot to add the index's collation to that check.

It's hard to trip over this without intentionally trying to break it:
you'd have to explicitly specify a different collation in CREATE
INDEX, then convert it to a pkey or unique constraint.  Still, if you
did that, pg_dump would emit a script that fails to reproduce the
index's collation.  The main practical problem is that after a
pg_upgrade the index would be corrupt, because its actual physical
order wouldn't match what pg_index says.  A more theoretical issue,
which is new as of v12, is that if you create the index with a
nondeterministic collation then it wouldn't be enforcing the normal
notion of uniqueness, causing the constraint to mean something
different from a normally-created constraint.

To fix, just add collation to the conditions checked for index
acceptability in ADD PRIMARY KEY/UNIQUE USING INDEX.  We won't try
to clean up after anybody who's already created such a situation;
it seems improbable enough to not be worth the effort involved.
(If you do get into trouble, a REINDEX should be enough to fix it.)

In principle this is a long-standing bug, but I chose not to
back-patch --- the odds of causing trouble seem about as great
as the odds of preventing it, and both risks are very low anyway.

Per report from Alexey Bashtanov, though this is not his preferred
fix.

Discussion: https://postgr.es/m/b05ce36a-cefb-ca5e-b386-a400535b1c0b@imap.cc
2019-12-06 11:25:09 -05:00
Tom Lane b81a9c2fc5 Fix handling of GENERATED columns in CREATE TABLE LIKE INCLUDING DEFAULTS.
LIKE INCLUDING DEFAULTS tried to copy the attrdef expression without
copying the state of the attgenerated column.  This is in fact wrong,
because GENERATED and DEFAULT expressions are not the same kind of animal;
one can contain Vars and the other not.  We *must* copy attgenerated
when we're copying the attrdef expression.  Rearrange the if-tests
so that the expression is copied only when the correct one of
INCLUDING DEFAULTS and INCLUDING GENERATED has been specified.

Per private report from Manuel Rigger.

Tom Lane and Peter Eisentraut
2019-09-25 17:30:42 -04:00
Alvaro Herrera 12afc7145c Add comment on no default partition with hash partitioning
Discussion: https://postgr.es/m/20190806222735.GA9535@alvherre.pgsql
2019-08-07 12:27:47 -04:00
Peter Eisentraut 19781729f7 Make identity sequence management more robust
Some code could get confused when certain catalog state involving both
identity and serial sequences was present, perhaps during an attempt
to upgrade the latter to the former.  Specifically, dropping the
default of a serial column maintains the ownership of the sequence by
the column, and so it would then be possible to afterwards make the
column an identity column that would now own two sequences.  This
causes the code that looks up the identity sequence to error out,
making the new identity column inoperable until the ownership of the
previous sequence is released.

To fix this, make the identity sequence lookup only consider sequences
with the appropriate dependency type for an identity sequence, so it
only ever finds one (unless something else is broken).  In the above
example, the old serial sequence would then be ignored.  Reorganize
the various owned-sequence-lookup functions a bit to make this
clearer.

Reported-by: Laurenz Albe <laurenz.albe@cybertec.at>
Discussion: https://www.postgresql.org/message-id/flat/470c54fc8590be4de0f41b0d295fd6390d5e8a6c.camel@cybertec.at
2019-07-22 12:07:10 +02:00
Tom Lane 1cff1b95ab Represent Lists as expansible arrays, not chains of cons-cells.
Originally, Postgres Lists were a more or less exact reimplementation of
Lisp lists, which consist of chains of separately-allocated cons cells,
each having a value and a next-cell link.  We'd hacked that once before
(commit d0b4399d8) to add a separate List header, but the data was still
in cons cells.  That makes some operations -- notably list_nth() -- O(N),
and it's bulky because of the next-cell pointers and per-cell palloc
overhead, and it's very cache-unfriendly if the cons cells end up
scattered around rather than being adjacent.

In this rewrite, we still have List headers, but the data is in a
resizable array of values, with no next-cell links.  Now we need at
most two palloc's per List, and often only one, since we can allocate
some values in the same palloc call as the List header.  (Of course,
extending an existing List may require repalloc's to enlarge the array.
But this involves just O(log N) allocations not O(N).)

Of course this is not without downsides.  The key difficulty is that
addition or deletion of a list entry may now cause other entries to
move, which it did not before.

For example, that breaks foreach() and sister macros, which historically
used a pointer to the current cons-cell as loop state.  We can repair
those macros transparently by making their actual loop state be an
integer list index; the exposed "ListCell *" pointer is no longer state
carried across loop iterations, but is just a derived value.  (In
practice, modern compilers can optimize things back to having just one
loop state value, at least for simple cases with inline loop bodies.)
In principle, this is a semantics change for cases where the loop body
inserts or deletes list entries ahead of the current loop index; but
I found no such cases in the Postgres code.

The change is not at all transparent for code that doesn't use foreach()
but chases lists "by hand" using lnext().  The largest share of such
code in the backend is in loops that were maintaining "prev" and "next"
variables in addition to the current-cell pointer, in order to delete
list cells efficiently using list_delete_cell().  However, we no longer
need a previous-cell pointer to delete a list cell efficiently.  Keeping
a next-cell pointer doesn't work, as explained above, but we can improve
matters by changing such code to use a regular foreach() loop and then
using the new macro foreach_delete_current() to delete the current cell.
(This macro knows how to update the associated foreach loop's state so
that no cells will be missed in the traversal.)

There remains a nontrivial risk of code assuming that a ListCell *
pointer will remain good over an operation that could now move the list
contents.  To help catch such errors, list.c can be compiled with a new
define symbol DEBUG_LIST_MEMORY_USAGE that forcibly moves list contents
whenever that could possibly happen.  This makes list operations
significantly more expensive so it's not normally turned on (though it
is on by default if USE_VALGRIND is on).

There are two notable API differences from the previous code:

* lnext() now requires the List's header pointer in addition to the
current cell's address.

* list_delete_cell() no longer requires a previous-cell argument.

These changes are somewhat unfortunate, but on the other hand code using
either function needs inspection to see if it is assuming anything
it shouldn't, so it's not all bad.

Programmers should be aware of these significant performance changes:

* list_nth() and related functions are now O(1); so there's no
major access-speed difference between a list and an array.

* Inserting or deleting a list element now takes time proportional to
the distance to the end of the list, due to moving the array elements.
(However, it typically *doesn't* require palloc or pfree, so except in
long lists it's probably still faster than before.)  Notably, lcons()
used to be about the same cost as lappend(), but that's no longer true
if the list is long.  Code that uses lcons() and list_delete_first()
to maintain a stack might usefully be rewritten to push and pop at the
end of the list rather than the beginning.

* There are now list_insert_nth...() and list_delete_nth...() functions
that add or remove a list cell identified by index.  These have the
data-movement penalty explained above, but there's no search penalty.

* list_concat() and variants now copy the second list's data into
storage belonging to the first list, so there is no longer any
sharing of cells between the input lists.  The second argument is
now declared "const List *" to reflect that it isn't changed.

This patch just does the minimum needed to get the new implementation
in place and fix bugs exposed by the regression tests.  As suggested
by the foregoing, there's a fair amount of followup work remaining to
do.

Also, the ENABLE_LIST_COMPAT macros are finally removed in this
commit.  Code using those should have been gone a dozen years ago.

Patch by me; thanks to David Rowley, Jesper Pedersen, and others
for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-07-15 13:41:58 -04:00
Tom Lane 8255c7a5ee Phase 2 pgindent run for v12.
Switch to 2.1 version of pg_bsd_indent.  This formats
multiline function declarations "correctly", that is with
additional lines of parameter declarations indented to match
where the first line's left parenthesis is.

Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com
2019-05-22 13:04:48 -04:00
Tom Lane be76af171c Initial pgindent run for v12.
This is still using the 2.0 version of pg_bsd_indent.
I thought it would be good to commit this separately,
so as to document the differences between 2.0 and 2.1 behavior.

Discussion: https://postgr.es/m/16296.1558103386@sss.pgh.pa.us
2019-05-22 12:55:34 -04:00
Alvaro Herrera 87259588d0 Fix tablespace inheritance for partitioned rels
Commit ca4103025d left a few loose ends.  The most important one
(broken pg_dump output) is already fixed by virtue of commit
3b23552ad8, but some things remained:

* When ALTER TABLE rewrites tables, the indexes must remain in the
  tablespace they were originally in.  This didn't work because
  index recreation during ALTER TABLE runs manufactured SQL (yuck),
  which runs afoul of default_tablespace in competition with the parent
  relation tablespace.  To fix, reset default_tablespace to the empty
  string temporarily, and add the TABLESPACE clause as appropriate.

* Setting a partitioned rel's tablespace to the database default is
  confusing; if it worked, it would direct the partitions to that
  tablespace regardless of default_tablespace.  But in reality it does
  not work, and making it work is a larger project.  Therefore, throw
  an error when this condition is detected, to alert the unwary.

Add some docs and tests, too.

Author: Álvaro Herrera
Discussion: https://postgr.es/m/CAKJS1f_1c260nOt_vBJ067AZ3JXptXVRohDVMLEBmudX1YEx-A@mail.gmail.com
2019-04-25 10:31:32 -04:00
Tom Lane f4a3fdfbdc Avoid order-of-execution problems with ALTER TABLE ADD PRIMARY KEY.
Up to now, DefineIndex() was responsible for adding attnotnull constraints
to the columns of a primary key, in any case where it hadn't been
convenient for transformIndexConstraint() to mark those columns as
is_not_null.  It (or rather its minion index_check_primary_key) did this
by executing an ALTER TABLE SET NOT NULL command for the target table.

The trouble with this solution is that if we're creating the index due
to ALTER TABLE ADD PRIMARY KEY, and the outer ALTER TABLE has additional
sub-commands, the inner ALTER TABLE's operations executed at the wrong
time with respect to the outer ALTER TABLE's operations.  In particular,
the inner ALTER would perform a validation scan at a point where the
table's storage might be inconsistent with its catalog entries.  (This is
on the hairy edge of being a security problem, but AFAICS it isn't one
because the inner scan would only be interested in the tuples' null
bitmaps.)  This can result in unexpected failures, such as the one seen
in bug #15580 from Allison Kaptur.

To fix, let's remove the attempt to do SET NOT NULL from DefineIndex(),
reducing index_check_primary_key's role to verifying that the columns are
already not null.  (It shouldn't ever see such a case, but it seems wise
to keep the check for safety.)  Instead, make transformIndexConstraint()
generate ALTER TABLE SET NOT NULL subcommands to be executed ahead of
the ADD PRIMARY KEY operation in every case where it can't force the
column to be created already-not-null.  This requires only minor surgery
in parse_utilcmd.c, and it makes for a much more satisfying spec for
transformIndexConstraint(): it's no longer having to take it on faith
that someone else will handle addition of NOT NULL constraints.

To make that work, we have to move the execution of AT_SetNotNull into
an ALTER pass that executes ahead of AT_PASS_ADD_INDEX.  I moved it to
AT_PASS_COL_ATTRS, and put that after AT_PASS_ADD_COL to avoid failure
when the column is being added in the same command.  This incidentally
fixes a bug in the only previous usage of AT_PASS_COL_ATTRS, for
AT_SetIdentity: it didn't work either for a newly-added column.

Playing around with this exposed a separate bug in ALTER TABLE ONLY ...
ADD PRIMARY KEY for partitioned tables.  The intent of the ONLY modifier
in that context is to prevent doing anything that would require holding
lock for a long time --- but the implied SET NOT NULL would recurse to
the child partitions, and do an expensive validation scan for any child
where the column(s) were not already NOT NULL.  To fix that, invent a
new ALTER subcommand AT_CheckNotNull that just insists that a child
column be already NOT NULL, and apply that, not AT_SetNotNull, when
recursing to children in this scenario.  This results in a slightly laxer
definition of ALTER TABLE ONLY ... SET NOT NULL for partitioned tables,
too: that command will now work as long as all children are already NOT
NULL, whereas before it just threw up its hands if there were any
partitions.

In passing, clean up the API of generateClonedIndexStmt(): remove a
useless argument, ensure that the output argument is not left undefined,
update the header comment.

A small side effect of this change is that no-such-column errors in ALTER
TABLE ADD PRIMARY KEY now produce a different message that includes the
table name, because they are now detected by the SET NOT NULL step which
has historically worded its error that way.  That seems fine to me, so
I didn't make any effort to avoid the wording change.

The basic bug #15580 is of very long standing, and these other bugs
aren't new in v12 either.  However, this is a pretty significant change
in the way ALTER TABLE ADD PRIMARY KEY works.  On balance it seems best
not to back-patch, at least not till we get some more confidence that
this patch has no new bugs.

Patch by me, but thanks to Jie Zhang for a preliminary version.

Discussion: https://postgr.es/m/15580-d1a6de5a3d65da51@postgresql.org
Discussion: https://postgr.es/m/1396E95157071C4EBBA51892C5368521017F2E6E63@G08CNEXMBPEKD02.g08.fujitsu.local
2019-04-23 12:25:27 -04:00
Peter Eisentraut fc22b6623b Generated columns
This is an SQL-standard feature that allows creating columns that are
computed from expressions rather than assigned, similar to a view or
materialized view but on a column basis.

This implements one kind of generated column: stored (computed on
write).  Another kind, virtual (computed on read), is planned for the
future, and some room is left for it.

Reviewed-by: Michael Paquier <michael@paquier.xyz>
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/b151f851-4019-bdb1-699e-ebab07d2f40a@2ndquadrant.com
2019-03-30 08:15:57 +01:00
Tomas Vondra 7300a69950 Add support for multivariate MCV lists
Introduce a third extended statistic type, supported by the CREATE
STATISTICS command - MCV lists, a generalization of the statistic
already built and used for individual columns.

Compared to the already supported types (n-distinct coefficients and
functional dependencies), MCV lists are more complex, include column
values and allow estimation of much wider range of common clauses
(equality and inequality conditions, IS NULL, IS NOT NULL etc.).
Similarly to the other types, a new pseudo-type (pg_mcv_list) is used.

Author: Tomas Vondra
Reviewed-by: Dean Rasheed, David Rowley, Mark Dilger, Alvaro Herrera
Discussion: https://postgr.es/m/dfdac334-9cf2-2597-fb27-f0fb3753f435@2ndquadrant.com
2019-03-27 18:32:18 +01:00
Michael Paquier ecfed4a122 Improve error handling of column references in expression transformation
Column references are not allowed in default expressions and partition
bound expressions, and are restricted as such once the transformation of
their expressions is done.  However, trying to use more complex column
references can lead to confusing error messages.  For example, trying to
use a two-field column reference name for default expressions and
partition bounds leads to "missing FROM-clause entry for table", which
makes no sense in their respective context.

In order to make the errors generated more useful, this commit adds more
verbose messages when transforming column references depending on the
context.  This has a little consequence though: for example an
expression using an aggregate with a column reference as argument would
cause an error to be generated for the column reference, while the
aggregate was the problem reported before this commit because column
references get transformed first.

The confusion exists for default expressions for a long time, and the
problem is new as of v12 for partition bounds.  Still per the lack of
complaints on the matter no backpatch is done.

The patch has been written by Amit Langote and me, and Tom Lane has
provided the improvement of the documentation for default expressions on
the CREATE TABLE page.

Author: Amit Langote, Michael Paquier
Reviewed-by: Tom Lane
Discussion: https://postgr.es/m/20190326020853.GM2558@paquier.xyz
2019-03-27 21:04:25 +09:00
Michael Paquier cdde886d36 Fix crash when using partition bound expressions
Since 7c079d7, partition bounds are able to use generalized expression
syntax when processed, treating "minvalue" and "maxvalue" as specific
cases as they get passed down for transformation as a column references.

The checks for infinite bounds in range expressions have been lax
though, causing crashes when trying to use column reference names with
more than one field.  Here is an example causing a crash:
CREATE TABLE list_parted (a int) PARTITION BY LIST (a);
CREATE TABLE part_list_crash PARTITION OF list_parted
  FOR VALUES IN (somename.somename);

Note that the creation of the second relation should fail as partition
bounds cannot have column references in their expressions, so when
finding an expression which does not match the expected infinite bounds,
then this commit lets the generic transformation machinery check after
it.  The error message generated in this case references as well a
missing RTE, which is confusing.  This problem will be treated
separately as it impacts as well default expressions for some time, and
for now only the cases where a crash can happen are fixed.

While on it, extend the set of regression tests in place for list
partition bounds and add an extra set for range partition bounds.

Reported-by: Alexander Lakhin
Author: Michael Paquier
Reviewed-by: Amit Langote
Discussion: https://postgr.es/m/15668-0377b1981aa1a393@postgresql.org
2019-03-26 10:09:14 +09:00
Tom Lane f09346a9c6 Refactor planner's header files.
Create a new header optimizer/optimizer.h, which exposes just the
planner functions that can be used "at arm's length", without need
to access Paths or the other planner-internal data structures defined
in nodes/relation.h.  This is intended to provide the whole planner
API seen by most of the rest of the system; although FDWs still need
to use additional stuff, and more thought is also needed about just
what selfuncs.c should rely on.

The main point of doing this now is to limit the amount of new
#include baggage that will be needed by "planner support functions",
which I expect to introduce later, and which will be in relevant
datatype modules rather than anywhere near the planner.

This commit just moves relevant declarations into optimizer.h from
other header files (a couple of which go away because everything
got moved), and adjusts #include lists to match.  There's further
cleanup that could be done if we want to decide that some stuff
being exposed by optimizer.h doesn't belong in the planner at all,
but I'll leave that for another day.

Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
2019-01-29 15:48:51 -05:00
Peter Eisentraut 7c079d7417 Allow generalized expression syntax for partition bounds
Previously, only literals were allowed.  This change allows general
expressions, including functions calls, which are evaluated at the
time the DDL command is executed.

Besides offering some more functionality, it simplifies the parser
structures and removes some inconsistencies in how the literals were
handled.

Author: Kyotaro Horiguchi, Tom Lane, Amit Langote
Reviewed-by: Peter Eisentraut <peter.eisentraut@2ndquadrant.com>
Discussion: https://www.postgresql.org/message-id/flat/9f88b5e0-6da2-5227-20d0-0d7012beaa1c@lab.ntt.co.jp/
2019-01-25 11:28:49 +01:00