Commit Graph

403 Commits

Author SHA1 Message Date
Tom Lane 3ec20c7091 Fix EXPLAIN (SETTINGS) to follow policy about when to print empty fields.
In non-TEXT output formats, the "Settings" field should appear when
requested, even if it would be empty.

Also, get rid of the premature optimization of counting all the
GUC_EXPLAIN variables at startup.  Since there was no provision for
adjusting that count later, all it'd take would be some extension marking
a parameter as GUC_EXPLAIN to risk an assertion failure or memory stomp.
We could make get_explain_guc_options() count those variables on-the-fly,
or dynamically resize its array ... but TBH I do not think that making a
transient array of pointers a bit smaller is worth any extra complication,
especially when you consider all the other transient space EXPLAIN eats.
So just allocate that array at the max possible size.

In HEAD, also add some regression test coverage for this feature.

Because of the memory-stomp hazard, back-patch to v12 where this
feature was added.

Discussion: https://postgr.es/m/19416.1580069629@sss.pgh.pa.us
2020-01-26 16:32:19 -05:00
Tom Lane 1001368497 Clean up EXPLAIN's handling of per-worker details.
Previously, it was possible for EXPLAIN ANALYZE of a parallel query
to produce several different "Workers" fields for a single plan node,
because different portions of explain.c independently generated
per-worker data and wrapped that output in separate fields.  This
is pretty bogus, especially for the structured output formats: even
if it's not technically illegal, most programs would have a hard time
dealing with such data.

To improve matters, add infrastructure that allows redirecting
per-worker values into a side data structure, and then collect that
data into a single "Workers" field after we've finished running all
the relevant code for a given plan node.

There are a few visible side-effects:

* In text format, instead of something like

  Sort Method: external merge  Disk: 4920kB
  Worker 0:  Sort Method: external merge  Disk: 5880kB
  Worker 1:  Sort Method: external merge  Disk: 5920kB
  Buffers: shared hit=682 read=10188, temp read=1415 written=2101
  Worker 0:  actual time=130.058..130.324 rows=1324 loops=1
    Buffers: shared hit=337 read=3489, temp read=505 written=739
  Worker 1:  actual time=130.273..130.512 rows=1297 loops=1
    Buffers: shared hit=345 read=3507, temp read=505 written=744

you get

  Sort Method: external merge  Disk: 4920kB
  Buffers: shared hit=682 read=10188, temp read=1415 written=2101
  Worker 0:  actual time=130.058..130.324 rows=1324 loops=1
    Sort Method: external merge  Disk: 5880kB
    Buffers: shared hit=337 read=3489, temp read=505 written=739
  Worker 1:  actual time=130.273..130.512 rows=1297 loops=1
    Sort Method: external merge  Disk: 5920kB
    Buffers: shared hit=345 read=3507, temp read=505 written=744

* When JIT is enabled, any relevant per-worker JIT stats are attached
to the child node of the Gather or Gather Merge node, which is where
the other per-worker output has always been.  Previously, that info
was attached directly to a Gather node, or missed entirely for Gather
Merge.

* A query's summary JIT data no longer includes a bogus
"Worker Number: -1" field.

A notable code-level change is that indenting for lines of text-format
output should now be handled by calling "ExplainIndentText(es)",
instead of hard-wiring how much space to emit.  This seems a good deal
cleaner anyway.

This patch also adds a new "explain.sql" regression test script that's
dedicated to testing EXPLAIN.  There is more that can be done in that
line, certainly, but for now it just adds some coverage of the XML and
YAML output formats, which had been completely untested.

Although this is surely a bug fix, it's not clear that people would
be happy with rearranging EXPLAIN output in a minor release, so apply
to HEAD only.

Maciek Sakrejda and Tom Lane, based on an idea of Andres Freund's;
reviewed by Georgios Kokolatos

Discussion: https://postgr.es/m/CAOtHd0AvAA8CLB9Xz0wnxu1U=zJCKrr1r4QwwXi_kcQsHDVU=Q@mail.gmail.com
2020-01-25 18:16:42 -05:00
Peter Eisentraut 3fd40b628c Make better use of ParseState in ProcessUtility
Pass ParseState into the functions called from
standard_ProcessUtility() instead passing the query string and query
environment separately.  No functionality change, but it makes the
notation consistent.  We had already started moving things into
that direction piece by piece, and this completes it.

Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/6e7aa4a1-be6a-1a75-b1f9-83a678e5184a@2ndquadrant.com
2020-01-04 13:12:41 +01:00
Bruce Momjian 7559d8ebfa Update copyrights for 2020
Backpatch-through: update all files in master, backpatch legal files through 9.4
2020-01-01 12:21:45 -05:00
Tom Lane b925a00f4e Fix "force_parallel_mode = regress" to work with ANALYZE + VERBOSE.
force_parallel_mode = regress is supposed to force use of a Gather
node without having any impact on EXPLAIN output.  But it failed to
accomplish that if both ANALYZE and VERBOSE are given, because that
enables per-worker output data that you wouldn't see if the Gather
hadn't been inserted.  Improve the logic so that we suppress the
per-worker data too.

This allows putting the new test case added by commit 5935917ce
back into the originally intended form (cf. 776a2c887, 22864f6e0).
We can also get rid of a kluge in subselect.sql, which previously
had to clean up after force_parallel_mode's failure to do what it
said on the tin.

Discussion: https://postgr.es/m/18445.1576177309@sss.pgh.pa.us
2019-12-16 20:14:35 -05:00
Tom Lane 6ef77cf46e Further adjust EXPLAIN's choices of table alias names.
This patch causes EXPLAIN to always assign a separate table alias to the
parent RTE of an append relation (inheritance set); before, such RTEs
were ignored if not actually scanned by the plan.  Since the child RTEs
now always have that same alias to start with (cf. commit 55a1954da),
the net effect is that the parent RTE usually gets the alias used or
implied by the query text, and the children all get that alias with "_N"
appended.  (The exception to "usually" is if there are duplicate aliases
in different subtrees of the original query; then some of those original
RTEs will also have "_N" appended.)

This results in more uniform output for partitioned-table plans than
we had before: the partitioned table itself gets the original alias,
and all child tables have aliases with "_N", rather than the previous
behavior where one of the children would get an alias without "_N".

The reason for giving the parent RTE an alias, even if it isn't scanned
by the plan, is that we now use the parent's alias to qualify Vars that
refer to an appendrel output column and appear above the Append or
MergeAppend that computes the appendrel.  But below the append, Vars
refer to some one of the child relations, and are displayed that way.
This seems clearer than the old behavior where a Var that could carry
values from any child relation was displayed as if it referred to only
one of them.

While at it, change ruleutils.c so that the code paths used by EXPLAIN
deal in Plan trees not PlanState trees.  This effectively reverts a
decision made in commit 1cc29fe7c, which seemed like a good idea at
the time to make ruleutils.c consistent with explain.c.  However,
it's problematic because we'd really like to allow executor startup
pruning to remove all the children of an append node when possible,
leaving no child PlanState to resolve Vars against.  (That's not done
here, but will be in the next patch.)  This requires different handling
of subplans and initplans than before, but is otherwise a pretty
straightforward change.

Discussion: https://postgr.es/m/001001d4f44b$2a2cca50$7e865ef0$@lab.ntt.co.jp
2019-12-11 17:05:18 -05:00
Tom Lane 1cff1b95ab Represent Lists as expansible arrays, not chains of cons-cells.
Originally, Postgres Lists were a more or less exact reimplementation of
Lisp lists, which consist of chains of separately-allocated cons cells,
each having a value and a next-cell link.  We'd hacked that once before
(commit d0b4399d8) to add a separate List header, but the data was still
in cons cells.  That makes some operations -- notably list_nth() -- O(N),
and it's bulky because of the next-cell pointers and per-cell palloc
overhead, and it's very cache-unfriendly if the cons cells end up
scattered around rather than being adjacent.

In this rewrite, we still have List headers, but the data is in a
resizable array of values, with no next-cell links.  Now we need at
most two palloc's per List, and often only one, since we can allocate
some values in the same palloc call as the List header.  (Of course,
extending an existing List may require repalloc's to enlarge the array.
But this involves just O(log N) allocations not O(N).)

Of course this is not without downsides.  The key difficulty is that
addition or deletion of a list entry may now cause other entries to
move, which it did not before.

For example, that breaks foreach() and sister macros, which historically
used a pointer to the current cons-cell as loop state.  We can repair
those macros transparently by making their actual loop state be an
integer list index; the exposed "ListCell *" pointer is no longer state
carried across loop iterations, but is just a derived value.  (In
practice, modern compilers can optimize things back to having just one
loop state value, at least for simple cases with inline loop bodies.)
In principle, this is a semantics change for cases where the loop body
inserts or deletes list entries ahead of the current loop index; but
I found no such cases in the Postgres code.

The change is not at all transparent for code that doesn't use foreach()
but chases lists "by hand" using lnext().  The largest share of such
code in the backend is in loops that were maintaining "prev" and "next"
variables in addition to the current-cell pointer, in order to delete
list cells efficiently using list_delete_cell().  However, we no longer
need a previous-cell pointer to delete a list cell efficiently.  Keeping
a next-cell pointer doesn't work, as explained above, but we can improve
matters by changing such code to use a regular foreach() loop and then
using the new macro foreach_delete_current() to delete the current cell.
(This macro knows how to update the associated foreach loop's state so
that no cells will be missed in the traversal.)

There remains a nontrivial risk of code assuming that a ListCell *
pointer will remain good over an operation that could now move the list
contents.  To help catch such errors, list.c can be compiled with a new
define symbol DEBUG_LIST_MEMORY_USAGE that forcibly moves list contents
whenever that could possibly happen.  This makes list operations
significantly more expensive so it's not normally turned on (though it
is on by default if USE_VALGRIND is on).

There are two notable API differences from the previous code:

* lnext() now requires the List's header pointer in addition to the
current cell's address.

* list_delete_cell() no longer requires a previous-cell argument.

These changes are somewhat unfortunate, but on the other hand code using
either function needs inspection to see if it is assuming anything
it shouldn't, so it's not all bad.

Programmers should be aware of these significant performance changes:

* list_nth() and related functions are now O(1); so there's no
major access-speed difference between a list and an array.

* Inserting or deleting a list element now takes time proportional to
the distance to the end of the list, due to moving the array elements.
(However, it typically *doesn't* require palloc or pfree, so except in
long lists it's probably still faster than before.)  Notably, lcons()
used to be about the same cost as lappend(), but that's no longer true
if the list is long.  Code that uses lcons() and list_delete_first()
to maintain a stack might usefully be rewritten to push and pop at the
end of the list rather than the beginning.

* There are now list_insert_nth...() and list_delete_nth...() functions
that add or remove a list cell identified by index.  These have the
data-movement penalty explained above, but there's no search penalty.

* list_concat() and variants now copy the second list's data into
storage belonging to the first list, so there is no longer any
sharing of cells between the input lists.  The second argument is
now declared "const List *" to reflect that it isn't changed.

This patch just does the minimum needed to get the new implementation
in place and fix bugs exposed by the regression tests.  As suggested
by the foregoing, there's a fair amount of followup work remaining to
do.

Also, the ENABLE_LIST_COMPAT macros are finally removed in this
commit.  Code using those should have been gone a dozen years ago.

Patch by me; thanks to David Rowley, Jesper Pedersen, and others
for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-07-15 13:41:58 -04:00
David Rowley 8abc13a889 Use appendStringInfoString and appendPQExpBufferStr where possible
This changes various places where appendPQExpBuffer was used in places
where it was possible to use appendPQExpBufferStr, and likewise for
appendStringInfo and appendStringInfoString.  This is really just a
stylistic improvement, but there are also small performance gains to be
had from doing this.

Discussion: http://postgr.es/m/CAKJS1f9P=M-3ULmPvr8iCno8yvfDViHibJjpriHU8+SXUgeZ=w@mail.gmail.com
2019-07-04 13:01:13 +12:00
Tom Lane 8255c7a5ee Phase 2 pgindent run for v12.
Switch to 2.1 version of pg_bsd_indent.  This formats
multiline function declarations "correctly", that is with
additional lines of parameter declarations indented to match
where the first line's left parenthesis is.

Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com
2019-05-22 13:04:48 -04:00
Tom Lane be76af171c Initial pgindent run for v12.
This is still using the 2.0 version of pg_bsd_indent.
I thought it would be good to commit this separately,
so as to document the differences between 2.0 and 2.1 behavior.

Discussion: https://postgr.es/m/16296.1558103386@sss.pgh.pa.us
2019-05-22 12:55:34 -04:00
Tomas Vondra ea569d64ac Add SETTINGS option to EXPLAIN, to print modified settings.
Query planning is affected by a number of configuration options, and it
may be crucial to know which of those options were set to non-default
values.  With this patch you can say EXPLAIN (SETTINGS ON) to include
that information in the query plan.  Only options affecting planning,
with values different from the built-in default are printed.

This patch also adds auto_explain.log_settings option, providing the
same capability in auto_explain module.

Author: Tomas Vondra
Reviewed-by: Rafia Sabih, John Naylor
Discussion: https://postgr.es/m/e1791b4c-df9c-be02-edc5-7c8874944be0@2ndquadrant.com
2019-04-04 00:04:31 +02:00
Tom Lane f09346a9c6 Refactor planner's header files.
Create a new header optimizer/optimizer.h, which exposes just the
planner functions that can be used "at arm's length", without need
to access Paths or the other planner-internal data structures defined
in nodes/relation.h.  This is intended to provide the whole planner
API seen by most of the rest of the system; although FDWs still need
to use additional stuff, and more thought is also needed about just
what selfuncs.c should rely on.

The main point of doing this now is to limit the amount of new
#include baggage that will be needed by "planner support functions",
which I expect to introduce later, and which will be in relevant
datatype modules rather than anywhere near the planner.

This commit just moves relevant declarations into optimizer.h from
other header files (a couple of which go away because everything
got moved), and adjusts #include lists to match.  There's further
cleanup that could be done if we want to decide that some stuff
being exposed by optimizer.h doesn't belong in the planner at all,
but I'll leave that for another day.

Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
2019-01-29 15:48:51 -05:00
Tom Lane a1b8c41e99 Make some small planner API cleanups.
Move a few very simple node-creation and node-type-testing functions
from the planner's clauses.c to nodes/makefuncs and nodes/nodeFuncs.
There's nothing planner-specific about them, as evidenced by the
number of other places that were using them.

While at it, rename and_clause() etc to is_andclause() etc, to clarify
that they are node-type-testing functions not node-creation functions.
And use "static inline" implementations for the shortest ones.

Also, modify flatten_join_alias_vars() and some subsidiary functions
to take a Query not a PlannerInfo to define the join structure that
Vars should be translated according to.  They were only using the
"parse" field of the PlannerInfo anyway, so this just requires removing
one level of indirection.  The advantage is that now parse_agg.c can
use flatten_join_alias_vars() without the horrid kluge of creating an
incomplete PlannerInfo, which will allow that file to be decoupled from
relation.h in a subsequent patch.

Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
2019-01-29 15:26:44 -05:00
Bruce Momjian 97c39498e5 Update copyright for 2019
Backpatch-through: certain files through 9.4
2019-01-02 12:44:25 -05:00
Tom Lane 586b98fdf1 Make type "name" collation-aware.
The "name" comparison operators now all support collations, making them
functionally equivalent to "text" comparisons, except for the different
physical representation of the datatype.  They do, in fact, mostly share
the varstr_cmp and varstr_sortsupport infrastructure, which has been
slightly enlarged to handle the case.

To avoid changes in the default behavior of the datatype, set name's
typcollation to C_COLLATION_OID not DEFAULT_COLLATION_OID, so that
by default comparisons to a name value will continue to use strcmp
semantics.  (This would have been the case for system catalog columns
anyway, because of commit 6b0faf723, but doing this makes it true for
user-created name columns as well.  In particular, this avoids
locale-dependent changes in our regression test results.)

In consequence, tweak a couple of places that made assumptions about
collatable base types always having typcollation DEFAULT_COLLATION_OID.
I have not, however, attempted to relax the restriction that user-
defined collatable types must have that.  Hence, "name" doesn't
behave quite like a user-defined type; it acts more like a domain
with COLLATE "C".  (Conceivably, if we ever get rid of the need for
catalog name columns to be fixed-length, "name" could actually become
such a domain over text.  But that'd be a pretty massive undertaking,
and I'm not volunteering.)

Discussion: https://postgr.es/m/15938.1544377821@sss.pgh.pa.us
2018-12-19 17:46:25 -05:00
Andres Freund 578b229718 Remove WITH OIDS support, change oid catalog column visibility.
Previously tables declared WITH OIDS, including a significant fraction
of the catalog tables, stored the oid column not as a normal column,
but as part of the tuple header.

This special column was not shown by default, which was somewhat odd,
as it's often (consider e.g. pg_class.oid) one of the more important
parts of a row.  Neither pg_dump nor COPY included the contents of the
oid column by default.

The fact that the oid column was not an ordinary column necessitated a
significant amount of special case code to support oid columns. That
already was painful for the existing, but upcoming work aiming to make
table storage pluggable, would have required expanding and duplicating
that "specialness" significantly.

WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0).
Remove it.

Removing includes:
- CREATE TABLE and ALTER TABLE syntax for declaring the table to be
  WITH OIDS has been removed (WITH (oids[ = true]) will error out)
- pg_dump does not support dumping tables declared WITH OIDS and will
  issue a warning when dumping one (and ignore the oid column).
- restoring an pg_dump archive with pg_restore will warn when
  restoring a table with oid contents (and ignore the oid column)
- COPY will refuse to load binary dump that includes oids.
- pg_upgrade will error out when encountering tables declared WITH
  OIDS, they have to be altered to remove the oid column first.
- Functionality to access the oid of the last inserted row (like
  plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed.

The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false)
for CREATE TABLE) is still supported. While that requires a bit of
support code, it seems unnecessary to break applications / dumps that
do not use oids, and are explicit about not using them.

The biggest user of WITH OID columns was postgres' catalog. This
commit changes all 'magic' oid columns to be columns that are normally
declared and stored. To reduce unnecessary query breakage all the
newly added columns are still named 'oid', even if a table's column
naming scheme would indicate 'reloid' or such.  This obviously
requires adapting a lot code, mostly replacing oid access via
HeapTupleGetOid() with access to the underlying Form_pg_*->oid column.

The bootstrap process now assigns oids for all oid columns in
genbki.pl that do not have an explicit value (starting at the largest
oid previously used), only oids assigned later by oids will be above
FirstBootstrapObjectId. As the oid column now is a normal column the
special bootstrap syntax for oids has been removed.

Oids are not automatically assigned during insertion anymore, all
backend code explicitly assigns oids with GetNewOidWithIndex(). For
the rare case that insertions into the catalog via SQL are called for
the new pg_nextoid() function can be used (which only works on catalog
tables).

The fact that oid columns on system tables are now normal columns
means that they will be included in the set of columns expanded
by * (i.e. SELECT * FROM pg_class will now include the table's oid,
previously it did not). It'd not technically be hard to hide oid
column by default, but that'd mean confusing behavior would either
have to be carried forward forever, or it'd cause breakage down the
line.

While it's not unlikely that further adjustments are needed, the
scope/invasiveness of the patch makes it worthwhile to get merge this
now. It's painful to maintain externally, too complicated to commit
after the code code freeze, and a dependency of a number of other
patches.

Catversion bump, for obvious reasons.

Author: Andres Freund, with contributions by John Naylor
Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-20 16:00:17 -08:00
Andres Freund 1a0586de36 Introduce notion of different types of slots (without implementing them).
Upcoming work intends to allow pluggable ways to introduce new ways of
storing table data. Accessing those table access methods from the
executor requires TupleTableSlots to be carry tuples in the native
format of such storage methods; otherwise there'll be a significant
conversion overhead.

Different access methods will require different data to store tuples
efficiently (just like virtual, minimal, heap already require fields
in TupleTableSlot). To allow that without requiring additional pointer
indirections, we want to have different structs (embedding
TupleTableSlot) for different types of slots.  Thus different types of
slots are needed, which requires adapting creators of slots.

The slot that most efficiently can represent a type of tuple in an
executor node will often depend on the type of slot a child node
uses. Therefore we need to track the type of slot is returned by
nodes, so parent slots can create slots based on that.

Relatedly, JIT compilation of tuple deforming needs to know which type
of slot a certain expression refers to, so it can create an
appropriate deforming function for the type of tuple in the slot.

But not all nodes will only return one type of slot, e.g. an append
node will potentially return different types of slots for each of its
subplans.

Therefore add function that allows to query the type of a node's
result slot, and whether it'll always be the same type (whether it's
fixed). This can be queried using ExecGetResultSlotOps().

The scan, result, inner, outer type of slots are automatically
inferred from ExecInitScanTupleSlot(), ExecInitResultSlot(),
left/right subtrees respectively. If that's not correct for a node,
that can be overwritten using new fields in PlanState.

This commit does not introduce the actually abstracted implementation
of different kind of TupleTableSlots, that will be left for a followup
commit.  The different types of slots introduced will, for now, still
use the same backing implementation.

While this already partially invalidates the big comment in
tuptable.h, it seems to make more sense to update it later, when the
different TupleTableSlot implementations actually exist.

Author: Ashutosh Bapat and Andres Freund, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-15 22:00:30 -08:00
Andres Freund c03c1449c0 Fix issues around EXPLAIN with JIT.
I (Andres) was more than a bit hasty in committing 33001fd7a7
after last minute changes, leading to a number of problems (jit output
was only shown for JIT in parallel workers, and just EXPLAIN without
ANALYZE didn't work).  Lukas luckily found these issues quickly.

Instead of combining instrumentation in in standard_ExecutorEnd(), do
so on demand in the new ExplainPrintJITSummary().

Also update a documentation example of the JIT output, changed in
52050ad8eb.

Author: Lukas Fittl, with minor changes by me
Discussion: https://postgr.es/m/CAP53PkxmgJht69pabxBXJBM+0oc6kf3KHMborLP7H2ouJ0CCtQ@mail.gmail.com
Backpatch: 11, where JIT compilation was introduced
2018-10-03 12:48:37 -07:00
Andres Freund 33001fd7a7 Collect JIT instrumentation from workers.
Previously, when using parallel query, EXPLAIN (ANALYZE)'s JIT
compilation timings did not include the overhead from doing so on the
workers.  Fix that.

We do so by simply aggregating the cost of doing JIT compilation on
workers and the leader together. Arguably that's not quite accurate,
because the total time spend doing so is spent in parallel - but it's
hard to do much better.  For additional detail, when VERBOSE is
specified, the stats for workers are displayed separately.

Author: Amit Khandekar and Andres Freund
Discussion: https://postgr.es/m/CAJ3gD9eLrz51RK_gTkod+71iDcjpB_N8eC6vU2AW-VicsAERpQ@mail.gmail.com
Backpatch: 11-
2018-09-25 13:12:44 -07:00
Andres Freund 52050ad8eb Make EXPLAIN output for JIT compilation more dense.
A discussion about also reporting JIT compilation overhead on workers
brought unhappiness with the verbosity of the current explain format
to light.  Make the text format more dense, and restructure the
structured output to mirror that more closely.

As we're re-jiggering the output format anyway: The denser format
allows us to report all flags for JIT compilation (now also reporting
PGJIT_EXPR and PGJIT_DEFORM), and report the total time in addition to
the individual times.

Per complaint from Tom Lane.

Author: Andres Freund
Discussion: https://postgr.es/m/27812.1537221015@sss.pgh.pa.us
Backpatch: 11-, where JIT compilation was introduced
2018-09-24 13:35:45 -07:00
Heikki Linnakangas 6b387179ba Fix misc typos, mostly in comments.
A collection of typos I happened to spot while reading code, as well as
grepping for common mistakes.

Backpatch to all supported versions, as applicable, to avoid conflicts
when backporting other commits in the future.
2018-07-18 16:17:32 +03:00
Tom Lane 41c912cad1 Clean up warnings from -Wimplicit-fallthrough.
Recent gcc can warn about switch-case fall throughs that are not
explicitly labeled as intentional.  This seems like a good thing,
so clean up the warnings exposed thereby by labeling all such
cases with comments that gcc will recognize.

In files that already had one or more suitable comments, I generally
matched the existing style of those.  Otherwise I went with
/* FALLTHROUGH */, which is one of the spellings approved at the
more-restrictive-than-default level -Wimplicit-fallthrough=4.
(At the default level you can also spell it /* FALL ?THRU */,
and it's not picky about case.  What you can't do is include
additional text in the same comment, so some existing comments
containing versions of this aren't good enough.)

Testing with gcc 8.0.1 (Fedora 28's current version), I found that
I also had to put explicit "break"s after elog(ERROR) or ereport(ERROR);
apparently, for this purpose gcc doesn't recognize that those don't
return.  That seems like possibly a gcc bug, but it's fine because
in most places we did that anyway; so this amounts to a visit from the
style police.

Discussion: https://postgr.es/m/15083.1525207729@sss.pgh.pa.us
2018-05-01 19:35:08 -04:00
Simon Riggs 08ea7a2291 Revert MERGE patch
This reverts commits d204ef6377,
83454e3c2b and a few more commits thereafter
(complete list at the end) related to MERGE feature.

While the feature was fully functional, with sufficient test coverage and
necessary documentation, it was felt that some parts of the executor and
parse-analyzer can use a different design and it wasn't possible to do that in
the available time. So it was decided to revert the patch for PG11 and retry
again in the future.

Thanks again to all reviewers and bug reporters.

List of commits reverted, in reverse chronological order:

 f1464c5380 Improve parse representation for MERGE
 ddb4158579 MERGE syntax diagram correction
 530e69e59b Allow cpluspluscheck to pass by renaming variable
 01b88b4df5 MERGE minor errata
 3af7b2b0d4 MERGE fix variable warning in non-assert builds
 a5d86181ec MERGE INSERT allows only one VALUES clause
 4b2d44031f MERGE post-commit review
 4923550c20 Tab completion for MERGE
 aa3faa3c7a WITH support in MERGE
 83454e3c2b New files for MERGE
 d204ef6377 MERGE SQL Command following SQL:2016

Author: Pavan Deolasee
Reviewed-by: Michael Paquier
2018-04-12 11:22:56 +01:00
Alvaro Herrera 15a8f8caad Fix IndexOnlyScan counter for heap fetches in parallel mode
The HeapFetches counter was using a simple value in IndexOnlyScanState,
which fails to propagate values from parallel workers; so the counts are
wrong when IndexOnlyScan runs in parallel.  Move it to Instrumentation,
like all the other counters.

While at it, change INSERT ON CONFLICT conflicting tuple counter to use
the new ntuples2 instead of nfiltered2, which is a blatant misuse.

Discussion: https://postgr.es/m/20180409215851.idwc75ct2bzi6tea@alvherre.pgsql
2018-04-10 15:56:15 -03:00
Alvaro Herrera 499be013de Support partition pruning at execution time
Existing partition pruning is only able to work at plan time, for query
quals that appear in the parsed query.  This is good but limiting, as
there can be parameters that appear later that can be usefully used to
further prune partitions.

This commit adds support for pruning subnodes of Append which cannot
possibly contain any matching tuples, during execution, by evaluating
Params to determine the minimum set of subnodes that can possibly match.
We support more than just simple Params in WHERE clauses. Support
additionally includes:

1. Parameterized Nested Loop Joins: The parameter from the outer side of the
   join can be used to determine the minimum set of inner side partitions to
   scan.

2. Initplans: Once an initplan has been executed we can then determine which
   partitions match the value from the initplan.

Partition pruning is performed in two ways.  When Params external to the plan
are found to match the partition key we attempt to prune away unneeded Append
subplans during the initialization of the executor.  This allows us to bypass
the initialization of non-matching subplans meaning they won't appear in the
EXPLAIN or EXPLAIN ANALYZE output.

For parameters whose value is only known during the actual execution
then the pruning of these subplans must wait.  Subplans which are
eliminated during this stage of pruning are still visible in the EXPLAIN
output.  In order to determine if pruning has actually taken place, the
EXPLAIN ANALYZE must be viewed.  If a certain Append subplan was never
executed due to the elimination of the partition then the execution
timing area will state "(never executed)".  Whereas, if, for example in
the case of parameterized nested loops, the number of loops stated in
the EXPLAIN ANALYZE output for certain subplans may appear lower than
others due to the subplan having been scanned fewer times.  This is due
to the list of matching subnodes having to be evaluated whenever a
parameter which was found to match the partition key changes.

This commit required some additional infrastructure that permits the
building of a data structure which is able to perform the translation of
the matching partition IDs, as returned by get_matching_partitions, into
the list index of a subpaths list, as exist in node types such as
Append, MergeAppend and ModifyTable.  This allows us to translate a list
of clauses into a Bitmapset of all the subpath indexes which must be
included to satisfy the clause list.

Author: David Rowley, based on an earlier effort by Beena Emerson
Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi,
Jesper Pedersen
Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
2018-04-07 17:54:39 -03:00
Simon Riggs d204ef6377 MERGE SQL Command following SQL:2016
MERGE performs actions that modify rows in the target table
using a source table or query. MERGE provides a single SQL
statement that can conditionally INSERT/UPDATE/DELETE rows
a task that would other require multiple PL statements.
e.g.

MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
  UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
  DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
  INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
  DO NOTHING;

MERGE works with regular and partitioned tables, including
column and row security enforcement, as well as support for
row, statement and transition triggers.

MERGE is optimized for OLTP and is parameterizable, though
also useful for large scale ETL/ELT. MERGE is not intended
to be used in preference to existing single SQL commands
for INSERT, UPDATE or DELETE since there is some overhead.
MERGE can be used statically from PL/pgSQL.

MERGE does not yet support inheritance, write rules,
RETURNING clauses, updatable views or foreign tables.
MERGE follows SQL Standard per the most recent SQL:2016.

Includes full tests and documentation, including full
isolation tests to demonstrate the concurrent behavior.

This version written from scratch in 2017 by Simon Riggs,
using docs and tests originally written in 2009. Later work
from Pavan Deolasee has been both complex and deep, leaving
the lead author credit now in his hands.
Extensive discussion of concurrency from Peter Geoghegan,
with thanks for the time and effort contributed.

Various issues reported via sqlsmith by Andreas Seltenreich

Authors: Pavan Deolasee, Simon Riggs
Reviewer: Peter Geoghegan, Amit Langote, Tomas Vondra, Simon Riggs

Discussion:
https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.com
https://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
2018-04-03 09:28:16 +01:00
Simon Riggs 7cf8a5c302 Revert "Modified files for MERGE"
This reverts commit 354f13855e.
2018-04-02 21:34:15 +01:00
Simon Riggs 354f13855e Modified files for MERGE 2018-04-02 21:12:47 +01:00
Andres Freund 1f0c6a9e7d Add EXPLAIN support for JIT.
This just shows a few details about JITing, e.g. how many functions
have been JITed, and how long that took.  To avoid noise in regression
tests with functions sometimes being JITed in --with-llvm builds,
disable display when COSTS OFF is specified.

Author: Andres Freund
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
2018-03-28 13:26:51 -07:00
Andres Freund 7a50bb690b Add 'unit' parameter to ExplainProperty{Integer,Float}.
This allows to deduplicate some existing code, but mainly avoids some
duplication in upcoming commits.

In passing, fix variable names indicating wrong unit (seconds instead
of ms).

Author: Andres Freund
Discussion: https://postgr.es/m/20180314002740.cah3mdsonz5mxney@alap3.anarazel.de
2018-03-16 23:16:04 -07:00
Andres Freund f3e4b95edb Make ExplainPropertyInteger accept 64bit input, remove *Long variant.
'long' is not useful type across platforms, as it's 32bit on 32 bit
platforms, and even on some 64bit platforms (e.g. windows) it's still
only 32bits wide.

As ExplainPropertyInteger should never be performance critical, change
it to accept a 64bit argument and remove ExplainPropertyLong.

Author: Andres Freund
Discussion: https://postgr.es/m/20180314164832.n56wt7zcbpzi6zxe@alap3.anarazel.de
2018-03-16 23:13:12 -07:00
Peter Eisentraut 3a4b891964 Fix more format truncation issues
Fix the warnings created by the compiler warning options
-Wformat-overflow=2 -Wformat-truncation=2, supported since GCC 7.  This
is a more aggressive variant of the fixes in
6275f5d28a, which GCC 7 warned about by
default.

The issues are all harmless, but some dubious coding patterns are
cleaned up.

One issue that is of external interest is that BGW_MAXLEN is increased
from 64 to 96.  Apparently, the old value would cause the bgw_name of
logical replication workers to be truncated in some circumstances.

But this doesn't actually add those warning options.  It appears that
the warnings depend a bit on compilation and optimization options, so it
would be annoying to have to keep up with that.  This is more of a
once-in-a-while cleanup.

Reviewed-by: Michael Paquier <michael@paquier.xyz>
2018-03-15 11:41:42 -04:00
Robert Haas e44dd84325 Avoid listing the same ResultRelInfo in more than one EState list.
Doing so causes EXPLAIN ANALYZE to show trigger statistics multiple
times.  Commit 2f17844104 seems to
be to blame for this.

Amit Langote, revieed by Amit Khandekar, Etsuro Fujita, and me.
2018-02-08 14:29:05 -05:00
Tom Lane 4d41b2e092 Add QueryEnvironment to ExplainOneQuery_hook's parameter list.
This should have been done in commit 18ce3a4ab, which added that parameter
to ExplainOneQuery, but it was overlooked.  This makes it impossible for
a user of the hook to pass the queryEnv down to ExplainOnePlan.

It's too late to change this API in v10, I suppose, but fortunately
passing NULL to ExplainOnePlan will work in nearly all interesting
cases in v10.  That might not be true forever, so we'd better fix it.

Tatsuro Yamada, reviewed by Thomas Munro

Discussion: https://postgr.es/m/890e8dd9-c1c7-a422-6892-874f5eaee048@lab.ntt.co.jp
2018-01-11 12:16:18 -05:00
Bruce Momjian 9d4649ca49 Update copyright for 2018
Backpatch-through: certain files through 9.3
2018-01-02 23:30:12 -05:00
Andres Freund 93ea78b17c Fix EXPLAIN ANALYZE output for Parallel Hash.
In a race case, EXPLAIN ANALYZE could fail to display correct nbatch
and size information.  Refactor so that participants report only on
batches they worked on rather than trying to report on all of them,
and teach explain.c to consider the HashInstrumentation object from
all participants instead of picking the first one it can find.  This
should fix an occasional build farm failure in the "join" regression
test.

Author: Thomas Munro
Reviewed-By: Andres Freund
Discussion: https://postgr.es/m/30219.1514428346%40sss.pgh.pa.us
2018-01-01 14:38:23 -08:00
Andres Freund 5bcf389ecf Fix EXPLAIN ANALYZE of hash join when the leader doesn't participate.
If a hash join appears in a parallel query, there may be no hash table
available for explain.c to inspect even though a hash table may have
been built in other processes.  This could happen either because
parallel_leader_participation was set to off or because the leader
happened to hit the end of the outer relation immediately (even though
the complete relation is not empty) and decided not to build the hash
table.

Commit bf11e7ee introduced a way for workers to exchange
instrumentation via the DSM segment for Sort nodes even though they
are not parallel-aware.  This commit does the same for Hash nodes, so
that explain.c has a way to find instrumentation data from an
arbitrary participant that actually built the hash table.

Author: Thomas Munro
Reviewed-By: Andres Freund
Discussion: https://postgr.es/m/CAEepm%3D3DUQC2-z252N55eOcZBer6DPdM%3DFzrxH9dZc5vYLsjaA%40mail.gmail.com
2017-12-05 10:55:56 -08:00
Robert Haas e89a71fb44 Pass InitPlan values to workers via Gather (Merge).
If a PARAM_EXEC parameter is used below a Gather (Merge) but the InitPlan
that computes it is attached to or above the Gather (Merge), force the
value to be computed before starting parallelism and pass it down to all
workers.  This allows us to use parallelism in cases where it previously
would have had to be rejected as unsafe.  We do - in this case - lose the
optimization that the value is only computed if it's actually used.  An
alternative strategy would be to have the first worker that needs the value
compute it, but one downside of that approach is that we'd then need to
select a parallel-safe path to compute the parameter value; it couldn't for
example contain a Gather (Merge) node.  At some point in the future, we
might want to consider both approaches.

Independent of that consideration, there is a great deal more work that
could be done to make more kinds of PARAM_EXEC parameters parallel-safe.
This infrastructure could be used to allow a Gather (Merge) on the inner
side of a nested loop (although that's not a very appealing plan) and
cases where the InitPlan is attached below the Gather (Merge) could be
addressed as well using various techniques.  But this is a good start.

Amit Kapila, reviewed and revised by me.  Reviewing and testing from
Kuntal Ghosh, Haribabu Kommi, and Tushar Ahuja.

Discussion: http://postgr.es/m/CAA4eK1LV0Y1AUV4cUCdC+sYOx0Z0-8NAJ2Pd9=UKsbQ5Sr7+JQ@mail.gmail.com
2017-11-16 12:06:14 -05:00
Robert Haas e9baa5e9fa Allow DML commands that create tables to use parallel query.
Haribabu Kommi, reviewed by Dilip Kumar and Rafia Sabih.  Various
cosmetic changes by me to explain why this appears to be safe but
allowing inserts in parallel mode in general wouldn't be.  Also, I
removed the REFRESH MATERIALIZED VIEW case from Haribabu's patch,
since I'm not convinced that case is OK, and hacked on the
documentation somewhat.

Discussion: http://postgr.es/m/CAJrrPGdo5bak6qnPWe8Kpi8g_jfQEs-G4SYmG9y+OFaw2-dPvA@mail.gmail.com
2017-10-05 11:40:48 -04:00
Tom Lane 66917bfaa7 Make ExplainOpenGroup and ExplainCloseGroup public.
Extensions with custom plan nodes might like to use these in their
EXPLAIN output.

Hadi Moshayedi

Discussion: https://postgr.es/m/CA+_kT_dU-rHCN0u6pjA6bN5CZniMfD=-wVqPY4QLrKUY_uJq5w@mail.gmail.com
2017-09-18 16:01:16 -04:00
Robert Haas bf11e7ee2e Propagate sort instrumentation from workers back to leader.
Up until now, when parallel query was used, no details about the
sort method or space used by the workers were available; details
were shown only for any sorting done by the leader.  Fix that.

Commit 1177ab1dab forced the test case
added by commit 1f6d515a67 to run
without parallelism; now that we have this infrastructure, allow
that again, with a little tweaking to make it pass with and without
force_parallel_mode.

Robert Haas and Tom Lane

Discussion: http://postgr.es/m/CA+Tgmoa2VBZW6S8AAXfhpHczb=Rf6RqQ2br+zJvEgwJ0uoD_tQ@mail.gmail.com
2017-08-29 13:26:33 -04:00
Robert Haas c4b841ba6a Fix interaction of triggers, partitioning, and EXPLAIN ANALYZE.
Add a new EState member es_leaf_result_relations, so that the trigger
code knows about ResultRelInfos created by tuple routing.  Also make
sure ExplainPrintTriggers knows about partition-related
ResultRelInfos.

Etsuro Fujita, reviewed by Amit Langote

Discussion: http://postgr.es/m/57163e18-8e56-da83-337a-22f2c0008051@lab.ntt.co.jp
2017-08-18 13:01:05 -04:00
Tom Lane 382ceffdf7 Phase 3 of pgindent updates.
Don't move parenthesized lines to the left, even if that means they
flow past the right margin.

By default, BSD indent lines up statement continuation lines that are
within parentheses so that they start just to the right of the preceding
left parenthesis.  However, traditionally, if that resulted in the
continuation line extending to the right of the desired right margin,
then indent would push it left just far enough to not overrun the margin,
if it could do so without making the continuation line start to the left of
the current statement indent.  That makes for a weird mix of indentations
unless one has been completely rigid about never violating the 80-column
limit.

This behavior has been pretty universally panned by Postgres developers.
Hence, disable it with indent's new -lpl switch, so that parenthesized
lines are always lined up with the preceding left paren.

This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.

Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 15:35:54 -04:00
Tom Lane 8f0530f580 Improve castNode notation by introducing list-extraction-specific variants.
This extends the castNode() notation introduced by commit 5bcab1114 to
provide, in one step, extraction of a list cell's pointer and coercion to
a concrete node type.  For example, "lfirst_node(Foo, lc)" is the same
as "castNode(Foo, lfirst(lc))".  Almost half of the uses of castNode
that have appeared so far include a list extraction call, so this is
pretty widely useful, and it saves a few more keystrokes compared to the
old way.

As with the previous patch, back-patch the addition of these macros to
pg_list.h, so that the notation will be available when back-patching.

Patch by me, after an idea of Andrew Gierth's.

Discussion: https://postgr.es/m/14197.1491841216@sss.pgh.pa.us
2017-04-10 13:51:53 -04:00
Tom Lane 9c7f5229ad Optimize joins when the inner relation can be proven unique.
If there can certainly be no more than one matching inner row for a given
outer row, then the executor can move on to the next outer row as soon as
it's found one match; there's no need to continue scanning the inner
relation for this outer row.  This saves useless scanning in nestloop
and hash joins.  In merge joins, it offers the opportunity to skip
mark/restore processing, because we know we have not advanced past the
first possible match for the next outer row.

Of course, the devil is in the details: the proof of uniqueness must
depend only on joinquals (not otherquals), and if we want to skip
mergejoin mark/restore then it must depend only on merge clauses.
To avoid adding more planning overhead than absolutely necessary,
the present patch errs in the conservative direction: there are cases
where inner_unique or skip_mark_restore processing could be used, but
it will not do so because it's not sure that the uniqueness proof
depended only on "safe" clauses.  This could be improved later.

David Rowley, reviewed and rather heavily editorialized on by me

Discussion: https://postgr.es/m/CAApHDvqF6Sw-TK98bW48TdtFJ+3a7D2mFyZ7++=D-RyPsL76gw@mail.gmail.com
2017-04-07 22:20:13 -04:00
Kevin Grittner 18ce3a4ab2 Add infrastructure to support EphemeralNamedRelation references.
A QueryEnvironment concept is added, which allows new types of
objects to be passed into queries from parsing on through
execution.  At this point, the only thing implemented is a
collection of EphemeralNamedRelation objects -- relations which
can be referenced by name in queries, but do not exist in the
catalogs.  The only type of ENR implemented is NamedTuplestore, but
provision is made to add more types fairly easily.

An ENR can carry its own TupleDesc or reference a relation in the
catalogs by relid.

Although these features can be used without SPI, convenience
functions are added to SPI so that ENRs can easily be used by code
run through SPI.

The initial use of all this is going to be transition tables in
AFTER triggers, but that will be added to each PL as a separate
commit.

An incidental effect of this patch is to produce a more informative
error message if an attempt is made to modify the contents of a CTE
from a referencing DML statement.  No tests previously covered that
possibility, so one is added.

Kevin Grittner and Thomas Munro
Reviewed by Heikki Linnakangas, David Fetter, and Thomas Munro
with valuable comments and suggestions from many others
2017-03-31 23:17:18 -05:00
Andrew Gierth b5635948ab Support hashed aggregation with grouping sets.
This extends the Aggregate node with two new features: HashAggregate
can now run multiple hashtables concurrently, and a new strategy
MixedAggregate populates hashtables while doing sorted grouping.

The planner will now attempt to save as many sorts as possible when
planning grouping sets queries, while not exceeding work_mem for the
estimated combined sizes of all hashtables used.  No SQL-level changes
are required.  There should be no user-visible impact other than the
new EXPLAIN output and possible changes to result ordering when ORDER
BY was not used (which affected a few regression tests).  The
enable_hashagg option is respected.

Author: Andrew Gierth
Reviewers: Mark Dilger, Andres Freund
Discussion: https://postgr.es/m/87vatszyhj.fsf@news-spur.riddles.org.uk
2017-03-27 04:20:54 +01:00
Andres Freund b8d7f053c5 Faster expression evaluation and targetlist projection.
This replaces the old, recursive tree-walk based evaluation, with
non-recursive, opcode dispatch based, expression evaluation.
Projection is now implemented as part of expression evaluation.

This both leads to significant performance improvements, and makes
future just-in-time compilation of expressions easier.

The speed gains primarily come from:
- non-recursive implementation reduces stack usage / overhead
- simple sub-expressions are implemented with a single jump, without
  function calls
- sharing some state between different sub-expressions
- reduced amount of indirect/hard to predict memory accesses by laying
  out operation metadata sequentially; including the avoidance of
  nearly all of the previously used linked lists
- more code has been moved to expression initialization, avoiding
  constant re-checks at evaluation time

Future just-in-time compilation (JIT) has become easier, as
demonstrated by released patches intended to be merged in a later
release, for primarily two reasons: Firstly, due to a stricter split
between expression initialization and evaluation, less code has to be
handled by the JIT. Secondly, due to the non-recursive nature of the
generated "instructions", less performance-critical code-paths can
easily be shared between interpreted and compiled evaluation.

The new framework allows for significant future optimizations. E.g.:
- basic infrastructure for to later reduce the per executor-startup
  overhead of expression evaluation, by caching state in prepared
  statements.  That'd be helpful in OLTPish scenarios where
  initialization overhead is measurable.
- optimizing the generated "code". A number of proposals for potential
  work has already been made.
- optimizing the interpreter. Similarly a number of proposals have
  been made here too.

The move of logic into the expression initialization step leads to some
backward-incompatible changes:
- Function permission checks are now done during expression
  initialization, whereas previously they were done during
  execution. In edge cases this can lead to errors being raised that
  previously wouldn't have been, e.g. a NULL array being coerced to a
  different array type previously didn't perform checks.
- The set of domain constraints to be checked, is now evaluated once
  during expression initialization, previously it was re-built
  every time a domain check was evaluated. For normal queries this
  doesn't change much, but e.g. for plpgsql functions, which caches
  ExprStates, the old set could stick around longer.  The behavior
  around might still change.

Author: Andres Freund, with significant changes by Tom Lane,
	changes by Heikki Linnakangas
Reviewed-By: Tom Lane, Heikki Linnakangas
Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-25 14:52:06 -07:00
Robert Haas 691b8d5928 Allow for parallel execution whenever ExecutorRun() is done only once.
Previously, it was unsafe to execute a plan in parallel if
ExecutorRun() might be called with a non-zero row count.  However,
it's quite easy to fix things up so that we can support that case,
provided that it is known that we will never call ExecutorRun() a
second time for the same QueryDesc.  Add infrastructure to signal
this, and cross-checks to make sure that a caller who claims this is
true doesn't later reneg.

While that pattern never happens with queries received directly from a
client -- there's no way to know whether multiple Execute messages
will be sent unless the first one requests all the rows -- it's pretty
common for queries originating from procedural languages, which often
limit the result to a single tuple or to a user-specified number of
tuples.

This commit doesn't actually enable parallelism in any additional
cases, because currently none of the places that would be able to
benefit from this infrastructure pass CURSOR_OPT_PARALLEL_OK in the
first place, but it makes it much more palatable to pass
CURSOR_OPT_PARALLEL_OK in places where we currently don't, because it
eliminates some cases where we'd end up having to run the parallel
plan serially.

Patch by me, based on some ideas from Rafia Sabih and corrected by
Rafia Sabih based on feedback from Dilip Kumar and myself.

Discussion: http://postgr.es/m/CA+TgmobXEhvHbJtWDuPZM9bVSLiTj-kShxQJ2uM5GPDze9fRYA@mail.gmail.com
2017-03-23 13:14:36 -04:00
Robert Haas 355d3993c5 Add a Gather Merge executor node.
Like Gather, we spawn multiple workers and run the same plan in each
one; however, Gather Merge is used when each worker produces the same
output ordering and we want to preserve that output ordering while
merging together the streams of tuples from various workers.  (In a
way, Gather Merge is like a hybrid of Gather and MergeAppend.)

This works out to a win if it saves us from having to perform an
expensive Sort.  In cases where only a small amount of data would need
to be sorted, it may actually be faster to use a regular Gather node
and then sort the results afterward, because Gather Merge sometimes
needs to wait synchronously for tuples whereas a pure Gather generally
doesn't.  But if this avoids an expensive sort then it's a win.

Rushabh Lathia, reviewed and tested by Amit Kapila, Thomas Munro,
and Neha Sharma, and reviewed and revised by me.

Discussion: http://postgr.es/m/CAGPqQf09oPX-cQRpBKS0Gq49Z+m6KBxgxd_p9gX8CKk_d75HoQ@mail.gmail.com
2017-03-09 07:49:29 -05:00
Stephen Frost f9b1a0dd40 Expose explain's SUMMARY option
This exposes the existing explain summary option to users to allow them
to choose if they wish to have the planning time and totalled run time
included in the EXPLAIN result.  The existing default behavior is
retained if SUMMARY is not specified- running explain without analyze
will not print the summary lines (just the planning time, currently)
while running explain with analyze will include the summary lines (both
the planning time and the totalled execution time).

Users who wish to see the summary information for plain explain can now
use: EXPLAIN (SUMMARY ON) query;  Users who do not want to have the
summary printed for an analyze run can use:
EXPLAIN (ANALYZE ON, SUMMARY OFF) query;

With this, we can now also have EXPLAIN ANALYZE queries included in our
regression tests by using:
EXPLAIN (ANALYZE ON, TIMING OFF, SUMMARY off) query;

I went ahead and added an example of this, which will hopefully not make
the buildfarm complain.

Author: Ashutosh Bapat
Discussion: https://postgr.es/m/CAFjFpReE5z2h98U2Vuia8hcEkpRRwrauRjHmyE44hNv8-xk+XA@mail.gmail.com
2017-03-08 15:14:03 -05:00
Alvaro Herrera fcec6caafa Support XMLTABLE query expression
XMLTABLE is defined by the SQL/XML standard as a feature that allows
turning XML-formatted data into relational form, so that it can be used
as a <table primary> in the FROM clause of a query.

This new construct provides significant simplicity and performance
benefit for XML data processing; what in a client-side custom
implementation was reported to take 20 minutes can be executed in 400ms
using XMLTABLE.  (The same functionality was said to take 10 seconds
using nested PostgreSQL XPath function calls, and 5 seconds using
XMLReader under PL/Python).

The implemented syntax deviates slightly from what the standard
requires.  First, the standard indicates that the PASSING clause is
optional and that multiple XML input documents may be given to it; we
make it mandatory and accept a single document only.  Second, we don't
currently support a default namespace to be specified.

This implementation relies on a new executor node based on a hardcoded
method table.  (Because the grammar is fixed, there is no extensibility
in the current approach; further constructs can be implemented on top of
this such as JSON_TABLE, but they require changes to core code.)

Author: Pavel Stehule, Álvaro Herrera
Extensively reviewed by: Craig Ringer
Discussion: https://postgr.es/m/CAFj8pRAgfzMD-LoSmnMGybD0WsEznLHWap8DO79+-GTRAPR4qA@mail.gmail.com
2017-03-08 12:40:26 -03:00
Heikki Linnakangas 181bdb90ba Fix typos in comments.
Backpatch to all supported versions, where applicable, to make backpatching
of future fixes go more smoothly.

Josh Soref

Discussion: https://www.postgresql.org/message-id/CACZqfqCf+5qRztLPgmmosr-B0Ye4srWzzw_mo4c_8_B_mtjmJQ@mail.gmail.com
2017-02-06 11:33:58 +02:00
Tom Lane 7afd56c3c6 Use castNode() in a bunch of statement-list-related code.
When I wrote commit ab1f0c822, I really missed the castNode() macro that
Peter E. had proposed shortly before.  This back-fills the uses I would
have put it to.  It's probably not all that significant, but there are
more assertions here than there were before, and conceivably they will
help catch any bugs associated with those representation changes.

I left behind a number of usages like "(Query *) copyObject(query_var)".
Those could have been converted as well, but Peter has proposed another
notational improvement that would handle copyObject cases automatically,
so I let that be for now.
2017-01-26 22:09:34 -05:00
Andres Freund 9ba8a9ce45 Use the new castNode() macro in a number of places.
This is far from a pervasive conversion, but it's a good starting
point.

Author: Peter Eisentraut, with some minor changes by me
Reviewed-By: Tom Lane
Discussion: https://postgr.es/m/c5d387d9-3440-f5e0-f9d4-71d53b9fbe52@2ndquadrant.com
2017-01-26 16:47:03 -08:00
Andres Freund 69f4b9c85f Move targetlist SRF handling from expression evaluation to new executor node.
Evaluation of set returning functions (SRFs_ in the targetlist (like SELECT
generate_series(1,5)) so far was done in the expression evaluation (i.e.
ExecEvalExpr()) and projection (i.e. ExecProject/ExecTargetList) code.

This meant that most executor nodes performing projection, and most
expression evaluation functions, had to deal with the possibility that an
evaluated expression could return a set of return values.

That's bad because it leads to repeated code in a lot of places. It also,
and that's my (Andres's) motivation, made it a lot harder to implement a
more efficient way of doing expression evaluation.

To fix this, introduce a new executor node (ProjectSet) that can evaluate
targetlists containing one or more SRFs. To avoid the complexity of the old
way of handling nested expressions returning sets (e.g. having to pass up
ExprDoneCond, and dealing with arguments to functions returning sets etc.),
those SRFs can only be at the top level of the node's targetlist.  The
planner makes sure (via split_pathtarget_at_srfs()) that SRF evaluation is
only necessary in ProjectSet nodes and that SRFs are only present at the
top level of the node's targetlist. If there are nested SRFs the planner
creates multiple stacked ProjectSet nodes.  The ProjectSet nodes always get
input from an underlying node.

We also discussed and prototyped evaluating targetlist SRFs using ROWS
FROM(), but that turned out to be more complicated than we'd hoped.

While moving SRF evaluation to ProjectSet would allow to retain the old
"least common multiple" behavior when multiple SRFs are present in one
targetlist (i.e.  continue returning rows until all SRFs are at the end of
their input at the same time), we decided to instead only return rows till
all SRFs are exhausted, returning NULL for already exhausted ones.  We
deemed the previous behavior to be too confusing, unexpected and actually
not particularly useful.

As a side effect, the previously prohibited case of multiple set returning
arguments to a function, is now allowed. Not because it's particularly
desirable, but because it ends up working and there seems to be no argument
for adding code to prohibit it.

Currently the behavior for COALESCE and CASE containing SRFs has changed,
returning multiple rows from the expression, even when the SRF containing
"arm" of the expression is not evaluated. That's because the SRFs are
evaluated in a separate ProjectSet node.  As that's quite confusing, we're
likely to instead prohibit SRFs in those places.  But that's still being
discussed, and the code would reside in places not touched here, so that's
a task for later.

There's a lot of, now superfluous, code dealing with set return expressions
around. But as the changes to get rid of those are verbose largely boring,
it seems better for readability to keep the cleanup as a separate commit.

Author: Tom Lane and Andres Freund
Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
2017-01-18 13:40:27 -08:00
Tom Lane ab1f0c8225 Change representation of statement lists, and add statement location info.
This patch makes several changes that improve the consistency of
representation of lists of statements.  It's always been the case
that the output of parse analysis is a list of Query nodes, whatever
the types of the individual statements in the list.  This patch brings
similar consistency to the outputs of raw parsing and planning steps:

* The output of raw parsing is now always a list of RawStmt nodes;
the statement-type-dependent nodes are one level down from that.

* The output of pg_plan_queries() is now always a list of PlannedStmt
nodes, even for utility statements.  In the case of a utility statement,
"planning" just consists of wrapping a CMD_UTILITY PlannedStmt around
the utility node.  This list representation is now used in Portal and
CachedPlan plan lists, replacing the former convention of intermixing
PlannedStmts with bare utility-statement nodes.

Now, every list of statements has a consistent head-node type depending
on how far along it is in processing.  This allows changing many places
that formerly used generic "Node *" pointers to use a more specific
pointer type, thus reducing the number of IsA() tests and casts needed,
as well as improving code clarity.

Also, the post-parse-analysis representation of DECLARE CURSOR is changed
so that it looks more like EXPLAIN, PREPARE, etc.  That is, the contained
SELECT remains a child of the DeclareCursorStmt rather than getting flipped
around to be the other way.  It's now true for both Query and PlannedStmt
that utilityStmt is non-null if and only if commandType is CMD_UTILITY.
That allows simplifying a lot of places that were testing both fields.
(I think some of those were just defensive programming, but in many places,
it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.)

Because PlannedStmt carries a canSetTag field, we're also able to get rid
of some ad-hoc rules about how to reconstruct canSetTag for a bare utility
statement; specifically, the assumption that a utility is canSetTag if and
only if it's the only one in its list.  While I see no near-term need for
relaxing that restriction, it's nice to get rid of the ad-hocery.

The API of ProcessUtility() is changed so that what it's passed is the
wrapper PlannedStmt not just the bare utility statement.  This will affect
all users of ProcessUtility_hook, but the changes are pretty trivial; see
the affected contrib modules for examples of the minimum change needed.
(Most compilers should give pointer-type-mismatch warnings for uncorrected
code.)

There's also a change in the API of ExplainOneQuery_hook, to pass through
cursorOptions instead of expecting hook functions to know what to pick.
This is needed because of the DECLARE CURSOR changes, but really should
have been done in 9.6; it's unlikely that any extant hook functions
know about using CURSOR_OPT_PARALLEL_OK.

Finally, teach gram.y to save statement boundary locations in RawStmt
nodes, and pass those through to Query and PlannedStmt nodes.  This allows
more intelligent handling of cases where a source query string contains
multiple statements.  This patch doesn't actually do anything with the
information, but a follow-on patch will.  (Passing this information through
cleanly is the true motivation for these changes; while I think this is all
good cleanup, it's unlikely we'd have bothered without this end goal.)

catversion bump because addition of location fields to struct Query
affects stored rules.

This patch is by me, but it owes a good deal to Fabien Coelho who did
a lot of preliminary work on the problem, and also reviewed the patch.

Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
2017-01-14 16:02:35 -05:00
Bruce Momjian 1d25779284 Update copyright via script for 2017 2017-01-03 13:48:53 -05:00
Tom Lane 709e461bef Fix EXPLAIN so that it doesn't emit invalid XML in corner cases.
With track_io_timing = on, EXPLAIN (ANALYZE, BUFFERS) will emit fields
named like "I/O Read Time".  The slash makes that invalid as an XML
element name, so that adding FORMAT XML would produce invalid XML.

We already have code in there to translate spaces to dashes, so let's
generalize that to convert anything that isn't a valid XML name character,
viz letters, digits, hyphens, underscores, and periods.  We could just
reject slashes, which would run a bit faster.  But the fact that this went
unnoticed for so long doesn't give me a warm feeling that we'd notice the
next creative violation, so let's make it a permanent fix.

Reported by Markus Winand, though this isn't his initial patch proposal.

Back-patch to 9.2 where track_io_timing was added.  The problem is only
latent in 9.1, so I don't feel a need to fix it there.

Discussion: <E0BF6A45-68E8-45E6-918F-741FB332C6BB@winand.at>
2016-10-20 17:17:50 -04:00
Peter Eisentraut 49eb0fd097 Add location field to DefElem
Add a location field to the DefElem struct, used to parse many utility
commands.  Update various error messages to supply error position
information.

To propogate the error position information in a more systematic way,
create a ParseState in standard_ProcessUtility() and pass that to
interested functions implementing the utility commands.  This seems
better than passing the query string and then reassembling a parse state
ad hoc, which violates the encapsulation of the ParseState type.

Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
2016-09-06 12:00:00 -04:00
Tom Lane 4b234fd8bf Fix inappropriate printing of never-measured times in EXPLAIN.
EXPLAIN (ANALYZE, TIMING OFF) would print an elapsed time of zero for
a trigger function, because no measurement has been taken but it printed
the field anyway.  This isn't what EXPLAIN does elsewhere, so suppress it.

In the same vein, EXPLAIN (ANALYZE, BUFFERS) with non-text output format
would print buffer I/O timing numbers even when no measurement has been
taken because track_io_timing is off.  That seems not per policy, either,
so change it.

Back-patch to 9.2 where these features were introduced.

Maksim Milyutin

Discussion: <081c0540-ecaa-bd29-3fd2-6358f3b359a9@postgrespro.ru>
2016-08-12 12:13:04 -04:00
Tom Lane 4d042999f9 Print a given subplan only once in EXPLAIN.
We have, for a very long time, allowed the same subplan (same member of the
PlannedStmt.subplans list) to be referenced by more than one SubPlan node;
this avoids problems for cases such as subplans within an IndexScan's
indxqual and indxqualorig fields.  However, EXPLAIN had not gotten the memo
and would print each reference as though it were an independent identical
subplan.  To fix, track plan_ids of subplans we've printed and don't print
the same plan_id twice.  Per report from Pavel Stehule.

BTW: the particular case of IndexScan didn't cause visible duplication
in a plain EXPLAIN, only EXPLAIN ANALYZE, because in the former case we
short-circuit executor startup before the indxqual field is processed by
ExecInitExpr.  That seems like it could easily lead to other EXPLAIN
problems in future, but it's not clear how to avoid it without breaking
the "EXPLAIN a plan using hypothetical indexes" use-case.  For now I've
left that issue alone.

Although this is a longstanding bug, it's purely cosmetic (no great harm
is done by the repeat printout) and we haven't had field complaints before.
So I'm hesitant to back-patch it, especially since there is some small risk
of ABI problems due to the need to add a new field to ExplainState.

In passing, rearrange order of fields in ExplainState to be less random,
and update some obsolete comments about when/where to initialize them.

Report: <CAFj8pRAimq+NK-menjt+3J4-LFoodDD8Or6=Lc_stcFD+eD4DA@mail.gmail.com>
2016-07-11 18:14:29 -04:00
Tom Lane 8ebb69f854 Fix some infelicities in EXPLAIN output for parallel query plans.
In non-text output formats, parallelized aggregates were reporting
"Partial" or "Finalize" as a field named "Operation", which might be all
right in the absence of any context --- but other plan node types use that
field to report SQL-visible semantics, such as Select/Insert/Update/Delete.
So that naming choice didn't seem good to me.  I changed it to "Partial
Mode".

Also, the field did not appear at all for a non-parallelized Agg plan node,
which is contrary to expectation in non-text formats.  We're notionally
producing objects that conform to a schema, so the set of fields for a
given node type and EXPLAIN mode should be well-defined.  I set it up to
fill in "Simple" in such cases.

Other fields that were added for parallel query, namely "Parallel Aware"
and Gather's "Single Copy", had not gotten the word on that point either.
Make them appear always in non-text output.

Also, the latter two fields were nominally producing boolean output, but
were getting it wrong, because bool values shouldn't be quoted in JSON or
YAML.  Somehow we'd not needed an ExplainPropertyBool formatting subroutine
before 9.6; but now we do, so invent it.

Discussion: <16002.1466972724@sss.pgh.pa.us>
2016-06-29 18:51:20 -04:00
Tom Lane 19e972d558 Rethink node-level representation of partial-aggregation modes.
The original coding had three separate booleans representing partial
aggregation behavior, which was confusing, unreadable, and error-prone,
not least because the booleans weren't always listed in the same order.
It was also inadequate for the allegedly-desirable future extension to
support intermediate partial aggregation, because we'd need separate
markers for serialization and deserialization in such a case.

Merge these bools into an enum "AggSplit" to provide symbolic names for
the supported operating modes (and document what those are).  By assigning
the values of the enum constants carefully, we can treat AggSplit values
as options bitmasks so that tests of what to do aren't noticeably more
expensive than before.

While at it, get rid of Aggref.aggoutputtype.  That's not needed since
commit 59a3795c2 got rid of setrefs.c's special-purpose Aggref comparison
code, and it likewise seemed more confusing than helpful.

Assorted comment cleanup as well (there's still more that I want to do
in that line).

catversion bump for change in Aggref node contents.  Should be the last
one for partial-aggregation changes.

Discussion: <29309.1466699160@sss.pgh.pa.us>
2016-06-26 14:33:38 -04:00
Robert Haas 5702277ca9 Tweak EXPLAIN for parallel query to show workers launched.
The previous display was sort of confusing, because it didn't
distinguish between the number of workers that we planned to launch
and the number that actually got launched.  This has already confused
several people, so display both numbers and label them clearly.

Julien Rouhaud, reviewed by me.
2016-04-15 11:52:18 -04:00
Tom Lane de94e2af18 Run pgindent on a batch of (mostly-planner-related) source files.
Getting annoyed at the amount of unrelated chatter I get from pgindent'ing
Rowley's unique-joins patch.  Re-indent all the files it touches.
2016-04-06 11:34:02 -04:00
Robert Haas f9143d102f Rework custom scans to work more like the new extensible node stuff.
Per discussion, the new extensible node framework is thought to be
better designed than the custom path/scan/scanstate stuff we added
in PostgreSQL 9.5.  Rework the latter to be more like the former.

This is not backward-compatible, but we generally don't promise that
for C APIs, and there probably aren't many people using this yet
anyway.

KaiGai Kohei, reviewed by Petr Jelinek and me.  Some further
cosmetic changes by me.
2016-03-29 11:28:04 -04:00
Robert Haas 0bf3ae88af Directly modify foreign tables.
postgres_fdw can now sent an UPDATE or DELETE statement directly to
the foreign server in simple cases, rather than sending a SELECT FOR
UPDATE statement and then updating or deleting rows one-by-one.

Etsuro Fujita, reviewed by Rushabh Lathia, Shigeru Hanada, Kyotaro
Horiguchi, Albe Laurenz, Thom Brown, and me.
2016-03-18 13:55:52 -04:00
Robert Haas 270b7daf5c Fix EXPLAIN ANALYZE SELECT INTO not to choose a parallel plan.
We don't support any parallel write operations at present, so choosing
a parallel plan causes us to error out.  Also, add a new regression
test that uses EXPLAIN ANALYZE SELECT INTO; if we'd had this previously,
force_parallel_mode testing would have caught this issue.

Mithun Cy and Robert Haas
2016-03-14 19:48:46 -04:00
Robert Haas 7c944bd903 Introduce a new GUC force_parallel_mode for testing purposes.
When force_parallel_mode = true, we enable the parallel mode restrictions
for all queries for which this is believed to be safe.  For the subset of
those queries believed to be safe to run entirely within a worker, we spin
up a worker and run the query there instead of running it in the
original process.  When force_parallel_mode = regress, make additional
changes to allow the regression tests to run cleanly even though parallel
workers have been injected under the hood.

Taken together, this facilitates both better user testing and better
regression testing of the parallelism code.

Robert Haas, with help from Amit Kapila and Rushabh Lathia.
2016-02-07 11:41:33 -05:00
Robert Haas a7de3dc5c3 Support multi-stage aggregation.
Aggregate nodes now have two new modes: a "partial" mode where they
output the unfinalized transition state, and a "finalize" mode where
they accept unfinalized transition states rather than individual
values as input.

These new modes are not used anywhere yet, but they will be necessary
for parallel aggregation.  The infrastructure also figures to be
useful for cases where we want to aggregate local data and remote
data via the FDW interface, and want to bring back partial aggregates
from the remote side that can then be combined with locally generated
partial aggregates to produce the final value.  It may also be useful
even when neither FDWs nor parallelism are in play, as explained in
the comments in nodeAgg.c.

David Rowley and Simon Riggs, reviewed by KaiGai Kohei, Heikki
Linnakangas, Haribabu Kommi, and me.
2016-01-20 13:46:50 -05:00
Bruce Momjian ee94300446 Update copyright for 2016
Backpatch certain files through 9.1
2016-01-02 13:33:40 -05:00
Robert Haas b287df70e4 Allow EXPLAIN (ANALYZE, VERBOSE) to display per-worker statistics.
The original parallel sequential scan commit included only very limited
changes to the EXPLAIN output.  Aggregated totals from all workers were
displayed, but there was no way to see what each individual worker did
or to distinguish the effort made by the workers from the effort made by
the leader.

Per a gripe by Thom Brown (and maybe others).  Patch by me, reviewed
by Amit Kapila.
2015-12-09 13:21:19 -05:00
Robert Haas f0661c4e8c Make sequential scans parallel-aware.
In addition, this path fills in a number of missing bits and pieces in
the parallel infrastructure.  Paths and plans now have a parallel_aware
flag indicating whether whatever parallel-aware logic they have should
be engaged.  It is believed that we will need this flag for a number of
path/plan types, not just sequential scans, which is why the flag is
generic rather than part of the SeqScan structures specifically.
Also, execParallel.c now gives parallel nodes a chance to initialize
their PlanState nodes from the DSM during parallel worker startup.

Amit Kapila, with a fair amount of adjustment by me.  Review of previous
patch versions by Haribabu Kommi and others.
2015-11-11 08:57:52 -05:00
Robert Haas 3bd909b220 Add a Gather executor node.
A Gather executor node runs any number of copies of a plan in an equal
number of workers and merges all of the results into a single tuple
stream.  It can also run the plan itself, if the workers are
unavailable or haven't started up yet.  It is intended to work with
the Partial Seq Scan node which will be added in future commits.

It could also be used to implement parallel query of a different sort
by itself, without help from Partial Seq Scan, if the single_copy mode
is used.  In that mode, a worker executes the plan, and the parallel
leader does not, merely collecting the worker's results.  So, a Gather
node could be inserted into a plan to split the execution of that plan
across two processes.  Nested Gather nodes aren't currently supported,
but we might want to add support for that in the future.

There's nothing in the planner to actually generate Gather nodes yet,
so it's not quite time to break out the champagne.  But we're getting
close.

Amit Kapila.  Some designs suggestions were provided by me, and I also
reviewed the patch.  Single-copy mode, documentation, and other minor
changes also by me.
2015-09-30 19:23:36 -04:00
Robert Haas 8dd401aa07 Add new function planstate_tree_walker.
ExplainPreScanNode knows how to iterate over a generic tree of plan
states; factor that logic out into a separate walker function so that
other code, such as upcoming patches for parallel query, can also use
it.

Patch by me, reviewed by Tom Lane.
2015-09-17 11:27:06 -04:00
Robert Haas 7aea8e4f2d Determine whether it's safe to attempt a parallel plan for a query.
Commit 924bcf4f16 introduced a framework
for parallel computation in PostgreSQL that makes most but not all
built-in functions safe to execute in parallel mode.  In order to have
parallel query, we'll need to be able to determine whether that query
contains functions (either built-in or user-defined) that cannot be
safely executed in parallel mode.  This requires those functions to be
labeled, so this patch introduces an infrastructure for that.  Some
functions currently labeled as safe may need to be revised depending on
how pending issues related to heavyweight locking under paralllelism
are resolved.

Parallel plans can't be used except for the case where the query will
run to completion.  If portal execution were suspended, the parallel
mode restrictions would need to remain in effect during that time, but
that might make other queries fail.  Therefore, this patch introduces
a framework that enables consideration of parallel plans only when it
is known that the plan will be run to completion.  This probably needs
some refinement; for example, at bind time, we do not know whether a
query run via the extended protocol will be execution to completion or
run with a limited fetch count.  Having the client indicate its
intentions at bind time would constitute a wire protocol break.  Some
contexts in which parallel mode would be safe are not adjusted by this
patch; the default is not to try parallel plans except from call sites
that have been updated to say that such plans are OK.

This commit doesn't introduce any parallel paths or plans; it just
provides a way to determine whether they could potentially be used.
I'm committing it on the theory that the remaining parallel sequential
scan patches will also get committed to this release, hopefully in the
not-too-distant future.

Robert Haas and Amit Kapila.  Reviewed (in earlier versions) by Noah
Misch.
2015-09-16 15:38:47 -04:00
Tom Lane dd7a8f66ed Redesign tablesample method API, and do extensive code review.
The original implementation of TABLESAMPLE modeled the tablesample method
API on index access methods, which wasn't a good choice because, without
specialized DDL commands, there's no way to build an extension that can
implement a TSM.  (Raw inserts into system catalogs are not an acceptable
thing to do, because we can't undo them during DROP EXTENSION, nor will
pg_upgrade behave sanely.)  Instead adopt an API more like procedural
language handlers or foreign data wrappers, wherein the only SQL-level
support object needed is a single handler function identified by having
a special return type.  This lets us get rid of the supporting catalog
altogether, so that no custom DDL support is needed for the feature.

Adjust the API so that it can support non-constant tablesample arguments
(the original coding assumed we could evaluate the argument expressions at
ExecInitSampleScan time, which is undesirable even if it weren't outright
unsafe), and discourage sampling methods from looking at invisible tuples.
Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable
within and across queries, as required by the SQL standard, and deal more
honestly with methods that can't support that requirement.

Make a full code-review pass over the tablesample additions, and fix
assorted bugs, omissions, infelicities, and cosmetic issues (such as
failure to put the added code stanzas in a consistent ordering).
Improve EXPLAIN's output of tablesample plans, too.

Back-patch to 9.5 so that we don't have to support the original API
in production.
2015-07-25 14:39:00 -04:00
Robert Haas 5ca611841b Improve handling of CustomPath/CustomPlan(State) children.
Allow CustomPath to have a list of paths, CustomPlan a list of plans,
and CustomPlanState a list of planstates known to the core system, so
that custom path/plan providers can more reasonably use this
infrastructure for nodes with multiple children.

KaiGai Kohei, per a design suggestion from Tom Lane, with some
further kibitzing by me.
2015-06-26 09:40:47 -04:00
Bruce Momjian 807b9e0dff pgindent run for 9.5 2015-05-23 21:35:49 -04:00
Andres Freund f3d3118532 Support GROUPING SETS, CUBE and ROLLUP.
This SQL standard functionality allows to aggregate data by different
GROUP BY clauses at once. Each grouping set returns rows with columns
grouped by in other sets set to NULL.

This could previously be achieved by doing each grouping as a separate
query, conjoined by UNION ALLs. Besides being considerably more concise,
grouping sets will in many cases be faster, requiring only one scan over
the underlying data.

The current implementation of grouping sets only supports using sorting
for input. Individual sets that share a sort order are computed in one
pass. If there are sets that don't share a sort order, additional sort &
aggregation steps are performed. These additional passes are sourced by
the previous sort step; thus avoiding repeated scans of the source data.

The code is structured in a way that adding support for purely using
hash aggregation or a mix of hashing and sorting is possible. Sorting
was chosen to be supported first, as it is the most generic method of
implementation.

Instead of, as in an earlier versions of the patch, representing the
chain of sort and aggregation steps as full blown planner and executor
nodes, all but the first sort are performed inside the aggregation node
itself. This avoids the need to do some unusual gymnastics to handle
having to return aggregated and non-aggregated tuples from underlying
nodes, as well as having to shut down underlying nodes early to limit
memory usage.  The optimizer still builds Sort/Agg node to describe each
phase, but they're not part of the plan tree, but instead additional
data for the aggregation node. They're a convenient and preexisting way
to describe aggregation and sorting.  The first (and possibly only) sort
step is still performed as a separate execution step. That retains
similarity with existing group by plans, makes rescans fairly simple,
avoids very deep plans (leading to slow explains) and easily allows to
avoid the sorting step if the underlying data is sorted by other means.

A somewhat ugly side of this patch is having to deal with a grammar
ambiguity between the new CUBE keyword and the cube extension/functions
named cube (and rollup). To avoid breaking existing deployments of the
cube extension it has not been renamed, neither has cube been made a
reserved keyword. Instead precedence hacking is used to make GROUP BY
cube(..) refer to the CUBE grouping sets feature, and not the function
cube(). To actually group by a function cube(), unlikely as that might
be, the function name has to be quoted.

Needs a catversion bump because stored rules may change.

Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund
Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas
    Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule
Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com
2015-05-16 03:46:31 +02:00
Tom Lane 66493dd7aa Fix uninitialized variable.
Per compiler warnings.
2015-05-15 15:45:28 -04:00
Simon Riggs f6d208d6e5 TABLESAMPLE, SQL Standard and extensible
Add a TABLESAMPLE clause to SELECT statements that allows
user to specify random BERNOULLI sampling or block level
SYSTEM sampling. Implementation allows for extensible
sampling functions to be written, using a standard API.
Basic version follows SQLStandard exactly. Usable
concrete use cases for the sampling API follow in later
commits.

Petr Jelinek

Reviewed by Michael Paquier and Simon Riggs
2015-05-15 14:37:10 -04:00
Tom Lane 1a8a4e5cde Code review for foreign/custom join pushdown patch.
Commit e7cb7ee145 included some design
decisions that seem pretty questionable to me, and there was quite a lot
of stuff not to like about the documentation and comments.  Clean up
as follows:

* Consider foreign joins only between foreign tables on the same server,
rather than between any two foreign tables with the same underlying FDW
handler function.  In most if not all cases, the FDW would simply have had
to apply the same-server restriction itself (far more expensively, both for
lack of caching and because it would be repeated for each combination of
input sub-joins), or else risk nasty bugs.  Anyone who's really intent on
doing something outside this restriction can always use the
set_join_pathlist_hook.

* Rename fdw_ps_tlist/custom_ps_tlist to fdw_scan_tlist/custom_scan_tlist
to better reflect what they're for, and allow these custom scan tlists
to be used even for base relations.

* Change make_foreignscan() API to include passing the fdw_scan_tlist
value, since the FDW is required to set that.  Backwards compatibility
doesn't seem like an adequate reason to expect FDWs to set it in some
ad-hoc extra step, and anyway existing FDWs can just pass NIL.

* Change the API of path-generating subroutines of add_paths_to_joinrel,
and in particular that of GetForeignJoinPaths and set_join_pathlist_hook,
so that various less-used parameters are passed in a struct rather than
as separate parameter-list entries.  The objective here is to reduce the
probability that future additions to those parameter lists will result in
source-level API breaks for users of these hooks.  It's possible that this
is even a small win for the core code, since most CPU architectures can't
pass more than half a dozen parameters efficiently anyway.  I kept root,
joinrel, outerrel, innerrel, and jointype as separate parameters to reduce
code churn in joinpath.c --- in particular, putting jointype into the
struct would have been problematic because of the subroutines' habit of
changing their local copies of that variable.

* Avoid ad-hocery in ExecAssignScanProjectionInfo.  It was probably all
right for it to know about IndexOnlyScan, but if the list is to grow
we should refactor the knowledge out to the callers.

* Restore nodeForeignscan.c's previous use of the relcache to avoid
extra GetFdwRoutine lookups for base-relation scans.

* Lots of cleanup of documentation and missed comments.  Re-order some
code additions into more logical places.
2015-05-10 14:36:36 -04:00
Andres Freund 168d5805e4 Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE.
The newly added ON CONFLICT clause allows to specify an alternative to
raising a unique or exclusion constraint violation error when inserting.
ON CONFLICT refers to constraints that can either be specified using a
inference clause (by specifying the columns of a unique constraint) or
by naming a unique or exclusion constraint.  DO NOTHING avoids the
constraint violation, without touching the pre-existing row.  DO UPDATE
SET ... [WHERE ...] updates the pre-existing tuple, and has access to
both the tuple proposed for insertion and the existing tuple; the
optional WHERE clause can be used to prevent an update from being
executed.  The UPDATE SET and WHERE clauses have access to the tuple
proposed for insertion using the "magic" EXCLUDED alias, and to the
pre-existing tuple using the table name or its alias.

This feature is often referred to as upsert.

This is implemented using a new infrastructure called "speculative
insertion". It is an optimistic variant of regular insertion that first
does a pre-check for existing tuples and then attempts an insert.  If a
violating tuple was inserted concurrently, the speculatively inserted
tuple is deleted and a new attempt is made.  If the pre-check finds a
matching tuple the alternative DO NOTHING or DO UPDATE action is taken.
If the insertion succeeds without detecting a conflict, the tuple is
deemed inserted.

To handle the possible ambiguity between the excluded alias and a table
named excluded, and for convenience with long relation names, INSERT
INTO now can alias its target table.

Bumps catversion as stored rules change.

Author: Peter Geoghegan, with significant contributions from Heikki
    Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes.
Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs,
    Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:43:10 +02:00
Robert Haas e7cb7ee145 Allow FDWs and custom scan providers to replace joins with scans.
Foreign data wrappers can use this capability for so-called "join
pushdown"; that is, instead of executing two separate foreign scans
and then joining the results locally, they can generate a path which
performs the join on the remote server and then is scanned locally.
This commit does not extend postgres_fdw to take advantage of this
capability; it just provides the infrastructure.

Custom scan providers can use this in a similar way.  Previously,
it was only possible for a custom scan provider to scan a single
relation.  Now, it can scan an entire join tree, provided of course
that it knows how to produce the same results that the join would
have produced if executed normally.

KaiGai Kohei, reviewed by Shigeru Hanada, Ashutosh Bapat, and me.
2015-05-01 08:50:35 -04:00
Tom Lane cb1ca4d800 Allow foreign tables to participate in inheritance.
Foreign tables can now be inheritance children, or parents.  Much of the
system was already ready for this, but we had to fix a few things of
course, mostly in the area of planner and executor handling of row locks.

As side effects of this, allow foreign tables to have NOT VALID CHECK
constraints (and hence to accept ALTER ... VALIDATE CONSTRAINT), and to
accept ALTER SET STORAGE and ALTER SET WITH/WITHOUT OIDS.  Continuing to
disallow these things would've required bizarre and inconsistent special
cases in inheritance behavior.  Since foreign tables don't enforce CHECK
constraints anyway, a NOT VALID one is a complete no-op, but that doesn't
mean we shouldn't allow it.  And it's possible that some FDWs might have
use for SET STORAGE or SET WITH OIDS, though doubtless they will be no-ops
for most.

An additional change in support of this is that when a ModifyTable node
has multiple target tables, they will all now be explicitly identified
in EXPLAIN output, for example:

 Update on pt1  (cost=0.00..321.05 rows=3541 width=46)
   Update on pt1
   Foreign Update on ft1
   Foreign Update on ft2
   Update on child3
   ->  Seq Scan on pt1  (cost=0.00..0.00 rows=1 width=46)
   ->  Foreign Scan on ft1  (cost=100.00..148.03 rows=1170 width=46)
   ->  Foreign Scan on ft2  (cost=100.00..148.03 rows=1170 width=46)
   ->  Seq Scan on child3  (cost=0.00..25.00 rows=1200 width=46)

This was done mainly to provide an unambiguous place to attach "Remote SQL"
fields, but it is useful for inherited updates even when no foreign tables
are involved.

Shigeru Hanada and Etsuro Fujita, reviewed by Ashutosh Bapat and Kyotaro
Horiguchi, some additional hacking by me
2015-03-22 13:53:21 -04:00
Tom Lane abe45a9b31 Fix EXPLAIN output for cases where parent table is excluded by constraints.
The previous coding in EXPLAIN always labeled a ModifyTable node with the
name of the target table affected by its first child plan.  When originally
written, this was necessarily the parent table of the inheritance tree,
so everything was unconfusing.  But when we added NO INHERIT constraints,
it became possible for the parent table to be deleted from the plan by
constraint exclusion while still leaving child tables present.  This led to
the ModifyTable plan node being labeled with the first surviving child,
which was deemed confusing.  Fix it by retaining the parent table's RT
index in a new field in ModifyTable.

Etsuro Fujita, reviewed by Ashutosh Bapat and myself
2015-02-17 18:04:11 -05:00
Tom Lane 20af53d719 Show sort ordering options in EXPLAIN output.
Up to now, EXPLAIN has contented itself with printing the sort expressions
in a Sort or Merge Append plan node.  This patch improves that by
annotating the sort keys with COLLATE, DESC, USING, and/or NULLS FIRST/LAST
whenever nondefault sort ordering options are used.  The output is now a
reasonably close approximation of an ORDER BY clause equivalent to the
plan's ordering.

Marius Timmer, Lukas Kreft, and Arne Scheffer; reviewed by Mike Blackwell.
Some additional hacking by me.
2015-01-16 18:19:00 -05:00
Tom Lane 8e166e164c Rearrange explain.c's API so callers need not embed sizeof(ExplainState).
The folly of the previous arrangement was just demonstrated: there's no
convenient way to add fields to ExplainState without breaking ABI, even
if callers have no need to touch those fields.  Since we might well need
to do that again someday in back branches, let's change things so that
only explain.c has to have sizeof(ExplainState) compiled into it.  This
costs one extra palloc() per EXPLAIN operation, which is surely pretty
negligible.
2015-01-15 13:39:33 -05:00
Tom Lane a5cd70dcbc Improve performance of EXPLAIN with large range tables.
As of 9.3, ruleutils.c goes to some lengths to ensure that table and column
aliases used in its output are unique.  Of course this takes more time than
was required before, which in itself isn't fatal.  However, EXPLAIN was set
up so that recalculation of the unique aliases was repeated for each
subexpression printed in a plan.  That results in O(N^2) time and memory
consumption for large plan trees, which did not happen in older branches.

Fortunately, the expensive work is the same across a whole plan tree,
so there is no need to repeat it; we can do most of the initialization
just once per query and re-use it for each subexpression.  This buys
back most (not all) of the performance loss since 9.2.

We need an extra ExplainState field to hold the precalculated deparse
context.  That's no problem in HEAD, but in the back branches, expanding
sizeof(ExplainState) seems risky because third-party extensions might
have local variables of that struct type.  So, in 9.4 and 9.3, introduce
an auxiliary struct to keep sizeof(ExplainState) the same.  We should
refactor the APIs to avoid such local variables in future, but that's
material for a separate HEAD-only commit.

Per gripe from Alexey Bashtanov.  Back-patch to 9.3 where the issue
was introduced.
2015-01-15 13:18:12 -05:00
Bruce Momjian 4baaf863ec Update copyright for 2015
Backpatch certain files through 9.0
2015-01-06 11:43:47 -05:00
Fujii Masao 26674c923d Remove odd blank line in comment.
Etsuro Fujita
2014-12-18 17:33:38 +09:00
Tom Lane f9e0255c6f Add missing case for CustomScan.
Per KaiGai Kohei.

In passing improve formatting of some code added in commit 30d7ae3c,
because otherwise pgindent will make a mess of it.
2014-11-20 12:32:34 -05:00
Robert Haas 0b03e5951b Introduce custom path and scan providers.
This allows extension modules to define their own methods for
scanning a relation, and get the core code to use them.  It's
unclear as yet how much use this capability will find, but we
won't find out if we never commit it.

KaiGai Kohei, reviewed at various times and in various levels
of detail by Shigeru Hanada, Tom Lane, Andres Freund, Álvaro
Herrera, and myself.
2014-11-07 17:34:36 -05:00
Tom Lane 90063a7612 Print planning time only in EXPLAIN ANALYZE, not plain EXPLAIN.
We've gotten enough push-back on that change to make it clear that it
wasn't an especially good idea to do it like that.  Revert plain EXPLAIN
to its previous behavior, but keep the extra output in EXPLAIN ANALYZE.
Per discussion.

Internally, I set this up as a separate flag ExplainState.summary that
controls printing of planning time and execution time.  For now it's
just copied from the ANALYZE option, but we could consider exposing it
to users.
2014-10-15 18:50:13 -04:00
Kevin Grittner 30d7ae3c76 Increase number of hash join buckets for underestimate.
If we expect batching at the very beginning, we size nbuckets for
"full work_mem" (see how many tuples we can get into work_mem,
while not breaking NTUP_PER_BUCKET threshold).

If we expect to be fine without batching, we start with the 'right'
nbuckets and track the optimal nbuckets as we go (without actually
resizing the hash table). Once we hit work_mem (considering the
optimal nbuckets value), we keep the value.

At the end of the first batch, we check whether (nbuckets !=
nbuckets_optimal) and resize the hash table if needed. Also, we
keep this value for all batches (it's OK because it assumes full
work_mem, and it makes the batchno evaluation trivial). So the
resize happens only once.

There could be cases where it would improve performance to allow
the NTUP_PER_BUCKET threshold to be exceeded to keep everything in
one batch rather than spilling to a second batch, but attempts to
generate such a case have so far been unsuccessful; that issue may
be addressed with a follow-on patch after further investigation.

Tomas Vondra with minor format and comment cleanup by me
Reviewed by Robert Haas, Heikki Linnakangas, and Kevin Grittner
2014-10-13 10:16:36 -05:00
Alvaro Herrera 7b1c2a0f20 Split builtins.h to a new header ruleutils.h
The new header contains many prototypes for functions in ruleutils.c
that are not exposed to the SQL level.

Reviewed by Andres Freund and Michael Paquier.
2014-10-08 18:10:47 -03:00
Fujii Masao d4635b16fe Prevent bitmap heap scans from showing unnecessary block info in EXPLAIN ANALYZE.
EXPLAIN ANALYZE shows the information of the numbers of exact/lossy blocks which
bitmap heap scan processes. But, previously, when those numbers were both zero,
it displayed only the prefix "Heap Blocks:" in TEXT output format. This is strange
and would confuse the users. So this commit suppresses such unnecessary information.

Backpatch to 9.4 where EXPLAIN ANALYZE was changed so that such information was
displayed.

Etsuro Fujita
2014-07-14 20:40:14 +09:00
Tom Lane e416830a29 Prevent auto_explain from changing the output of a user's EXPLAIN.
Commit af7914c662, which introduced the
EXPLAIN (TIMING) option, for some reason coded explain.c to look at
planstate->instrument->need_timer rather than es->timing to decide
whether to print timing info.  However, the former flag might get set
as a result of contrib/auto_explain wanting timing information.  We
certainly don't want activation of auto_explain to change user-visible
statement behavior, so fix that.

Also fix an independent bug introduced in the same patch: in the code
path for a never-executed node with a machine-friendly output format,
if timing was selected, it would fail to print the Actual Rows and Actual
Loops items.

Per bug #10404 from Tomonari Katsumata.  Back-patch to 9.2 where the
faulty code was introduced.
2014-05-20 12:20:47 -04:00