Commit Graph

322 Commits

Author SHA1 Message Date
Peter Eisentraut 4cb824699e Cast result of copyObject() to correct type
copyObject() is declared to return void *, which allows easily assigning
the result independent of the input, but it loses all type checking.

If the compiler supports typeof or something similar, cast the result to
the input type.  This creates a greater amount of type safety.  In some
cases, where the result is assigned to a generic type such as Node * or
Expr *, new casts are now necessary, but in general casts are now
unnecessary in the normal case and indicate that something unusual is
happening.

Reviewed-by: Mark Dilger <hornschnorter@gmail.com>
2017-03-28 21:59:23 -04:00
Robert Haas f35742ccb7 Support parallel bitmap heap scans.
The index is scanned by a single process, but then all cooperating
processes can iterate jointly over the resulting set of heap blocks.
In the future, we might also want to support using a parallel bitmap
index scan to set up for a parallel bitmap heap scan, but that's a
job for another day.

Dilip Kumar, with some corrections and cosmetic changes by me.  The
larger patch set of which this is a part has been reviewed and tested
by (at least) Andres Freund, Amit Khandekar, Tushar Ahuja, Rafia
Sabih, Haribabu Kommi, Thomas Munro, and me.

Discussion: http://postgr.es/m/CAFiTN-uc4=0WxRGfCzs-xfkMYcSEWUC-Fon6thkJGjkh9i=13A@mail.gmail.com
2017-03-08 12:05:43 -05:00
Tom Lane c56ac2913a Suppress unused-variable warning.
Rearrange so we don't have an unused variable in disable-cassert case.

Discussion: https://postgr.es/m/CAMkU=1x63f2QyFTeas83xJqD+Hm1PBuok1LrzYzS-OngDzYOVA@mail.gmail.com
2017-02-21 17:58:24 -05:00
Peter Eisentraut 38d103763d Make more use of castNode() 2017-02-21 11:59:09 -05:00
Robert Haas 0414b26bac Add optimizer and executor support for parallel index-only scans.
Commit 5262f7a4fc added similar support
for parallel index scans; this extends that work to index-only scans.
As with parallel index scans, this requires support from the index AM,
so currently parallel index-only scans will only be possible for btree
indexes.

Rafia Sabih, reviewed and tested by Rahila Syed, Tushar Ahuja,
and Amit Kapila

Discussion: http://postgr.es/m/CAOGQiiPEAs4C=TBp0XShxBvnWXuzGL2u++Hm1=qnCpd6_Mf8Fw@mail.gmail.com
2017-02-19 15:57:55 +05:30
Robert Haas 5262f7a4fc Add optimizer and executor support for parallel index scans.
In combination with 569174f1be, which
taught the btree AM how to perform parallel index scans, this allows
parallel index scan plans on btree indexes.  This infrastructure
should be general enough to support parallel index scans for other
index AMs as well, if someone updates them to support parallel
scans.

Amit Kapila, reviewed and tested by Anastasia Lubennikova, Tushar
Ahuja, and Haribabu Kommi, and me.
2017-02-15 13:53:24 -05:00
Tom Lane 215b43cdc8 Improve RLS planning by marking individual quals with security levels.
In an RLS query, we must ensure that security filter quals are evaluated
before ordinary query quals, in case the latter contain "leaky" functions
that could expose the contents of sensitive rows.  The original
implementation of RLS planning ensured this by pushing the scan of a
secured table into a sub-query that it marked as a security-barrier view.
Unfortunately this results in very inefficient plans in many cases, because
the sub-query cannot be flattened and gets planned independently of the
rest of the query.

To fix, drop the use of sub-queries to enforce RLS qual order, and instead
mark each qual (RestrictInfo) with a security_level field establishing its
priority for evaluation.  Quals must be evaluated in security_level order,
except that "leakproof" quals can be allowed to go ahead of quals of lower
security_level, if it's helpful to do so.  This has to be enforced within
the ordering of any one list of quals to be evaluated at a table scan node,
and we also have to ensure that quals are not chosen for early evaluation
(i.e., use as an index qual or TID scan qual) if they're not allowed to go
ahead of other quals at the scan node.

This is sufficient to fix the problem for RLS quals, since we only support
RLS policies on simple tables and thus RLS quals will always exist at the
table scan level only.  Eventually these qual ordering rules should be
enforced for join quals as well, which would permit improving planning for
explicit security-barrier views; but that's a task for another patch.

Note that FDWs would need to be aware of these rules --- and not, for
example, send an insecure qual for remote execution --- but since we do
not yet allow RLS policies on foreign tables, the case doesn't arise.
This will need to be addressed before we can allow such policies.

Patch by me, reviewed by Stephen Frost and Dean Rasheed.

Discussion: https://postgr.es/m/8185.1477432701@sss.pgh.pa.us
2017-01-18 12:58:20 -05:00
Tom Lane 0777f7a2e8 Fix matching of boolean index columns to sort ordering.
Normally, if we have a WHERE clause like "indexcol = constant",
the planner will figure out that that index column can be ignored
when determining whether the index has a desired sort ordering.
But this failed to work for boolean index columns, because a
condition like "boolcol = true" is canonicalized to just "boolcol"
which does not give rise to an EquivalenceClass.  Add a check to
allow the same type of deduction to be made in this case too.

Per a complaint from Dima Pavlov.  Arguably this is a bug, but given the
limited impact and the small number of complaints so far, I won't risk
destabilizing plans in stable branches by back-patching.

Patch by me, reviewed by Michael Paquier

Discussion: https://postgr.es/m/1788.1481605684@sss.pgh.pa.us
2017-01-15 14:09:35 -05:00
Bruce Momjian 1d25779284 Update copyright via script for 2017 2017-01-03 13:48:53 -05:00
Teodor Sigaev 8b99edefca Revert CREATE INDEX ... INCLUDING ...
It's not ready yet, revert two commits
690c543550 - unstable test output
386e3d7609 - patch itself
2016-04-08 21:52:13 +03:00
Teodor Sigaev 386e3d7609 CREATE INDEX ... INCLUDING (column[, ...])
Now indexes (but only B-tree for now) can contain "extra" column(s) which
doesn't participate in index structure, they are just stored in leaf
tuples. It allows to use index only scan by using single index instead
of two or more indexes.

Author: Anastasia Lubennikova with minor editorializing by me
Reviewers: David Rowley, Peter Geoghegan, Jeff Janes
2016-04-08 19:45:59 +03:00
Tom Lane f9aefcb91f Support using index-only scans with partial indexes in more cases.
Previously, the planner would reject an index-only scan if any restriction
clause for its table used a column not available from the index, even
if that restriction clause would later be dropped from the plan entirely
because it's implied by the index's predicate.  This is a fairly common
situation for partial indexes because predicates using columns not included
in the index are often the most useful kind of predicate, and we have to
duplicate (or at least imply) the predicate in the WHERE clause in order
to get the index to be considered at all.  So index-only scans were
essentially unavailable with such partial indexes.

To fix, we have to do detection of implied-by-predicate clauses much
earlier in the planner.  This patch puts it in check_index_predicates
(nee check_partial_indexes), meaning it gets done for every partial index,
whereas we previously only considered this issue at createplan time,
so that the work was only done for an index actually selected for use.
That could result in a noticeable planning slowdown for queries against
tables with many partial indexes.  However, testing suggested that there
isn't really a significant cost, especially not with reasonable numbers
of partial indexes.  We do get a small additional benefit, which is that
cost_index is more accurate since it correctly discounts the evaluation
cost of clauses that will be removed.  We can also avoid considering such
clauses as potential indexquals, which saves useless matching cycles in
the case where the predicate columns aren't in the index, and prevents
generating bogus plans that double-count the clause's selectivity when
the columns are in the index.

Tomas Vondra and Kyotaro Horiguchi, reviewed by Kevin Grittner and
Konstantin Knizhnik, and whacked around a little by me
2016-03-31 14:49:10 -04:00
Tom Lane 307c78852f Rethink representation of PathTargets.
In commit 19a541143a I did not make PathTarget a subtype of Node,
and embedded a RelOptInfo's reltarget directly into it rather than having
a separately-allocated Node.  In hindsight that was misguided
micro-optimization, enabled by the fact that at that point we didn't have
any Paths with custom PathTargets.  Now that PathTarget processing has
been fleshed out some more, it's easier to see that it's better to have
PathTarget as an indepedent Node type, even if it does cost us one more
palloc to create a RelOptInfo.  So change it while we still can.

This commit just changes the representation, without doing anything more
interesting than that.
2016-03-14 16:59:59 -04:00
Tom Lane 19a541143a Add an explicit representation of the output targetlist to Paths.
Up to now, there's been an assumption that all Paths for a given relation
compute the same output column set (targetlist).  However, there are good
reasons to remove that assumption.  For example, an indexscan on an
expression index might be able to return the value of an expensive function
"for free".  While we have the ability to generate such a plan today in
simple cases, we don't have a way to model that it's cheaper than a plan
that computes the function from scratch, nor a way to create such a plan
in join cases (where the function computation would normally happen at
the topmost join node).  Also, we need this so that we can have Paths
representing post-scan/join steps, where the targetlist may well change
from one step to the next.  Therefore, invent a "struct PathTarget"
representing the columns we expect a plan step to emit.  It's convenient
to include the output tuple width and tlist evaluation cost in this struct,
and there will likely be additional fields in future.

While Path nodes that actually do have custom outputs will need their own
PathTargets, it will still be true that most Paths for a given relation
will compute the same tlist.  To reduce the overhead added by this patch,
keep a "default PathTarget" in RelOptInfo, and allow Paths that compute
that column set to just point to their parent RelOptInfo's reltarget.
(In the patch as committed, actually every Path is like that, since we
do not yet have any cases of custom PathTargets.)

I took this opportunity to provide some more-honest costing of
PlaceHolderVar evaluation.  Up to now, the assumption that "scan/join
reltargetlists have cost zero" was applied not only to Vars, where it's
reasonable, but also PlaceHolderVars where it isn't.  Now, we add the eval
cost of a PlaceHolderVar's expression to the first plan level where it can
be computed, by including it in the PathTarget cost field and adding that
to the cost estimates for Paths.  This isn't perfect yet but it's much
better than before, and there is a way forward to improve it more.  This
costing change affects the join order chosen for a couple of the regression
tests, changing expected row ordering.
2016-02-18 20:02:03 -05:00
Bruce Momjian ee94300446 Update copyright for 2016
Backpatch certain files through 9.1
2016-01-02 13:33:40 -05:00
Heikki Linnakangas 4fc72cc7bb Collection of typo fixes.
Use "a" and "an" correctly, mostly in comments. Two error messages were
also fixed (they were just elogs, so no translation work required). Two
function comments in pg_proc.h were also fixed. Etsuro Fujita reported one
of these, but I found a lot more with grep.

Also fix a few other typos spotted while grepping for the a/an typos.
For example, "consists out of ..." -> "consists of ...". Plus a "though"/
"through" mixup reported by Euler Taveira.

Many of these typos were in old code, which would be nice to backpatch to
make future backpatching easier. But much of the code was new, and I didn't
feel like crafting separate patches for each branch. So no backpatching.
2015-05-20 16:56:22 +03:00
Andres Freund f3d3118532 Support GROUPING SETS, CUBE and ROLLUP.
This SQL standard functionality allows to aggregate data by different
GROUP BY clauses at once. Each grouping set returns rows with columns
grouped by in other sets set to NULL.

This could previously be achieved by doing each grouping as a separate
query, conjoined by UNION ALLs. Besides being considerably more concise,
grouping sets will in many cases be faster, requiring only one scan over
the underlying data.

The current implementation of grouping sets only supports using sorting
for input. Individual sets that share a sort order are computed in one
pass. If there are sets that don't share a sort order, additional sort &
aggregation steps are performed. These additional passes are sourced by
the previous sort step; thus avoiding repeated scans of the source data.

The code is structured in a way that adding support for purely using
hash aggregation or a mix of hashing and sorting is possible. Sorting
was chosen to be supported first, as it is the most generic method of
implementation.

Instead of, as in an earlier versions of the patch, representing the
chain of sort and aggregation steps as full blown planner and executor
nodes, all but the first sort are performed inside the aggregation node
itself. This avoids the need to do some unusual gymnastics to handle
having to return aggregated and non-aggregated tuples from underlying
nodes, as well as having to shut down underlying nodes early to limit
memory usage.  The optimizer still builds Sort/Agg node to describe each
phase, but they're not part of the plan tree, but instead additional
data for the aggregation node. They're a convenient and preexisting way
to describe aggregation and sorting.  The first (and possibly only) sort
step is still performed as a separate execution step. That retains
similarity with existing group by plans, makes rescans fairly simple,
avoids very deep plans (leading to slow explains) and easily allows to
avoid the sorting step if the underlying data is sorted by other means.

A somewhat ugly side of this patch is having to deal with a grammar
ambiguity between the new CUBE keyword and the cube extension/functions
named cube (and rollup). To avoid breaking existing deployments of the
cube extension it has not been renamed, neither has cube been made a
reserved keyword. Instead precedence hacking is used to make GROUP BY
cube(..) refer to the CUBE grouping sets feature, and not the function
cube(). To actually group by a function cube(), unlikely as that might
be, the function name has to be quoted.

Needs a catversion bump because stored rules may change.

Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund
Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas
    Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule
Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com
2015-05-16 03:46:31 +02:00
Alvaro Herrera 26df7066cc Move strategy numbers to include/access/stratnum.h
For upcoming BRIN opclasses, it's convenient to have strategy numbers
defined in a single place.  Since there's nothing appropriate, create
it.  The StrategyNumber typedef now lives there, as well as existing
strategy numbers for B-trees (from skey.h) and R-tree-and-friends (from
gist.h).  skey.h is forced to include stratnum.h because of the
StrategyNumber typedef, but gist.h is not; extensions that currently
rely on gist.h for rtree strategy numbers might need to add a new

A few .c files can stop including skey.h and/or gist.h, which is a nice
side benefit.

Per discussion:
https://www.postgresql.org/message-id/20150514232132.GZ2523@alvh.no-ip.org

Authored by Emre Hasegeli and Álvaro.

(It's not clear to me why bootscanner.l has any #include lines at all.)
2015-05-15 17:03:16 -03:00
Heikki Linnakangas d04c8ed904 Add support for index-only scans in GiST.
This adds a new GiST opclass method, 'fetch', which is used to reconstruct
the original Datum from the value stored in the index. Also, the 'canreturn'
index AM interface function gains a new 'attno' argument. That makes it
possible to use index-only scans on a multi-column index where some of the
opclasses support index-only scans but some do not.

This patch adds support in the box and point opclasses. Other opclasses
can added later as follow-on patches (btree_gist would be particularly
interesting).

Anastasia Lubennikova, with additional fixes and modifications by me.
2015-03-26 19:12:00 +02:00
Tom Lane b746d0c32d Fix old bug in get_loop_count().
While poking at David Kubečka's issue I noticed an ancient logic error
in get_loop_count(): it used 1.0 as a "no data yet" indicator, but since
that is actually a valid rowcount estimate, this doesn't work.  If we
have one input relation with 1.0 as rowcount and then another one with
a larger rowcount, we should use 1.0 as the result, but we picked the
larger rowcount instead.  (I think when I coded this, I recognized the
conflict, but mistakenly thought that the logic would pick the desired
count anyway.)

Fixing this changed the plan for one existing regression test case.
Since the point of that test is to exercise creation of a particular
shape of nestloop plan, I tweaked the query a little bit so it still
results in the same plan choice.

This is definitely a bug, but I'm hesitant to back-patch since it might
change plan choices unexpectedly, and anyway failure to implement a
heuristic precisely as intended is a pretty low-grade bug.
2015-03-11 22:53:32 -04:00
Tom Lane b55722692b Improve planner's cost estimation in the presence of semijoins.
If we have a semijoin, say
	SELECT * FROM x WHERE x1 IN (SELECT y1 FROM y)
and we're estimating the cost of a parameterized indexscan on x, the number
of repetitions of the indexscan should not be taken as the size of y; it'll
really only be the number of distinct values of y1, because the only valid
plan with y on the outside of a nestloop would require y to be unique-ified
before joining it to x.  Most of the time this doesn't make that much
difference, but sometimes it can lead to drastically underestimating the
cost of the indexscan and hence choosing a bad plan, as pointed out by
David Kubečka.

Fixing this is a bit difficult because parameterized indexscans are costed
out quite early in the planning process, before we have the information
that would be needed to call estimate_num_groups() and thereby estimate the
number of distinct values of the join column(s).  However we can move the
code that extracts a semijoin RHS's unique-ification columns, so that it's
done in initsplan.c rather than on-the-fly in create_unique_path().  That
shouldn't make any difference speed-wise and it's really a bit cleaner too.

The other bit of information we need is the size of the semijoin RHS,
which is easy if it's a single relation (we make those estimates before
considering indexscan costs) but problematic if it's a join relation.
The solution adopted here is just to use the product of the sizes of the
join component rels.  That will generally be an overestimate, but since
estimate_num_groups() only uses this input as a clamp, an overestimate
shouldn't hurt us too badly.  In any case we don't allow this new logic
to produce a value larger than we would have chosen before, so that at
worst an overestimate leaves us no wiser than we were before.
2015-03-11 21:21:00 -04:00
Bruce Momjian 4baaf863ec Update copyright for 2015
Backpatch certain files through 9.0
2015-01-06 11:43:47 -05:00
Tom Lane f4e031c662 Add bms_next_member(), and use it where appropriate.
This patch adds a way of iterating through the members of a bitmapset
nondestructively, unlike the old way with bms_first_member().  While
bms_next_member() is very slightly slower than bms_first_member()
(at least for typical-size bitmapsets), eliminating the need to palloc
and pfree a temporary copy of the target bitmapset is a significant win.
So this method should be preferred in all cases where a temporary copy
would be necessary.

Tom Lane, with suggestions from Dean Rasheed and David Rowley
2014-11-28 13:37:25 -05:00
Tom Lane a4523c5aa5 Improve planning of btree index scans using ScalarArrayOpExpr quals.
Since we taught btree to handle ScalarArrayOpExpr quals natively (commit
9e8da0f757), the planner has always included
ScalarArrayOpExpr quals in index conditions if possible.  However, if the
qual is for a non-first index column, this could result in an inferior plan
because we can no longer take advantage of index ordering (cf. commit
807a40c551).  It can be better to omit the
ScalarArrayOpExpr qual from the index condition and let it be done as a
filter, so that the output doesn't need to get sorted.  Indeed, this is
true for the query introduced as a test case by the latter commit.

To fix, restructure get_index_paths and build_index_paths so that we
consider paths both with and without ScalarArrayOpExpr quals in non-first
index columns.  Redesign the API of build_index_paths so that it reports
what it found, saving useless second or third calls.

Report and patch by Andrew Gierth (though rather heavily modified by me).
Back-patch to 9.2 where this code was introduced, since the issue can
result in significant performance regressions compared to plans produced
by 9.1 and earlier.
2014-10-26 16:12:22 -04:00
Tom Lane 5a6c168c78 Fix some more problems with nested append relations.
As of commit a87c72915 (which later got backpatched as far as 9.1),
we're explicitly supporting the notion that append relations can be
nested; this can occur when UNION ALL constructs are nested, or when
a UNION ALL contains a table with inheritance children.

Bug #11457 from Nelson Page, as well as an earlier report from Elvis
Pranskevichus, showed that there were still nasty bugs associated with such
cases: in particular the EquivalenceClass mechanism could try to generate
"join" clauses connecting an appendrel child to some grandparent appendrel,
which would result in assertion failures or bogus plans.

Upon investigation I concluded that all current callers of
find_childrel_appendrelinfo() need to be fixed to explicitly consider
multiple levels of parent appendrels.  The most complex fix was in
processing of "broken" EquivalenceClasses, which are ECs for which we have
been unable to generate all the derived equality clauses we would like to
because of missing cross-type equality operators in the underlying btree
operator family.  That code path is more or less entirely untested by
the regression tests to date, because no standard opfamilies have such
holes in them.  So I wrote a new regression test script to try to exercise
it a bit, which turned out to be quite a worthwhile activity as it exposed
existing bugs in all supported branches.

The present patch is essentially the same as far back as 9.2, which is
where parameterized paths were introduced.  In 9.0 and 9.1, we only need
to back-patch a small fragment of commit 5b7b5518d, which fixes failure to
propagate out the original WHERE clauses when a broken EC contains constant
members.  (The regression test case results show that these older branches
are noticeably stupider than 9.2+ in terms of the quality of the plans
generated; but we don't really care about plan quality in such cases,
only that the plan not be outright wrong.  A more invasive fix in the
older branches would not be a good idea anyway from a plan-stability
standpoint.)
2014-10-01 19:31:12 -04:00
Bruce Momjian 0a78320057 pgindent run for 9.4
This includes removing tabs after periods in C comments, which was
applied to back branches, so this change should not effect backpatching.
2014-05-06 12:12:18 -04:00
Bruce Momjian 7e04792a1c Update copyright for 2014
Update all files in head, and files COPYRIGHT and legal.sgml in all back
branches.
2014-01-07 16:05:30 -05:00
Tom Lane f7fbf4b0be Remove dead code now that orindxpath.c is history.
We don't need make_restrictinfo_from_bitmapqual() anymore at all.
generate_bitmap_or_paths() doesn't need to be exported, and we can
drop its rather klugy restriction_only flag.
2013-12-30 12:50:31 -05:00
Tom Lane f343a880d5 Extract restriction OR clauses whether or not they are indexable.
It's possible to extract a restriction OR clause from a join clause that
has the form of an OR-of-ANDs, if each sub-AND includes a clause that
mentions only one specific relation.  While PG has been aware of that idea
for many years, the code previously only did it if it could extract an
indexable OR clause.  On reflection, though, that seems a silly limitation:
adding a restriction clause can be a win by reducing the number of rows
that have to be filtered at the join step, even if we have to test the
clause as a plain filter clause during the scan.  This should be especially
useful for foreign tables, where the change can cut the number of rows that
have to be retrieved from the foreign server; but testing shows it can win
even on local tables.  Per a suggestion from Robert Haas.

As a heuristic, I made the code accept an extracted restriction clause
if its estimated selectivity is less than 0.9, which will probably result
in accepting extracted clauses just about always.  We might need to tweak
that later based on experience.

Since the code no longer has even a weak connection to Path creation,
remove orindxpath.c and create a new file optimizer/util/orclauses.c.

There's some additional janitorial cleanup of now-dead code that needs
to happen, but it seems like that's a fit subject for a separate commit.
2013-12-30 12:24:37 -05:00
Tom Lane 9e7e29c75a Fix planner problems with LATERAL references in PlaceHolderVars.
The planner largely failed to consider the possibility that a
PlaceHolderVar's expression might contain a lateral reference to a Var
coming from somewhere outside the PHV's syntactic scope.  We had a previous
report of a problem in this area, which I tried to fix in a quick-hack way
in commit 4da6439bd8, but Antonin Houska
pointed out that there were still some problems, and investigation turned
up other issues.  This patch largely reverts that commit in favor of a more
thoroughly thought-through solution.  The new theory is that a PHV's
ph_eval_at level cannot be higher than its original syntactic level.  If it
contains lateral references, those don't change the ph_eval_at level, but
rather they create a lateral-reference requirement for the ph_eval_at join
relation.  The code in joinpath.c needs to handle that.

Another issue is that createplan.c wasn't handling nested PlaceHolderVars
properly.

In passing, push knowledge of lateral-reference checks for join clauses
into join_clause_is_movable_to.  This is mainly so that FDWs don't need
to deal with it.

This patch doesn't fix the original join-qual-placement problem reported by
Jeremy Evans (and indeed, one of the new regression test cases shows the
wrong answer because of that).  But the PlaceHolderVar problems need to be
fixed before that issue can be addressed, so committing this separately
seems reasonable.
2013-08-17 20:22:37 -04:00
Bruce Momjian 9af4159fce pgindent run for release 9.3
This is the first run of the Perl-based pgindent script.  Also update
pgindent instructions.
2013-05-29 16:58:43 -04:00
Tom Lane 9cbc4b80dd Redo postgres_fdw's planner code so it can handle parameterized paths.
I wasn't going to ship this without having at least some example of how
to do that.  This version isn't terribly bright; in particular it won't
consider any combinations of multiple join clauses.  Given the cost of
executing a remote EXPLAIN, I'm not sure we want to be very aggressive
about doing that, anyway.

In support of this, refactor generate_implied_equalities_for_indexcol
so that it can be used to extract equivalence clauses that aren't
necessarily tied to an index.
2013-03-21 19:44:32 -04:00
Bruce Momjian bd61a623ac Update copyrights for 2013
Fully update git head, and update back branches in ./COPYRIGHT and
legal.sgml files.
2013-01-01 17:15:01 -05:00
Tom Lane 1746ba9256 Improve check_partial_indexes() to consider join clauses in proof attempts.
Traditionally check_partial_indexes() has only looked at restriction
clauses while trying to prove partial indexes usable in queries.  However,
join clauses can also be used in some cases; mainly, that a strict operator
on "x" proves an "x IS NOT NULL" index predicate, even if the operator is
in a join clause rather than a restriction clause.  Adding this code fixes
a regression in 9.2, because previously we would take join clauses into
account when considering whether a partial index could be used in a
nestloop inner indexscan path.  9.2 doesn't handle nestloop inner
indexscans in the same way, and this consideration was overlooked in the
rewrite.  Moving the work to check_partial_indexes() is a better solution
anyway, since the proof applies whether or not we actually use the index
in that particular way, and we don't have to do it over again for each
possible outer relation.  Per report from Dave Cramer.
2012-11-15 19:29:05 -05:00
Tom Lane 19e36477b3 Limit the number of rel sets considered in consider_index_join_outer_rels.
In bug #7626, Brian Dunavant exposes a performance problem created by
commit 3b8968f25232ad09001bf35ab4cc59f5a501193e: that commit attempted to
consider *all* possible combinations of indexable join clauses, but if said
clauses join to enough different relations, there's an exponential increase
in the number of outer-relation sets considered.

In Brian's example, all the clauses come from the same equivalence class,
which means it's redundant to use more than one of them in an indexscan
anyway.  So we can prevent the problem in this class of cases (which is
probably the majority of real examples) by rejecting combinations that
would only serve to add a known-redundant clause.

But that still leaves us exposed to exponential growth of planning time
when the query has a lot of non-equivalence join clauses that are usable
with the same index.  I chose to prevent such cases by setting an upper
limit on the number of relation sets considered, equal to ten times the
number of index clauses considered so far.  (This sliding limit still
allows new relsets to be added on as we move to additional index columns,
which is probably more important than considering even more combinations of
clauses for the previous column.)  This should keep the amount of work done
roughly linear rather than exponential in the apparent query complexity.
This part of the fix is pretty ad-hoc; but without a clearer idea of
real-world cases for which this would result in markedly inferior plans,
it's hard to see how to do better.
2012-11-01 14:08:42 -04:00
Tom Lane 807a40c551 Fix planning of btree index scans using ScalarArrayOpExpr quals.
In commit 9e8da0f757, I improved btree
to handle ScalarArrayOpExpr quals natively, so that constructs like
"indexedcol IN (list)" could be supported by index-only scans.  Using
such a qual results in multiple scans of the index, under-the-hood.
I went to some lengths to ensure that this still produces rows in index
order ... but I failed to recognize that if a higher-order index column
is lacking an equality constraint, rescans can produce out-of-order
data from that column.  Tweak the planner to not expect sorted output
in that case.  Per trouble report from Robert McGehee.
2012-09-18 12:20:34 -04:00
Tom Lane 3b8968f252 Rethink heuristics for choosing index quals for parameterized paths.
Some experimentation with examples similar to bug #7539 has convinced me
that indxpath.c's original implementation of parameterized-path generation
was several bricks shy of a load.  In general, if we are relying on a
particular outer rel or set of outer rels for a parameterized path, the
path should use every indexable join clause that's available from that rel
or rels.  Any join clauses that get left out of the indexqual will end up
getting applied as plain filter quals (qpquals), and that's generally a
significant loser compared to having the index AM enforce them.  (This is
particularly true with btree, which can skip the index scan entirely if
it can see that the given indexquals are mutually contradictory.)  The
original heuristics failed to ensure this, though, and were overly
complicated anyway.  Rewrite to make the code explicitly identify each
useful set of outer rels and then select all applicable join clauses for
each one.  The one plan that changes in the regression tests is in fact
for the better according to the planner's cost estimates.

(Note: this is not a correctness issue but just a matter of plan quality.
I don't yet know what is going on in bug #7539, but I don't expect this
change to fix that.)
2012-09-16 17:58:09 -04:00
Tom Lane 77387f0ac8 Suppress creation of backwardly-indexed paths for LATERAL join clauses.
Given a query such as

SELECT * FROM foo JOIN LATERAL (SELECT foo.var1) ss(x) ON ss.x = foo.var2

the existence of the join clause "ss.x = foo.var2" encourages indxpath.c to
build a parameterized path for foo using any index available for foo.var2.
This is completely useless activity, though, since foo has got to be on the
outside not the inside of any nestloop join with ss.  It's reasonably
inexpensive to add tests that prevent creation of such paths, so let's do
that.
2012-08-30 14:33:00 -04:00
Tom Lane 9ff79b9d4e Fix up planner infrastructure to support LATERAL properly.
This patch takes care of a number of problems having to do with failure
to choose valid join orders and incorrect handling of lateral references
pulled up from subqueries.  Notable changes:

* Add a LateralJoinInfo data structure similar to SpecialJoinInfo, to
represent join ordering constraints created by lateral references.
(I first considered extending the SpecialJoinInfo structure, but the
semantics are different enough that a separate data structure seems
better.)  Extend join_is_legal() and related functions to prevent trying
to form unworkable joins, and to ensure that we will consider joins that
satisfy lateral references even if the joins would be clauseless.

* Fill in the infrastructure needed for the last few types of relation scan
paths to support parameterization.  We'd have wanted this eventually
anyway, but it is necessary now because a relation that gets pulled up out
of a UNION ALL subquery may acquire a reltargetlist containing lateral
references, meaning that its paths *have* to be parameterized whether or
not we have any code that can push join quals down into the scan.

* Compute data about lateral references early in query_planner(), and save
in RelOptInfo nodes, to avoid repetitive calculations later.

* Assorted corner-case bug fixes.

There's probably still some bugs left, but this is a lot closer to being
real than it was before.
2012-08-26 22:50:23 -04:00
Tom Lane f5983923d8 Allow create_index_paths() to consider multiple join bitmapscan paths.
In the initial cut at the "parameterized paths" feature, I'd simplified
create_index_paths() to the point where it would only generate a single
parameterized bitmap path per relation.  Experimentation with an example
supplied by Josh Berkus convinces me that that's not good enough: we really
need to consider a bitmap path for each possible outer relation.  Otherwise
we have regressions relative to pre-9.2 versions, in which the planner
picks a plain indexscan where it should have used a bitmap scan in queries
involving three or more tables.  Indeed, after fixing this, several queries
in the regression tests show improved plans as a result of using bitmap not
plain indexscans.
2012-08-16 13:03:54 -04:00
Tom Lane 00dac6000d Refactor pattern_fixed_prefix() to avoid dealing in incomplete patterns.
Previously, pattern_fixed_prefix() was defined to return whatever fixed
prefix it could extract from the pattern, plus the "rest" of the pattern.
That definition was sensible for LIKE patterns, but not so much for
regexes, where reconstituting a valid pattern minus the prefix could be
quite tricky (certainly the existing code wasn't doing that correctly).
Since the only thing that callers ever did with the "rest" of the pattern
was to pass it to like_selectivity() or regex_selectivity(), let's cut out
the middle-man and just have pattern_fixed_prefix's subroutines do this
directly.  Then pattern_fixed_prefix can return a simple selectivity
number, and the question of how to cope with partial patterns is removed
from its API specification.

While at it, adjust the API spec so that callers who don't actually care
about the pattern's selectivity (which is a lot of them) can pass NULL for
the selectivity pointer to skip doing the work of computing a selectivity
estimate.

This patch is only an API refactoring that doesn't actually change any
processing, other than allowing a little bit of useless work to be skipped.
However, it's necessary infrastructure for my upcoming fix to regex prefix
extraction, because after that change there won't be any simple way to
identify the "rest" of the regex, not even to the low level of fidelity
needed by regex_selectivity.  We can cope with that if regex_fixed_prefix
and regex_selectivity communicate directly, but not if we have to work
within the old API.  Hence, back-patch to all active branches.
2012-07-09 23:22:55 -04:00
Bruce Momjian 927d61eeff Run pgindent on 9.2 source tree in preparation for first 9.3
commit-fest.
2012-06-10 15:20:04 -04:00
Tom Lane 7c85aa39fc Fix oversight in recent parameterized-path patch.
bitmap_scan_cost_est() has to be able to cope with a BitmapOrPath, but
I'd taken a shortcut that didn't work for that case.  Noted by Heikki.
Add some regression tests since this area is evidently under-covered.
2012-04-26 14:17:44 -04:00
Tom Lane 5b7b5518d0 Revise parameterized-path mechanism to fix assorted issues.
This patch adjusts the treatment of parameterized paths so that all paths
with the same parameterization (same set of required outer rels) for the
same relation will have the same rowcount estimate.  We cache the rowcount
estimates to ensure that property, and hopefully save a few cycles too.
Doing this makes it practical for add_path_precheck to operate without
a rowcount estimate: it need only assume that paths with different
parameterizations never dominate each other, which is close enough to
true anyway for coarse filtering, because normally a more-parameterized
path should yield fewer rows thanks to having more join clauses to apply.

In add_path, we do the full nine yards of comparing rowcount estimates
along with everything else, so that we can discard parameterized paths that
don't actually have an advantage.  This fixes some issues I'd found with
add_path rejecting parameterized paths on the grounds that they were more
expensive than not-parameterized ones, even though they yielded many fewer
rows and hence would be cheaper once subsequent joining was considered.

To make the same-rowcounts assumption valid, we have to require that any
parameterized path enforce *all* join clauses that could be obtained from
the particular set of outer rels, even if not all of them are useful for
indexing.  This is required at both base scans and joins.  It's a good
thing anyway since the net impact is that join quals are checked at the
lowest practical level in the join tree.  Hence, discard the original
rather ad-hoc mechanism for choosing parameterization joinquals, and build
a better one that has a more principled rule for when clauses can be moved.
The original rule was actually buggy anyway for lack of knowledge about
which relations are part of an outer join's outer side; getting this right
requires adding an outer_relids field to RestrictInfo.
2012-04-19 15:53:47 -04:00
Tom Lane b67ad046e6 Improve commentary in match_pathkeys_to_index().
For a little while there I thought match_pathkeys_to_index() was broken
because it wasn't trying to match index columns to pathkeys in order.
Actually that's correct, because GiST can support ordering operators
on any random collection of index columns, but it sure needs a comment.
2012-03-16 14:07:21 -04:00
Tom Lane dd4134ea56 Revisit handling of UNION ALL subqueries with non-Var output columns.
In commit 57664ed25e I tried to fix a bug
reported by Teodor Sigaev by making non-simple-Var output columns distinct
(by wrapping their expressions with dummy PlaceHolderVar nodes).  This did
not work too well.  Commit b28ffd0fcc fixed
some ensuing problems with matching to child indexes, but per a recent
report from Claus Stadler, constraint exclusion of UNION ALL subqueries was
still broken, because constant-simplification didn't handle the injected
PlaceHolderVars well either.  On reflection, the original patch was quite
misguided: there is no reason to expect that EquivalenceClass child members
will be distinct.  So instead of trying to make them so, we should ensure
that we can cope with the situation when they're not.

Accordingly, this patch reverts the code changes in the above-mentioned
commits (though the regression test cases they added stay).  Instead, I've
added assorted defenses to make sure that duplicate EC child members don't
cause any problems.  Teodor's original problem ("MergeAppend child's
targetlist doesn't match MergeAppend") is addressed more directly by
revising prepare_sort_from_pathkeys to let the parent MergeAppend's sort
list guide creation of each child's sort list.

In passing, get rid of add_sort_column; as far as I can tell, testing for
duplicate sort keys at this stage is dead code.  Certainly it doesn't
trigger often enough to be worth expending cycles on in ordinary queries.
And keeping the test would've greatly complicated the new logic in
prepare_sort_from_pathkeys, because comparing pathkey list entries against
a previous output array requires that we not skip any entries in the list.

Back-patch to 9.1, like the previous patches.  The only known issue in
this area that wasn't caused by the ill-advised previous patches was the
MergeAppend planning failure, which of course is not relevant before 9.1.
It's possible that we need some of the new defenses against duplicate child
EC entries in older branches, but until there's some clear evidence of that
I'm going to refrain from back-patching further.
2012-03-16 13:11:55 -04:00
Tom Lane 0140a11b9b Fix thinko in new match_join_clauses_to_index() logic.
We don't need to constrain the other side of an indexable join clause to
not be below an outer join; an example here is

SELECT FROM t1 LEFT JOIN t2 ON t1.a = t2.b LEFT JOIN t3 ON t2.c = t3.d;

We can consider an inner indexscan on t3.d using c = d as indexqual, even
though t2.c is potentially nulled by a previous outer join.  The comparable
logic in orindxpath.c has always worked that way, but I was being overly
cautious here.
2012-02-28 18:10:40 -05:00
Robert Haas 0ed7445d73 Allow spgist's text_ops to handle pattern-matching operators.
This was presumably intended to work this way all along, but a few key
bits of indxpath.c didn't get the memo.

Robert Haas and Tom Lane
2012-02-02 13:10:56 -05:00
Tom Lane b28ffd0fcc Fix pushing of index-expression qualifications through UNION ALL.
In commit 57664ed25e, I made the planner
wrap non-simple-variable outputs of appendrel children (IOW, child SELECTs
of UNION ALL subqueries) inside PlaceHolderVars, in order to solve some
issues with EquivalenceClass processing.  However, this means that any
upper-level WHERE clauses mentioning such outputs will now contain
PlaceHolderVars after they're pushed down into the appendrel child,
and that prevents indxpath.c from recognizing that they could be matched
to index expressions.  To fix, add explicit stripping of PlaceHolderVars
from index operands, same as we have long done for RelabelType nodes.
Add a regression test covering both this and the plain-UNION case (which
is a totally different code path, but should also be able to do it).

Per bug #6416 from Matteo Beccati.  Back-patch to 9.1, same as the
previous change.
2012-01-29 16:31:23 -05:00
Tom Lane e2fa76d80b Use parameterized paths to generate inner indexscans more flexibly.
This patch fixes the planner so that it can generate nestloop-with-
inner-indexscan plans even with one or more levels of joining between
the indexscan and the nestloop join that is supplying the parameter.
The executor was fixed to handle such cases some time ago, but the
planner was not ready.  This should improve our plans in many situations
where join ordering restrictions formerly forced complete table scans.

There is probably a fair amount of tuning work yet to be done, because
of various heuristics that have been added to limit the number of
parameterized paths considered.  However, we are not going to find out
what needs to be adjusted until the code gets some real-world use, so
it's time to get it in there where it can be tested easily.

Note API change for index AM amcostestimate functions.  I'm not aware of
any non-core index AMs, but if there are any, they will need minor
adjustments.
2012-01-27 19:26:38 -05:00