Commit Graph

1146 Commits

Author SHA1 Message Date
Amit Kapila 05c8482f7f Enable parallel SELECT for "INSERT INTO ... SELECT ...".
Parallel SELECT can't be utilized for INSERT in the following cases:
- INSERT statement uses the ON CONFLICT DO UPDATE clause
- Target table has a parallel-unsafe: trigger, index expression or
  predicate, column default expression or check constraint
- Target table has a parallel-unsafe domain constraint on any column
- Target table is a partitioned table with a parallel-unsafe partition key
  expression or support function

The planner is updated to perform additional parallel-safety checks for
the cases listed above, for determining whether it is safe to run INSERT
in parallel-mode with an underlying parallel SELECT. The planner will
consider using parallel SELECT for "INSERT INTO ... SELECT ...", provided
nothing unsafe is found from the additional parallel-safety checks, or
from the existing parallel-safety checks for SELECT.

While checking parallel-safety, we need to check it for all the partitions
on the table which can be costly especially when we decide not to use a
parallel plan. So, in a separate patch, we will introduce a GUC and or a
reloption to enable/disable parallelism for Insert statements.

Prior to entering parallel-mode for the execution of INSERT with parallel
SELECT, a TransactionId is acquired and assigned to the current
transaction state. This is necessary to prevent the INSERT from attempting
to assign the TransactionId whilst in parallel-mode, which is not allowed.
This approach has a disadvantage in that if the underlying SELECT does not
return any rows, then the TransactionId is not used, however that
shouldn't happen in practice in many cases.

Author: Greg Nancarrow, Amit Langote, Amit Kapila
Reviewed-by: Amit Langote, Hou Zhijie, Takayuki Tsunakawa, Antonin Houska, Bharath Rupireddy, Dilip Kumar, Vignesh C, Zhihong Yu, Amit Kapila
Tested-by: Tang, Haiying
Discussion: https://postgr.es/m/CAJcOf-cXnB5cnMKqWEp2E2z7Mvcd04iLVmV=qpFJrR3AcrTS3g@mail.gmail.com
Discussion: https://postgr.es/m/CAJcOf-fAdj=nDKMsRhQzndm-O13NY4dL6xGcEvdX5Xvbbi0V7g@mail.gmail.com
2021-03-10 07:38:58 +05:30
David Rowley bb437f995d Add TID Range Scans to support efficient scanning ranges of TIDs
This adds a new executor node named TID Range Scan.  The query planner
will generate paths for TID Range scans when quals are discovered on base
relations which search for ranges on the table's ctid column.  These
ranges may be open at either end. For example, WHERE ctid >= '(10,0)';
will return all tuples on page 10 and over.

To support this, two new optional callback functions have been added to
table AM.  scan_set_tidrange is used to set the scan range to just the
given range of TIDs.  scan_getnextslot_tidrange fetches the next tuple
in the given range.

For AMs were scanning ranges of TIDs would not make sense, these functions
can be set to NULL in the TableAmRoutine.  The query planner won't
generate TID Range Scan Paths in that case.

Author: Edmund Horner, David Rowley
Reviewed-by: David Rowley, Tomas Vondra, Tom Lane, Andres Freund, Zhihong Yu
Discussion: https://postgr.es/m/CAMyN-kB-nFTkF=VA_JPwFNo08S0d-Yk0F741S2B7LDmYAi8eyA@mail.gmail.com
2021-02-27 22:59:36 +13:00
Tom Lane f003a7522b Remove [Merge]AppendPath.partitioned_rels.
It turns out that the calculation of [Merge]AppendPath.partitioned_rels
in allpaths.c is faulty and sometimes omits relevant non-leaf partitions,
allowing an assertion added by commit a929e17e5a to trigger.  Rather
than fix that, it seems better to get rid of those fields altogether.
We don't really need the info until create_plan time, and calculating
it once for the selected plan should be cheaper than calculating it
for each append path we consider.

The preceding two commits did away with all use of the partitioned_rels
values; this commit just mechanically removes the fields and the code
that calculated them.

Discussion: https://postgr.es/m/87sg8tqhsl.fsf@aurora.ydns.eu
Discussion: https://postgr.es/m/CAJKUy5gCXDSmFs2c=R+VGgn7FiYcLCsEFEuDNNLGfoha=pBE_g@mail.gmail.com
2021-02-01 14:43:54 -05:00
Tom Lane 5076f88bc9 Remove incidental dependencies on partitioned_rels lists.
It turns out that the calculation of [Merge]AppendPath.partitioned_rels
in allpaths.c is faulty and sometimes omits relevant non-leaf partitions,
allowing an assertion added by commit a929e17e5a to trigger.  Rather
than fix that, it seems better to get rid of those fields altogether.
We don't really need the info until create_plan time, and calculating
it once for the selected plan should be cheaper than calculating it
for each append path we consider.

This patch undoes a couple of very minor uses of the partitioned_rels
values.

createplan.c was testing for nil-ness to optimize away the preparatory
work for make_partition_pruneinfo().  That is worth doing if the check
is nigh free, but it's not worth going to any great lengths to avoid.

create_append_path() was testing for nil-ness as part of deciding how
to set up ParamPathInfo for an AppendPath.  I replaced that with a
check for the appendrel's parent rel being partitioned.  That's not
quite the same thing but should cover most cases.  If we note any
interesting loss of optimizations, we can dumb this down to just
always use the more expensive method when the parent is a baserel.

Discussion: https://postgr.es/m/87sg8tqhsl.fsf@aurora.ydns.eu
Discussion: https://postgr.es/m/CAJKUy5gCXDSmFs2c=R+VGgn7FiYcLCsEFEuDNNLGfoha=pBE_g@mail.gmail.com
2021-02-01 14:34:59 -05:00
Noah Misch 360bd2321b Fix error with CREATE PUBLICATION, wal_level=minimal, and new tables.
CREATE PUBLICATION has failed spuriously when applied to a permanent
relation created or rewritten in the current transaction.  Make the same
change to another site having the same semantic intent; the second
instance has no user-visible consequences.  Back-patch to v13, where
commit c6b92041d3 broke this.

Kyotaro Horiguchi

Discussion: https://postgr.es/m/20210113.160705.2225256954956139776.horikyota.ntt@gmail.com
2021-01-30 00:11:38 -08:00
Tom Lane 1046dbedde Silence another gcc 11 warning.
Per buildfarm and local experimentation, bleeding-edge gcc isn't
convinced that the MemSet in reorder_function_arguments() is safe.
Shut it up by adding an explicit check that pronargs isn't negative,
and by changing MemSet to memset.  (It appears that either change is
enough to quiet the warning at -O2, but let's do both to be sure.)
2021-01-28 17:19:16 -05:00
Tom Lane 55dc86eca7 Fix pull_varnos' miscomputation of relids set for a PlaceHolderVar.
Previously, pull_varnos() took the relids of a PlaceHolderVar as being
equal to the relids in its contents, but that fails to account for the
possibility that we have to postpone evaluation of the PHV due to outer
joins.  This could result in a malformed plan.  The known cases end up
triggering the "failed to assign all NestLoopParams to plan nodes"
sanity check in createplan.c, but other symptoms may be possible.

The right value to use is the join level we actually intend to evaluate
the PHV at.  We can get that from the ph_eval_at field of the associated
PlaceHolderInfo.  However, there are some places that call pull_varnos()
before the PlaceHolderInfos have been created; in that case, fall back
to the conservative assumption that the PHV will be evaluated at its
syntactic level.  (In principle this might result in missing some legal
optimization, but I'm not aware of any cases where it's an issue in
practice.)  Things are also a bit ticklish for calls occurring during
deconstruct_jointree(), but AFAICS the ph_eval_at fields should have
reached their final values by the time we need them.

The main problem in making this work is that pull_varnos() has no
way to get at the PlaceHolderInfos.  We can fix that easily, if a
bit tediously, in HEAD by passing it the planner "root" pointer.
In the back branches that'd cause an unacceptable API/ABI break for
extensions, so leave the existing entry points alone and add new ones
with the additional parameter.  (If an old entry point is called and
encounters a PHV, it'll fall back to using the syntactic level,
again possibly missing some valid optimization.)

Back-patch to v12.  The computation is surely also wrong before that,
but it appears that we cannot reach a bad plan thanks to join order
restrictions imposed on the subquery that the PlaceHolderVar came from.
The error only became reachable when commit 4be058fe9 allowed trivial
subqueries to be collapsed out completely, eliminating their join order
restrictions.

Per report from Stephan Springl.

Discussion: https://postgr.es/m/171041.1610849523@sss.pgh.pa.us
2021-01-21 15:37:23 -05:00
Bruce Momjian ca3b37487b Update copyright for 2021
Backpatch-through: 9.5
2021-01-02 13:06:25 -05:00
Tomas Vondra fac1b470a9 Disallow SRFs when considering sorts below Gather Merge
While we do allow SRFs in ORDER BY, scan/join processing should not
consider such cases - such sorts should only happen via final Sort atop
a ProjectSet. So make sure we don't try adding such sorts below Gather
Merge, just like we do for expressions that are volatile and/or not
parallel safe.

Backpatch to PostgreSQL 13, where this code was introduced as part of
the Incremental Sort patch.

Author: James Coleman
Reviewed-by: Tomas Vondra
Backpatch-through: 13
Discussion: https://postgr.es/m/CAAaqYe8cK3g5CfLC4w7bs=hC0mSksZC=H5M8LSchj5e5OxpTAg@mail.gmail.com
Discussion: https://postgr.es/m/295524.1606246314%40sss.pgh.pa.us
2020-12-21 19:36:22 +01:00
Tom Lane b3817f5f77 Improve hash_create()'s API for some added robustness.
Invent a new flag bit HASH_STRINGS to specify C-string hashing, which
was formerly the default; and add assertions insisting that exactly
one of the bits HASH_STRINGS, HASH_BLOBS, and HASH_FUNCTION be set.
This is in hopes of preventing recurrences of the type of oversight
fixed in commit a1b8aa1e4 (i.e., mistakenly omitting HASH_BLOBS).

Also, when HASH_STRINGS is specified, insist that the keysize be
more than 8 bytes.  This is a heuristic, but it should catch
accidental use of HASH_STRINGS for integer or pointer keys.
(Nearly all existing use-cases set the keysize to NAMEDATALEN or
more, so there's little reason to think this restriction should
be problematic.)

Tweak hash_create() to insist that the HASH_ELEM flag be set, and
remove the defaults it had for keysize and entrysize.  Since those
defaults were undocumented and basically useless, no callers
omitted HASH_ELEM anyway.

Also, remove memset's zeroing the HASHCTL parameter struct from
those callers that had one.  This has never been really necessary,
and while it wasn't a bad coding convention it was confusing that
some callers did it and some did not.  We might as well save a few
cycles by standardizing on "not".

Also improve the documentation for hash_create().

In passing, improve reinit.c's usage of a hash table by storing
the key as a binary Oid rather than a string; and, since that's
a temporary hash table, allocate it in CurrentMemoryContext for
neatness.

Discussion: https://postgr.es/m/590625.1607878171@sss.pgh.pa.us
2020-12-15 11:38:53 -05:00
Tom Lane 653aa603f5 Provide an error cursor for "can't subscript" error messages.
Commit c7aba7c14 didn't add this, but after more fooling with the
feature I feel that it'd be useful.  To make this possible, refactor
getSubscriptingRoutines() so that the caller is responsible for
throwing any error.  (In clauses.c, I just chose to make the
most conservative assumption rather than throwing an error.  We don't
expect failures there anyway really, so the code space for an error
message would be a poor investment.)
2020-12-11 18:58:21 -05:00
Tom Lane c7aba7c14e Support subscripting of arbitrary types, not only arrays.
This patch generalizes the subscripting infrastructure so that any
data type can be subscripted, if it provides a handler function to
define what that means.  Traditional variable-length (varlena) arrays
all use array_subscript_handler(), while the existing fixed-length
types that support subscripting use raw_array_subscript_handler().
It's expected that other types that want to use subscripting notation
will define their own handlers.  (This patch provides no such new
features, though; it only lays the foundation for them.)

To do this, move the parser's semantic processing of subscripts
(including coercion to whatever data type is required) into a
method callback supplied by the handler.  On the execution side,
replace the ExecEvalSubscriptingRef* layer of functions with direct
calls to callback-supplied execution routines.  (Thus, essentially
no new run-time overhead should be caused by this patch.  Indeed,
there is room to remove some overhead by supplying specialized
execution routines.  This patch does a little bit in that line,
but more could be done.)

Additional work is required here and there to remove formerly
hard-wired assumptions about the result type, collation, etc
of a SubscriptingRef expression node; and to remove assumptions
that the subscript values must be integers.

One useful side-effect of this is that we now have a less squishy
mechanism for identifying whether a data type is a "true" array:
instead of wiring in weird rules about typlen, we can look to see
if pg_type.typsubscript == F_ARRAY_SUBSCRIPT_HANDLER.  For this
to be bulletproof, we have to forbid user-defined types from using
that handler directly; but there seems no good reason for them to
do so.

This patch also removes assumptions that the number of subscripts
is limited to MAXDIM (6), or indeed has any hard-wired limit.
That limit still applies to types handled by array_subscript_handler
or raw_array_subscript_handler, but to discourage other dependencies
on this constant, I've moved it from c.h to utils/array.h.

Dmitry Dolgov, reviewed at various times by Tom Lane, Arthur Zakirov,
Peter Eisentraut, Pavel Stehule

Discussion: https://postgr.es/m/CA+q6zcVDuGBv=M0FqBYX8DPebS3F_0KQ6OVFobGJPM507_SZ_w@mail.gmail.com
Discussion: https://postgr.es/m/CA+q6zcVovR+XY4mfk-7oNk-rF91gH0PebnNfuUjuuDsyHjOcVA@mail.gmail.com
2020-12-09 12:40:37 -05:00
Peter Eisentraut 8b069ef5dc Change get_constraint_index() to use pg_constraint.conindid
It was still using a scan of pg_depend instead of using the conindid
column that has been added since.

Since it is now just a catalog lookup wrapper and not related to
pg_depend, move from pg_depend.c to lsyscache.c.

Reviewed-by: Matthias van de Meent <boekewurm+postgres@gmail.com>
Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
Reviewed-by: Michael Paquier <michael@paquier.xyz>
Discussion: https://www.postgresql.org/message-id/flat/4688d55c-9a2e-9a5a-d166-5f24fe0bf8db%40enterprisedb.com
2020-12-09 15:41:45 +01:00
Tom Lane 62ee703313 Teach contain_leaked_vars that assignment SubscriptingRefs are leaky.
array_get_element and array_get_slice qualify as leakproof, since
they will silently return NULL for bogus subscripts.  But
array_set_element and array_set_slice throw errors for such cases,
making them clearly not leakproof.  contain_leaked_vars was evidently
written with only the former case in mind, as it gave the wrong answer
for assignment SubscriptingRefs (nee ArrayRefs).

This would be a live security bug, were it not that assignment
SubscriptingRefs can only occur in INSERT and UPDATE target lists,
while we only care about leakproofness for qual expressions; so the
wrong answer can't occur in practice.  Still, that's a rather shaky
answer for a security-related question; and maybe in future somebody
will want to ask about leakproofness of a tlist.  So it seems wise to
fix and even back-patch this correction.

(We would need some change here anyway for the upcoming
generic-subscripting patch, since extensions might make different
tradeoffs about whether to throw errors.  Commit 558d77f20 attempted
to lay groundwork for that by asking check_functions_in_node whether a
SubscriptingRef contains leaky functions; but that idea fails now that
the implementation methods of a SubscriptingRef are not SQL-visible
functions that could be marked leakproof or not.)

Back-patch to 9.6.  While 9.5 has the same issue, the code's a bit
different.  It seems quite unlikely that we'd introduce any actual bug
in the short time 9.5 has left to live, so the work/risk/reward balance
isn't attractive for changing 9.5.

Discussion: https://postgr.es/m/3143742.1607368115@sss.pgh.pa.us
2020-12-08 17:50:54 -05:00
Tom Lane 8286223f3d Fix missing outfuncs.c support for IncrementalSortPath.
For debugging purposes, Path nodes are supposed to have outfuncs
support, but this was overlooked in the original incremental sort patch.

While at it, clean up a couple other minor oversights, as well as
bizarre choice of return type for create_incremental_sort_path().
(All the existing callers just cast it to "Path *" immediately, so
they don't care, but some future caller might care.)

outfuncs.c fix by Zhijie Hou, the rest by me

Discussion: https://postgr.es/m/324c4d81d8134117972a5b1f6cdf9560@G08CNEXMBPEKD05.g08.fujitsu.local
2020-11-30 16:33:09 -05:00
Tom Lane b1738ff6ab Fix miscomputation of direct_lateral_relids for join relations.
If a PlaceHolderVar is to be evaluated at a join relation, but
its value is only needed there and not at higher levels, we neglected
to update the joinrel's direct_lateral_relids to include the PHV's
source rel.  This causes problems because join_is_legal() then won't
allow joining the joinrel to the PHV's source rel at all, leading
to "failed to build any N-way joins" planner failures.

Per report from Andreas Seltenreich.  Back-patch to 9.5
where the problem originated.

Discussion: https://postgr.es/m/87blfgqa4t.fsf@aurora.ydns.eu
2020-11-30 12:22:43 -05:00
Andrew Gierth 660b89928d Properly check index mark/restore in ExecSupportsMarkRestore.
Previously this code assumed that all IndexScan nodes supported
mark/restore, which is not true since it depends on optional index AM
support functions. This could lead to errors about missing support
functions in rare edge cases of mergejoins with no sort keys, where an
unordered non-btree index scan was placed on the inner path without a
protecting Materialize node. (Normally, the fact that merge join
requires ordered input would avoid this error.)

Backpatch all the way since this bug is ancient.

Per report from Eugen Konkov on irc.

Discussion: https://postgr.es/m/87o8jn50be.fsf@news-spur.riddles.org.uk
2020-11-24 21:58:32 +00:00
Heikki Linnakangas 0a2bc5d61e Move per-agg and per-trans duplicate finding to the planner.
This has the advantage that the cost estimates for aggregates can count
the number of calls to transition and final functions correctly.

Bump catalog version, because views can contain Aggrefs.

Reviewed-by: Andres Freund
Discussion: https://www.postgresql.org/message-id/b2e3536b-1dbc-8303-c97e-89cb0b4a9a48%40iki.fi
2020-11-24 10:45:00 +02:00
Tom Lane 8e1f37c07a Rethink the generation rule for fmgroids.h macros.
Traditionally, the names of fmgroids.h macros for pg_proc OIDs
have been constructed from the prosrc field.  But sometimes the
same C function underlies multiple pg_proc entries, forcing us
to make an arbitrary choice of which OID to reference; the other
entries are then not namable via fmgroids.h.  Moreover, we could
not have macros at all for pg_proc entries that aren't for
C-coded functions.

Instead, use the proname field, and append the proargtypes field
(replacing inter-argument spaces with underscores) if proname is
not unique.  Special-casing unique entries such as F_OIDEQ removes
the need to change a lot of code.  Indeed, I can only find two
places in the tree that need to be adjusted; while this changes
quite a few existing entries in fmgroids.h, few of them are
referenced from C code.

With this patch, all entries in pg_proc.dat have macros in fmgroids.h.

Discussion: https://postgr.es/m/472274.1604258384@sss.pgh.pa.us
2020-11-02 11:57:28 -05:00
Thomas Munro 257836a755 Track collation versions for indexes.
Record the current version of dependent collations in pg_depend when
creating or rebuilding an index.  When accessing the index later, warn
that the index may be corrupted if the current version doesn't match.

Thanks to Douglas Doole, Peter Eisentraut, Christoph Berg, Laurenz Albe,
Michael Paquier, Robert Haas, Tom Lane and others for very helpful
discussion.

Author: Thomas Munro <thomas.munro@gmail.com>
Author: Julien Rouhaud <rjuju123@gmail.com>
Reviewed-by: Peter Eisentraut <peter.eisentraut@2ndquadrant.com> (earlier versions)
Discussion: https://postgr.es/m/CAEepm%3D0uEQCpfq_%2BLYFBdArCe4Ot98t1aR4eYiYTe%3DyavQygiQ%40mail.gmail.com
2020-11-03 01:19:50 +13:00
David Rowley a929e17e5a Allow run-time pruning on nested Append/MergeAppend nodes
Previously we only tagged on the required information to allow the
executor to perform run-time partition pruning for Append/MergeAppend
nodes belonging to base relations.  It was thought that nested
Append/MergeAppend nodes were just about always pulled up into the
top-level Append/MergeAppend and that making the run-time pruning info for
any sub Append/MergeAppend nodes was a waste of time.  However, that was
likely badly thought through.

Some examples of cases we're unable to pullup nested Append/MergeAppends
are: 1) Parallel Append nodes with a mix of parallel and non-parallel
paths into a Parallel Append.  2) When planning an ordered Append scan a
sub-partition which is unordered may require a nested MergeAppend path to
ensure sub-partitions don't mix up the order of tuples being fed into the
top-level Append.

Unfortunately, it was not just as simple as removing the lines in
createplan.c which were purposefully not building the run-time pruning
info for anything but RELOPT_BASEREL relations.  The code in
add_paths_to_append_rel() was far too sloppy about which partitioned_rels
it included for the Append/MergeAppend paths.  The original code there
would always assume accumulate_append_subpath() would pull each sub-Append
and sub-MergeAppend path into the top-level path.  While it does not
appear that there were any actual bugs caused by having the additional
partitioned table RT indexes recorded, what it did mean is that later in
planning, when we built the run-time pruning info that we wasted effort
and built PartitionedRelPruneInfos for partitioned tables that we had no
subpaths for the executor to run-time prune.

Here we tighten that up so that partitioned_rels only ever contains the RT
index for partitioned tables which actually have subpaths in the given
Append/MergeAppend.  We can now Assert that every PartitionedRelPruneInfo
has a non-empty present_parts.  That should allow us to catch any weird
corner cases that have been missed.

In passing, it seems there is no longer a good reason to have the
AppendPath and MergeAppendPath's partitioned_rel fields a List of IntList.
We can simply have a List of Relids instead.  This is more compact in
memory and faster to add new members to.  We still know which is the root
level partition as these always have a lower relid than their children.
Previously this field was used for more things, but run-time partition
pruning now remains the only user of it and it has no need for a List of
IntLists.

Here we also get rid of the RelOptInfo partitioned_child_rels field. This
is what was previously used to (sometimes incorrectly) set the
Append/MergeAppend path's partitioned_rels field.  That was the only usage
of that field, so we can happily just remove it.

I also couldn't resist changing some nearby code to make use of the newly
added for_each_from macro so we can skip the first element in the list
without checking if the current item was the first one on each
iteration.

A bug report from Andreas Kretschmer prompted all this work, however,
after some consideration, I'm not personally classing this as a bug fix.
So no backpatch.  In Andreas' test case, it just wasn't that clear that
there was a nested Append since the top-level Append just had a single
sub-path which was pulled up a level, per 8edd0e794.

Author: David Rowley
Reviewed-by: Amit Langote
Discussion: https://postgr.es/m/flat/CAApHDvqSchs%2BubdybcfFaSPB%2B%2BEA7kqMaoqajtP0GtZvzOOR3g%40mail.gmail.com
2020-11-02 13:46:56 +13:00
Tom Lane ad1c36b070 Fix foreign-key selectivity estimation in the presence of constants.
get_foreign_key_join_selectivity() looks for join clauses that equate
the two sides of the FK constraint.  However, if we have a query like
"WHERE fktab.a = pktab.a and fktab.a = 1", it won't find any such join
clause, because equivclass.c replaces the given clauses with "fktab.a
= 1 and pktab.a = 1", which can be enforced at the scan level, leaving
nothing to be done for column "a" at the join level.

We can fix that expectation without much trouble, but then a new problem
arises: applying the foreign-key-based selectivity rule produces a
rowcount underestimate, because we're effectively double-counting the
selectivity of the "fktab.a = 1" clause.  So we have to cancel that
selectivity out of the estimate.

To fix, refactor process_implied_equality() so that it can pass back the
new RestrictInfo to its callers in equivclass.c, allowing the generated
"fktab.a = 1" clause to be saved in the EquivalenceClass's ec_derives
list.  Then it's not much trouble to dig out the relevant RestrictInfo
when we need to adjust an FK selectivity estimate.  (While at it, we
can also remove the expensive use of initialize_mergeclause_eclasses()
to set up the new RestrictInfo's left_ec and right_ec pointers.
The equivclass.c code can set those basically for free.)

This seems like clearly a bug fix, but I'm hesitant to back-patch it,
first because there's some API/ABI risk for extensions and second because
we're usually loath to destabilize plan choices in stable branches.

Per report from Sigrid Ehrenreich.

Discussion: https://postgr.es/m/1019549.1603770457@sss.pgh.pa.us
Discussion: https://postgr.es/m/AM6PR02MB5287A0ADD936C1FA80973E72AB190@AM6PR02MB5287.eurprd02.prod.outlook.com
2020-10-28 11:15:47 -04:00
Tom Lane c8ab970179 Fix list-munging bug that broke SQL function result coercions.
Since commit 913bbd88d, check_sql_fn_retval() can either insert type
coercion steps in-line in the Query that produces the SQL function's
results, or generate a new top-level Query to perform the coercions,
if modifying the Query's output in-place wouldn't be safe.  However,
it appears that the latter case has never actually worked, because
the code tried to inject the new Query back into the query list it was
passed ... which is not the list that will be used for later processing
when we execute the SQL function "normally" (without inlining it).
So we ended up with no coercion happening at run-time, leading to
wrong results or crashes depending on the datatypes involved.

While the regression tests look like they cover this area well enough,
through a huge bit of bad luck all the test cases that exercise the
separate-Query path were checking either inline-able cases (which
accidentally didn't have the bug) or cases that are no-ops at runtime
(e.g., varchar to text), so that the failure to perform the coercion
wasn't obvious.  The fact that the cases that don't work weren't
allowed at all before v13 probably contributed to not noticing the
problem sooner, too.

To fix, get rid of the separate "flat" list of Query nodes and instead
pass the real two-level list that is going to be used later.  I chose
to make the same change in check_sql_fn_statements(), although that has
no actual bug, just so that we don't need that data structure at all.

This is an API change, as evidenced by the adjustments needed to
callers outside functions.c.  That's a bit scary to be doing in a
released branch, but so far as I can tell from a quick search,
there are no outside callers of these functions (and they are
sufficiently specific to our semantics for SQL-language functions that
it's not apparent why any extension would need to call them).  In any
case, v13 already changed the API of check_sql_fn_retval() compared to
prior branches.

Per report from pinker.  Back-patch to v13 where this code came in.

Discussion: https://postgr.es/m/1603050466566-0.post@n3.nabble.com
2020-10-19 14:33:09 -04:00
Thomas Munro f0f13a3a08 Fix estimates for ModifyTable paths without RETURNING.
In the past, we always estimated that a ModifyTable node would emit the
same number of rows as its subpaths.  Without a RETURNING clause, the
correct estimate is zero.  Fix, in preparation for a proposed parallel
write patch that is sensitive to that number.

A remaining problem is that for RETURNING queries, the estimated width
is based on subpath output rather than the RETURNING tlist.

Reviewed-by: Greg Nancarrow <gregn4422@gmail.com>
Discussion: https://postgr.es/m/CAJcOf-cXnB5cnMKqWEp2E2z7Mvcd04iLVmV%3DqpFJrR3AcrTS3g%40mail.gmail.com
2020-10-13 00:26:49 +13:00
Tom Lane 3d351d916b Redefine pg_class.reltuples to be -1 before the first VACUUM or ANALYZE.
Historically, we've considered the state with relpages and reltuples
both zero as indicating that we do not know the table's tuple density.
This is problematic because it's impossible to distinguish "never yet
vacuumed" from "vacuumed and seen to be empty".  In particular, a user
cannot use VACUUM or ANALYZE to override the planner's normal heuristic
that an empty table should not be believed to be empty because it is
probably about to get populated.  That heuristic is a good safety
measure, so I don't care to abandon it, but there should be a way to
override it if the table is indeed intended to stay empty.

Hence, represent the initial state of ignorance by setting reltuples
to -1 (relpages is still set to zero), and apply the minimum-ten-pages
heuristic only when reltuples is still -1.  If the table is empty,
VACUUM or ANALYZE (but not CREATE INDEX) will override that to
reltuples = relpages = 0, and then we'll plan on that basis.

This requires a bunch of fiddly little changes, but we can get rid of
some ugly kluges that were formerly needed to maintain the old definition.

One notable point is that FDWs' GetForeignRelSize methods will see
baserel->tuples = -1 when no ANALYZE has been done on the foreign table.
That seems like a net improvement, since those methods were formerly
also in the dark about what baserel->tuples = 0 really meant.  Still,
it is an API change.

I bumped catversion because code predating this change would get confused
by seeing reltuples = -1.

Discussion: https://postgr.es/m/F02298E0-6EF4-49A1-BCB6-C484794D9ACC@thebuild.com
2020-08-30 12:21:51 -04:00
Tom Lane 2072932407 Suppress unnecessary RelabelType nodes in yet more cases.
Commit a477bfc1d fixed eval_const_expressions() to ensure that it
didn't generate unnecessary RelabelType nodes, but I failed to notice
that some other places in the planner had the same issue.  Really
noplace in the planner should be using plain makeRelabelType(), for
fear of generating expressions that should be equal() to semantically
equivalent trees, but aren't.

An example is that because canonicalize_ec_expression() failed
to be careful about this, we could end up with an equivalence class
containing both a plain Const, and a Const-with-RelabelType
representing exactly the same value.  So far as I can tell this led to
no visible misbehavior, but we did waste a bunch of cycles generating
and evaluating "Const = Const-with-RelabelType" to prove such entries
are redundant.

Hence, move the support function added by a477bfc1d to where it can
be more generally useful, and use it in the places where planner code
previously used makeRelabelType.

Back-patch to v12, like the previous patch.  While I have no concrete
evidence of any real misbehavior here, it's certainly possible that
I overlooked a case where equivalent expressions that aren't equal()
could cause a user-visible problem.  In any case carrying extra
RelabelType nodes through planning to execution isn't very desirable.

Discussion: https://postgr.es/m/1311836.1597781384@sss.pgh.pa.us
2020-08-19 14:07:49 -04:00
Tom Lane 1e7629d2c9 Be more careful about the shape of hashable subplan clauses.
nodeSubplan.c expects that the testexpr for a hashable ANY SubPlan
has the form of one or more OpExprs whose LHS is an expression of the
outer query's, while the RHS is an expression over Params representing
output columns of the subquery.  However, the planner only went as far
as verifying that the clauses were all binary OpExprs.  This works
99.99% of the time, because the clauses have the right shape when
emitted by the parser --- but it's possible for function inlining to
break that, as reported by PegoraroF10.  To fix, teach the planner
to check that the LHS and RHS contain the right things, or more
accurately don't contain the wrong things.  Given that this has been
broken for years without anyone noticing, it seems sufficient to just
give up hashing when it happens, rather than go to the trouble of
commuting the clauses back again (which wouldn't necessarily work
anyway).

While poking at that, I also noticed that nodeSubplan.c had a baked-in
assumption that the number of hash clauses is identical to the number
of subquery output columns.  Again, that's fine as far as parser output
goes, but it's not hard to break it via function inlining.  There seems
little reason for that assumption though --- AFAICS, the only thing
it's buying us is not having to store the number of hash clauses
explicitly.  Adding code to the planner to reject such cases would take
more code than getting nodeSubplan.c to cope, so I fixed it that way.

This has been broken for as long as we've had hashable SubPlans,
so back-patch to all supported branches.

Discussion: https://postgr.es/m/1549209182255-0.post@n3.nabble.com
2020-08-14 22:14:03 -04:00
Peter Geoghegan d6c08e29e7 Add hash_mem_multiplier GUC.
Add a GUC that acts as a multiplier on work_mem.  It gets applied when
sizing executor node hash tables that were previously size constrained
using work_mem alone.

The new GUC can be used to preferentially give hash-based nodes more
memory than the generic work_mem limit.  It is intended to enable admin
tuning of the executor's memory usage.  Overall system throughput and
system responsiveness can be improved by giving hash-based executor
nodes more memory (especially over sort-based alternatives, which are
often much less sensitive to being memory constrained).

The default value for hash_mem_multiplier is 1.0, which is also the
minimum valid value.  This means that hash-based nodes continue to apply
work_mem in the traditional way by default.

hash_mem_multiplier is generally useful.  However, it is being added now
due to concerns about hash aggregate performance stability for users
that upgrade to Postgres 13 (which added disk-based hash aggregation in
commit 1f39bce0).  While the old hash aggregate behavior risked
out-of-memory errors, it is nevertheless likely that many users actually
benefited.  Hash agg's previous indifference to work_mem during query
execution was not just faster; it also accidentally made aggregation
resilient to grouping estimate problems (at least in cases where this
didn't create destabilizing memory pressure).

hash_mem_multiplier can provide a certain kind of continuity with the
behavior of Postgres 12 hash aggregates in cases where the planner
incorrectly estimates that all groups (plus related allocations) will
fit in work_mem/hash_mem.  This seems necessary because hash-based
aggregation is usually much slower when only a small fraction of all
groups can fit.  Even when it isn't possible to totally avoid hash
aggregates that spill, giving hash aggregation more memory will reliably
improve performance (the same cannot be said for external sort
operations, which appear to be almost unaffected by memory availability
provided it's at least possible to get a single merge pass).

The PostgreSQL 13 release notes should advise users that increasing
hash_mem_multiplier can help with performance regressions associated
with hash aggregation.  That can be taken care of by a later commit.

Author: Peter Geoghegan
Reviewed-By: Álvaro Herrera, Jeff Davis
Discussion: https://postgr.es/m/20200625203629.7m6yvut7eqblgmfo@alap3.anarazel.de
Discussion: https://postgr.es/m/CAH2-WzmD%2Bi1pG6rc1%2BCjc4V6EaFJ_qSuKCCHVnH%3DoruqD-zqow%40mail.gmail.com
Backpatch: 13-, where disk-based hash aggregation was introduced.
2020-07-29 14:14:58 -07:00
Tom Lane 689696c711 Fix bitmap AND/OR scans on the inside of a nestloop partition-wise join.
reparameterize_path_by_child() failed to reparameterize BitmapAnd
and BitmapOr paths.  This matters only if such a path is chosen as
the inside of a nestloop partition-wise join, where we have to pass
in parameters from the outside of the nestloop.  If that did happen,
we generated a bad plan that would likely lead to crashes at execution.

This is not entirely reparameterize_path_by_child()'s fault though;
it's the victim of an ancient decision (my ancient decision, I think)
to not bother filling in param_info in BitmapAnd/Or path nodes.  That
caused the function to believe that such nodes and their children
contain no parameter references and so need not be processed.

In hindsight that decision looks pretty penny-wise and pound-foolish:
while it saves a few cycles during path node setup, we do commonly
need the information later.  In particular, by reversing the decision
and requiring valid param_info data in all nodes of a bitmap path
tree, we can get rid of indxpath.c's get_bitmap_tree_required_outer()
function, which computed the data on-demand.  It's not unlikely that
that nets out as a savings of cycles in many scenarios.  A couple
of other things in indxpath.c can be simplified as well.

While here, get rid of some cases in reparameterize_path_by_child()
that are visibly dead or useless, given that we only care about
reparameterizing paths that can be on the inside of a parameterized
nestloop.  This case reminds one of the maxim that untested code
probably does not work, so I'm unwilling to leave unreachable code
in this function.  (I did leave the T_Gather case in place even
though it's not reached in the regression tests.  It's not very
clear to me when the planner might prefer to put Gather below
rather than above a nestloop, but at least in principle the case
might be interesting.)

Per bug #16536, originally from Arne Roland but with a test case
by Andrew Gierth.  Back-patch to v11 where this code came in.

Discussion: https://postgr.es/m/16536-2213ee0b3aad41fd@postgresql.org
2020-07-14 18:56:56 -04:00
Andres Freund e07633646a code: replace 'master' with 'leader' where appropriate.
Leader already is the more widely used terminology, but a few places
didn't get the message.

Author: Andres Freund
Reviewed-By: David Steele
Discussion: https://postgr.es/m/20200615182235.x7lch5n6kcjq4aue@alap3.anarazel.de
2020-07-08 12:58:32 -07:00
Tom Lane fa27dd40d5 Run pgindent with new pg_bsd_indent version 2.1.1.
Thomas Munro fixed a longstanding annoyance in pg_bsd_indent, that
it would misformat lines containing IsA() macros on the assumption
that the IsA() call should be treated like a cast.  This improves
some other cases involving field/variable names that match typedefs,
too.  The only places that get worse are a couple of uses of the
OpenSSL macro STACK_OF(); we'll gladly take that trade-off.

Discussion: https://postgr.es/m/20200114221814.GA19630@alvherre.pgsql
2020-05-16 11:54:51 -04:00
Alvaro Herrera 17cc133f01
Dial back -Wimplicit-fallthrough to level 3
The additional pain from level 4 is excessive for the gain.

Also revert all the source annotation changes to their original
wordings, to avoid back-patching pain.

Discussion: https://postgr.es/m/31166.1589378554@sss.pgh.pa.us
2020-05-13 15:31:14 -04:00
Alvaro Herrera 3e9744465d
Add -Wimplicit-fallthrough to CFLAGS and CXXFLAGS
Use it at level 4, a bit more restrictive than the default level, and
tweak our commanding comments to FALLTHROUGH.

(However, leave zic.c alone, since it's external code; to avoid the
warnings that would appear there, change CFLAGS for that file in the
Makefile.)

Author: Julien Rouhaud <rjuju123@gmail.com>
Author: Álvaro Herrera <alvherre@alvh.no-ip.org>
Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
Discussion: https://postgr.es/m/20200412081825.qyo5vwwco3fv4gdo@nol
Discussion: https://postgr.es/m/flat/E1fDenm-0000C8-IJ@gemulon.postgresql.org
2020-05-12 16:07:30 -04:00
Etsuro Fujita 2793bbe75e Remove unnecessary #include.
My oversight in commit c8434d64c.
2020-05-12 19:55:55 +09:00
Tom Lane 0da06d9faf Get rid of trailing semicolons in C macro definitions.
Writing a trailing semicolon in a macro is almost never the right thing,
because you almost always want to write a semicolon after each macro
call instead.  (Even if there was some reason to prefer not to, pgindent
would probably make a hash of code formatted that way; so within PG the
rule should basically be "don't do it".)  Thus, if we have a semi inside
the macro, the compiler sees "something;;".  Much of the time the extra
empty statement is harmless, but it could lead to mysterious syntax
errors at call sites.  In perhaps an overabundance of neatnik-ism, let's
run around and get rid of the excess semicolons whereever possible.

The only thing worse than a mysterious syntax error is a mysterious
syntax error that only happens in the back branches; therefore,
backpatch these changes where relevant, which is most of them because
most of these mistakes are old.  (The lack of reported problems shows
that this is largely a hypothetical issue, but still, it could bite
us in some future patch.)

John Naylor and Tom Lane

Discussion: https://postgr.es/m/CACPNZCs0qWTqJ2QUSGJ07B7uvAvzMb-KbG2q+oo+J3tsWN5cqw@mail.gmail.com
2020-05-01 17:28:00 -04:00
Tom Lane 981643dcdb Allow partitionwise join to handle nested FULL JOIN USING cases.
This case didn't work because columns merged by FULL JOIN USING are
represented in the parse tree by COALESCE expressions, and the logic
for recognizing a partitionable join failed to match upper-level join
clauses to such expressions.  To fix, synthesize suitable COALESCE
expressions and add them to the nullable_partexprs lists.  This is
pretty ugly and brute-force, but it gets the job done.  (I have
ambitions of rethinking the way outer-join output Vars are
represented, so maybe that will provide a cleaner solution someday.
For now, do this.)

Amit Langote, reviewed by Justin Pryzby, Richard Guo, and myself

Discussion: https://postgr.es/m/CA+HiwqG2WVUGmLJqtR0tPFhniO=H=9qQ+Z3L_ZC+Y3-EVQHFGg@mail.gmail.com
2020-04-07 22:12:14 -04:00
Etsuro Fujita c8434d64ce Allow partitionwise joins in more cases.
Previously, the partitionwise join technique only allowed partitionwise
join when input partitioned tables had exactly the same partition
bounds.  This commit extends the technique to some cases when the tables
have different partition bounds, by using an advanced partition-matching
algorithm introduced by this commit.  For both the input partitioned
tables, the algorithm checks whether every partition of one input
partitioned table only matches one partition of the other input
partitioned table at most, and vice versa.  In such a case the join
between the tables can be broken down into joins between the matching
partitions, so the algorithm produces the pairs of the matching
partitions, plus the partition bounds for the join relation, to allow
partitionwise join for computing the join.  Currently, the algorithm
works for list-partitioned and range-partitioned tables, but not
hash-partitioned tables.  See comments in partition_bounds_merge().

Ashutosh Bapat and Etsuro Fujita, most of regression tests by Rajkumar
Raghuwanshi, some of the tests by Mark Dilger and Amul Sul, reviewed by
Dmitry Dolgov and Amul Sul, with additional review at various points by
Ashutosh Bapat, Mark Dilger, Robert Haas, Antonin Houska, Amit Langote,
Justin Pryzby, and Tomas Vondra

Discussion: https://postgr.es/m/CAFjFpRdjQvaUEV5DJX3TW6pU5eq54NCkadtxHX2JiJG_GvbrCA@mail.gmail.com
2020-04-08 10:25:00 +09:00
Alvaro Herrera 357889eb17
Support FETCH FIRST WITH TIES
WITH TIES is an option to the FETCH FIRST N ROWS clause (the SQL
standard's spelling of LIMIT), where you additionally get rows that
compare equal to the last of those N rows by the columns in the
mandatory ORDER BY clause.

There was a proposal by Andrew Gierth to implement this functionality in
a more powerful way that would yield more features, but the other patch
had not been finished at this time, so we decided to use this one for
now in the spirit of incremental development.

Author: Surafel Temesgen <surafel3000@gmail.com>
Reviewed-by: Álvaro Herrera <alvherre@alvh.no-ip.org>
Reviewed-by: Tomas Vondra <tomas.vondra@2ndquadrant.com>
Discussion: https://postgr.es/m/CALAY4q9ky7rD_A4vf=FVQvCGngm3LOes-ky0J6euMrg=_Se+ag@mail.gmail.com
Discussion: https://postgr.es/m/87o8wvz253.fsf@news-spur.riddles.org.uk
2020-04-07 16:22:13 -04:00
Tomas Vondra d2d8a229bc Implement Incremental Sort
Incremental Sort is an optimized variant of multikey sort for cases when
the input is already sorted by a prefix of the requested sort keys. For
example when the relation is already sorted by (key1, key2) and we need
to sort it by (key1, key2, key3) we can simply split the input rows into
groups having equal values in (key1, key2), and only sort/compare the
remaining column key3.

This has a number of benefits:

- Reduced memory consumption, because only a single group (determined by
  values in the sorted prefix) needs to be kept in memory. This may also
  eliminate the need to spill to disk.

- Lower startup cost, because Incremental Sort produce results after each
  prefix group, which is beneficial for plans where startup cost matters
  (like for example queries with LIMIT clause).

We consider both Sort and Incremental Sort, and decide based on costing.

The implemented algorithm operates in two different modes:

- Fetching a minimum number of tuples without check of equality on the
  prefix keys, and sorting on all columns when safe.

- Fetching all tuples for a single prefix group and then sorting by
  comparing only the remaining (non-prefix) keys.

We always start in the first mode, and employ a heuristic to switch into
the second mode if we believe it's beneficial - the goal is to minimize
the number of unnecessary comparions while keeping memory consumption
below work_mem.

This is a very old patch series. The idea was originally proposed by
Alexander Korotkov back in 2013, and then revived in 2017. In 2018 the
patch was taken over by James Coleman, who wrote and rewrote most of the
current code.

There were many reviewers/contributors since 2013 - I've done my best to
pick the most active ones, and listed them in this commit message.

Author: James Coleman, Alexander Korotkov
Reviewed-by: Tomas Vondra, Andreas Karlsson, Marti Raudsepp, Peter Geoghegan, Robert Haas, Thomas Munro, Antonin Houska, Andres Freund, Alexander Kuzmenkov
Discussion: https://postgr.es/m/CAPpHfdscOX5an71nHd8WSUH6GNOCf=V7wgDaTXdDd9=goN-gfA@mail.gmail.com
Discussion: https://postgr.es/m/CAPpHfds1waRZ=NOmueYq0sx1ZSCnt+5QJvizT8ndT2=etZEeAQ@mail.gmail.com
2020-04-06 21:35:10 +02:00
Tom Lane 0568e7a2a4 Cosmetic improvements for code related to partitionwise join.
Move have_partkey_equi_join and match_expr_to_partition_keys to
relnode.c, since they're used only there.  Refactor
build_joinrel_partition_info to split out the code that fills the
joinrel's partition key lists; this doesn't have any non-cosmetic
impact, but it seems like a useful separation of concerns.
Improve assorted nearby comments.

Amit Langote, with a little further editorialization by me

Discussion: https://postgr.es/m/CA+HiwqG2WVUGmLJqtR0tPFhniO=H=9qQ+Z3L_ZC+Y3-EVQHFGg@mail.gmail.com
2020-04-03 17:00:35 -04:00
Alexander Korotkov 911e702077 Implement operator class parameters
PostgreSQL provides set of template index access methods, where opclasses have
much freedom in the semantics of indexing.  These index AMs are GiST, GIN,
SP-GiST and BRIN.  There opclasses define representation of keys, operations on
them and supported search strategies.  So, it's natural that opclasses may be
faced some tradeoffs, which require user-side decision.  This commit implements
opclass parameters allowing users to set some values, which tell opclass how to
index the particular dataset.

This commit doesn't introduce new storage in system catalog.  Instead it uses
pg_attribute.attoptions, which is used for table column storage options but
unused for index attributes.

In order to evade changing signature of each opclass support function, we
implement unified way to pass options to opclass support functions.  Options
are set to fn_expr as the constant bytea expression.  It's possible due to the
fact that opclass support functions are executed outside of expressions, so
fn_expr is unused for them.

This commit comes with some examples of opclass options usage.  We parametrize
signature length in GiST.  That applies to multiple opclasses: tsvector_ops,
gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and
gist_hstore_ops.  Also we parametrize maximum number of integer ranges for
gist__int_ops.  However, the main future usage of this feature is expected
to be json, where users would be able to specify which way to index particular
json parts.

Catversion is bumped.

Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru
Author: Nikita Glukhov, revised by me
Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
2020-03-30 19:17:23 +03:00
Jeff Davis 1f39bce021 Disk-based Hash Aggregation.
While performing hash aggregation, track memory usage when adding new
groups to a hash table. If the memory usage exceeds work_mem, enter
"spill mode".

In spill mode, new groups are not created in the hash table(s), but
existing groups continue to be advanced if input tuples match. Tuples
that would cause a new group to be created are instead spilled to a
logical tape to be processed later.

The tuples are spilled in a partitioned fashion. When all tuples from
the outer plan are processed (either by advancing the group or
spilling the tuple), finalize and emit the groups from the hash
table. Then, create new batches of work from the spilled partitions,
and select one of the saved batches and process it (possibly spilling
recursively).

Author: Jeff Davis
Reviewed-by: Tomas Vondra, Adam Lee, Justin Pryzby, Taylor Vesely, Melanie Plageman
Discussion: https://postgr.es/m/507ac540ec7c20136364b5272acbcd4574aa76ef.camel@j-davis.com
2020-03-18 15:42:02 -07:00
Jeff Davis c11cb17dc5 Save calculated transitionSpace in Agg node.
This will be useful in the upcoming Hash Aggregation work to improve
estimates for hash table sizing.

Discussion: https://postgr.es/m/37091115219dd522fd9ed67333ee8ed1b7e09443.camel%40j-davis.com
2020-02-27 11:20:56 -08:00
Tom Lane a477bfc1df Suppress unnecessary RelabelType nodes in more cases.
eval_const_expressions sometimes produced RelabelType nodes that
were useless because they just relabeled an expression to the same
exposed type it already had.  This is worth avoiding because it can
cause two equivalent expressions to not be equal(), preventing
recognition of useful optimizations.  In the test case added here,
an unpatched planner fails to notice that the "sqli = constant" clause
renders a sort step unnecessary, because one code path produces an
extra RelabelType and another doesn't.

Fix by ensuring that eval_const_expressions_mutator's T_RelabelType
case will not add in an unnecessary RelabelType.  Also save some
code by sharing a subroutine with the effectively-equivalent cases
for CollateExpr and CoerceToDomain.  (CollateExpr had no bug, and
I think that the case couldn't arise with CoerceToDomain, but
it seems prudent to do the same check for all three cases.)

Back-patch to v12.  In principle this has been wrong all along,
but I haven't seen a case where it causes visible misbehavior
before v12, so refrain from changing stable branches unnecessarily.

Per investigation of a report from Eric Gillum.

Discussion: https://postgr.es/m/CAMmjdmvAZsUEskHYj=KT9sTukVVCiCSoe_PBKOXsncFeAUDPCQ@mail.gmail.com
2020-02-26 18:14:12 -05:00
Tom Lane 9ce77d75c5 Reconsider the representation of join alias Vars.
The core idea of this patch is to make the parser generate join alias
Vars (that is, ones with varno pointing to a JOIN RTE) only when the
alias Var is actually different from any raw join input, that is a type
coercion and/or COALESCE is necessary to generate the join output value.
Otherwise just generate varno/varattno pointing to the relevant join
input column.

In effect, this means that the planner's flatten_join_alias_vars()
transformation is already done in the parser, for all cases except
(a) columns that are merged by JOIN USING and are transformed in the
process, and (b) whole-row join Vars.  In principle that would allow
us to skip doing flatten_join_alias_vars() in many more queries than
we do now, but we don't have quite enough infrastructure to know that
we can do so --- in particular there's no cheap way to know whether
there are any whole-row join Vars.  I'm not sure if it's worth the
trouble to add a Query-level flag for that, and in any case it seems
like fit material for a separate patch.  But even without skipping the
work entirely, this should make flatten_join_alias_vars() faster,
particularly where there are nested joins that it previously had to
flatten recursively.

An essential part of this change is to replace Var nodes'
varnoold/varoattno fields with varnosyn/varattnosyn, which have
considerably more tightly-defined meanings than the old fields: when
they differ from varno/varattno, they identify the Var's position in
an aliased JOIN RTE, and the join alias is what ruleutils.c should
print for the Var.  This is necessary because the varno change
destroyed ruleutils.c's ability to find the JOIN RTE from the Var's
varno.

Another way in which this change broke ruleutils.c is that it's no
longer feasible to determine, from a JOIN RTE's joinaliasvars list,
which join columns correspond to which columns of the join's immediate
input relations.  (If those are sub-joins, the joinaliasvars entries
may point to columns of their base relations, not the sub-joins.)
But that was a horrid mess requiring a lot of fragile assumptions
already, so let's just bite the bullet and add some more JOIN RTE
fields to make it more straightforward to figure that out.  I added
two integer-List fields containing the relevant column numbers from
the left and right input rels, plus a count of how many merged columns
there are.

This patch depends on the ParseNamespaceColumn infrastructure that
I added in commit 5815696bc.  The biggest bit of code change is
restructuring transformFromClauseItem's handling of JOINs so that
the ParseNamespaceColumn data is propagated upward correctly.

Other than that and the ruleutils fixes, everything pretty much
just works, though some processing is now inessential.  I grabbed
two pieces of low-hanging fruit in that line:

1. In find_expr_references, we don't need to recurse into join alias
Vars anymore.  There aren't any except for references to merged USING
columns, which are more properly handled when we scan the join's RTE.
This change actually fixes an edge-case issue: we will now record a
dependency on any type-coercion function present in a USING column's
joinaliasvar, even if that join column has no references in the query
text.  The odds of the missing dependency causing a problem seem quite
small: you'd have to posit somebody dropping an implicit cast between
two data types, without removing the types themselves, and then having
a stored rule containing a whole-row Var for a join whose USING merge
depends on that cast.  So I don't feel a great need to change this in
the back branches.  But in theory this way is more correct.

2. markRTEForSelectPriv and markTargetListOrigin don't need to recurse
into join alias Vars either, because the cases they care about don't
apply to alias Vars for USING columns that are semantically distinct
from the underlying columns.  This removes the only case in which
markVarForSelectPriv could be called with NULL for the RTE, so adjust
the comments to describe that hack as being strictly internal to
markRTEForSelectPriv.

catversion bump required due to changes in stored rules.

Discussion: https://postgr.es/m/7115.1577986646@sss.pgh.pa.us
2020-01-09 11:56:59 -05:00
Tom Lane 913bbd88dc Improve the handling of result type coercions in SQL functions.
Use the parser's standard type coercion machinery to convert the
output column(s) of a SQL function's final SELECT or RETURNING
to the type(s) they should have according to the function's declared
result type.  We'll allow any case where an assignment-level
coercion is available.  Previously, we failed unless the required
coercion was a binary-compatible one (and the documentation ignored
this, falsely claiming that the types must match exactly).

Notably, the coercion now accounts for typmods, so that cases where
a SQL function is declared to return a composite type whose columns
are typmod-constrained now behave as one would expect.  Arguably
this aspect is a bug fix, but the overall behavioral change here
seems too large to consider back-patching.

A nice side-effect is that functions can now be inlined in a
few cases where we previously failed to do so because of type
mismatches.

Discussion: https://postgr.es/m/18929.1574895430@sss.pgh.pa.us
2020-01-08 11:07:59 -05:00
Bruce Momjian 7559d8ebfa Update copyrights for 2020
Backpatch-through: update all files in master, backpatch legal files through 9.4
2020-01-01 12:21:45 -05:00
Michael Paquier 7854e07f25 Revert "Rename files and headers related to index AM"
This follows multiple complains from Peter Geoghegan, Andres Freund and
Alvaro Herrera that this issue ought to be dug more before actually
happening, if it happens.

Discussion: https://postgr.es/m/20191226144606.GA5659@alvherre.pgsql
2019-12-27 08:09:00 +09:00
Michael Paquier 8ce3aa9b59 Rename files and headers related to index AM
The following renaming is done so as source files related to index
access methods are more consistent with table access methods (the
original names used for index AMs ware too generic, and could be
confused as including features related to table AMs):
- amapi.h -> indexam.h.
- amapi.c -> indexamapi.c.  Here we have an equivalent with
backend/access/table/tableamapi.c.
- amvalidate.c -> indexamvalidate.c.
- amvalidate.h -> indexamvalidate.h.
- genam.c -> indexgenam.c.
- genam.h -> indexgenam.h.

This has been discussed during the development of v12 when table AM was
worked on, but the renaming never happened.

Author: Michael Paquier
Reviewed-by: Fabien Coelho, Julien Rouhaud
Discussion: https://postgr.es/m/20191223053434.GF34339@paquier.xyz
2019-12-25 10:23:39 +09:00
Tom Lane 55a1954da1 Fix EXPLAIN's column alias output for mismatched child tables.
If an inheritance/partitioning parent table is assigned some column
alias names in the query, EXPLAIN mapped those aliases onto the
child tables' columns by physical position, resulting in bogus output
if a child table's columns aren't one-for-one with the parent's.

To fix, make expand_single_inheritance_child() generate a correctly
re-mapped column alias list, rather than just copying the parent
RTE's alias node.  (We have to fill the alias field, not just
adjust the eref field, because ruleutils.c will ignore eref in
favor of looking at the real column names.)

This means that child tables will now always have alias fields in
plan rtables, where before they might not have.  That results in
a rather substantial set of regression test output changes:
EXPLAIN will now always show child tables with aliases that match
the parent table (usually with "_N" appended for uniqueness).
But that seems like a net positive for understandability, since
the parent alias corresponds to something that actually appeared
in the original query, while the child table names didn't.
(Note that this does not change anything for cases where an explicit
table alias was written in the query for the parent table; it
just makes cases without such aliases behave similarly to that.)
Hence, while we could avoid these subsidiary changes if we made
inherit.c more complicated, we choose not to.

Discussion: https://postgr.es/m/12424.1575168015@sss.pgh.pa.us
2019-12-02 19:08:10 -05:00
Tom Lane ce76c0ba53 Add a reverse-translation column number array to struct AppendRelInfo.
This provides for cheaper mapping of child columns back to parent
columns.  The one existing use-case in examine_simple_variable()
would hardly justify this by itself; but an upcoming bug fix will
make use of this array in a mainstream code path, and it seems
likely that we'll find other uses for it as we continue to build
out the partitioning infrastructure.

Discussion: https://postgr.es/m/12424.1575168015@sss.pgh.pa.us
2019-12-02 18:05:29 -05:00
Etsuro Fujita 47a3c7fa06 Fix typo in comment. 2019-11-27 16:00:45 +09:00
Amit Kapila 14aec03502 Make the order of the header file includes consistent in backend modules.
Similar to commits 7e735035f2 and dddf4cdc33, this commit makes the order
of header file inclusion consistent for backend modules.

In the passing, removed a couple of duplicate inclusions.

Author: Vignesh C
Reviewed-by: Kuntal Ghosh and Amit Kapila
Discussion: https://postgr.es/m/CALDaNm2Sznv8RR6Ex-iJO6xAdsxgWhCoETkaYX=+9DW3q0QCfA@mail.gmail.com
2019-11-12 08:30:16 +05:30
Andres Freund 01368e5d9d Split all OBJS style lines in makefiles into one-line-per-entry style.
When maintaining or merging patches, one of the most common sources
for conflicts are the list of objects in makefiles. Especially when
the split across lines has been changed on both sides, which is
somewhat common due to attempting to stay below 80 columns, those
conflicts are unnecessarily laborious to resolve.

By splitting, and alphabetically sorting, OBJS style lines into one
object per line, conflicts should be less frequent, and easier to
resolve when they still occur.

Author: Andres Freund
Discussion: https://postgr.es/m/20191029200901.vww4idgcxv74cwes@alap3.anarazel.de
2019-11-05 14:41:07 -08:00
Tom Lane 529ebb20aa Generate EquivalenceClass members for partitionwise child join rels.
Commit d25ea0127 got rid of what I thought were entirely unnecessary
derived child expressions in EquivalenceClasses for EC members that
mention multiple baserels.  But it turns out that some of the child
expressions that code created are necessary for partitionwise joins,
else we fail to find matching pathkeys for Sort nodes.  (This happens
only for certain shapes of the resulting plan; it may be that
partitionwise aggregation is also necessary to show the failure,
though I'm not sure of that.)

Reverting that commit entirely would be quite painful performance-wise
for large partition sets.  So instead, add code that explicitly
generates child expressions that match only partitionwise child join
rels we have actually generated.

Per report from Justin Pryzby.  (Amit Langote noticed the problem
earlier, though it's not clear if he recognized then that it could
result in a planner error, not merely failure to exploit partitionwise
join, in the code as-committed.)  Back-patch to v12 where commit
d25ea0127 came in.

Amit Langote, with lots of kibitzing from me

Discussion: https://postgr.es/m/CA+HiwqG2WVUGmLJqtR0tPFhniO=H=9qQ+Z3L_ZC+Y3-EVQHFGg@mail.gmail.com
Discussion: https://postgr.es/m/20191011143703.GN10470@telsasoft.com
2019-11-05 11:42:24 -05:00
Michael Paquier f25968c496 Remove last traces of heap_open/close in the tree
Since pluggable storage has been introduced, those two routines have
been replaced by table_open/close, with some compatibility macros still
present to allow extensions to compile correctly with v12.

Some code paths using the old routines still remained, so replace them.
Based on the discussion done, the consensus reached is that it is better
to remove those compatibility macros so as nothing new uses the old
routines, so remove also the compatibility macros.

Discussion: https://postgr.es/m/20191017014706.GF5605@paquier.xyz
2019-10-19 11:18:15 +09:00
Etsuro Fujita 076e9d4209 Remove useless bms_free() calls in build_child_join_rel().
These seem to be leftovers from the original partitionwise-join patch,
perhaps.

Discussion: https://postgr.es/m/CAPmGK145YiMTPRnvev1dLz8na_-0aZ=Xyqn8f2QsJFBUTObNow@mail.gmail.com
2019-08-16 14:35:55 +09:00
Alvaro Herrera 815ef2f568 Don't constraint-exclude partitioned tables as much
We only need to invoke constraint exclusion on partitioned tables when
they are a partition, and they themselves contain a default partition;
it's not necessary otherwise, and it's expensive, so avoid it.  Also, we
were trying once for each clause separately, but we can do it for all
the clauses at once.

While at it, centralize setting of RelOptInfo->partition_qual instead of
computing it in slightly different ways in different places.

Per complaints from Simon Riggs about 4e85642d935e; reviewed by Yuzuko
Hosoya, Kyotaro Horiguchi.

Author: Amit Langote.  I (Álvaro) again mangled the patch somewhat.
Discussion: https://postgr.es/m/CANP8+j+tMCY=nEcQeqQam85=uopLBtX-2vHiLD2bbp7iQQUKpA@mail.gmail.com
2019-08-13 10:26:04 -04:00
Tom Lane 5ee190f8ec Rationalize use of list_concat + list_copy combinations.
In the wake of commit 1cff1b95a, the result of list_concat no longer
shares the ListCells of the second input.  Therefore, we can replace
"list_concat(x, list_copy(y))" with just "list_concat(x, y)".

To improve call sites that were list_copy'ing the first argument,
or both arguments, invent "list_concat_copy()" which produces a new
list sharing no ListCells with either input.  (This is a bit faster
than "list_concat(list_copy(x), y)" because it makes the result list
the right size to start with.)

In call sites that were not list_copy'ing the second argument, the new
semantics mean that we are usually leaking the second List's storage,
since typically there is no remaining pointer to it.  We considered
inventing another list_copy variant that would list_free the second
input, but concluded that for most call sites it isn't worth worrying
about, given the relative compactness of the new List representation.
(Note that in cases where such leakage would happen, the old code
already leaked the second List's header; so we're only discussing
the size of the leak not whether there is one.  I did adjust two or
three places that had been troubling to free that header so that
they manually free the whole second List.)

Patch by me; thanks to David Rowley for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-08-12 11:20:18 -04:00
Tom Lane 1661a40505 Cosmetic improvements in setup of planner's per-RTE arrays.
Merge setup_append_rel_array into setup_simple_rel_arrays.  There's no
particularly good reason to keep them separate, and it's inconsistent
with the lack of separation in expand_planner_arrays.  The only apparent
benefit was that the fast path for trivial queries in query_planner()
doesn't need to set up the append_rel_array; but all we're saving there
is an if-test and NULL assignment, which surely ought to be negligible.

Also improve some obsolete comments.

Discussion: https://postgr.es/m/17220.1565301350@sss.pgh.pa.us
2019-08-09 12:33:43 -04:00
Michael Paquier 940c8b01b0 Fix typo in pathnode.c
Author: Amit Langote
Discussion: https://postgr.es/m/CA+HiwqFhZ6ABoz-i=JZ5wMMyz-orx4asjR0og9qBtgEwOww6Yg@mail.gmail.com
2019-08-06 18:11:02 +09:00
Tom Lane 7266d0997d Allow functions-in-FROM to be pulled up if they reduce to constants.
This allows simplification of the plan tree in some common usage
patterns: we can get rid of a join to the function RTE.

In principle we could pull up any immutable expression, but restricting
it to Consts avoids the risk that multiple evaluations of the expression
might cost more than we can save.  (Possibly this could be improved in
future --- but we've more or less promised people that putting a function
in FROM guarantees single evaluation, so we'd have to tread carefully.)

To do this, we need to rearrange when eval_const_expressions()
happens for expressions in function RTEs.  I moved it to
inline_set_returning_functions(), which already has to iterate over
every function RTE, and in consequence renamed that function to
preprocess_function_rtes().  A useful consequence is that
inline_set_returning_function() no longer has to do this for itself,
simplifying that code.

In passing, break out pull_up_simple_subquery's code that knows where
everything that needs pullup_replace_vars() processing is, so that
the new pull_up_constant_function() routine can share it.  We'd
gotten away with one-and-a-half copies of that code so far, since
pull_up_simple_values() could assume that a lot of cases didn't apply
to it --- but I don't think pull_up_constant_function() can make any
simplifying assumptions.  Might as well make pull_up_simple_values()
use it too.

(Possibly this refactoring should go further: maybe we could share
some of the code to fill in the pullup_replace_vars_context struct?
For now, I left it that the callers fill that completely.)

Note: the one existing test case that this patch changes has to be
changed because inlining its function RTEs would destroy the point
of the test, namely to check join order.

Alexander Kuzmenkov and Aleksandr Parfenov, reviewed by
Antonin Houska and Anastasia Lubennikova, and whacked around
some more by me

Discussion: https://postgr.es/m/402356c32eeb93d4fed01f66d6c7fe2d@postgrespro.ru
2019-08-01 18:50:22 -04:00
David Rowley 3373c71553 Speed up finding EquivalenceClasses for a given set of rels
Previously in order to determine which ECs a relation had members in, we
had to loop over all ECs stored in PlannerInfo's eq_classes and check if
ec_relids mentioned the relation.  For the most part, this was fine, as
generally, unless queries were fairly complex, the overhead of performing
the lookup would have not been that significant.  However, when queries
contained large numbers of joins and ECs, the overhead to find the set of
classes matching a given set of relations could become a significant
portion of the overall planning effort.

Here we allow a much more efficient method to access the ECs which match a
given relation or set of relations.  A new Bitmapset field in RelOptInfo
now exists to store the indexes into PlannerInfo's eq_classes list which
each relation is mentioned in.  This allows very fast lookups to find all
ECs belonging to a single relation.  When we need to lookup ECs belonging
to a given pair of relations, we can simply bitwise-AND the Bitmapsets from
each relation and use the result to perform the lookup.

We also take the opportunity to write a new implementation of
generate_join_implied_equalities which makes use of the new indexes.
generate_join_implied_equalities_for_ecs must remain as is as it can be
given a custom list of ECs, which we can't easily determine the indexes of.

This was originally intended to fix the performance penalty of looking up
foreign keys matching a join condition which was introduced by 100340e2d.
However, we're speeding up much more than just that here.

Author: David Rowley, Tom Lane
Reviewed-by: Tom Lane, Tomas Vondra
Discussion: https://postgr.es/m/6970.1545327857@sss.pgh.pa.us
2019-07-21 17:30:58 +12:00
Tom Lane d97b714a21 Avoid using lcons and list_delete_first where it's easy to do so.
Formerly, lcons was about the same speed as lappend, but with the new
List implementation, that's not so; with a long List, data movement
imposes an O(N) cost on lcons and list_delete_first, but not lappend.

Hence, invent list_delete_last with semantics parallel to
list_delete_first (but O(1) cost), and change various places to use
lappend and list_delete_last where this can be done without much
violence to the code logic.

There are quite a few places that construct result lists using lcons not
lappend.  Some have semantic rationales for that; I added comments about
it to a couple that didn't have them already.  In many such places though,
I think the coding is that way only because back in the dark ages lcons
was faster than lappend.  Hence, switch to lappend where this can be done
without causing semantic changes.

In ExecInitExprRec(), this results in aggregates and window functions that
are in the same plan node being executed in a different order than before.
Generally, the executions of such functions ought to be independent of
each other, so this shouldn't result in visibly different query results.
But if you push it, as one regression test case does, you can show that
the order is different.  The new order seems saner; it's closer to
the order of the functions in the query text.  And we never documented
or promised anything about this, anyway.

Also, in gistfinishsplit(), don't bother building a reverse-order list;
it's easy now to iterate backwards through the original list.

It'd be possible to go further towards removing uses of lcons and
list_delete_first, but it'd require more extensive logic changes,
and I'm not convinced it's worth it.  Most of the remaining uses
deal with queues that probably never get long enough to be worth
sweating over.  (Actually, I doubt that any of the changes in this
patch will have measurable performance effects either.  But better
to have good examples than bad ones in the code base.)

Patch by me, thanks to David Rowley and Daniel Gustafsson for review.

Discussion: https://postgr.es/m/21272.1563318411@sss.pgh.pa.us
2019-07-17 11:15:34 -04:00
Tom Lane 569ed7f483 Redesign the API for list sorting (list_qsort becomes list_sort).
In the wake of commit 1cff1b95a, the obvious way to sort a List
is to apply qsort() directly to the array of ListCells.  list_qsort
was building an intermediate array of pointers-to-ListCells, which
we no longer need, but getting rid of it forces an API change:
the comparator functions need to do one less level of indirection.

Since we're having to touch the callers anyway, let's do two additional
changes: sort the given list in-place rather than making a copy (as
none of the existing callers have any use for the copying behavior),
and rename list_qsort to list_sort.  It was argued that the old name
exposes more about the implementation than it should, which I find
pretty questionable, but a better reason to rename it is to be sure
we get the attention of any external callers about the need to fix
their comparator functions.

While we're at it, change four existing callers of qsort() to use
list_sort instead; previously, they all had local reinventions
of list_qsort, ie build-an-array-from-a-List-and-qsort-it.
(There are some other places where changing to list_sort perhaps
would be worthwhile, but they're less obviously wins.)

Discussion: https://postgr.es/m/29361.1563220190@sss.pgh.pa.us
2019-07-16 11:51:44 -04:00
Tom Lane 1cff1b95ab Represent Lists as expansible arrays, not chains of cons-cells.
Originally, Postgres Lists were a more or less exact reimplementation of
Lisp lists, which consist of chains of separately-allocated cons cells,
each having a value and a next-cell link.  We'd hacked that once before
(commit d0b4399d8) to add a separate List header, but the data was still
in cons cells.  That makes some operations -- notably list_nth() -- O(N),
and it's bulky because of the next-cell pointers and per-cell palloc
overhead, and it's very cache-unfriendly if the cons cells end up
scattered around rather than being adjacent.

In this rewrite, we still have List headers, but the data is in a
resizable array of values, with no next-cell links.  Now we need at
most two palloc's per List, and often only one, since we can allocate
some values in the same palloc call as the List header.  (Of course,
extending an existing List may require repalloc's to enlarge the array.
But this involves just O(log N) allocations not O(N).)

Of course this is not without downsides.  The key difficulty is that
addition or deletion of a list entry may now cause other entries to
move, which it did not before.

For example, that breaks foreach() and sister macros, which historically
used a pointer to the current cons-cell as loop state.  We can repair
those macros transparently by making their actual loop state be an
integer list index; the exposed "ListCell *" pointer is no longer state
carried across loop iterations, but is just a derived value.  (In
practice, modern compilers can optimize things back to having just one
loop state value, at least for simple cases with inline loop bodies.)
In principle, this is a semantics change for cases where the loop body
inserts or deletes list entries ahead of the current loop index; but
I found no such cases in the Postgres code.

The change is not at all transparent for code that doesn't use foreach()
but chases lists "by hand" using lnext().  The largest share of such
code in the backend is in loops that were maintaining "prev" and "next"
variables in addition to the current-cell pointer, in order to delete
list cells efficiently using list_delete_cell().  However, we no longer
need a previous-cell pointer to delete a list cell efficiently.  Keeping
a next-cell pointer doesn't work, as explained above, but we can improve
matters by changing such code to use a regular foreach() loop and then
using the new macro foreach_delete_current() to delete the current cell.
(This macro knows how to update the associated foreach loop's state so
that no cells will be missed in the traversal.)

There remains a nontrivial risk of code assuming that a ListCell *
pointer will remain good over an operation that could now move the list
contents.  To help catch such errors, list.c can be compiled with a new
define symbol DEBUG_LIST_MEMORY_USAGE that forcibly moves list contents
whenever that could possibly happen.  This makes list operations
significantly more expensive so it's not normally turned on (though it
is on by default if USE_VALGRIND is on).

There are two notable API differences from the previous code:

* lnext() now requires the List's header pointer in addition to the
current cell's address.

* list_delete_cell() no longer requires a previous-cell argument.

These changes are somewhat unfortunate, but on the other hand code using
either function needs inspection to see if it is assuming anything
it shouldn't, so it's not all bad.

Programmers should be aware of these significant performance changes:

* list_nth() and related functions are now O(1); so there's no
major access-speed difference between a list and an array.

* Inserting or deleting a list element now takes time proportional to
the distance to the end of the list, due to moving the array elements.
(However, it typically *doesn't* require palloc or pfree, so except in
long lists it's probably still faster than before.)  Notably, lcons()
used to be about the same cost as lappend(), but that's no longer true
if the list is long.  Code that uses lcons() and list_delete_first()
to maintain a stack might usefully be rewritten to push and pop at the
end of the list rather than the beginning.

* There are now list_insert_nth...() and list_delete_nth...() functions
that add or remove a list cell identified by index.  These have the
data-movement penalty explained above, but there's no search penalty.

* list_concat() and variants now copy the second list's data into
storage belonging to the first list, so there is no longer any
sharing of cells between the input lists.  The second argument is
now declared "const List *" to reflect that it isn't changed.

This patch just does the minimum needed to get the new implementation
in place and fix bugs exposed by the regression tests.  As suggested
by the foregoing, there's a fair amount of followup work remaining to
do.

Also, the ENABLE_LIST_COMPAT macros are finally removed in this
commit.  Code using those should have been gone a dozen years ago.

Patch by me; thanks to David Rowley, Jesper Pedersen, and others
for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-07-15 13:41:58 -04:00
Michael Paquier c74d49d41c Fix many typos and inconsistencies
Author: Alexander Lakhin
Discussion: https://postgr.es/m/af27d1b3-a128-9d62-46e0-88f424397f44@gmail.com
2019-07-01 10:00:23 +09:00
Tomas Vondra 6cbfb784c3 Rework the pg_statistic_ext catalog
Since extended statistic got introduced in PostgreSQL 10, there was a
single catalog pg_statistic_ext storing both the definitions and built
statistic.  That's however problematic when a user is supposed to have
access only to the definitions, but not to user data.

Consider for example pg_dump on a database with RLS enabled - if the
pg_statistic_ext catalog respects RLS (which it should, if it contains
user data), pg_dump would not see any records and the result would not
define any extended statistics.  That would be a surprising behavior.

Until now this was not a pressing issue, because the existing types of
extended statistic (functional dependencies and ndistinct coefficients)
do not include any user data directly.  This changed with introduction
of MCV lists, which do include most common combinations of values.

The easiest way to fix this is to split the pg_statistic_ext catalog
into two - one for definitions, one for the built statistic values.
The new catalog is called pg_statistic_ext_data, and we're maintaining
a 1:1 relationship with the old catalog - either there are matching
records in both catalogs, or neither of them.

Bumped CATVERSION due to changing system catalog definitions.

Author: Dean Rasheed, with improvements by me
Reviewed-by: Dean Rasheed, John Naylor
Discussion: https://postgr.es/m/CAEZATCUhT9rt7Ui%3DVdx4N%3D%3DVV5XOK5dsXfnGgVOz_JhAicB%3DZA%40mail.gmail.com
2019-06-16 01:20:31 +02:00
Tom Lane 8255c7a5ee Phase 2 pgindent run for v12.
Switch to 2.1 version of pg_bsd_indent.  This formats
multiline function declarations "correctly", that is with
additional lines of parameter declarations indented to match
where the first line's left parenthesis is.

Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com
2019-05-22 13:04:48 -04:00
Tom Lane be76af171c Initial pgindent run for v12.
This is still using the 2.0 version of pg_bsd_indent.
I thought it would be good to commit this separately,
so as to document the differences between 2.0 and 2.1 behavior.

Discussion: https://postgr.es/m/16296.1558103386@sss.pgh.pa.us
2019-05-22 12:55:34 -04:00
Tom Lane 9691aa72e2 Fix style violations in syscache lookups.
Project style is to check the success of SearchSysCacheN and friends
by applying HeapTupleIsValid to the result.  A tiny minority of calls
creatively did it differently.  Bring them into line with the rest.

This is just cosmetic, since HeapTupleIsValid is indeed just a null
check at the moment ... but that may not be true forever, and in any
case it puts a mental burden on readers who may wonder why these
call sites are not like the rest.

Back-patch to v11 just to keep the branches in sync.  (The bulk of these
errors seem to have originated in v11 or v12, though a few are old.)

Per searching to see if anyplace else had made the same error
repaired in 62148c352.
2019-05-05 13:10:07 -04:00
Tom Lane e03ff73969 Clean up handling of constraint_exclusion and enable_partition_pruning.
The interaction of these parameters was a bit confused/confusing,
and in fact v11 entirely misses the opportunity to apply partition
constraints when a partition is accessed directly (rather than
indirectly from its parent).

In HEAD, establish the principle that enable_partition_pruning controls
partition pruning and nothing else.  When accessing a partition via its
parent, we do partition pruning (if enabled by enable_partition_pruning)
and then there is no need to consider partition constraints in the
constraint_exclusion logic.  When accessing a partition directly, its
partition constraints are applied by the constraint_exclusion logic,
only if constraint_exclusion = on.

In v11, we can't have such a clean division of these GUCs' effects,
partly because we don't want to break compatibility too much in a
released branch, and partly because the clean coding requires
inheritance_planner to have applied partition pruning to a partitioned
target table, which it doesn't in v11.  However, we can tweak things
enough to cover the missed case, which seems like a good idea since
it's potentially a performance regression from v10.  This patch keeps
v11's previous behavior in which enable_partition_pruning overrides
constraint_exclusion for an inherited target table, though.

In HEAD, also teach relation_excluded_by_constraints that it's okay to use
inheritable constraints when trying to prune a traditional inheritance
tree.  This might not be thought worthy of effort given that that feature
is semi-deprecated now, but we have enough infrastructure that it only
takes a couple more lines of code to do it correctly.

Amit Langote and Tom Lane

Discussion: https://postgr.es/m/9813f079-f16b-61c8-9ab7-4363cab28d80@lab.ntt.co.jp
Discussion: https://postgr.es/m/29069.1555970894@sss.pgh.pa.us
2019-04-30 15:03:50 -04:00
Tom Lane 959d00e9db Use Append rather than MergeAppend for scanning ordered partitions.
If we need ordered output from a scan of a partitioned table, but
the ordering matches the partition ordering, then we don't need to
use a MergeAppend to combine the pre-ordered per-partition scan
results: a plain Append will produce the same results.  This
both saves useless comparison work inside the MergeAppend proper,
and allows us to start returning tuples after istarting up just
the first child node not all of them.

However, all is not peaches and cream, because if some of the
child nodes have high startup costs then there will be big
discontinuities in the tuples-returned-versus-elapsed-time curve.
The planner's cost model cannot handle that (yet, anyway).
If we model the Append's startup cost as being just the first
child's startup cost, we may drastically underestimate the cost
of fetching slightly more tuples than are available from the first
child.  Since we've had bad experiences with over-optimistic choices
of "fast start" plans for ORDER BY LIMIT queries, that seems scary.
As a klugy workaround, set the startup cost estimate for an ordered
Append to be the sum of its children's startup costs (as MergeAppend
would).  This doesn't really describe reality, but it's less likely
to cause a bad plan choice than an underestimated startup cost would.
In practice, the cases where we really care about this optimization
will have child plans that are IndexScans with zero startup cost,
so that the overly conservative estimate is still just zero.

David Rowley, reviewed by Julien Rouhaud and Antonin Houska

Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-05 19:20:43 -04:00
Tom Lane 9c703c169a Make queries' locking of indexes more consistent.
The assertions added by commit b04aeb0a0 exposed that there are some
code paths wherein the executor will try to open an index without
holding any lock on it.  We do have some lock on the index's table,
so it seems likely that there's no fatal problem with this (for
instance, the index couldn't get dropped from under us).  Still,
it's bad practice and we should fix it.

To do so, remove the optimizations in ExecInitIndexScan and friends
that tried to avoid taking a lock on an index belonging to a target
relation, and just take the lock always.  In non-bug cases, this
will result in no additional shared-memory access, since we'll find
in the local lock table that we already have a lock of the desired
type; hence, no significant performance degradation should occur.

Also, adjust the planner and executor so that the type of lock taken
on an index is always identical to the type of lock taken for its table,
by relying on the recently added RangeTblEntry.rellockmode field.
This avoids some corner cases where that might not have been true
before (possibly resulting in extra locking overhead), and prevents
future maintenance issues from having multiple bits of logic that
all needed to be in sync.  In addition, this change removes all core
calls to ExecRelationIsTargetRelation, which avoids a possible O(N^2)
startup penalty for queries with large numbers of target relations.
(We'd probably remove that function altogether, were it not that we
advertise it as something that FDWs might want to use.)

Also adjust some places in selfuncs.c to not take any lock on indexes
they are transiently opening, since we can assume that plancat.c
did that already.

In passing, change gin_clean_pending_list() to take RowExclusiveLock
not AccessShareLock on its target index.  Although it's not clear that
that's actually a bug, it seemed very strange for a function that's
explicitly going to modify the index to use only AccessShareLock.

David Rowley, reviewed by Julien Rouhaud and Amit Langote,
a bit of further tweaking by me

Discussion: https://postgr.es/m/19465.1541636036@sss.pgh.pa.us
2019-04-04 15:12:58 -04:00
Etsuro Fujita aef65db676 Refactor create_limit_path() to share cost adjustment code with FDWs.
This is in preparation for an upcoming commit.

Author: Etsuro Fujita
Reviewed-By: Antonin Houska and Jeff Janes
Discussion: https://postgr.es/m/87pnz1aby9.fsf@news-spur.riddles.org.uk
2019-04-02 19:55:12 +09:00
Andres Freund bfbcad478f tableam: bitmap table scan.
This moves bitmap heap scan support to below an optional tableam
callback. It's optional as the whole concept of bitmap heapscans is
fairly block specific.

This basically moves the work previously done in bitgetpage() into the
new scan_bitmap_next_block callback, and the direct poking into the
buffer done in BitmapHeapNext() into the new scan_bitmap_next_tuple()
callback.

The abstraction is currently somewhat leaky because
nodeBitmapHeapscan.c's prefetching and visibilitymap based logic
remains - it's likely that we'll later have to move more into the
AM. But it's not trivial to do so without introducing a significant
amount of code duplication between the AMs, so that's a project for
later.

Note that now nodeBitmapHeapscan.c and the associated node types are a
bit misnamed. But it's not clear whether renaming wouldn't be a cure
worse than the disease. Either way, that'd be best done in a separate
commit.

Author: Andres Freund
Reviewed-By: Robert Haas (in an older version)
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-03-31 18:37:57 -07:00
Andres Freund 4bb50236eb tableam: Formatting and other minor cleanups.
The superflous heapam_xlog.h includes were reported by Peter
Geoghegan.
2019-03-31 18:16:53 -07:00
Tom Lane 9fd4de119c Compute root->qual_security_level in a less random place.
We can set this up once and for all in subquery_planner's initial survey
of the flattened rangetable, rather than incrementally adjusting it in
build_simple_rel.  The previous approach made it rather hard to reason
about exactly when the value would be available, and we were definitely
using it in some places before the final value was computed.

Noted while fooling around with Amit Langote's patch to delay creation
of inheritance child rels.  That didn't break this code, but it made it
even more fragile, IMO.
2019-03-31 13:47:41 -04:00
Andres Freund 696d78469f tableam: Move heap specific logic from estimate_rel_size below tableam.
This just moves the table/matview[/toast] determination of relation
size to a callback, and uses a copy of the existing logic to implement
that callback for heap.

It probably would make sense to also move the index specific logic
into a callback, so the metapage handling (and probably more) can be
index specific. But that's a separate task.

Author: Andres Freund
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-03-30 19:26:36 -07:00
Tom Lane 428b260f87 Speed up planning when partitions can be pruned at plan time.
Previously, the planner created RangeTblEntry and RelOptInfo structs
for every partition of a partitioned table, even though many of them
might later be deemed uninteresting thanks to partition pruning logic.
This incurred significant overhead when there are many partitions.
Arrange to postpone creation of these data structures until after
we've processed the query enough to identify restriction quals for
the partitioned table, and then apply partition pruning before not
after creation of each partition's data structures.  In this way
we need not open the partition relations at all for partitions that
the planner has no real interest in.

For queries that can be proven at plan time to access only a small
number of partitions, this patch improves the practical maximum
number of partitions from under 100 to perhaps a few thousand.

Amit Langote, reviewed at various times by Dilip Kumar, Jesper Pedersen,
Yoshikazu Imai, and David Rowley

Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp
2019-03-30 18:58:55 -04:00
Peter Eisentraut fc22b6623b Generated columns
This is an SQL-standard feature that allows creating columns that are
computed from expressions rather than assigned, similar to a view or
materialized view but on a column basis.

This implements one kind of generated column: stored (computed on
write).  Another kind, virtual (computed on read), is planned for the
future, and some room is left for it.

Reviewed-by: Michael Paquier <michael@paquier.xyz>
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/b151f851-4019-bdb1-699e-ebab07d2f40a@2ndquadrant.com
2019-03-30 08:15:57 +01:00
Tomas Vondra 7300a69950 Add support for multivariate MCV lists
Introduce a third extended statistic type, supported by the CREATE
STATISTICS command - MCV lists, a generalization of the statistic
already built and used for individual columns.

Compared to the already supported types (n-distinct coefficients and
functional dependencies), MCV lists are more complex, include column
values and allow estimation of much wider range of common clauses
(equality and inequality conditions, IS NULL, IS NOT NULL etc.).
Similarly to the other types, a new pseudo-type (pg_mcv_list) is used.

Author: Tomas Vondra
Reviewed-by: Dean Rasheed, David Rowley, Mark Dilger, Alvaro Herrera
Discussion: https://postgr.es/m/dfdac334-9cf2-2597-fb27-f0fb3753f435@2ndquadrant.com
2019-03-27 18:32:18 +01:00
Tom Lane 53bcf5e3db Build "other rels" of appendrel baserels in a separate step.
Up to now, otherrel RelOptInfos were built at the same time as baserel
RelOptInfos, thanks to recursion in build_simple_rel().  However,
nothing in query_planner's preprocessing cares at all about otherrels,
only baserels, so we don't really need to build them until just before
we enter make_one_rel.  This has two benefits:

* create_lateral_join_info did a lot of extra work to propagate
lateral-reference information from parents to the correct children.
But if we delay creation of the children till after that, it's
trivial (and much harder to break, too).

* Since we have all the restriction quals correctly assigned to
parent appendrels by this point, it'll be possible to do plan-time
pruning and never make child RelOptInfos at all for partitions that
can be pruned away.  That's not done here, but will be later on.

Amit Langote, reviewed at various times by Dilip Kumar, Jesper Pedersen,
Yoshikazu Imai, and David Rowley

Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp
2019-03-26 18:21:10 -04:00
Tom Lane e8d5dd6be7 Get rid of duplicate child RTE for a partitioned table.
We've been creating duplicate RTEs for partitioned tables just
because we do so for regular inheritance parent tables.  But unlike
regular-inheritance parents which are themselves regular tables
and thus need to be scanned, partitioned tables don't need the
extra RTE.

This makes the conditions for building a child RTE the same as those
for building an AppendRelInfo, allowing minor simplification in
expand_single_inheritance_child.  Since the planner's actual processing
is driven off the AppendRelInfo list, nothing much changes beyond that,
we just have one fewer useless RTE entry.

Amit Langote, reviewed and hacked a bit by me

Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp
2019-03-26 12:03:27 -04:00
Tom Lane 8edd0e7946 Suppress Append and MergeAppend plan nodes that have a single child.
If there's only one child relation, the Append or MergeAppend isn't
doing anything useful, and can be elided.  It does have a purpose
during planning though, which is to serve as a buffer between parent
and child Var numbering.  Therefore we keep it all the way through
to setrefs.c, and get rid of it only after fixing references in the
plan level(s) above it.  This works largely the same as setrefs.c's
ancient hack to get rid of no-op SubqueryScan nodes, and can even
share some code with that.

Note the change to make setrefs.c use apply_tlist_labeling rather than
ad-hoc code.  This has the effect of propagating the child's resjunk
and ressortgroupref labels, which formerly weren't propagated when
removing a SubqueryScan.  Doing that is demonstrably necessary for
the [Merge]Append cases, and seems harmless for SubqueryScan, if only
because trivial_subqueryscan is afraid to collapse cases where the
resjunk marking differs.  (I suspect that restriction could now be
removed, though it's unclear that it'd make any new matches possible,
since the outer query can't have references to a child resjunk column.)

David Rowley, reviewed by Alvaro Herrera and Tomas Vondra

Discussion: https://postgr.es/m/CAKJS1f_7u8ATyJ1JGTMHFoKDvZdeF-iEBhs+sM_SXowOr9cArg@mail.gmail.com
2019-03-25 15:42:35 -04:00
Tom Lane c8151e6423 Don't copy PartitionBoundInfo in set_relation_partition_info.
I (tgl) remain dubious that it's a good idea for PartitionDirectory
to hold a pin on a relcache entry throughout planning, rather than
copying the data or using some kind of refcount scheme.  However, it's
certainly the responsibility of the PartitionDirectory code to ensure
that what it's handing back is a stable data structure, not that of
its caller.  So this is a pretty clear oversight in commit 898e5e329,
and one that can cost a lot of performance when there are many
partitions.

Amit Langote (extracted from a much larger patch set)

Discussion: https://postgr.es/m/CA+TgmoY3bRmGB6-DUnoVy5fJoreiBJ43rwMrQRCdPXuKt4Ykaw@mail.gmail.com
Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp
2019-03-22 14:16:58 -04:00
Peter Eisentraut 5e1963fb76 Collations with nondeterministic comparison
This adds a flag "deterministic" to collations.  If that is false,
such a collation disables various optimizations that assume that
strings are equal only if they are byte-wise equal.  That then allows
use cases such as case-insensitive or accent-insensitive comparisons
or handling of strings with different Unicode normal forms.

This functionality is only supported with the ICU provider.  At least
glibc doesn't appear to have any locales that work in a
nondeterministic way, so it's not worth supporting this for the libc
provider.

The term "deterministic comparison" in this context is from Unicode
Technical Standard #10
(https://unicode.org/reports/tr10/#Deterministic_Comparison).

This patch makes changes in three areas:

- CREATE COLLATION DDL changes and system catalog changes to support
  this new flag.

- Many executor nodes and auxiliary code are extended to track
  collations.  Previously, this code would just throw away collation
  information, because the eventually-called user-defined functions
  didn't use it since they only cared about equality, which didn't
  need collation information.

- String data type functions that do equality comparisons and hashing
  are changed to take the (non-)deterministic flag into account.  For
  comparison, this just means skipping various shortcuts and tie
  breakers that use byte-wise comparison.  For hashing, we first need
  to convert the input string to a canonical "sort key" using the ICU
  analogue of strxfrm().

Reviewed-by: Daniel Verite <daniel@manitou-mail.org>
Reviewed-by: Peter Geoghegan <pg@bowt.ie>
Discussion: https://www.postgresql.org/message-id/flat/1ccc668f-4cbc-0bef-af67-450b47cdfee7@2ndquadrant.com
2019-03-22 12:12:43 +01:00
Robert Haas 898e5e3290 Allow ATTACH PARTITION with only ShareUpdateExclusiveLock.
We still require AccessExclusiveLock on the partition itself, because
otherwise an insert that violates the newly-imposed partition
constraint could be in progress at the same time that we're changing
that constraint; only the lock level on the parent relation is
weakened.

To make this safe, we have to cope with (at least) three separate
problems. First, relevant DDL might commit while we're in the process
of building a PartitionDesc.  If so, find_inheritance_children() might
see a new partition while the RELOID system cache still has the old
partition bound cached, and even before invalidation messages have
been queued.  To fix that, if we see that the pg_class tuple seems to
be missing or to have a null relpartbound, refetch the value directly
from the table. We can't get the wrong value, because DETACH PARTITION
still requires AccessExclusiveLock throughout; if we ever want to
change that, this will need more thought. In testing, I found it quite
difficult to hit even the null-relpartbound case; the race condition
is extremely tight, but the theoretical risk is there.

Second, successive calls to RelationGetPartitionDesc might not return
the same answer.  The query planner will get confused if lookup up the
PartitionDesc for a particular relation does not return a consistent
answer for the entire duration of query planning.  Likewise, query
execution will get confused if the same relation seems to have a
different PartitionDesc at different times.  Invent a new
PartitionDirectory concept and use it to ensure consistency.  This
ensures that a single invocation of either the planner or the executor
sees the same view of the PartitionDesc from beginning to end, but it
does not guarantee that the planner and the executor see the same
view.  Since this allows pointers to old PartitionDesc entries to
survive even after a relcache rebuild, also postpone removing the old
PartitionDesc entry until we're certain no one is using it.

For the most part, it seems to be OK for the planner and executor to
have different views of the PartitionDesc, because the executor will
just ignore any concurrently added partitions which were unknown at
plan time; those partitions won't be part of the inheritance
expansion, but invalidation messages will trigger replanning at some
point.  Normally, this happens by the time the very next command is
executed, but if the next command acquires no locks and executes a
prepared query, it can manage not to notice until a new transaction is
started.  We might want to tighten that up, but it's material for a
separate patch.  There would still be a small window where a query
that started just after an ATTACH PARTITION command committed might
fail to notice its results -- but only if the command starts before
the commit has been acknowledged to the user. All in all, the warts
here around serializability seem small enough to be worth accepting
for the considerable advantage of being able to add partitions without
a full table lock.

Although in general the consequences of new partitions showing up
between planning and execution are limited to the query not noticing
the new partitions, run-time partition pruning will get confused in
that case, so that's the third problem that this patch fixes.
Run-time partition pruning assumes that indexes into the PartitionDesc
are stable between planning and execution.  So, add code so that if
new partitions are added between plan time and execution time, the
indexes stored in the subplan_map[] and subpart_map[] arrays within
the plan's PartitionedRelPruneInfo get adjusted accordingly.  There
does not seem to be a simple way to generalize this scheme to cope
with partitions that are removed, mostly because they could then get
added back again with different bounds, but it works OK for added
partitions.

This code does not try to ensure that every backend participating in
a parallel query sees the same view of the PartitionDesc.  That
currently doesn't matter, because we never pass PartitionDesc
indexes between backends.  Each backend will ignore the concurrently
added partitions which it notices, and it doesn't matter if different
backends are ignoring different sets of concurrently added partitions.
If in the future that matters, for example because we allow writes in
parallel query and want all participants to do tuple routing to the same
set of partitions, the PartitionDirectory concept could be improved to
share PartitionDescs across backends.  There is a draft patch to
serialize and restore PartitionDescs on the thread where this patch
was discussed, which may be a useful place to start.

Patch by me.  Thanks to Alvaro Herrera, David Rowley, Simon Riggs,
Amit Langote, and Michael Paquier for discussion, and to Alvaro
Herrera for some review.

Discussion: http://postgr.es/m/CA+Tgmobt2upbSocvvDej3yzokd7AkiT+PvgFH+a9-5VV1oJNSQ@mail.gmail.com
Discussion: http://postgr.es/m/CA+TgmoZE0r9-cyA-aY6f8WFEROaDLLL7Vf81kZ8MtFCkxpeQSw@mail.gmail.com
Discussion: http://postgr.es/m/CA+TgmoY13KQZF-=HNTrt9UYWYx3_oYOQpu9ioNT49jGgiDpUEA@mail.gmail.com
2019-03-07 11:13:12 -05:00
Tom Lane 65ce07e020 Teach optimizer's predtest.c more things about ScalarArrayOpExpr.
In particular, make it possible to prove/refute "x IS NULL" and
"x IS NOT NULL" predicates from a clause involving a ScalarArrayOpExpr
even when we are unable or unwilling to deconstruct the expression
into an AND/OR tree.  This avoids a former unexpected degradation of
plan quality when the size of an ARRAY[] expression or array constant
exceeded the arbitrary MAX_SAOP_ARRAY_SIZE limit.  For IS-NULL proofs,
we don't really care about the values of the individual array elements;
at most, we care whether there are any, and for some common cases we
needn't even know that.

The main user-visible effect of this is to let the optimizer recognize
applicability of partial indexes with "x IS NOT NULL" predicates to
queries with "x IN (array)" clauses in some cases where it previously
failed to recognize that.  The structure of predtest.c is such that a
bunch of related proofs will now also succeed, but they're probably
much less useful in the wild.

James Coleman, reviewed by David Rowley

Discussion: https://postgr.es/m/CAAaqYe8yKSvzbyu8w-dThRs9aTFMwrFxn_BkTYeXgjqe3CbNjg@mail.gmail.com
2019-03-01 17:14:17 -05:00
Robert Haas f4b6341d5f Change lock acquisition order in expand_inherited_rtentry.
Previously, this function acquired locks in the order using
find_all_inheritors(), which locks the children of each table that it
processes in ascending OID order, and which processes the inheritance
hierarchy as a whole in a breadth-first fashion.  Now, it processes
the inheritance hierarchy in a depth-first fashion, and at each level
it proceeds in the order in which tables appear in the PartitionDesc.
If table inheritance rather than table partitioning is used, the old
order is preserved.

This change moves the locking of any given partition much closer to
the code that actually expands that partition.  This seems essential
if we ever want to allow concurrent DDL to add or remove partitions,
because if the set of partitions can change, we must use the same data
to decide which partitions to lock as we do to decide which partitions
to expand; otherwise, we might expand a partition that we haven't
locked.  It should hopefully also facilitate efforts to postpone
inheritance expansion or locking for performance reasons, because
there's really no way to postpone locking some partitions if
we're blindly locking them all using find_all_inheritors().

The only downside of this change which is known to me is that it
further deviates from the principle that we should always lock the
inheritance hierarchy in find_all_inheritors() order to avoid deadlock
risk.  However, we've already crossed that bridge in commit
9eefba181f and there are futher patches
pending that make similar changes, so this isn't really giving up
anything that we haven't surrendered already -- and it seems entirely
worth it, given the performance benefits some of those changes seem
likely to bring.

Patch by me; thanks to David Rowley for discussion of these issues.

Discussion: http://postgr.es/m/CAKJS1f_eEYVEq5tM8sm1k-HOwG0AyCPwX54XG9x4w0zy_N4Q_Q@mail.gmail.com
Discussion: http://postgr.es/m/CA+TgmoZUwPf_uanjF==gTGBMJrn8uCq52XYvAEorNkLrUdoawg@mail.gmail.com
2019-02-26 12:22:57 -05:00
Robert Haas 1bb5e78218 Move code for managing PartitionDescs into a new file, partdesc.c
This is similar in spirit to the existing partbounds.c file in the
same directory, except that there's a lot less code in the new file
created by this commit.  Pending work in this area proposes to add a
bunch more code related to PartitionDescs, though, and this will give
us a good place to put it.

Discussion: http://postgr.es/m/CA+TgmoZUwPf_uanjF==gTGBMJrn8uCq52XYvAEorNkLrUdoawg@mail.gmail.com
2019-02-21 11:45:02 -05:00
Tom Lane e04a3905e4 Improve planner's understanding of strictness of type coercions.
PG type coercions are generally strict, ie a NULL input must produce
a NULL output (or, in domain cases, possibly an error).  The planner's
understanding of that was a bit incomplete though, so improve it:

* Teach contain_nonstrict_functions() that CoerceViaIO can always be
considered strict.  Previously it believed that only if the underlying
I/O functions were marked strict, which is often but not always true.

* Teach clause_is_strict_for() that CoerceViaIO, ArrayCoerceExpr,
ConvertRowtypeExpr, CoerceToDomain can all be considered strict.
Previously it knew nothing about any of them.

The main user-visible impact of this is that IS NOT NULL predicates
can be proven to hold from expressions involving casts in more cases
than before, allowing partial indexes with such predicates to be used
without extra pushups.  This reduces the surprise factor for users,
who may well be used to ordinary (function-call-based) casts being
known to be strict.

Per a gripe from Samuel Williams.  This doesn't rise to the level of
a bug, IMO, so no back-patch.

Discussion: https://postgr.es/m/27571.1550617881@sss.pgh.pa.us
2019-02-20 14:39:11 -05:00
Tom Lane 1571bc0f06 Fix incorrect strictness test for ArrayCoerceExpr expressions.
The recursion in contain_nonstrict_functions_walker() was done wrong,
causing the strictness check to be bypassed for a parse node that
is the immediate input of an ArrayCoerceExpr node.  This could allow,
for example, incorrect decisions about whether a strict SQL function
can be inlined.

I didn't add a regression test, because (a) the bug is so narrow
and (b) I couldn't think of a test case that wasn't dependent on a
large number of other behaviors, to the point where it would likely
soon rot to the point of not testing what it was intended to.

I broke this in commit c12d570fa, so back-patch to v11.

Discussion: https://postgr.es/m/27571.1550617881@sss.pgh.pa.us
2019-02-20 13:36:55 -05:00
Tom Lane 74dfe58a59 Allow extensions to generate lossy index conditions.
For a long time, indxpath.c has had the ability to extract derived (lossy)
index conditions from certain operators such as LIKE.  For just as long,
it's been obvious that we really ought to make that capability available
to extensions.  This commit finally accomplishes that, by adding another
API for planner support functions that lets them create derived index
conditions for their functions.  As proof of concept, the hardwired
"special index operator" code formerly present in indxpath.c is pushed
out to planner support functions attached to LIKE and other relevant
operators.

A weak spot in this design is that an extension needs to know OIDs for
the operators, datatypes, and opfamilies involved in the transformation
it wants to make.  The core-code prototypes use hard-wired OID references
but extensions don't have that option for their own operators etc.  It's
usually possible to look up the required info, but that may be slow and
inconvenient.  However, improving that situation is a separate task.

I want to do some additional refactorization around selfuncs.c, but
that also seems like a separate task.

Discussion: https://postgr.es/m/15193.1548028093@sss.pgh.pa.us
2019-02-11 21:26:14 -05:00
Tom Lane a391ff3c3d Build out the planner support function infrastructure.
Add support function requests for estimating the selectivity, cost,
and number of result rows (if a SRF) of the target function.

The lack of a way to estimate selectivity of a boolean-returning
function in WHERE has been a recognized deficiency of the planner
since Berkeley days.  This commit finally fixes it.

In addition, non-constant estimates of cost and number of output
rows are now possible.  We still fall back to looking at procost
and prorows if the support function doesn't service the request,
of course.

To make concrete use of the possibility of estimating output rowcount
for SRFs, this commit adds support functions for array_unnest(anyarray)
and the integer variants of generate_series; the lack of plausible
rowcount estimates for those, even when it's obvious to a human,
has been a repeated subject of complaints.  Obviously, much more
could now be done in this line, but I'm mostly just trying to get
the infrastructure in place.

Discussion: https://postgr.es/m/15193.1548028093@sss.pgh.pa.us
2019-02-09 18:32:23 -05:00
Tom Lane 1fb57af920 Create the infrastructure for planner support functions.
Rename/repurpose pg_proc.protransform as "prosupport".  The idea is
still that it names an internal function that provides knowledge to
the planner about the behavior of the function it's attached to;
but redesign the API specification so that it's not limited to doing
just one thing, but can support an extensible set of requests.

The original purpose of simplifying a function call is handled by
the first request type to be invented, SupportRequestSimplify.
Adjust all the existing transform functions to handle this API,
and rename them fron "xxx_transform" to "xxx_support" to reflect
the potential generalization of what they do.  (Since we never
previously provided any way for extensions to add transform functions,
this change doesn't create an API break for them.)

Also add DDL and pg_dump support for attaching a support function to a
user-defined function.  Unfortunately, DDL access has to be restricted
to superusers, at least for now; but seeing that support functions
will pretty much have to be written in C, that limitation is just
theoretical.  (This support is untested in this patch, but a follow-on
patch will add cases that exercise it.)

Discussion: https://postgr.es/m/15193.1548028093@sss.pgh.pa.us
2019-02-09 18:08:48 -05:00
Tom Lane 1a8d5afb0d Refactor the representation of indexable clauses in IndexPaths.
In place of three separate but interrelated lists (indexclauses,
indexquals, and indexqualcols), an IndexPath now has one list
"indexclauses" of IndexClause nodes.  This holds basically the same
information as before, but in a more useful format: in particular, there
is now a clear connection between an indexclause (an original restriction
clause from WHERE or JOIN/ON) and the indexquals (directly usable index
conditions) derived from it.

We also change the ground rules a bit by mandating that clause commutation,
if needed, be done up-front so that what is stored in the indexquals list
is always directly usable as an index condition.  This gets rid of repeated
re-determination of which side of the clause is the indexkey during costing
and plan generation, as well as repeated lookups of the commutator
operator.  To minimize the added up-front cost, the typical case of
commuting a plain OpExpr is handled by a new special-purpose function
commute_restrictinfo().  For RowCompareExprs, generating the new clause
properly commuted to begin with is not really any more complex than before,
it's just different --- and we can save doing that work twice, as the
pretty-klugy original implementation did.

Tracking the connection between original and derived clauses lets us
also track explicitly whether the derived clauses are an exact or lossy
translation of the original.  This provides a cheap solution to getting
rid of unnecessary rechecks of boolean index clauses, which previously
seemed like it'd be more expensive than it was worth.

Another pleasant (IMO) side-effect is that EXPLAIN now always shows
index clauses with the indexkey on the left; this seems less confusing.

This commit leaves expand_indexqual_conditions() and some related
functions in a slightly messy state.  I didn't bother to change them
any more than minimally necessary to work with the new data structure,
because all that code is going to be refactored out of existence in
a follow-on patch.

Discussion: https://postgr.es/m/22182.1549124950@sss.pgh.pa.us
2019-02-09 17:30:43 -05:00
Tom Lane 34ea1ab7fd Split create_foreignscan_path() into three functions.
Up to now postgres_fdw has been using create_foreignscan_path() to
generate not only base-relation paths, but also paths for foreign joins
and foreign upperrels.  This is wrong, because create_foreignscan_path()
calls get_baserel_parampathinfo() which will only do the right thing for
baserels.  It accidentally fails to fail for unparameterized paths, which
are the only ones postgres_fdw (thought it) was handling, but we really
need different APIs for the baserel and join cases.

In HEAD, the best thing to do seems to be to split up the baserel,
joinrel, and upperrel cases into three functions so that they can
have different APIs.  I haven't actually given create_foreign_join_path
a different API in this commit: we should spend a bit of time thinking
about just what we want to do there, since perhaps FDWs would want to
do something different from the build-up-a-join-pairwise approach that
get_joinrel_parampathinfo expects.  In the meantime, since postgres_fdw
isn't prepared to generate parameterized joins anyway, just give it a
defense against trying to plan joins with lateral refs.

In addition (and this is what triggered this whole mess) fix bug #15613
from Srinivasan S A, by teaching file_fdw and postgres_fdw that plain
baserel foreign paths still have outer refs if the relation has
lateral_relids.  Add some assertions in relnode.c to catch future
occurrences of the same error --- in particular, to catch other FDWs
doing that, but also as backstop against core-code mistakes like the
one fixed by commit bdd9a99aa.

Bug #15613 also needs to be fixed in the back branches, but the
appropriate fix will look quite a bit different there, since we don't
want to assume that existing FDWs get the word right away.

Discussion: https://postgr.es/m/15613-092be1be9576c728@postgresql.org
2019-02-07 13:11:12 -05:00
Alvaro Herrera 558d77f20e Renaming for new subscripting mechanism
Over at patch https://commitfest.postgresql.org/21/1062/ Dmitry wants to
introduce a more generic subscription mechanism, which allows
subscripting not only arrays but also other object types such as JSONB.
That functionality is introduced in a largish invasive patch, out of
which this internal renaming patch was extracted.

Author: Dmitry Dolgov
Reviewed-by: Tom Lane, Arthur Zakirov
Discussion: https://postgr.es/m/CA+q6zcUK4EqPAu7XRRO5CCjMwhz5zvg+rfWuLzVoxp_5sKS6=w@mail.gmail.com
2019-02-01 12:50:32 -03:00
Tom Lane fa2cf164aa Rename nodes/relation.h to nodes/pathnodes.h.
The old name of this file was never a very good indication of what it
was for.  Now that there's also access/relation.h, we have a potential
confusion hazard as well, so let's rename it to something more apropos.
Per discussion, "pathnodes.h" is reasonable, since a good fraction of
the file is Path node definitions.

While at it, tweak a couple of other headers that were gratuitously
importing relation.h into modules that don't need it.

Discussion: https://postgr.es/m/7719.1548688728@sss.pgh.pa.us
2019-01-29 16:49:25 -05:00
Tom Lane f09346a9c6 Refactor planner's header files.
Create a new header optimizer/optimizer.h, which exposes just the
planner functions that can be used "at arm's length", without need
to access Paths or the other planner-internal data structures defined
in nodes/relation.h.  This is intended to provide the whole planner
API seen by most of the rest of the system; although FDWs still need
to use additional stuff, and more thought is also needed about just
what selfuncs.c should rely on.

The main point of doing this now is to limit the amount of new
#include baggage that will be needed by "planner support functions",
which I expect to introduce later, and which will be in relevant
datatype modules rather than anywhere near the planner.

This commit just moves relevant declarations into optimizer.h from
other header files (a couple of which go away because everything
got moved), and adjusts #include lists to match.  There's further
cleanup that could be done if we want to decide that some stuff
being exposed by optimizer.h doesn't belong in the planner at all,
but I'll leave that for another day.

Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
2019-01-29 15:48:51 -05:00
Tom Lane a1b8c41e99 Make some small planner API cleanups.
Move a few very simple node-creation and node-type-testing functions
from the planner's clauses.c to nodes/makefuncs and nodes/nodeFuncs.
There's nothing planner-specific about them, as evidenced by the
number of other places that were using them.

While at it, rename and_clause() etc to is_andclause() etc, to clarify
that they are node-type-testing functions not node-creation functions.
And use "static inline" implementations for the shortest ones.

Also, modify flatten_join_alias_vars() and some subsidiary functions
to take a Query not a PlannerInfo to define the join structure that
Vars should be translated according to.  They were only using the
"parse" field of the PlannerInfo anyway, so this just requires removing
one level of indirection.  The advantage is that now parse_agg.c can
use flatten_join_alias_vars() without the horrid kluge of creating an
incomplete PlannerInfo, which will allow that file to be decoupled from
relation.h in a subsequent patch.

Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
2019-01-29 15:26:44 -05:00
Tom Lane 4be058fe9e In the planner, replace an empty FROM clause with a dummy RTE.
The fact that "SELECT expression" has no base relations has long been a
thorn in the side of the planner.  It makes it hard to flatten a sub-query
that looks like that, or is a trivial VALUES() item, because the planner
generally uses relid sets to identify sub-relations, and such a sub-query
would have an empty relid set if we flattened it.  prepjointree.c contains
some baroque logic that works around this in certain special cases --- but
there is a much better answer.  We can replace an empty FROM clause with a
dummy RTE that acts like a table of one row and no columns, and then there
are no such corner cases to worry about.  Instead we need some logic to
get rid of useless dummy RTEs, but that's simpler and covers more cases
than what was there before.

For really trivial cases, where the query is just "SELECT expression" and
nothing else, there's a hazard that adding the extra RTE makes for a
noticeable slowdown; even though it's not much processing, there's not
that much for the planner to do overall.  However testing says that the
penalty is very small, close to the noise level.  In more complex queries,
this is able to find optimizations that we could not find before.

The new RTE type is called RTE_RESULT, since the "scan" plan type it
gives rise to is a Result node (the same plan we produced for a "SELECT
expression" query before).  To avoid confusion, rename the old ResultPath
path type to GroupResultPath, reflecting that it's only used in degenerate
grouping cases where we know the query produces just one grouped row.
(It wouldn't work to unify the two cases, because there are different
rules about where the associated quals live during query_planner.)

Note: although this touches readfuncs.c, I don't think a catversion
bump is required, because the added case can't occur in stored rules,
only plans.

Patch by me, reviewed by David Rowley and Mark Dilger

Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
2019-01-28 17:54:23 -05:00
Peter Eisentraut 7c079d7417 Allow generalized expression syntax for partition bounds
Previously, only literals were allowed.  This change allows general
expressions, including functions calls, which are evaluated at the
time the DDL command is executed.

Besides offering some more functionality, it simplifies the parser
structures and removes some inconsistencies in how the literals were
handled.

Author: Kyotaro Horiguchi, Tom Lane, Amit Langote
Reviewed-by: Peter Eisentraut <peter.eisentraut@2ndquadrant.com>
Discussion: https://www.postgresql.org/message-id/flat/9f88b5e0-6da2-5227-20d0-0d7012beaa1c@lab.ntt.co.jp/
2019-01-25 11:28:49 +01:00
Andres Freund 346ed70b0a Rename RelationData.rd_amroutine to rd_indam.
The upcoming table AM support makes rd_amroutine to generic, as its
only about index AMs. The new name makes that clear, and is shorter to
boot.

Author: Andres Freund
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-01-21 17:36:55 -08:00
Andres Freund e0c4ec0728 Replace uses of heap_open et al with the corresponding table_* function.
Author: Andres Freund
Discussion: https://postgr.es/m/20190111000539.xbv7s6w7ilcvm7dp@alap3.anarazel.de
2019-01-21 10:51:37 -08:00
Andres Freund 111944c5ee Replace heapam.h includes with {table, relation}.h where applicable.
A lot of files only included heapam.h for relation_open, heap_open etc
- replace the heapam.h include in those files with the narrower
header.

Author: Andres Freund
Discussion: https://postgr.es/m/20190111000539.xbv7s6w7ilcvm7dp@alap3.anarazel.de
2019-01-21 10:51:37 -08:00
Alvaro Herrera d723f56872 Reorganize planner code moved in b60c397599
It seems modules are better defined like this instead of the original
split.

Per complaints from David Rowley as well as Amit Langote's self review.
Discussion: https://postgr.es/m/CAKJS1f988rsyhwvLgfT-y1UCYUfXDOv67ENQk=v24OxhsZOzZw@mail.gmail.com
2019-01-16 16:27:44 -03:00
Tom Lane 1db5667bac Avoid sharing PARAM_EXEC slots between different levels of NestLoop.
Up to now, createplan.c attempted to share PARAM_EXEC slots for
NestLoopParams across different plan levels, if the same underlying Var
was being fed down to different righthand-side subplan trees by different
NestLoops.  This was, I think, more of an artifact of using subselect.c's
PlannerParamItem infrastructure than an explicit design goal, but anyway
that was the end result.

This works well enough as long as the plan tree is executing synchronously,
but the feature whereby Gather can execute the parallelized subplan locally
breaks it.  An upper NestLoop node might execute for a row retrieved from
a parallel worker, and assign a value for a PARAM_EXEC slot from that row,
while the leader's copy of the parallelized subplan is suspended with a
different active value of the row the Var comes from.  When control
eventually returns to the leader's subplan, it gets the wrong answers if
the same PARAM_EXEC slot is being used within the subplan, as reported
in bug #15577 from Bartosz Polnik.

This is pretty reminiscent of the problem fixed in commit 46c508fbc, and
the proper fix seems to be the same: don't try to share PARAM_EXEC slots
across different levels of controlling NestLoop nodes.

This requires decoupling NestLoopParam handling from PlannerParamItem
handling, although the logic remains somewhat similar.  To avoid bizarre
division of labor between subselect.c and createplan.c, I decided to move
all the param-slot-assignment logic for both cases out of those files
and put it into a new file paramassign.c.  Hopefully it's a bit better
documented now, too.

A regression test case for this might be nice, but we don't know a
test case that triggers the problem with a suitably small amount
of data.

Back-patch to 9.6 where we added Gather nodes.  It's conceivable that
related problems exist in older branches; but without some evidence
for that, I'll leave the older branches alone.

Discussion: https://postgr.es/m/15577-ca61ab18904af852@postgresql.org
2019-01-11 15:54:06 -05:00
Alvaro Herrera b60c397599 Move inheritance expansion code into its own file
This commit moves expand_inherited_tables and underlings from
optimizer/prep/prepunionc.c to optimizer/utils/inherit.c.
Also, all of the AppendRelInfo-based expression manipulation routines
are moved to optimizer/utils/appendinfo.c.

No functional code changes.  One exception is the introduction of
make_append_rel_info, but that's still just moving around code.

Also, stop including <limits.h> in prepunion.c, which no longer needs
it since 3fc6e2d7f5.  I (Álvaro) noticed this because Amit was copying
that to inherit.c, which likewise doesn't need it.

Author: Amit Langote
Discussion: https://postgr.es/m/3be67028-a00a-502c-199a-da00eec8fb6e@lab.ntt.co.jp
2019-01-10 14:54:31 -03:00
Tom Lane 68a13f28be Don't believe MinMaxExpr is leakproof without checking.
MinMaxExpr invokes the btree comparison function for its input datatype,
so it's only leakproof if that function is.  Many such functions are
indeed leakproof, but others are not, and we should not just assume that
they are.  Hence, adjust contain_leaked_vars to verify the leakproofness
of the referenced function explicitly.

I didn't add a regression test because it would need to depend on
some particular comparison function being leaky, and that's a moving
target, per discussion.

This has been wrong all along, so back-patch to supported branches.

Discussion: https://postgr.es/m/31042.1546194242@sss.pgh.pa.us
2019-01-02 16:34:04 -05:00
Bruce Momjian 97c39498e5 Update copyright for 2019
Backpatch-through: certain files through 9.4
2019-01-02 12:44:25 -05:00
Tom Lane b5415e3c21 Support parameterized TidPaths.
Up to now we've not worried much about joins where the join key is a
relation's CTID column, reasoning that storing a table's CTIDs in some
other table would be pretty useless.  However, there are use-cases for
this sort of query involving self-joins, so that argument doesn't really
hold water.

This patch allows generating plans for joins on CTID that use a nestloop
with inner TidScan, similar to what we might do with an index on the join
column.  This is the most efficient way to join when the outer side of
the nestloop is expected to yield relatively few rows.

This change requires upgrading tidpath.c and the generated TidPaths
to work with RestrictInfos instead of bare qual clauses, but that's
long-postponed technical debt anyway.

Discussion: https://postgr.es/m/17443.1545435266@sss.pgh.pa.us
2018-12-30 15:24:28 -05:00
Tom Lane 6f19a8c41f Teach eval_const_expressions to constant-fold LEAST/GREATEST expressions.
Doing this requires an assumption that the invoked btree comparison
function is immutable.  We could check that explicitly, but in other
places such as contain_mutable_functions we just assume that it's true,
so we may as well do likewise here.  (If the comparison function's
behavior isn't immutable, the sort order in indexes built with it would
be unstable, so it seems certainly wrong for it not to be so.)

Vik Fearing

Discussion: https://postgr.es/m/c6e8504c-4c43-35fa-6c8f-3c0b80a912cc@2ndquadrant.com
2018-12-30 13:42:04 -05:00
Peter Eisentraut ae4472c619 Remove obsolete IndexIs* macros
Remove IndexIsValid(), IndexIsReady(), IndexIsLive() in favor of
accessing the index structure directly.  These macros haven't been
used consistently, and the original reason of maintaining source
compatibility with PostgreSQL 9.2 is gone.

Discussion: https://www.postgresql.org/message-id/flat/d419147c-09d4-6196-5d9d-0234b230880a%402ndquadrant.com
2018-12-27 10:07:46 +01:00
Tom Lane 04fe805a17 Drop no-op CoerceToDomain nodes from expressions at planning time.
If a domain has no constraints, then CoerceToDomain doesn't really do
anything and can be simplified to a RelabelType.  This not only
eliminates cycles at execution, but allows the planner to optimize better
(for instance, match the coerced expression to an index on the underlying
column).  However, we do have to support invalidating the plan later if
a constraint gets added to the domain.  That's comparable to the case of
a change to a SQL function that had been inlined into a plan, so all the
necessary logic already exists for plans depending on functions.  We
need only duplicate or share that logic for domains.

ALTER DOMAIN ADD/DROP CONSTRAINT need to be taught to send out sinval
messages for the domain's pg_type entry, since those operations don't
update that row.  (ALTER DOMAIN SET/DROP NOT NULL do update that row,
so no code change is needed for them.)

Testing this revealed what's really a pre-existing bug in plpgsql:
it caches the SQL-expression-tree expansion of type coercions and
had no provision for invalidating entries in that cache.  Up to now
that was only a problem if such an expression had inlined a SQL
function that got changed, which is unlikely though not impossible.
But failing to track changes of domain constraints breaks an existing
regression test case and would likely cause practical problems too.

We could fix that locally in plpgsql, but what seems like a better
idea is to build some generic infrastructure in plancache.c to store
standalone expressions and track invalidation events for them.
(It's tempting to wonder whether plpgsql's "simple expression" stuff
could use this code with lower overhead than its current use of the
heavyweight plancache APIs.  But I've left that idea for later.)

Other stuff fixed in passing:

* Allow estimate_expression_value() to drop CoerceToDomain
unconditionally, effectively assuming that the coercion will succeed.
This will improve planner selectivity estimates for cases involving
estimatable expressions that are coerced to domains.  We could have
done this independently of everything else here, but there wasn't
previously any need for eval_const_expressions_mutator to know about
CoerceToDomain at all.

* Use a dlist for plancache.c's list of cached plans, rather than a
manually threaded singly-linked list.  That eliminates a potential
performance problem in DropCachedPlan.

* Fix a couple of inconsistencies in typecmds.c about whether
operations on domains drop RowExclusiveLock on pg_type.  Our common
practice is that DDL operations do drop catalog locks, so standardize
on that choice.

Discussion: https://postgr.es/m/19958.1544122124@sss.pgh.pa.us
2018-12-13 13:24:43 -05:00
Andres Freund 578b229718 Remove WITH OIDS support, change oid catalog column visibility.
Previously tables declared WITH OIDS, including a significant fraction
of the catalog tables, stored the oid column not as a normal column,
but as part of the tuple header.

This special column was not shown by default, which was somewhat odd,
as it's often (consider e.g. pg_class.oid) one of the more important
parts of a row.  Neither pg_dump nor COPY included the contents of the
oid column by default.

The fact that the oid column was not an ordinary column necessitated a
significant amount of special case code to support oid columns. That
already was painful for the existing, but upcoming work aiming to make
table storage pluggable, would have required expanding and duplicating
that "specialness" significantly.

WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0).
Remove it.

Removing includes:
- CREATE TABLE and ALTER TABLE syntax for declaring the table to be
  WITH OIDS has been removed (WITH (oids[ = true]) will error out)
- pg_dump does not support dumping tables declared WITH OIDS and will
  issue a warning when dumping one (and ignore the oid column).
- restoring an pg_dump archive with pg_restore will warn when
  restoring a table with oid contents (and ignore the oid column)
- COPY will refuse to load binary dump that includes oids.
- pg_upgrade will error out when encountering tables declared WITH
  OIDS, they have to be altered to remove the oid column first.
- Functionality to access the oid of the last inserted row (like
  plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed.

The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false)
for CREATE TABLE) is still supported. While that requires a bit of
support code, it seems unnecessary to break applications / dumps that
do not use oids, and are explicit about not using them.

The biggest user of WITH OID columns was postgres' catalog. This
commit changes all 'magic' oid columns to be columns that are normally
declared and stored. To reduce unnecessary query breakage all the
newly added columns are still named 'oid', even if a table's column
naming scheme would indicate 'reloid' or such.  This obviously
requires adapting a lot code, mostly replacing oid access via
HeapTupleGetOid() with access to the underlying Form_pg_*->oid column.

The bootstrap process now assigns oids for all oid columns in
genbki.pl that do not have an explicit value (starting at the largest
oid previously used), only oids assigned later by oids will be above
FirstBootstrapObjectId. As the oid column now is a normal column the
special bootstrap syntax for oids has been removed.

Oids are not automatically assigned during insertion anymore, all
backend code explicitly assigns oids with GetNewOidWithIndex(). For
the rare case that insertions into the catalog via SQL are called for
the new pg_nextoid() function can be used (which only works on catalog
tables).

The fact that oid columns on system tables are now normal columns
means that they will be included in the set of columns expanded
by * (i.e. SELECT * FROM pg_class will now include the table's oid,
previously it did not). It'd not technically be hard to hide oid
column by default, but that'd mean confusing behavior would either
have to be carried forward forever, or it'd cause breakage down the
line.

While it's not unlikely that further adjustments are needed, the
scope/invasiveness of the patch makes it worthwhile to get merge this
now. It's painful to maintain externally, too complicated to commit
after the code code freeze, and a dependency of a number of other
patches.

Catversion bump, for obvious reasons.

Author: Andres Freund, with contributions by John Naylor
Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-20 16:00:17 -08:00
Tom Lane c6e4133fae Postpone calculating total_table_pages until after pruning/exclusion.
The planner doesn't make any use of root->total_table_pages until it
estimates costs of indexscans, so we don't need to compute it as
early as that's currently done.  By doing the calculation between
set_base_rel_sizes and set_base_rel_pathlists, we can omit relations
that get removed from the query by partition pruning or constraint
exclusion, which seems like a more accurate basis for costing.

(Historical note: I think at the time this code was written, there
was not a separation between the "set sizes" and "set pathlists"
steps, so that this approach would have been impossible at the time.
But now that we have that separation, this is clearly the better way
to do things.)

David Rowley, reviewed by Edmund Horner

Discussion: https://postgr.es/m/CAKJS1f-NG1mRM0VOtkAG7=ZLQWihoqees9R4ki3CKBB0-fRfCA@mail.gmail.com
2018-11-07 12:12:56 -05:00
Andrew Gierth 5613da4cc7 Optimize nested ConvertRowtypeExpr nodes.
A ConvertRowtypeExpr is used to translate a whole-row reference of a
child to that of a parent. The planner produces nested
ConvertRowtypeExpr while translating whole-row reference of a leaf
partition in a multi-level partition hierarchy. Executor then
translates the whole-row reference from the leaf partition into all
the intermediate parent's whole-row references before arriving at the
final whole-row reference. It could instead translate the whole-row
reference from the leaf partition directly to the top-most parent's
whole-row reference skipping any intermediate translations.

Ashutosh Bapat, with tests by Kyotaro Horiguchi and some
editorialization by me. Reviewed by Andres Freund, Pavel Stehule,
Kyotaro Horiguchi, Dmitry Dolgov, Tom Lane.
2018-11-06 21:10:10 +00:00
Tom Lane 14a158f9bf Fix interaction of CASE and ArrayCoerceExpr.
An array-type coercion appearing within a CASE that has a constant
(after const-folding) test expression was mangled by the planner, causing
all the elements of the resulting array to be equal to the coerced value
of the CASE's test expression.  This is my oversight in commit c12d570fa:
that changed ArrayCoerceExpr to use a subexpression involving a
CaseTestExpr, and I didn't notice that eval_const_expressions needed an
adjustment to keep from folding such a CaseTestExpr to a constant when
it's inside a suitable CASE.

This is another in what's getting to be a depressingly long line of bugs
associated with misidentification of the referent of a CaseTestExpr.
We're overdue to redesign that mechanism; but any such fix is unlikely
to be back-patchable into v11.  As a stopgap, fix eval_const_expressions
to do what it must here.  Also add a bunch of comments pointing out the
restrictions and assumptions that are needed to make this work at all.

Also fix a related oversight: contain_context_dependent_node() was not
aware of the relationship of ArrayCoerceExpr to CaseTestExpr.  That was
somewhat fail-soft, in that the outcome of a wrong answer would be to
prevent optimizations that could have been made, but let's fix it while
we're at it.

Per bug #15471 from Matt Williams.  Back-patch to v11 where the faulty
logic came in.

Discussion: https://postgr.es/m/15471-1117f49271989bad@postgresql.org
2018-10-30 15:26:11 -04:00
Andres Freund 02a30a09f9 Correct constness of system attributes in heap.c & prerequisites.
This allows the compiler / linker to mark affected pages as read-only.

There's a fair number of pre-requisite changes, to allow the const
properly be propagated. Most of consts were already required for
correctness anyway, just not represented on the type-level.  Arguably
we could be more aggressive in using consts in related code, but..

This requires using a few of the types underlying typedefs that
removes pointers (e.g. const NameData *) as declaring the typedefed
type constant doesn't have the same meaning (it makes the variable
const, not what it points to).

Discussion: https://postgr.es/m/20181015200754.7y7zfuzsoux2c4ya@alap3.anarazel.de
2018-10-16 09:44:43 -07:00
Tom Lane 52ed730d51 Remove some unnecessary fields from Plan trees.
In the wake of commit f2343653f, we no longer need some fields that
were used before to control executor lock acquisitions:

* PlannedStmt.nonleafResultRelations can go away entirely.

* partitioned_rels can go away from Append, MergeAppend, and ModifyTable.
However, ModifyTable still needs to know the RT index of the partition
root table if any, which was formerly kept in the first entry of that
list.  Add a new field "rootRelation" to remember that.  rootRelation is
partly redundant with nominalRelation, in that if it's set it will have
the same value as nominalRelation.  However, the latter field has a
different purpose so it seems best to keep them distinct.

Amit Langote, reviewed by David Rowley and Jesper Pedersen,
and whacked around a bit more by me

Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
2018-10-07 14:33:17 -04:00
Amit Kapila 14e9b2a752 Prohibit pushing subqueries containing window function calculation to
workers.

Allowing window function calculation in workers leads to inconsistent
results because if the input row ordering is not fully deterministic, the
output of window functions might vary across workers.  The fix is to treat
them as parallel-restricted.

In the passing, improve the coding pattern in max_parallel_hazard_walker
so that it has a chain of mutually-exclusive if ... else if ... else if
... else if ... IsA tests.

Reported-by: Marko Tiikkaja
Bug: 15324
Author: Amit Kapila
Reviewed-by: Tom Lane
Backpatch-through: 9.6
Discussion: https://postgr.es/m/CAL9smLAnfPJCDUUG4ckX2iznj53V7VSMsYefzZieN93YxTNOcw@mail.gmail.com
2018-09-04 10:28:08 +05:30
Etsuro Fujita 7cfdc77023 Disable support for partitionwise joins in problematic cases.
Commit f49842d, which added support for partitionwise joins, built the
child's tlist by applying adjust_appendrel_attrs() to the parent's.  So in
the case where the parent's included a whole-row Var for the parent, the
child's contained a ConvertRowtypeExpr.  To cope with that, that commit
added code to the planner, such as setrefs.c, but some code paths still
assumed that the tlist for a scan (or join) rel would only include Vars
and PlaceHolderVars, which was true before that commit, causing errors:

* When creating an explicit sort node for an input path for a mergejoin
  path for a child join, prepare_sort_from_pathkeys() threw the 'could not
  find pathkey item to sort' error.
* When deparsing a relation participating in a pushed down child join as a
  subquery in contrib/postgres_fdw, get_relation_column_alias_ids() threw
  the 'unexpected expression in subquery output' error.
* When performing set_plan_references() on a local join plan generated by
  contrib/postgres_fdw for EvalPlanQual support for a pushed down child
  join, fix_join_expr() threw the 'variable not found in subplan target
  lists' error.

To fix these, two approaches have been proposed: one by Ashutosh Bapat and
one by me.  While the former keeps building the child's tlist with a
ConvertRowtypeExpr, the latter builds it with a whole-row Var for the
child not to violate the planner assumption, and tries to fix it up later,
But both approaches need more work, so refuse to generate partitionwise
join paths when whole-row Vars are involved, instead.  We don't need to
handle ConvertRowtypeExprs in the child's tlists for now, so this commit
also removes the changes to the planner.

Previously, partitionwise join computed attr_needed data for each child
separately, and built the child join's tlist using that data, which also
required an extra step for adding PlaceHolderVars to that tlist, but it
would be more efficient to build it from the parent join's tlist through
the adjust_appendrel_attrs() transformation.  So this commit builds that
list that way, and simplifies build_joinrel_tlist() and placeholder.c as
well as part of set_append_rel_size() to basically what they were before
partitionwise join went in.

Back-patch to PG11 where partitionwise join was introduced.

Report by Rajkumar Raghuwanshi.  Analysis by Ashutosh Bapat, who also
provided some of regression tests.  Patch by me, reviewed by Robert Haas.

Discussion: https://postgr.es/m/CAKcux6ktu-8tefLWtQuuZBYFaZA83vUzuRd7c1YHC-yEWyYFpg@mail.gmail.com
2018-08-31 20:34:06 +09:00
Tom Lane 662d12aea1 Avoid crash in eval_const_expressions if a Param's type changes.
Since commit 6719b238e it's been possible for the values of plpgsql
record field variables to be exposed to the planner as Params.
(Before that, plpgsql never supplied values for such variables during
planning, so that the problematic code wasn't reached.)  Other places
that touch potentially-type-mutable Params either cope gracefully or
do runtime-test-and-ereport checks that the type is what they expect.
But eval_const_expressions() just had an Assert, meaning that it either
failed the assertion or risked crashes due to using an incompatible
value.

In this case, rather than throwing an ereport immediately, we can just
not perform a const-substitution in case of a mismatch.  This seems
important for the same reason that the Param fetch was speculative:
we might not actually reach this part of the expression at runtime.

Test case will follow in a separate commit.

Patch by me, pursuant to bug report from Andrew Gierth.
Back-patch to v11 where the previous commit appeared.

Discussion: https://postgr.es/m/87wotkfju1.fsf@news-spur.riddles.org.uk
2018-07-26 16:08:45 -04:00
Michael Paquier c6598b8b05 Fix re-parameterize of MergeAppendPath
Instead of MergeAppendPath, MergeAppend nodes were considered.  This
code is not covered by any tests now, which should be addressed at some
point.

This is an oversight from f49842d, which introduced partition-wise joins
in v11, so back-patch down to that.

Author: Michael Paquier
Reviewed-by: Ashutosh Bapat
Discussion: https://postgr.es/m/20180718062202.GC8565@paquier.xyz
2018-07-19 09:01:57 +09:00
Tom Lane ff4f889164 Fix bugs with degenerate window ORDER BY clauses in GROUPS/RANGE mode.
nodeWindowAgg.c failed to cope with the possibility that no ordering
columns are defined in the window frame for GROUPS mode or RANGE OFFSET
mode, leading to assertion failures or odd errors, as reported by Masahiko
Sawada and Lukas Eder.  In RANGE OFFSET mode, an ordering column is really
required, so add an Assert about that.  In GROUPS mode, the code would
work, except that the node initialization code wasn't in sync with the
execution code about when to set up tuplestore read pointers and spare
slots.  Fix the latter for consistency's sake (even though I think the
changes described below make the out-of-sync cases unreachable for now).

Per SQL spec, a single ordering column is required for RANGE OFFSET mode,
and at least one ordering column is required for GROUPS mode.  The parser
enforced the former but not the latter; add a check for that.

We were able to reach the no-ordering-column cases even with fully spec
compliant queries, though, because the planner would drop partitioning
and ordering columns from the generated plan if they were redundant with
earlier columns according to the redundant-pathkey logic, for instance
"PARTITION BY x ORDER BY y" in the presence of a "WHERE x=y" qual.
While in principle that's an optimization that could save some pointless
comparisons at runtime, it seems unlikely to be meaningful in the real
world.  I think this behavior was not so much an intentional optimization
as a side-effect of an ancient decision to construct the plan node's
ordering-column info by reverse-engineering the PathKeys of the input
path.  If we give up redundant-column removal then it takes very little
code to generate the plan node info directly from the WindowClause,
ensuring that we have the expected number of ordering columns in all
cases.  (If anyone does complain about this, the planner could perhaps
be taught to remove redundant columns only when it's safe to do so,
ie *not* in RANGE OFFSET mode.  But I doubt anyone ever will.)

With these changes, the WindowAggPath.winpathkeys field is not used for
anything anymore, so remove it.

The test cases added here are not actually very interesting given the
removal of the redundant-column-removal logic, but they would represent
important corner cases if anyone ever tries to put that back.

Tom Lane and Masahiko Sawada.  Back-patch to v11 where RANGE OFFSET
and GROUPS modes were added.

Discussion: https://postgr.es/m/CAD21AoDrWqycq-w_+Bx1cjc+YUhZ11XTj9rfxNiNDojjBx8Fjw@mail.gmail.com
Discussion: https://postgr.es/m/153086788677.17476.8002640580496698831@wrigleys.postgresql.org
2018-07-11 12:07:20 -04:00
Alvaro Herrera 7d872c91a3 Allow direct lookups of AppendRelInfo by child relid
find_appinfos_by_relids had quite a large overhead when the number of
items in the append_rel_list was high, as it had to trawl through the
append_rel_list looking for AppendRelInfos belonging to the given
childrelids.  Since there can only be a single AppendRelInfo for each
child rel, it seems much better to store an array in PlannerInfo which
indexes these by child relid, making the function O(1) rather than O(N).
This function was only called once inside the planner, so just replace
that call with a lookup to the new array.  find_childrel_appendrelinfo
is now unused and thus removed.

This fixes a planner performance regression new to v11 reported by
Thomas Reiss.

Author: David Rowley
Reported-by: Thomas Reiss
Reviewed-by: Ashutosh Bapat
Reviewed-by: Álvaro Herrera
Discussion: https://postgr.es/m/94dd7a4b-5e50-0712-911d-2278e055c622@dalibo.com
2018-06-26 10:35:26 -04:00
Amit Kapila 98d476a965 Improve coding pattern in Parallel Append code.
The create_append_path code didn't consider that list_concat will
modify it's first argument leading to inconsistent traversal of
resulting list.  In practice, it won't lead to any user-visible bug
but changing it for making the code behave consistently.

Reported-by: Tom Lane
Author: Tom Lane
Reviewed-by: Amit Khandekar and Amit Kapila
Discussion: https://postgr.es/m/32365.1528994120@sss.pgh.pa.us
2018-06-22 08:43:36 +05:30
Tom Lane 07e5a21352 Fix mishandling of sortgroupref labels while splitting SRF targetlists.
split_pathtarget_at_srfs() neglected to worry about sortgroupref labels
in the intermediate PathTargets it constructs.  I think we'd supposed
that their labeling didn't matter, but it does at least for the case that
GroupAggregate/GatherMerge nodes appear immediately under the ProjectSet
step(s).  This results in "ERROR: ORDER/GROUP BY expression not found in
targetlist" during create_plan(), as reported by Rajkumar Raghuwanshi.

To fix, make this logic track the sortgroupref labeling of expressions,
not just their contents.  This also restores the pre-v10 behavior that
separate GROUP BY expressions will be kept distinct even if they are
textually equal().

Discussion: https://postgr.es/m/CAKcux6=1_Ye9kx8YLBPmJs_xE72PPc6vNi5q2AOHowMaCWjJ2w@mail.gmail.com
2018-06-21 10:58:42 -04:00
Tom Lane bdf46af748 Post-feature-freeze pgindent run.
Discussion: https://postgr.es/m/15719.1523984266@sss.pgh.pa.us
2018-04-26 14:47:16 -04:00
Robert Haas dc1057fcd8 Prevent generation of bogus subquery scan paths.
Commit 0927d2f46d didn't check that
consider_parallel was set for the target relation or account for
the possibility that required_outer might be non-empty.

To prevent future bugs of this ilk, add some assertions to
add_partial_path and do a bit of future-proofing of the code
recently added to recurse_set_operations.

Report by Andreas Seltenreich.  Patch by Jeevan Chalke.  Review
by Amit Kapila and by me.

Discussion: http://postgr.es/m/CAM2+6=U+9otsyF2fYB8x_2TBeHTR90itarqW=qAEjN-kHaC7kw@mail.gmail.com
2018-04-25 15:25:55 -04:00
Alvaro Herrera 055fb8d33d Add GUC enable_partition_pruning
This controls both plan-time and execution-time new-style partition
pruning.  While finer-grain control is possible (maybe using an enum GUC
instead of boolean), there doesn't seem to be much need for that.

This new parameter controls partition pruning for all queries:
trivially, SELECT queries that affect partitioned tables are naturally
under its control since they are using the new technology.  However,
while UPDATE/DELETE queries do not use the new code, we make the new GUC
control their behavior also (stealing control from
constraint_exclusion), because it is more natural, and it leads to a
more natural transition to the future in which those queries will also
use the new pruning code.

Constraint exclusion still controls pruning for regular inheritance
situations (those not involving partitioned tables).

Author: David Rowley
Review: Amit Langote, Ashutosh Bapat, Justin Pryzby, David G. Johnston
Discussion: https://postgr.es/m/CAKJS1f_0HwsxJG9m+nzU+CizxSdGtfe6iF_ykPYBiYft302DCw@mail.gmail.com
2018-04-23 17:57:43 -03:00
Tom Lane c792c7db41 Change more places to be less trusting of RestrictInfo.is_pushed_down.
On further reflection, commit e5d83995e didn't go far enough: pretty much
everywhere in the planner that examines a clause's is_pushed_down flag
ought to be changed to use the more complicated behavior where we also
check the clause's required_relids.  Otherwise we could make incorrect
decisions about whether, say, a clause is safe to use as a hash clause.

Some (many?) of these places are safe as-is, either because they are
never reached while considering a parameterized path, or because there
are additional checks that would reject a pushed-down clause anyway.
However, it seems smarter to just code them all the same way rather
than rely on easily-broken reasoning of that sort.

In support of that, invent a new macro RINFO_IS_PUSHED_DOWN that should
be used in place of direct tests on the is_pushed_down flag.

Like the previous patch, back-patch to all supported branches.

Discussion: https://postgr.es/m/f8128b11-c5bf-3539-48cd-234178b2314d@proxel.se
2018-04-20 15:19:16 -04:00
Tom Lane e5d83995e9 Fix incorrect handling of join clauses pushed into parameterized paths.
In some cases a clause attached to an outer join can be pushed down into
the outer join's RHS even though the clause is not degenerate --- this
can happen if we choose to make a parameterized path for the RHS.  If
the clause ends up attached to a lower outer join, we'd misclassify it
as being a "join filter" not a plain "filter" condition at that node,
leading to wrong query results.

To fix, teach extract_actual_join_clauses to examine each join clause's
required_relids, not just its is_pushed_down flag.  (The latter now
seems vestigial, or at least in need of rethinking, but we won't do
anything so invasive as redefining it in a bug-fix patch.)

This has been wrong since we introduced parameterized paths in 9.2,
though it's evidently hard to hit given the lack of previous reports.
The test case used here involves a lateral function call, and I think
that a lateral reference may be required to get the planner to select
a broken plan; though I wouldn't swear to that.  In any case, even if
LATERAL is needed to trigger the bug, it still affects all supported
branches, so back-patch to all.

Per report from Andreas Karlsson.  Thanks to Andrew Gierth for
preliminary investigation.

Discussion: https://postgr.es/m/f8128b11-c5bf-3539-48cd-234178b2314d@proxel.se
2018-04-19 15:49:30 -04:00
Alvaro Herrera da6f3e45dd Reorganize partitioning code
There's been a massive addition of partitioning code in PostgreSQL 11,
with little oversight on its placement, resulting in a
catalog/partition.c with poorly defined boundaries and responsibilities.
This commit tries to set a couple of distinct modules to separate things
a little bit.  There are no code changes here, only code movement.

There are three new files:
  src/backend/utils/cache/partcache.c
  src/include/partitioning/partdefs.h
  src/include/utils/partcache.h

The previous arrangement of #including catalog/partition.h almost
everywhere is no more.

Authors: Amit Langote and Álvaro Herrera
Discussion: https://postgr.es/m/98e8d509-790a-128c-be7f-e48a5b2d8d97@lab.ntt.co.jp
	https://postgr.es/m/11aa0c50-316b-18bb-722d-c23814f39059@lab.ntt.co.jp
	https://postgr.es/m/143ed9a4-6038-76d4-9a55-502035815e68@lab.ntt.co.jp
	https://postgr.es/m/20180413193503.nynq7bnmgh6vs5vm@alvherre.pgsql
2018-04-14 21:12:14 -03:00
Peter Eisentraut a8677e3ff6 Support named and default arguments in CALL
We need to call expand_function_arguments() to expand named and default
arguments.

In PL/pgSQL, we also need to deal with named and default INOUT arguments
when receiving the output values into variables.

Author: Pavel Stehule <pavel.stehule@gmail.com>
2018-04-14 09:13:53 -04:00
Teodor Sigaev c266ed31a8 Cleanup covering infrastructure
- Explicitly forbids opclass, collation and indoptions (like DESC/ASC etc) for
  including columns. Throw an error if user points that.
- Truncated storage arrays for such attributes to store only key atrributes,
  added assertion checks.
- Do not check opfamily and collation for including columns in
  CompareIndexInfo()

Discussion: https://www.postgresql.org/message-id/5ee72852-3c4e-ee35-e2ed-c1d053d45c08@sigaev.ru
2018-04-12 16:37:22 +03:00
Simon Riggs 08ea7a2291 Revert MERGE patch
This reverts commits d204ef6377,
83454e3c2b and a few more commits thereafter
(complete list at the end) related to MERGE feature.

While the feature was fully functional, with sufficient test coverage and
necessary documentation, it was felt that some parts of the executor and
parse-analyzer can use a different design and it wasn't possible to do that in
the available time. So it was decided to revert the patch for PG11 and retry
again in the future.

Thanks again to all reviewers and bug reporters.

List of commits reverted, in reverse chronological order:

 f1464c5380 Improve parse representation for MERGE
 ddb4158579 MERGE syntax diagram correction
 530e69e59b Allow cpluspluscheck to pass by renaming variable
 01b88b4df5 MERGE minor errata
 3af7b2b0d4 MERGE fix variable warning in non-assert builds
 a5d86181ec MERGE INSERT allows only one VALUES clause
 4b2d44031f MERGE post-commit review
 4923550c20 Tab completion for MERGE
 aa3faa3c7a WITH support in MERGE
 83454e3c2b New files for MERGE
 d204ef6377 MERGE SQL Command following SQL:2016

Author: Pavan Deolasee
Reviewed-by: Michael Paquier
2018-04-12 11:22:56 +01:00
Alvaro Herrera 499be013de Support partition pruning at execution time
Existing partition pruning is only able to work at plan time, for query
quals that appear in the parsed query.  This is good but limiting, as
there can be parameters that appear later that can be usefully used to
further prune partitions.

This commit adds support for pruning subnodes of Append which cannot
possibly contain any matching tuples, during execution, by evaluating
Params to determine the minimum set of subnodes that can possibly match.
We support more than just simple Params in WHERE clauses. Support
additionally includes:

1. Parameterized Nested Loop Joins: The parameter from the outer side of the
   join can be used to determine the minimum set of inner side partitions to
   scan.

2. Initplans: Once an initplan has been executed we can then determine which
   partitions match the value from the initplan.

Partition pruning is performed in two ways.  When Params external to the plan
are found to match the partition key we attempt to prune away unneeded Append
subplans during the initialization of the executor.  This allows us to bypass
the initialization of non-matching subplans meaning they won't appear in the
EXPLAIN or EXPLAIN ANALYZE output.

For parameters whose value is only known during the actual execution
then the pruning of these subplans must wait.  Subplans which are
eliminated during this stage of pruning are still visible in the EXPLAIN
output.  In order to determine if pruning has actually taken place, the
EXPLAIN ANALYZE must be viewed.  If a certain Append subplan was never
executed due to the elimination of the partition then the execution
timing area will state "(never executed)".  Whereas, if, for example in
the case of parameterized nested loops, the number of loops stated in
the EXPLAIN ANALYZE output for certain subplans may appear lower than
others due to the subplan having been scanned fewer times.  This is due
to the list of matching subnodes having to be evaluated whenever a
parameter which was found to match the partition key changes.

This commit required some additional infrastructure that permits the
building of a data structure which is able to perform the translation of
the matching partition IDs, as returned by get_matching_partitions, into
the list index of a subpaths list, as exist in node types such as
Append, MergeAppend and ModifyTable.  This allows us to translate a list
of clauses into a Bitmapset of all the subpath indexes which must be
included to satisfy the clause list.

Author: David Rowley, based on an earlier effort by Beena Emerson
Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi,
Jesper Pedersen
Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
2018-04-07 17:54:39 -03:00
Teodor Sigaev 8224de4f42 Indexes with INCLUDE columns and their support in B-tree
This patch introduces INCLUDE clause to index definition.  This clause
specifies a list of columns which will be included as a non-key part in
the index.  The INCLUDE columns exist solely to allow more queries to
benefit from index-only scans.  Also, such columns don't need to have
appropriate operator classes.  Expressions are not supported as INCLUDE
columns since they cannot be used in index-only scans.

Index access methods supporting INCLUDE are indicated by amcaninclude flag
in IndexAmRoutine.  For now, only B-tree indexes support INCLUDE clause.

In B-tree indexes INCLUDE columns are truncated from pivot index tuples
(tuples located in non-leaf pages and high keys).  Therefore, B-tree indexes
now might have variable number of attributes.  This patch also provides
generic facility to support that: pivot tuples contain number of their
attributes in t_tid.ip_posid.  Free 13th bit of t_info is used for indicating
that.  This facility will simplify further support of index suffix truncation.
The changes of above are backward-compatible, pg_upgrade doesn't need special
handling of B-tree indexes for that.

Bump catalog version

Author: Anastasia Lubennikova with contribition by Alexander Korotkov and me
Reviewed by: Peter Geoghegan, Tomas Vondra, Antonin Houska, Jeff Janes,
			 David Rowley, Alexander Korotkov
Discussion: https://www.postgresql.org/message-id/flat/56168952.4010101@postgrespro.ru
2018-04-07 23:00:39 +03:00
Alvaro Herrera 9fdb675fc5 Faster partition pruning
Add a new module backend/partitioning/partprune.c, implementing a more
sophisticated algorithm for partition pruning.  The new module uses each
partition's "boundinfo" for pruning instead of constraint exclusion,
based on an idea proposed by Robert Haas of a "pruning program": a list
of steps generated from the query quals which are run iteratively to
obtain a list of partitions that must be scanned in order to satisfy
those quals.

At present, this targets planner-time partition pruning, but there exist
further patches to apply partition pruning at execution time as well.

This commit also moves some definitions from include/catalog/partition.h
to a new file include/partitioning/partbounds.h, in an attempt to
rationalize partitioning related code.

Authors: Amit Langote, David Rowley, Dilip Kumar
Reviewers: Robert Haas, Kyotaro Horiguchi, Ashutosh Bapat, Jesper Pedersen.
Discussion: https://postgr.es/m/098b9c71-1915-1a2a-8d52-1a7a50ce79e8@lab.ntt.co.jp
2018-04-06 16:44:05 -03:00
Simon Riggs d204ef6377 MERGE SQL Command following SQL:2016
MERGE performs actions that modify rows in the target table
using a source table or query. MERGE provides a single SQL
statement that can conditionally INSERT/UPDATE/DELETE rows
a task that would other require multiple PL statements.
e.g.

MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
  UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
  DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
  INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
  DO NOTHING;

MERGE works with regular and partitioned tables, including
column and row security enforcement, as well as support for
row, statement and transition triggers.

MERGE is optimized for OLTP and is parameterizable, though
also useful for large scale ETL/ELT. MERGE is not intended
to be used in preference to existing single SQL commands
for INSERT, UPDATE or DELETE since there is some overhead.
MERGE can be used statically from PL/pgSQL.

MERGE does not yet support inheritance, write rules,
RETURNING clauses, updatable views or foreign tables.
MERGE follows SQL Standard per the most recent SQL:2016.

Includes full tests and documentation, including full
isolation tests to demonstrate the concurrent behavior.

This version written from scratch in 2017 by Simon Riggs,
using docs and tests originally written in 2009. Later work
from Pavan Deolasee has been both complex and deep, leaving
the lead author credit now in his hands.
Extensive discussion of concurrency from Peter Geoghegan,
with thanks for the time and effort contributed.

Various issues reported via sqlsmith by Andreas Seltenreich

Authors: Pavan Deolasee, Simon Riggs
Reviewer: Peter Geoghegan, Amit Langote, Tomas Vondra, Simon Riggs

Discussion:
https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.com
https://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
2018-04-03 09:28:16 +01:00
Simon Riggs 7cf8a5c302 Revert "Modified files for MERGE"
This reverts commit 354f13855e.
2018-04-02 21:34:15 +01:00
Simon Riggs 354f13855e Modified files for MERGE 2018-04-02 21:12:47 +01:00
Andrew Dunstan 16828d5c02 Fast ALTER TABLE ADD COLUMN with a non-NULL default
Currently adding a column to a table with a non-NULL default results in
a rewrite of the table. For large tables this can be both expensive and
disruptive. This patch removes the need for the rewrite as long as the
default value is not volatile. The default expression is evaluated at
the time of the ALTER TABLE and the result stored in a new column
(attmissingval) in pg_attribute, and a new column (atthasmissing) is set
to true. Any existing row when fetched will be supplied with the
attmissingval. New rows will have the supplied value or the default and
so will never need the attmissingval.

Any time the table is rewritten all the atthasmissing and attmissingval
settings for the attributes are cleared, as they are no longer needed.

The most visible code change from this is in heap_attisnull, which
acquires a third TupleDesc argument, allowing it to detect a missing
value if there is one. In many cases where it is known that there will
not be any (e.g.  catalog relations) NULL can be passed for this
argument.

Andrew Dunstan, heavily modified from an original patch from Serge
Rielau.
Reviewed by Tom Lane, Andres Freund, Tomas Vondra and David Rowley.

Discussion: https://postgr.es/m/31e2e921-7002-4c27-59f5-51f08404c858@2ndQuadrant.com
2018-03-28 10:43:52 +10:30
Tom Lane 0f0deb7194 Improve predtest.c's handling of cases with NULL-constant inputs.
Currently, if operator_predicate_proof() is given an operator clause like
"something op NULL", it just throws up its hands and reports it can't prove
anything.  But we can often do better than that, if the operator is strict,
because then we know that the clause returns NULL overall.  Depending on
whether we're trying to prove or refute something, and whether we need
weak or strong semantics for NULL, this may be enough to prove the
implication, especially when we rely on the standard rule that "false
implies anything".  In particular, this lets us do something useful with
questions like "does X IN (1,3,5,NULL) imply X <= 5?"  The null entry
in the IN list can effectively be ignored for this purpose, but the
proof rules were not previously smart enough to deduce that.

This patch is by me, but it owes something to previous work by
Amit Langote to try to solve problems of the form mentioned.
Thanks also to Emre Hasegeli and Ashutosh Bapat for review.

Discussion: https://postgr.es/m/3bad48fc-f257-c445-feeb-8a2b2fb622ba@lab.ntt.co.jp
2018-03-21 18:30:46 -04:00
Robert Haas 94150513ec Don't pass the grouping target around unnecessarily.
Since commit 4f15e5d09d made grouped_rel
set reltarget, a variety of other functions can just get it from
grouped_rel instead of having to pass it around explicitly.  Simplify
accordingly.

Patch by me, reviewed by Ashutosh Bapat.

Discussion: http://postgr.es/m/CA+TgmoZ+ZJTVad-=vEq393N99KTooxv9k7M+z73qnTAqkb49BQ@mail.gmail.com
2018-03-20 11:37:43 -04:00
Tom Lane 877cdf11ea Mop-up for letting VOID-returning SQL functions end with a SELECT.
Part of the intent in commit fd1a421fe was to allow SQL functions that are
declared to return VOID to contain anything, including an unrelated final
SELECT, the same as SQL-language procedures can.  However, the planner's
inlining logic didn't get that memo.  Fix it, and add some regression tests
covering this area, since evidently we had none.

In passing, clean up some typos in comments in create_function_3.sql,
and get rid of its none-too-safe assumption that DROP CASCADE notice
output is immutably ordered.

Per report from Prabhat Sahu.

Discussion: https://postgr.es/m/CANEvxPqxAj6nNHVcaXxpTeEFPmh24Whu+23emgjiuKrhJSct0A@mail.gmail.com
2018-03-16 12:48:13 -04:00
Tom Lane 4a4e2442a7 Fix improper uses of canonicalize_qual().
One of the things canonicalize_qual() does is to remove constant-NULL
subexpressions of top-level AND/OR clauses.  It does that on the assumption
that what it's given is a top-level WHERE clause, so that NULL can be
treated like FALSE.  Although this is documented down inside a subroutine
of canonicalize_qual(), it wasn't mentioned in the documentation of that
function itself, and some callers hadn't gotten that memo.

Notably, commit d007a9505 caused get_relation_constraints() to apply
canonicalize_qual() to CHECK constraints.  That allowed constraint
exclusion to misoptimize situations in which a CHECK constraint had a
provably-NULL subclause, as seen in the regression test case added here,
in which a child table that should be scanned is not.  (Although this
thinko is ancient, the test case doesn't fail before 9.2, for reasons
I've not bothered to track down in detail.  There may be related cases
that do fail before that.)

More recently, commit f0e44751d added an independent bug by applying
canonicalize_qual() to index expressions, which is even sillier since
those might not even be boolean.  If they are, though, I think this
could lead to making incorrect index entries for affected index
expressions in v10.  I haven't attempted to prove that though.

To fix, add an "is_check" parameter to canonicalize_qual() to specify
whether it should assume WHERE or CHECK semantics, and make it perform
NULL-elimination accordingly.  Adjust the callers to apply the right
semantics, or remove the call entirely in cases where it's not known
that the expression has one or the other semantics.  I also removed
the call in some cases involving partition expressions, where it should
be a no-op because such expressions should be canonical already ...
and was a no-op, independently of whether it could in principle have
done something, because it was being handed the qual in implicit-AND
format which isn't what it expects.  In HEAD, add an Assert to catch
that type of mistake in future.

This represents an API break for external callers of canonicalize_qual().
While that's intentional in HEAD to make such callers think about which
case applies to them, it seems like something we probably wouldn't be
thanked for in released branches.  Hence, in released branches, the
extra parameter is added to a new function canonicalize_qual_ext(),
and canonicalize_qual() is a wrapper that retains its old behavior.

Patch by me with suggestions from Dean Rasheed.  Back-patch to all
supported branches.

Discussion: https://postgr.es/m/24475.1520635069@sss.pgh.pa.us
2018-03-11 18:10:42 -04:00