Commit Graph

25 Commits

Author SHA1 Message Date
Michael Paquier 245e14e28b Fix inconsistent comments for some function declarations in headers
Some of the headers list a couple of function prototypes located in a
different file than what is referred to.  This fixes a couple of
places where this inconsistency exists.

Author: Richard Guo
Discussion: https://postgr.es/m/CAMbWs4__RdcSNXPa7L62Ozvo_Q4LvT60o3Bnp8yrQ_m9y5CKvg@mail.gmail.com
2022-08-04 17:36:21 +09:00
Robert Haas b0a55e4329 Change internal RelFileNode references to RelFileNumber or RelFileLocator.
We have been using the term RelFileNode to refer to either (1) the
integer that is used to name the sequence of files for a certain relation
within the directory set aside for that tablespace/database combination;
or (2) that value plus the OIDs of the tablespace and database; or
occasionally (3) the whole series of files created for a relation
based on those values. Using the same name for more than one thing is
confusing.

Replace RelFileNode with RelFileNumber when we're talking about just the
single number, i.e. (1) from above, and with RelFileLocator when we're
talking about all the things that are needed to locate a relation's files
on disk, i.e. (2) from above. In the places where we refer to (3) as
a relfilenode, instead refer to "relation storage".

Since there is a ton of SQL code in the world that knows about
pg_class.relfilenode, don't change the name of that column, or of other
SQL-facing things that derive their name from it.

On the other hand, do adjust closely-related internal terminology. For
example, the structure member names dbNode and spcNode appear to be
derived from the fact that the structure itself was called RelFileNode,
so change those to dbOid and spcOid. Likewise, various variables with
names like rnode and relnode get renamed appropriately, according to
how they're being used in context.

Hopefully, this is clearer than before. It is also preparation for
future patches that intend to widen the relfilenumber fields from its
current width of 32 bits. Variables that store a relfilenumber are now
declared as type RelFileNumber rather than type Oid; right now, these
are the same, but that can now more easily be changed.

Dilip Kumar, per an idea from me. Reviewed also by Andres Freund.
I fixed some whitespace issues, changed a couple of words in a
comment, and made one other minor correction.

Discussion: http://postgr.es/m/CA+TgmoamOtXbVAQf9hWFzonUo6bhhjS6toZQd7HZ-pmojtAmag@mail.gmail.com
Discussion: http://postgr.es/m/CA+Tgmobp7+7kmi4gkq7Y+4AM9fTvL+O1oQ4-5gFTT+6Ng-dQ=g@mail.gmail.com
Discussion: http://postgr.es/m/CAFiTN-vTe79M8uDH1yprOU64MNFE+R3ODRuA+JWf27JbhY4hJw@mail.gmail.com
2022-07-06 11:39:09 -04:00
Bruce Momjian 27b77ecf9f Update copyright for 2022
Backpatch-through: 10
2022-01-07 19:04:57 -05:00
Peter Geoghegan 9f3665fbfc Don't consider newly inserted tuples in nbtree VACUUM.
Remove the entire idea of "stale stats" within nbtree VACUUM (stop
caring about stats involving the number of inserted tuples).  Also
remove the vacuum_cleanup_index_scale_factor GUC/param on the master
branch (though just disable them on postgres 13).

The vacuum_cleanup_index_scale_factor/stats interface made the nbtree AM
partially responsible for deciding when pg_class.reltuples stats needed
to be updated.  This seems contrary to the spirit of the index AM API,
though -- it is not actually necessary for an index AM's bulk delete and
cleanup callbacks to provide accurate stats when it happens to be
inconvenient.  The core code owns that.  (Index AMs have the authority
to perform or not perform certain kinds of deferred cleanup based on
their own considerations, such as page deletion and recycling, but that
has little to do with pg_class.reltuples/num_index_tuples.)

This issue was fairly harmless until the introduction of the
autovacuum_vacuum_insert_threshold feature by commit b07642db, which had
an undesirable interaction with the vacuum_cleanup_index_scale_factor
mechanism: it made insert-driven autovacuums perform full index scans,
even though there is no real benefit to doing so.  This has been tied to
a regression with an append-only insert benchmark [1].

Also have remaining cases that perform a full scan of an index during a
cleanup-only nbtree VACUUM indicate that the final tuple count is only
an estimate.  This prevents vacuumlazy.c from setting the index's
pg_class.reltuples in those cases (it will now only update pg_class when
vacuumlazy.c had TIDs for nbtree to bulk delete).  This arguably fixes
an oversight in deduplication-related bugfix commit 48e12913.

[1] https://smalldatum.blogspot.com/2021/01/insert-benchmark-postgres-is-still.html

Author: Peter Geoghegan <pg@bowt.ie>
Reviewed-By: Masahiko Sawada <sawada.mshk@gmail.com>
Discussion: https://postgr.es/m/CAD21AoA4WHthN5uU6+WScZ7+J_RcEjmcuH94qcoUPuB42ShXzg@mail.gmail.com
Backpatch: 13-, where autovacuum_vacuum_insert_threshold was added.
2021-03-10 16:27:01 -08:00
Peter Geoghegan e5d8a99903 Use full 64-bit XIDs in deleted nbtree pages.
Otherwise we risk "leaking" deleted pages by making them non-recyclable
indefinitely.  Commit 6655a729 did the same thing for deleted pages in
GiST indexes.  That work was used as a starting point here.

Stop storing an XID indicating the oldest bpto.xact across all deleted
though unrecycled pages in nbtree metapages.  There is no longer any
reason to care about that condition/the oldest XID.  It only ever made
sense when wraparound was something _bt_vacuum_needs_cleanup() had to
consider.

The btm_oldest_btpo_xact metapage field has been repurposed and renamed.
It is now btm_last_cleanup_num_delpages, which is used to remember how
many non-recycled deleted pages remain from the last VACUUM (in practice
its value is usually the precise number of pages that were _newly
deleted_ during the specific VACUUM operation that last set the field).

The general idea behind storing btm_last_cleanup_num_delpages is to use
it to give _some_ consideration to non-recycled deleted pages inside
_bt_vacuum_needs_cleanup() -- though never too much.  We only really
need to avoid leaving a truly excessive number of deleted pages in an
unrecycled state forever.  We only do this to cover certain narrow cases
where no other factor makes VACUUM do a full scan, and yet the index
continues to grow (and so actually misses out on recycling existing
deleted pages).

These metapage changes result in a clear user-visible benefit: We no
longer trigger full index scans during VACUUM operations solely due to
the presence of only 1 or 2 known deleted (though unrecycled) blocks
from a very large index.  All that matters now is keeping the costs and
benefits in balance over time.

Fix an issue that has been around since commit 857f9c36, which added the
"skip full scan of index" mechanism (i.e. the _bt_vacuum_needs_cleanup()
logic).  The accuracy of btm_last_cleanup_num_heap_tuples accidentally
hinged upon _when_ the source value gets stored.  We now always store
btm_last_cleanup_num_heap_tuples in btvacuumcleanup().  This fixes the
issue because IndexVacuumInfo.num_heap_tuples (the source field) is
expected to accurately indicate the state of the table _after_ the
VACUUM completes inside btvacuumcleanup().

A backpatchable fix cannot easily be extracted from this commit.  A
targeted fix for the issue will follow in a later commit, though that
won't happen today.

I (pgeoghegan) have chosen to remove any mention of deleted pages in the
documentation of the vacuum_cleanup_index_scale_factor GUC/param, since
the presence of deleted (though unrecycled) pages is no longer of much
concern to users.  The vacuum_cleanup_index_scale_factor description in
the docs now seems rather unclear in any case, and it should probably be
rewritten in the near future.  Perhaps some passing mention of page
deletion will be added back at the same time.

Bump XLOG_PAGE_MAGIC due to nbtree WAL records using full XIDs now.

Author: Peter Geoghegan <pg@bowt.ie>
Reviewed-By: Masahiko Sawada <sawada.mshk@gmail.com>
Discussion: https://postgr.es/m/CAH2-WznpdHvujGUwYZ8sihX=d5u-tRYhi-F4wnV2uN2zHpMUXw@mail.gmail.com
2021-02-24 18:41:34 -08:00
Peter Geoghegan d168b66682 Enhance nbtree index tuple deletion.
Teach nbtree and heapam to cooperate in order to eagerly remove
duplicate tuples representing dead MVCC versions.  This is "bottom-up
deletion".  Each bottom-up deletion pass is triggered lazily in response
to a flood of versions on an nbtree leaf page.  This usually involves a
"logically unchanged index" hint (these are produced by the executor
mechanism added by commit 9dc718bd).

The immediate goal of bottom-up index deletion is to avoid "unnecessary"
page splits caused entirely by version duplicates.  It naturally has an
even more useful effect, though: it acts as a backstop against
accumulating an excessive number of index tuple versions for any given
_logical row_.  Bottom-up index deletion complements what we might now
call "top-down index deletion": index vacuuming performed by VACUUM.
Bottom-up index deletion responds to the immediate local needs of
queries, while leaving it up to autovacuum to perform infrequent clean
sweeps of the index.  The overall effect is to avoid certain
pathological performance issues related to "version churn" from UPDATEs.

The previous tableam interface used by index AMs to perform tuple
deletion (the table_compute_xid_horizon_for_tuples() function) has been
replaced with a new interface that supports certain new requirements.
Many (perhaps all) of the capabilities added to nbtree by this commit
could also be extended to other index AMs.  That is left as work for a
later commit.

Extend deletion of LP_DEAD-marked index tuples in nbtree by adding logic
to consider extra index tuples (that are not LP_DEAD-marked) for
deletion in passing.  This increases the number of index tuples deleted
significantly in many cases.  The LP_DEAD deletion process (which is now
called "simple deletion" to clearly distinguish it from bottom-up
deletion) won't usually need to visit any extra table blocks to check
these extra tuples.  We have to visit the same table blocks anyway to
generate a latestRemovedXid value (at least in the common case where the
index deletion operation's WAL record needs such a value).

Testing has shown that the "extra tuples" simple deletion enhancement
increases the number of index tuples deleted with almost any workload
that has LP_DEAD bits set in leaf pages.  That is, it almost never fails
to delete at least a few extra index tuples.  It helps most of all in
cases that happen to naturally have a lot of delete-safe tuples.  It's
not uncommon for an individual deletion operation to end up deleting an
order of magnitude more index tuples compared to the old naive approach
(e.g., custom instrumentation of the patch shows that this happens
fairly often when the regression tests are run).

Add a further enhancement that augments simple deletion and bottom-up
deletion in indexes that make use of deduplication: Teach nbtree's
_bt_delitems_delete() function to support granular TID deletion in
posting list tuples.  It is now possible to delete individual TIDs from
posting list tuples provided the TIDs have a tableam block number of a
table block that gets visited as part of the deletion process (visiting
the table block can be triggered directly or indirectly).  Setting the
LP_DEAD bit of a posting list tuple is still an all-or-nothing thing,
but that matters much less now that deletion only needs to start out
with the right _general_ idea about which index tuples are deletable.

Bump XLOG_PAGE_MAGIC because xl_btree_delete changed.

No bump in BTREE_VERSION, since there are no changes to the on-disk
representation of nbtree indexes.  Indexes built on PostgreSQL 12 or
PostgreSQL 13 will automatically benefit from bottom-up index deletion
(i.e. no reindexing required) following a pg_upgrade.  The enhancement
to simple deletion is available with all B-Tree indexes following a
pg_upgrade, no matter what PostgreSQL version the user upgrades from.

Author: Peter Geoghegan <pg@bowt.ie>
Reviewed-By: Heikki Linnakangas <hlinnaka@iki.fi>
Reviewed-By: Victor Yegorov <vyegorov@gmail.com>
Discussion: https://postgr.es/m/CAH2-Wzm+maE3apHB8NOtmM=p-DO65j2V5GzAWCOEEuy3JZgb2g@mail.gmail.com
2021-01-13 09:21:32 -08:00
Bruce Momjian ca3b37487b Update copyright for 2021
Backpatch-through: 9.5
2021-01-02 13:06:25 -05:00
Peter Geoghegan 624686abcf Adjust "root of to-be-deleted subtree" function.
Restructure the function that locates the root of the to-be-deleted
subtree during nbtree page deletion.  Handle the conditions that make
page deletion unsafe in a slightly more uniform way, and acknowledge the
fact that the behavior with incomplete splits on internal pages is
different (as pointed out in the nbtree README as of commit 35bc0ec7).
Also invent new terminology that avoids ambiguity around which pages are
about to be deleted.  Consistently use the term "to-be-deleted subtree",
not the ambiguous term "branch".

We were calling the subtree parent page the "top parent page", but that
was quite misleading.  The top parent page usually refers to a page
unlinked from its siblings and marked deleted (during the second stage
of page deletion).  There was one kind of top parent page that we merely
removed a downlink from, and another kind of top parent page that we
actually marked deleted.  Eliminate the ambiguity by inventing a new
term ("subtree parent page") that refers to the former kind of page
only.
2020-05-11 11:01:07 -07:00
Peter Geoghegan bc3087b626 Harmonize nbtree page split point code.
An nbtree split point can be thought of as a point between two adjoining
tuples from an imaginary version of the page being split that includes
the incoming/new item (in addition to the items that really are on the
page).  These adjoining tuples are called the lastleft and firstright
tuples.

The variables that represent split points contained a field called
firstright, which is an offset number of the first data item from the
original page that goes on the new right page.  The corresponding tuple
from origpage was usually the same thing as the actual firstright tuple,
but not always: the firstright tuple is sometimes the new/incoming item
instead.  This situation seems unnecessarily confusing.

Make things clearer by renaming the origpage offset returned by
_bt_findsplitloc() to "firstrightoff".  We now have a firstright tuple
and a firstrightoff offset number which are comparable to the
newitem/lastleft tuples and the newitemoff/lastleftoff offset numbers
respectively.  Also make sure that we are consistent about how we
describe nbtree page split point state.

Push the responsibility for dealing with pg_upgrade'd !heapkeyspace
indexes down to lower level code, relieving _bt_split() from dealing
with it directly.  This means that we always have a palloc'd left page
high key on the leaf level, no matter what.  This enables simplifying
some of the code (and code comments) within _bt_split().

Finally, restructure the page split code to make it clearer why suffix
truncation (which only takes place during leaf page splits) is
completely different to the first data item truncation that takes place
during internal page splits.  Tuples are marked as having fewer
attributes stored in both cases, and the firstright tuple is truncated
in both cases, so it's easy to imagine somebody missing the distinction.
2020-04-13 16:39:55 -07:00
Peter Geoghegan 0d861bbb70 Add deduplication to nbtree.
Deduplication reduces the storage overhead of duplicates in indexes that
use the standard nbtree index access method.  The deduplication process
is applied lazily, after the point where opportunistic deletion of
LP_DEAD-marked index tuples occurs.  Deduplication is only applied at
the point where a leaf page split would otherwise be required.  New
posting list tuples are formed by merging together existing duplicate
tuples.  The physical representation of the items on an nbtree leaf page
is made more space efficient by deduplication, but the logical contents
of the page are not changed.  Even unique indexes make use of
deduplication as a way of controlling bloat from duplicates whose TIDs
point to different versions of the same logical table row.

The lazy approach taken by nbtree has significant advantages over a GIN
style eager approach.  Most individual inserts of index tuples have
exactly the same overhead as before.  The extra overhead of
deduplication is amortized across insertions, just like the overhead of
page splits.  The key space of indexes works in the same way as it has
since commit dd299df8 (the commit that made heap TID a tiebreaker
column).

Testing has shown that nbtree deduplication can generally make indexes
with about 10 or 15 tuples for each distinct key value about 2.5X - 4X
smaller, even with single column integer indexes (e.g., an index on a
referencing column that accompanies a foreign key).  The final size of
single column nbtree indexes comes close to the final size of a similar
contrib/btree_gin index, at least in cases where GIN's posting list
compression isn't very effective.  This can significantly improve
transaction throughput, and significantly reduce the cost of vacuuming
indexes.

A new index storage parameter (deduplicate_items) controls the use of
deduplication.  The default setting is 'on', so all new B-Tree indexes
automatically use deduplication where possible.  This decision will be
reviewed at the end of the Postgres 13 beta period.

There is a regression of approximately 2% of transaction throughput with
synthetic workloads that consist of append-only inserts into a table
with several non-unique indexes, where all indexes have few or no
repeated values.  The underlying issue is that cycles are wasted on
unsuccessful attempts at deduplicating items in non-unique indexes.
There doesn't seem to be a way around it short of disabling
deduplication entirely.  Note that deduplication of items in unique
indexes is fairly well targeted in general, which avoids the problem
there (we can use a special heuristic to trigger deduplication passes in
unique indexes, since we're specifically targeting "version bloat").

Bump XLOG_PAGE_MAGIC because xl_btree_vacuum changed.

No bump in BTREE_VERSION, since the representation of posting list
tuples works in a way that's backwards compatible with version 4 indexes
(i.e. indexes built on PostgreSQL 12).  However, users must still
REINDEX a pg_upgrade'd index to use deduplication, regardless of the
Postgres version they've upgraded from.  This is the only way to set the
new nbtree metapage flag indicating that deduplication is generally
safe.

Author: Anastasia Lubennikova, Peter Geoghegan
Reviewed-By: Peter Geoghegan, Heikki Linnakangas
Discussion:
    https://postgr.es/m/55E4051B.7020209@postgrespro.ru
    https://postgr.es/m/4ab6e2db-bcee-f4cf-0916-3a06e6ccbb55@postgrespro.ru
2020-02-26 13:05:30 -08:00
Peter Geoghegan d2e5e20e57 Add xl_btree_delete optimization.
Commit 558a9165e0 taught _bt_delitems_delete() to produce its own XID
horizon on the primary.  Standbys no longer needed to generate their own
latestRemovedXid, since they could just use the explicitly logged value
from the primary instead.  The deleted offset numbers array from the
xl_btree_delete WAL record was no longer used by the REDO routine for
anything other than deleting the items.

This enables a minor optimization:  We now treat the array as buffer
state, not generic WAL data, following _bt_delitems_vacuum()'s example.
This should be a minor win, since it allows us to avoid including the
deleted items array in cases where XLogInsert() stores the whole buffer
anyway.  The primary goal here is to make the code more maintainable,
though.  Removing inessential differences between the two functions
highlights the fundamental differences that remain.

Also change xl_btree_delete to use uint32 for the size of the array of
item offsets being deleted.  This brings xl_btree_delete closer to
xl_btree_vacuum.  Furthermore, it seems like a good idea to use an
explicit-width integer type (the field was previously an "int").

Bump XLOG_PAGE_MAGIC because xl_btree_delete changed.

Discussion: https://postgr.es/m/CAH2-Wzkz4TjmezzfAbaV1zYrh=fr0bCpzuJTvBe5iUQ3aUPsCQ@mail.gmail.com
2020-01-03 12:18:13 -08:00
Bruce Momjian 7559d8ebfa Update copyrights for 2020
Backpatch-through: update all files in master, backpatch legal files through 9.4
2020-01-01 12:21:45 -05:00
Peter Geoghegan 9f83468b35 Remove unneeded "pin scan" nbtree VACUUM code.
The REDO routine for nbtree's xl_btree_vacuum record type hasn't
performed a "pin scan" since commit 3e4b7d87 went in, so clearly there
isn't any point in VACUUM WAL-logging information that won't actually be
used.  Finish off the work of commit 3e4b7d87 (and the closely related
preceding commit 687f2cd7) by removing the code that generates this
unused information.  Also remove the REDO routine code disabled by
commit 3e4b7d87.

Replace the unneeded lastBlockVacuumed field in xl_btree_vacuum with a
new "ndeleted" field.  The new field isn't actually needed right now,
since we could continue to infer the array length from the overall
record length.  However, an upcoming patch to add deduplication to
nbtree needs to add an "items updated" field to xl_btree_vacuum, so we
might as well start being explicit about the number of items now.
(Besides, it doesn't seem like a good idea to leave the xl_btree_vacuum
struct without any fields; the C standard says that that's undefined.)

nbtree VACUUM no longer forces writing a WAL record for the last block
in the index.  Writing out a WAL record with no items for the final
block was supposed to force processing of a lastBlockVacuumed field by a
pin scan.

Bump XLOG_PAGE_MAGIC because xl_btree_vacuum changed.

Discussion: https://postgr.es/m/CAH2-WzmY_mT7UnTzFB5LBQDBkKpdV5UxP3B5bLb7uP%3D%3D6UQJRQ%40mail.gmail.com
2019-12-19 11:35:55 -08:00
Peter Geoghegan 3b6b54f178 Fix nbtree page split rmgr desc routine.
Include newitemoff in rmgr desc output for nbtree page split records.
In passing, correct an obsolete comment that claimed that newitemoff is
only logged for _L variant nbtree page split WAL records.

Both issues were oversights in commit 2c03216d83, which revamped the
WAL format.

Author: Peter Geoghegan
Backpatch: 9.5-, where the WAL format was revamped.
2019-09-12 15:45:08 -07:00
Michael Paquier 8548ddc61b Fix inconsistencies and typos in the tree, take 9
This addresses more issues with code comments, variable names and
unreferenced variables.

Author: Alexander Lakhin
Discussion: https://postgr.es/m/7ab243e0-116d-3e44-d120-76b3df7abefd@gmail.com
2019-08-05 12:14:58 +09:00
Andres Freund 558a9165e0 Compute XID horizon for page level index vacuum on primary.
Previously the xid horizon was only computed during WAL replay. That
had two major problems:
1) It relied on knowing what the table pointed to looks like. That was
   easy enough before the introducing of tableam (we knew it had to be
   heap, although some trickery around logging the heap relfilenodes
   was required). But to properly handle table AMs we need
   per-database catalog access to look up the AM handler, which
   recovery doesn't allow.
2) Not knowing the xid horizon also makes it hard to support logical
   decoding on standbys. When on a catalog table, we need to be able
   to conflict with slots that have an xid horizon that's too old. But
   computing the horizon by visiting the heap only works once
   consistency is reached, but we always need to be able to detect
   conflicts.

There's also a secondary problem, in that the current method performs
redundant work on every standby. But that's counterbalanced by
potentially computing the value when not necessary (either because
there's no standby, or because there's no connected backends).

Solve 1) and 2) by moving computation of the xid horizon to the
primary and by involving tableam in the computation of the horizon.

To address the potentially increased overhead, increase the efficiency
of the xid horizon computation for heap by sorting the tids, and
eliminating redundant buffer accesses. When prefetching is available,
additionally perform prefetching of buffers.  As this is more of a
maintenance task, rather than something routinely done in every read
only query, we add an arbitrary 10 to the effective concurrency -
thereby using IO concurrency, when not globally enabled.  That's
possibly not the perfect formula, but seems good enough for now.

Bumps WAL format, as latestRemovedXid is now part of the records, and
the heap's relfilenode isn't anymore.

Author: Andres Freund, Amit Khandekar, Robert Haas
Reviewed-By: Robert Haas
Discussion:
    https://postgr.es/m/20181212204154.nsxf3gzqv3gesl32@alap3.anarazel.de
    https://postgr.es/m/20181214014235.dal5ogljs3bmlq44@alap3.anarazel.de
    https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-03-26 16:52:54 -07:00
Peter Geoghegan dd299df818 Make heap TID a tiebreaker nbtree index column.
Make nbtree treat all index tuples as having a heap TID attribute.
Index searches can distinguish duplicates by heap TID, since heap TID is
always guaranteed to be unique.  This general approach has numerous
benefits for performance, and is prerequisite to teaching VACUUM to
perform "retail index tuple deletion".

Naively adding a new attribute to every pivot tuple has unacceptable
overhead (it bloats internal pages), so suffix truncation of pivot
tuples is added.  This will usually truncate away the "extra" heap TID
attribute from pivot tuples during a leaf page split, and may also
truncate away additional user attributes.  This can increase fan-out,
especially in a multi-column index.  Truncation can only occur at the
attribute granularity, which isn't particularly effective, but works
well enough for now.  A future patch may add support for truncating
"within" text attributes by generating truncated key values using new
opclass infrastructure.

Only new indexes (BTREE_VERSION 4 indexes) will have insertions that
treat heap TID as a tiebreaker attribute, or will have pivot tuples
undergo suffix truncation during a leaf page split (on-disk
compatibility with versions 2 and 3 is preserved).  Upgrades to version
4 cannot be performed on-the-fly, unlike upgrades from version 2 to
version 3.  contrib/amcheck continues to work with version 2 and 3
indexes, while also enforcing stricter invariants when verifying version
4 indexes.  These stricter invariants are the same invariants described
by "3.1.12 Sequencing" from the Lehman and Yao paper.

A later patch will enhance the logic used by nbtree to pick a split
point.  This patch is likely to negatively impact performance without
smarter choices around the precise point to split leaf pages at.  Making
these two mostly-distinct sets of enhancements into distinct commits
seems like it might clarify their design, even though neither commit is
particularly useful on its own.

The maximum allowed size of new tuples is reduced by an amount equal to
the space required to store an extra MAXALIGN()'d TID in a new high key
during leaf page splits.  The user-facing definition of the "1/3 of a
page" restriction is already imprecise, and so does not need to be
revised.  However, there should be a compatibility note in the v12
release notes.

Author: Peter Geoghegan
Reviewed-By: Heikki Linnakangas, Alexander Korotkov
Discussion: https://postgr.es/m/CAH2-WzkVb0Kom=R+88fDFb=JSxZMFvbHVC6Mn9LJ2n=X=kS-Uw@mail.gmail.com
2019-03-20 10:04:01 -07:00
Bruce Momjian 97c39498e5 Update copyright for 2019
Backpatch-through: certain files through 9.4
2019-01-02 12:44:25 -05:00
Teodor Sigaev ff4943042f Fix datatype for number of heap tuples during last cleanup
It appears that new fields introduced in 857f9c36 have inconsistent datatypes:
BTMetaPageData.btm_last_cleanup_num_heap_tuples is of float4 type,
while xl_btree_metadata.last_cleanup_num_heap_tuples is of double type.
IndexVacuumInfo.num_heap_tuples, which is a source of values for
both former fields is of double type.  So, make both those fields in
BTMetaPageData and xl_btree_metadata use float8 type in order to match the
precision of the source.  That shouldn't be double type, because we always
use types with explicit width in WAL.

Patch introduces incompatibility of on-disk format since 857f9c36 commit, but
that versions never was released, so just bump catalog version to avoid
possible confusion.

Author: Alexander Korortkov
2018-04-19 11:28:03 +03:00
Teodor Sigaev 8224de4f42 Indexes with INCLUDE columns and their support in B-tree
This patch introduces INCLUDE clause to index definition.  This clause
specifies a list of columns which will be included as a non-key part in
the index.  The INCLUDE columns exist solely to allow more queries to
benefit from index-only scans.  Also, such columns don't need to have
appropriate operator classes.  Expressions are not supported as INCLUDE
columns since they cannot be used in index-only scans.

Index access methods supporting INCLUDE are indicated by amcaninclude flag
in IndexAmRoutine.  For now, only B-tree indexes support INCLUDE clause.

In B-tree indexes INCLUDE columns are truncated from pivot index tuples
(tuples located in non-leaf pages and high keys).  Therefore, B-tree indexes
now might have variable number of attributes.  This patch also provides
generic facility to support that: pivot tuples contain number of their
attributes in t_tid.ip_posid.  Free 13th bit of t_info is used for indicating
that.  This facility will simplify further support of index suffix truncation.
The changes of above are backward-compatible, pg_upgrade doesn't need special
handling of B-tree indexes for that.

Bump catalog version

Author: Anastasia Lubennikova with contribition by Alexander Korotkov and me
Reviewed by: Peter Geoghegan, Tomas Vondra, Antonin Houska, Jeff Janes,
			 David Rowley, Alexander Korotkov
Discussion: https://www.postgresql.org/message-id/flat/56168952.4010101@postgrespro.ru
2018-04-07 23:00:39 +03:00
Teodor Sigaev 857f9c36cd Skip full index scan during cleanup of B-tree indexes when possible
Vacuum of index consists from two stages: multiple (zero of more) ambulkdelete
calls and one amvacuumcleanup call. When workload on particular table
is append-only, then autovacuum isn't intended to touch this table. However,
user may run vacuum manually in order to fill visibility map and get benefits
of index-only scans. Then ambulkdelete wouldn't be called for indexes
of such table (because no heap tuples were deleted), only amvacuumcleanup would
be called In this case, amvacuumcleanup would perform full index scan for
two objectives: put recyclable pages into free space map and update index
statistics.

This patch allows btvacuumclanup to skip full index scan when two conditions
are satisfied: no pages are going to be put into free space map and index
statistics isn't stalled. In order to check first condition, we store
oldest btpo_xact in the meta-page. When it's precedes RecentGlobalXmin, then
there are some recyclable pages. In order to check second condition we store
number of heap tuples observed during previous full index scan by cleanup.
If fraction of newly inserted tuples is less than
vacuum_cleanup_index_scale_factor, then statistics isn't considered to be
stalled. vacuum_cleanup_index_scale_factor can be defined as both reloption and GUC (default).

This patch bumps B-tree meta-page version. Upgrade of meta-page is performed
"on the fly": during VACUUM meta-page is rewritten with new version. No special
handling in pg_upgrade is required.

Author: Masahiko Sawada, Alexander Korotkov
Review by: Peter Geoghegan, Kyotaro Horiguchi, Alexander Korotkov, Yura Sokolov
Discussion: https://www.postgresql.org/message-id/flat/CAD21AoAX+d2oD_nrd9O2YkpzHaFr=uQeGr9s1rKC3O4ENc568g@mail.gmail.com
2018-04-04 19:29:00 +03:00
Bruce Momjian 9d4649ca49 Update copyright for 2018
Backpatch-through: certain files through 9.3
2018-01-02 23:30:12 -05:00
Heikki Linnakangas 0c504a80cf Remove dedicated B-tree root-split record types.
Since commit 40dae7ec53, which changed the way b-tree page splitting
works, there has been no difference in the handling of root, and non-root
split WAL records. We don't need to distinguish them anymore

If you're worried about the loss of debugging information, note that
usually a root split record will normally be followed by a WAL record to
create the new root page. The root page will also have the BTP_ROOT flag
set on the page itself, and there is a pointer to it from the metapage.

Author: Aleksander Alekseev
Discussion: https://www.postgresql.org/message-id/20170406122116.GA11081@e733.localdomain
2017-08-16 12:24:40 +03:00
Tom Lane c7b8998ebb Phase 2 of pgindent updates.
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.

Commit e3860ffa4d wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code.  The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there.  BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs.  So the
net result is that in about half the cases, such comments are placed
one tab stop left of before.  This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.

Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.

This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.

Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 15:19:25 -04:00
Robert Haas 8da9a22636 Split index xlog headers from other private index headers.
The xlog-specific headers need to be included in both frontend code -
specifically, pg_waldump - and the backend, but the remainder of the
private headers for each index are only needed by the backend.  By
splitting the xlog stuff out into separate headers, pg_waldump pulls
in fewer backend headers, which is a good thing.

Patch by me, reviewed by Michael Paquier and Andres Freund, per a
complaint from Dilip Kumar.

Discussion: http://postgr.es/m/CA+TgmoZ=F=GkxV0YEv-A8tb+AEGy_Qa7GSiJ8deBKFATnzfEug@mail.gmail.com
2017-02-14 15:37:59 -05:00