Commit Graph

2290 Commits

Author SHA1 Message Date
Etsuro Fujita edbcbe277d postgres_fdw: Fix cost estimation for aggregate pushdown.
In commit 7012b132d0, which added support for aggregate pushdown in
postgres_fdw, the expense of evaluating the final scan/join target
computed by make_group_input_target() was not accounted for at all in
costing aggregate pushdown paths with local statistics.  The right fix
for this would be to have a separate upper stage to adjust the final
scan/join relation (see comments for apply_scanjoin_target_to_paths());
but for now, fix by adding the tlist eval cost when costing aggregate
pushdown paths with local statistics.

Apply this to HEAD only to avoid destabilizing existing plan choices.

Author: Etsuro Fujita
Reviewed-By: Antonin Houska
Discussion: https://postgr.es/m/5C66A056.60007%40lab.ntt.co.jp
2019-05-09 18:39:23 +09:00
Tom Lane 9691aa72e2 Fix style violations in syscache lookups.
Project style is to check the success of SearchSysCacheN and friends
by applying HeapTupleIsValid to the result.  A tiny minority of calls
creatively did it differently.  Bring them into line with the rest.

This is just cosmetic, since HeapTupleIsValid is indeed just a null
check at the moment ... but that may not be true forever, and in any
case it puts a mental burden on readers who may wonder why these
call sites are not like the rest.

Back-patch to v11 just to keep the branches in sync.  (The bulk of these
errors seem to have originated in v11 or v12, though a few are old.)

Per searching to see if anyplace else had made the same error
repaired in 62148c352.
2019-05-05 13:10:07 -04:00
Tom Lane e03ff73969 Clean up handling of constraint_exclusion and enable_partition_pruning.
The interaction of these parameters was a bit confused/confusing,
and in fact v11 entirely misses the opportunity to apply partition
constraints when a partition is accessed directly (rather than
indirectly from its parent).

In HEAD, establish the principle that enable_partition_pruning controls
partition pruning and nothing else.  When accessing a partition via its
parent, we do partition pruning (if enabled by enable_partition_pruning)
and then there is no need to consider partition constraints in the
constraint_exclusion logic.  When accessing a partition directly, its
partition constraints are applied by the constraint_exclusion logic,
only if constraint_exclusion = on.

In v11, we can't have such a clean division of these GUCs' effects,
partly because we don't want to break compatibility too much in a
released branch, and partly because the clean coding requires
inheritance_planner to have applied partition pruning to a partitioned
target table, which it doesn't in v11.  However, we can tweak things
enough to cover the missed case, which seems like a good idea since
it's potentially a performance regression from v10.  This patch keeps
v11's previous behavior in which enable_partition_pruning overrides
constraint_exclusion for an inherited target table, though.

In HEAD, also teach relation_excluded_by_constraints that it's okay to use
inheritable constraints when trying to prune a traditional inheritance
tree.  This might not be thought worthy of effort given that that feature
is semi-deprecated now, but we have enough infrastructure that it only
takes a couple more lines of code to do it correctly.

Amit Langote and Tom Lane

Discussion: https://postgr.es/m/9813f079-f16b-61c8-9ab7-4363cab28d80@lab.ntt.co.jp
Discussion: https://postgr.es/m/29069.1555970894@sss.pgh.pa.us
2019-04-30 15:03:50 -04:00
Michael Paquier 148266fa35 Fix collection of typos and grammar mistakes in docs and comments
Author: Justin Pryzby
Discussion: https://postgr.es/m/20190330224333.GQ5815@telsasoft.com
2019-04-19 16:57:40 +09:00
Tom Lane 9476131278 Prevent inlining of multiply-referenced CTEs with outer recursive refs.
This has to be prevented because inlining would result in multiple
self-references, which we don't support (and in fact that's disallowed
by the SQL spec, see statements about linearly vs. nonlinearly
recursive queries).  Bug fix for commit 608b167f9.

Per report from Yaroslav Schekin (via Andrew Gierth)

Discussion: https://postgr.es/m/87wolmg60q.fsf@news-spur.riddles.org.uk
2019-04-09 15:47:35 -04:00
Tom Lane 45f8eaa8e3 Fix improper interaction of FULL JOINs with lateral references.
join_is_legal() needs to reject forming certain outer joins in cases
where that would lead the planner down a blind alley.  However, it
mistakenly supposed that the way to handle full joins was to treat them
as applying the same constraints as for left joins, only to both sides.
That doesn't work, as shown in bug #15741 from Anthony Skorski: given
a lateral reference out of a join that's fully enclosed by a full join,
the code would fail to believe that any join ordering is legal, resulting
in errors like "failed to build any N-way joins".

However, we don't really need to consider full joins at all for this
purpose, because we effectively force them to be evaluated in syntactic
order, and that order is always legal for lateral references.  Hence,
get rid of this broken logic for full joins and just ignore them instead.

This seems to have been an oversight in commit 7e19db0c0.
Back-patch to all supported branches, as that was.

Discussion: https://postgr.es/m/15741-276f1f464b3f40eb@postgresql.org
2019-04-08 16:09:26 -04:00
Tom Lane 159970bcad Clean up side-effects of commits ab5fcf2b0 et al.
Before those commits, partitioning-related code in the executor could
assume that ModifyTableState.resultRelInfo[] contains only leaf partitions.
However, now a fully-pruned update results in a dummy ModifyTable that
references the root partitioned table, and that breaks some stuff.

In v11, this led to an assertion or core dump in the tuple routing code.
Fix by disabling tuple routing, since we don't need that anyway.
(I chose to do that in HEAD as well for safety, even though the problem
doesn't manifest in HEAD as it stands.)

In v10, this confused ExecInitModifyTable's decision about whether it
needed to close the root table.  But we can get rid of that altogether
by being smarter about where to find the root table.

Note that since the referenced commits haven't shipped yet, this
isn't fixing any bug the field has seen.

Amit Langote, per a report from me

Discussion: https://postgr.es/m/20710.1554582479@sss.pgh.pa.us
2019-04-07 12:54:22 -04:00
Tom Lane 959d00e9db Use Append rather than MergeAppend for scanning ordered partitions.
If we need ordered output from a scan of a partitioned table, but
the ordering matches the partition ordering, then we don't need to
use a MergeAppend to combine the pre-ordered per-partition scan
results: a plain Append will produce the same results.  This
both saves useless comparison work inside the MergeAppend proper,
and allows us to start returning tuples after istarting up just
the first child node not all of them.

However, all is not peaches and cream, because if some of the
child nodes have high startup costs then there will be big
discontinuities in the tuples-returned-versus-elapsed-time curve.
The planner's cost model cannot handle that (yet, anyway).
If we model the Append's startup cost as being just the first
child's startup cost, we may drastically underestimate the cost
of fetching slightly more tuples than are available from the first
child.  Since we've had bad experiences with over-optimistic choices
of "fast start" plans for ORDER BY LIMIT queries, that seems scary.
As a klugy workaround, set the startup cost estimate for an ordered
Append to be the sum of its children's startup costs (as MergeAppend
would).  This doesn't really describe reality, but it's less likely
to cause a bad plan choice than an underestimated startup cost would.
In practice, the cases where we really care about this optimization
will have child plans that are IndexScans with zero startup cost,
so that the overly conservative estimate is still just zero.

David Rowley, reviewed by Julien Rouhaud and Antonin Houska

Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-05 19:20:43 -04:00
Tom Lane 9c703c169a Make queries' locking of indexes more consistent.
The assertions added by commit b04aeb0a0 exposed that there are some
code paths wherein the executor will try to open an index without
holding any lock on it.  We do have some lock on the index's table,
so it seems likely that there's no fatal problem with this (for
instance, the index couldn't get dropped from under us).  Still,
it's bad practice and we should fix it.

To do so, remove the optimizations in ExecInitIndexScan and friends
that tried to avoid taking a lock on an index belonging to a target
relation, and just take the lock always.  In non-bug cases, this
will result in no additional shared-memory access, since we'll find
in the local lock table that we already have a lock of the desired
type; hence, no significant performance degradation should occur.

Also, adjust the planner and executor so that the type of lock taken
on an index is always identical to the type of lock taken for its table,
by relying on the recently added RangeTblEntry.rellockmode field.
This avoids some corner cases where that might not have been true
before (possibly resulting in extra locking overhead), and prevents
future maintenance issues from having multiple bits of logic that
all needed to be in sync.  In addition, this change removes all core
calls to ExecRelationIsTargetRelation, which avoids a possible O(N^2)
startup penalty for queries with large numbers of target relations.
(We'd probably remove that function altogether, were it not that we
advertise it as something that FDWs might want to use.)

Also adjust some places in selfuncs.c to not take any lock on indexes
they are transiently opening, since we can assume that plancat.c
did that already.

In passing, change gin_clean_pending_list() to take RowExclusiveLock
not AccessShareLock on its target index.  Although it's not clear that
that's actually a bug, it seemed very strange for a function that's
explicitly going to modify the index to use only AccessShareLock.

David Rowley, reviewed by Julien Rouhaud and Amit Langote,
a bit of further tweaking by me

Discussion: https://postgr.es/m/19465.1541636036@sss.pgh.pa.us
2019-04-04 15:12:58 -04:00
Etsuro Fujita d50d172e51 postgres_fdw: Perform the (FINAL, NULL) upperrel operations remotely.
The upper-planner pathification allows FDWs to arrange to push down
different types of upper-stage operations to the remote side.  This
commit teaches postgres_fdw to do it for the (FINAL, NULL) upperrel,
which is responsible for doing LockRows, LIMIT, and/or ModifyTable.
This provides the ability for postgres_fdw to handle SELECT commands
so that it 1) skips the LockRows step (if any) (note that this is
safe since it performs early locking) and 2) pushes down the LIMIT
and/or OFFSET restrictions (if any) to the remote side.  This doesn't
handle the INSERT/UPDATE/DELETE cases.

Author: Etsuro Fujita
Reviewed-By: Antonin Houska and Jeff Janes
Discussion: https://postgr.es/m/87pnz1aby9.fsf@news-spur.riddles.org.uk
2019-04-02 20:30:45 +09:00
Etsuro Fujita aef65db676 Refactor create_limit_path() to share cost adjustment code with FDWs.
This is in preparation for an upcoming commit.

Author: Etsuro Fujita
Reviewed-By: Antonin Houska and Jeff Janes
Discussion: https://postgr.es/m/87pnz1aby9.fsf@news-spur.riddles.org.uk
2019-04-02 19:55:12 +09:00
Andres Freund bfbcad478f tableam: bitmap table scan.
This moves bitmap heap scan support to below an optional tableam
callback. It's optional as the whole concept of bitmap heapscans is
fairly block specific.

This basically moves the work previously done in bitgetpage() into the
new scan_bitmap_next_block callback, and the direct poking into the
buffer done in BitmapHeapNext() into the new scan_bitmap_next_tuple()
callback.

The abstraction is currently somewhat leaky because
nodeBitmapHeapscan.c's prefetching and visibilitymap based logic
remains - it's likely that we'll later have to move more into the
AM. But it's not trivial to do so without introducing a significant
amount of code duplication between the AMs, so that's a project for
later.

Note that now nodeBitmapHeapscan.c and the associated node types are a
bit misnamed. But it's not clear whether renaming wouldn't be a cure
worse than the disease. Either way, that'd be best done in a separate
commit.

Author: Andres Freund
Reviewed-By: Robert Haas (in an older version)
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-03-31 18:37:57 -07:00
Andres Freund 4bb50236eb tableam: Formatting and other minor cleanups.
The superflous heapam_xlog.h includes were reported by Peter
Geoghegan.
2019-03-31 18:16:53 -07:00
Tom Lane 9fd4de119c Compute root->qual_security_level in a less random place.
We can set this up once and for all in subquery_planner's initial survey
of the flattened rangetable, rather than incrementally adjusting it in
build_simple_rel.  The previous approach made it rather hard to reason
about exactly when the value would be available, and we were definitely
using it in some places before the final value was computed.

Noted while fooling around with Amit Langote's patch to delay creation
of inheritance child rels.  That didn't break this code, but it made it
even more fragile, IMO.
2019-03-31 13:47:41 -04:00
Andres Freund 696d78469f tableam: Move heap specific logic from estimate_rel_size below tableam.
This just moves the table/matview[/toast] determination of relation
size to a callback, and uses a copy of the existing logic to implement
that callback for heap.

It probably would make sense to also move the index specific logic
into a callback, so the metapage handling (and probably more) can be
index specific. But that's a separate task.

Author: Andres Freund
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-03-30 19:26:36 -07:00
Tom Lane 428b260f87 Speed up planning when partitions can be pruned at plan time.
Previously, the planner created RangeTblEntry and RelOptInfo structs
for every partition of a partitioned table, even though many of them
might later be deemed uninteresting thanks to partition pruning logic.
This incurred significant overhead when there are many partitions.
Arrange to postpone creation of these data structures until after
we've processed the query enough to identify restriction quals for
the partitioned table, and then apply partition pruning before not
after creation of each partition's data structures.  In this way
we need not open the partition relations at all for partitions that
the planner has no real interest in.

For queries that can be proven at plan time to access only a small
number of partitions, this patch improves the practical maximum
number of partitions from under 100 to perhaps a few thousand.

Amit Langote, reviewed at various times by Dilip Kumar, Jesper Pedersen,
Yoshikazu Imai, and David Rowley

Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp
2019-03-30 18:58:55 -04:00
Tom Lane 7ad6498fd5 Avoid crash in partitionwise join planning under GEQO.
While trying to plan a partitionwise join, we may be faced with cases
where one or both input partitions for a particular segment of the join
have been pruned away.  In HEAD and v11, this is problematic because
earlier processing didn't bother to make a pruned RelOptInfo fully
valid.  With an upcoming patch to make partition pruning more efficient,
this'll be even more problematic because said RelOptInfo won't exist at
all.

The existing code attempts to deal with this by retroactively making the
RelOptInfo fully valid, but that causes crashes under GEQO because join
planning is done in a short-lived memory context.  In v11 we could
probably have fixed this by switching to the planner's main context
while fixing up the RelOptInfo, but that idea doesn't scale well to the
upcoming patch.  It would be better not to mess with the base-relation
data structures during join planning, anyway --- that's just a recipe
for order-of-operations bugs.

In many cases, though, we don't actually need the child RelOptInfo,
because if the input is certainly empty then the join segment's result
is certainly empty, so we can skip making a join plan altogether.  (The
existing code ultimately arrives at the same conclusion, but only after
doing a lot more work.)  This approach works except when the pruned-away
partition is on the nullable side of a LEFT, ANTI, or FULL join, and the
other side isn't pruned.  But in those cases the existing code leaves a
lot to be desired anyway --- the correct output is just the result of
the unpruned side of the join, but we were emitting a useless outer join
against a dummy Result.  Pending somebody writing code to handle that
more nicely, let's just abandon the partitionwise-join optimization in
such cases.

When the modified code skips making a join plan, it doesn't make a
join RelOptInfo either; this requires some upper-level code to
cope with nulls in part_rels[] arrays.  We would have had to have
that anyway after the upcoming patch.

Back-patch to v11 since the crash is demonstrable there.

Discussion: https://postgr.es/m/8305.1553884377@sss.pgh.pa.us
2019-03-30 12:48:32 -04:00
Peter Eisentraut fc22b6623b Generated columns
This is an SQL-standard feature that allows creating columns that are
computed from expressions rather than assigned, similar to a view or
materialized view but on a column basis.

This implements one kind of generated column: stored (computed on
write).  Another kind, virtual (computed on read), is planned for the
future, and some room is left for it.

Reviewed-by: Michael Paquier <michael@paquier.xyz>
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/b151f851-4019-bdb1-699e-ebab07d2f40a@2ndquadrant.com
2019-03-30 08:15:57 +01:00
Tomas Vondra 7300a69950 Add support for multivariate MCV lists
Introduce a third extended statistic type, supported by the CREATE
STATISTICS command - MCV lists, a generalization of the statistic
already built and used for individual columns.

Compared to the already supported types (n-distinct coefficients and
functional dependencies), MCV lists are more complex, include column
values and allow estimation of much wider range of common clauses
(equality and inequality conditions, IS NULL, IS NOT NULL etc.).
Similarly to the other types, a new pseudo-type (pg_mcv_list) is used.

Author: Tomas Vondra
Reviewed-by: Dean Rasheed, David Rowley, Mark Dilger, Alvaro Herrera
Discussion: https://postgr.es/m/dfdac334-9cf2-2597-fb27-f0fb3753f435@2ndquadrant.com
2019-03-27 18:32:18 +01:00
Tom Lane 333ed246c6 Avoid passing query tlist around separately from root->processed_tlist.
In the dim past, the planner kept the fully-processed version of the query
targetlist (the result of preprocess_targetlist) in grouping_planner's
local variable "tlist", and only grudgingly passed it to individual other
routines as needed.  Later we discovered a need to still have it available
after grouping_planner finishes, and invented the root->processed_tlist
field for that purpose, but it wasn't used internally to grouping_planner;
the tlist was still being passed around separately in the same places as
before.

Now comes a proposed patch to allow appendrel expansion to add entries
to the processed tlist, well after preprocess_targetlist has finished
its work.  To avoid having to pass around the tlist explicitly, it's
proposed to allow appendrel expansion to modify root->processed_tlist.
That makes aliasing the tlist with assorted parameters and local
variables really scary.  It would accidentally work as long as the
tlist is initially nonempty, because then the List header won't move
around, but it's not exactly hard to think of ways for that to break.
Aliased values are poor programming practice anyway.

Hence, get rid of local variables and parameters that can be identified
with root->processed_tlist, in favor of just using that field directly.
And adjust comments to match.  (Some of the new comments speak as though
it's already possible for appendrel expansion to modify the tlist; that's
not true yet, but will happen in a later patch.)

Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp
2019-03-27 12:57:49 -04:00
Tom Lane 53bcf5e3db Build "other rels" of appendrel baserels in a separate step.
Up to now, otherrel RelOptInfos were built at the same time as baserel
RelOptInfos, thanks to recursion in build_simple_rel().  However,
nothing in query_planner's preprocessing cares at all about otherrels,
only baserels, so we don't really need to build them until just before
we enter make_one_rel.  This has two benefits:

* create_lateral_join_info did a lot of extra work to propagate
lateral-reference information from parents to the correct children.
But if we delay creation of the children till after that, it's
trivial (and much harder to break, too).

* Since we have all the restriction quals correctly assigned to
parent appendrels by this point, it'll be possible to do plan-time
pruning and never make child RelOptInfos at all for partitions that
can be pruned away.  That's not done here, but will be later on.

Amit Langote, reviewed at various times by Dilip Kumar, Jesper Pedersen,
Yoshikazu Imai, and David Rowley

Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp
2019-03-26 18:21:10 -04:00
Tom Lane e8d5dd6be7 Get rid of duplicate child RTE for a partitioned table.
We've been creating duplicate RTEs for partitioned tables just
because we do so for regular inheritance parent tables.  But unlike
regular-inheritance parents which are themselves regular tables
and thus need to be scanned, partitioned tables don't need the
extra RTE.

This makes the conditions for building a child RTE the same as those
for building an AppendRelInfo, allowing minor simplification in
expand_single_inheritance_child.  Since the planner's actual processing
is driven off the AppendRelInfo list, nothing much changes beyond that,
we just have one fewer useless RTE entry.

Amit Langote, reviewed and hacked a bit by me

Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp
2019-03-26 12:03:27 -04:00
Tom Lane 8edd0e7946 Suppress Append and MergeAppend plan nodes that have a single child.
If there's only one child relation, the Append or MergeAppend isn't
doing anything useful, and can be elided.  It does have a purpose
during planning though, which is to serve as a buffer between parent
and child Var numbering.  Therefore we keep it all the way through
to setrefs.c, and get rid of it only after fixing references in the
plan level(s) above it.  This works largely the same as setrefs.c's
ancient hack to get rid of no-op SubqueryScan nodes, and can even
share some code with that.

Note the change to make setrefs.c use apply_tlist_labeling rather than
ad-hoc code.  This has the effect of propagating the child's resjunk
and ressortgroupref labels, which formerly weren't propagated when
removing a SubqueryScan.  Doing that is demonstrably necessary for
the [Merge]Append cases, and seems harmless for SubqueryScan, if only
because trivial_subqueryscan is afraid to collapse cases where the
resjunk marking differs.  (I suspect that restriction could now be
removed, though it's unclear that it'd make any new matches possible,
since the outer query can't have references to a child resjunk column.)

David Rowley, reviewed by Alvaro Herrera and Tomas Vondra

Discussion: https://postgr.es/m/CAKJS1f_7u8ATyJ1JGTMHFoKDvZdeF-iEBhs+sM_SXowOr9cArg@mail.gmail.com
2019-03-25 15:42:35 -04:00
Tom Lane c8151e6423 Don't copy PartitionBoundInfo in set_relation_partition_info.
I (tgl) remain dubious that it's a good idea for PartitionDirectory
to hold a pin on a relcache entry throughout planning, rather than
copying the data or using some kind of refcount scheme.  However, it's
certainly the responsibility of the PartitionDirectory code to ensure
that what it's handing back is a stable data structure, not that of
its caller.  So this is a pretty clear oversight in commit 898e5e329,
and one that can cost a lot of performance when there are many
partitions.

Amit Langote (extracted from a much larger patch set)

Discussion: https://postgr.es/m/CA+TgmoY3bRmGB6-DUnoVy5fJoreiBJ43rwMrQRCdPXuKt4Ykaw@mail.gmail.com
Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp
2019-03-22 14:16:58 -04:00
Peter Eisentraut 5e1963fb76 Collations with nondeterministic comparison
This adds a flag "deterministic" to collations.  If that is false,
such a collation disables various optimizations that assume that
strings are equal only if they are byte-wise equal.  That then allows
use cases such as case-insensitive or accent-insensitive comparisons
or handling of strings with different Unicode normal forms.

This functionality is only supported with the ICU provider.  At least
glibc doesn't appear to have any locales that work in a
nondeterministic way, so it's not worth supporting this for the libc
provider.

The term "deterministic comparison" in this context is from Unicode
Technical Standard #10
(https://unicode.org/reports/tr10/#Deterministic_Comparison).

This patch makes changes in three areas:

- CREATE COLLATION DDL changes and system catalog changes to support
  this new flag.

- Many executor nodes and auxiliary code are extended to track
  collations.  Previously, this code would just throw away collation
  information, because the eventually-called user-defined functions
  didn't use it since they only cared about equality, which didn't
  need collation information.

- String data type functions that do equality comparisons and hashing
  are changed to take the (non-)deterministic flag into account.  For
  comparison, this just means skipping various shortcuts and tie
  breakers that use byte-wise comparison.  For hashing, we first need
  to convert the input string to a canonical "sort key" using the ICU
  analogue of strxfrm().

Reviewed-by: Daniel Verite <daniel@manitou-mail.org>
Reviewed-by: Peter Geoghegan <pg@bowt.ie>
Discussion: https://www.postgresql.org/message-id/flat/1ccc668f-4cbc-0bef-af67-450b47cdfee7@2ndquadrant.com
2019-03-22 12:12:43 +01:00
Thomas Munro bb16aba50c Enable parallel query with SERIALIZABLE isolation.
Previously, the SERIALIZABLE isolation level prevented parallel query
from being used.  Allow the two features to be used together by
sharing the leader's SERIALIZABLEXACT with parallel workers.

An extra per-SERIALIZABLEXACT LWLock is introduced to make it safe to
share, and new logic is introduced to coordinate the early release
of the SERIALIZABLEXACT required for the SXACT_FLAG_RO_SAFE
optimization, as follows:

The first backend to observe the SXACT_FLAG_RO_SAFE flag (set by
some other transaction) will 'partially release' the SERIALIZABLEXACT,
meaning that the conflicts and locks it holds are released, but the
SERIALIZABLEXACT itself will remain active because other backends
might still have a pointer to it.

Whenever any backend notices the SXACT_FLAG_RO_SAFE flag, it clears
its own MySerializableXact variable and frees local resources so that
it can skip SSI checks for the rest of the transaction.  In the
special case of the leader process, it transfers the SERIALIZABLEXACT
to a new variable SavedSerializableXact, so that it can be completely
released at the end of the transaction after all workers have exited.

Remove the serializable_okay flag added to CreateParallelContext() by
commit 9da0cc35, because it's now redundant.

Author: Thomas Munro
Reviewed-by: Haribabu Kommi, Robert Haas, Masahiko Sawada, Kevin Grittner
Discussion: https://postgr.es/m/CAEepm=0gXGYhtrVDWOTHS8SQQy_=S9xo+8oCxGLWZAOoeJ=yzQ@mail.gmail.com
2019-03-15 17:47:04 +13:00
Tom Lane 0a9d7e1f6d Ensure dummy paths have correct required_outer if rel is parameterized.
The assertions added by commits 34ea1ab7f et al found another problem:
set_dummy_rel_pathlist and mark_dummy_rel were failing to label
the dummy paths they create with the correct outer_relids, in case
the relation is necessarily parameterized due to having lateral
references in its tlist.  It's likely that this has no user-visible
consequences in production builds, at the moment; but still an assertion
failure is a bad thing, so back-patch the fix.

Per bug #15694 from Roman Zharkov (via Alexander Lakhin)
and an independent report by Tushar Ahuja.

Discussion: https://postgr.es/m/15694-74f2ca97e7044f7f@postgresql.org
Discussion: https://postgr.es/m/7d72ab20-c725-3ce2-f99d-4e64dd8a0de6@enterprisedb.com
2019-03-14 12:16:36 -04:00
Etsuro Fujita b5afdde6a7 Fix testing of parallel-safety of scan/join target.
In commit 960df2a971 ("Correctly assess parallel-safety of tlists when
SRFs are used."), the testing of scan/join target was done incorrectly,
which caused a plan-quality problem.  Backpatch through to v11 where
the aforementioned commit went in, since this is a regression from v10.

Author: Etsuro Fujita
Reviewed-by: Robert Haas and Tom Lane
Discussion: https://postgr.es/m/5C75303E.8020303@lab.ntt.co.jp
2019-03-12 16:21:57 +09:00
Tom Lane 1d33858406 Fix handling of targetlist SRFs when scan/join relation is known empty.
When we introduced separate ProjectSetPath nodes for application of
set-returning functions in v10, we inadvertently broke some cases where
we're supposed to recognize that the result of a subquery is known to be
empty (contain zero rows).  That's because IS_DUMMY_REL was just looking
for a childless AppendPath without allowing for a ProjectSetPath being
possibly stuck on top.  In itself, this didn't do anything much worse
than produce slightly worse plans for some corner cases.

Then in v11, commit 11cf92f6e rearranged things to allow the scan/join
targetlist to be applied directly to partial paths before they get
gathered.  But it inserted a short-circuit path for dummy relations
that was a little too short: it failed to insert a ProjectSetPath node
at all for a targetlist containing set-returning functions, resulting in
bogus "set-valued function called in context that cannot accept a set"
errors, as reported in bug #15669 from Madelaine Thibaut.

The best way to fix this mess seems to be to reimplement IS_DUMMY_REL
so that it drills down through any ProjectSetPath nodes that might be
there (and it seems like we'd better allow for ProjectionPath as well).

While we're at it, make it look at rel->pathlist not cheapest_total_path,
so that it gives the right answer independently of whether set_cheapest
has been done lately.  That dependency looks pretty shaky in the context
of code like apply_scanjoin_target_to_paths, and even if it's not broken
today it'd certainly bite us at some point.  (Nastily, unsafe use of the
old coding would almost always work; the hazard comes down to possibly
looking through a dangling pointer, and only once in a blue moon would
you find something there that resulted in the wrong answer.)

It now looks like it was a mistake for IS_DUMMY_REL to be a macro: if
there are any extensions using it, they'll continue to use the old
inadequate logic until they're recompiled, after which they'll fail
to load into server versions predating this fix.  Hopefully there are
few such extensions.

Having fixed IS_DUMMY_REL, the special path for dummy rels in
apply_scanjoin_target_to_paths is unnecessary as well as being wrong,
so we can just drop it.

Also change a few places that were testing for partitioned-ness of a
planner relation but not using IS_PARTITIONED_REL for the purpose; that
seems unsafe as well as inconsistent, plus it required an ugly hack in
apply_scanjoin_target_to_paths.

In passing, save a few cycles in apply_scanjoin_target_to_paths by
skipping processing of pre-existing paths for partitioned rels,
and do some cosmetic cleanup and comment adjustment in that function.

I renamed IS_DUMMY_PATH to IS_DUMMY_APPEND with the intention of breaking
any code that might be using it, since in almost every case that would
be wrong; IS_DUMMY_REL is what to be using instead.

In HEAD, also make set_dummy_rel_pathlist static (since it's no longer
used from outside allpaths.c), and delete is_dummy_plan, since it's no
longer used anywhere.

Back-patch as appropriate into v11 and v10.

Tom Lane and Julien Rouhaud

Discussion: https://postgr.es/m/15669-02fb3296cca26203@postgresql.org
2019-03-07 14:22:13 -05:00
Robert Haas 898e5e3290 Allow ATTACH PARTITION with only ShareUpdateExclusiveLock.
We still require AccessExclusiveLock on the partition itself, because
otherwise an insert that violates the newly-imposed partition
constraint could be in progress at the same time that we're changing
that constraint; only the lock level on the parent relation is
weakened.

To make this safe, we have to cope with (at least) three separate
problems. First, relevant DDL might commit while we're in the process
of building a PartitionDesc.  If so, find_inheritance_children() might
see a new partition while the RELOID system cache still has the old
partition bound cached, and even before invalidation messages have
been queued.  To fix that, if we see that the pg_class tuple seems to
be missing or to have a null relpartbound, refetch the value directly
from the table. We can't get the wrong value, because DETACH PARTITION
still requires AccessExclusiveLock throughout; if we ever want to
change that, this will need more thought. In testing, I found it quite
difficult to hit even the null-relpartbound case; the race condition
is extremely tight, but the theoretical risk is there.

Second, successive calls to RelationGetPartitionDesc might not return
the same answer.  The query planner will get confused if lookup up the
PartitionDesc for a particular relation does not return a consistent
answer for the entire duration of query planning.  Likewise, query
execution will get confused if the same relation seems to have a
different PartitionDesc at different times.  Invent a new
PartitionDirectory concept and use it to ensure consistency.  This
ensures that a single invocation of either the planner or the executor
sees the same view of the PartitionDesc from beginning to end, but it
does not guarantee that the planner and the executor see the same
view.  Since this allows pointers to old PartitionDesc entries to
survive even after a relcache rebuild, also postpone removing the old
PartitionDesc entry until we're certain no one is using it.

For the most part, it seems to be OK for the planner and executor to
have different views of the PartitionDesc, because the executor will
just ignore any concurrently added partitions which were unknown at
plan time; those partitions won't be part of the inheritance
expansion, but invalidation messages will trigger replanning at some
point.  Normally, this happens by the time the very next command is
executed, but if the next command acquires no locks and executes a
prepared query, it can manage not to notice until a new transaction is
started.  We might want to tighten that up, but it's material for a
separate patch.  There would still be a small window where a query
that started just after an ATTACH PARTITION command committed might
fail to notice its results -- but only if the command starts before
the commit has been acknowledged to the user. All in all, the warts
here around serializability seem small enough to be worth accepting
for the considerable advantage of being able to add partitions without
a full table lock.

Although in general the consequences of new partitions showing up
between planning and execution are limited to the query not noticing
the new partitions, run-time partition pruning will get confused in
that case, so that's the third problem that this patch fixes.
Run-time partition pruning assumes that indexes into the PartitionDesc
are stable between planning and execution.  So, add code so that if
new partitions are added between plan time and execution time, the
indexes stored in the subplan_map[] and subpart_map[] arrays within
the plan's PartitionedRelPruneInfo get adjusted accordingly.  There
does not seem to be a simple way to generalize this scheme to cope
with partitions that are removed, mostly because they could then get
added back again with different bounds, but it works OK for added
partitions.

This code does not try to ensure that every backend participating in
a parallel query sees the same view of the PartitionDesc.  That
currently doesn't matter, because we never pass PartitionDesc
indexes between backends.  Each backend will ignore the concurrently
added partitions which it notices, and it doesn't matter if different
backends are ignoring different sets of concurrently added partitions.
If in the future that matters, for example because we allow writes in
parallel query and want all participants to do tuple routing to the same
set of partitions, the PartitionDirectory concept could be improved to
share PartitionDescs across backends.  There is a draft patch to
serialize and restore PartitionDescs on the thread where this patch
was discussed, which may be a useful place to start.

Patch by me.  Thanks to Alvaro Herrera, David Rowley, Simon Riggs,
Amit Langote, and Michael Paquier for discussion, and to Alvaro
Herrera for some review.

Discussion: http://postgr.es/m/CA+Tgmobt2upbSocvvDej3yzokd7AkiT+PvgFH+a9-5VV1oJNSQ@mail.gmail.com
Discussion: http://postgr.es/m/CA+TgmoZE0r9-cyA-aY6f8WFEROaDLLL7Vf81kZ8MtFCkxpeQSw@mail.gmail.com
Discussion: http://postgr.es/m/CA+TgmoY13KQZF-=HNTrt9UYWYx3_oYOQpu9ioNT49jGgiDpUEA@mail.gmail.com
2019-03-07 11:13:12 -05:00
Tom Lane 65ce07e020 Teach optimizer's predtest.c more things about ScalarArrayOpExpr.
In particular, make it possible to prove/refute "x IS NULL" and
"x IS NOT NULL" predicates from a clause involving a ScalarArrayOpExpr
even when we are unable or unwilling to deconstruct the expression
into an AND/OR tree.  This avoids a former unexpected degradation of
plan quality when the size of an ARRAY[] expression or array constant
exceeded the arbitrary MAX_SAOP_ARRAY_SIZE limit.  For IS-NULL proofs,
we don't really care about the values of the individual array elements;
at most, we care whether there are any, and for some common cases we
needn't even know that.

The main user-visible effect of this is to let the optimizer recognize
applicability of partial indexes with "x IS NOT NULL" predicates to
queries with "x IN (array)" clauses in some cases where it previously
failed to recognize that.  The structure of predtest.c is such that a
bunch of related proofs will now also succeed, but they're probably
much less useful in the wild.

James Coleman, reviewed by David Rowley

Discussion: https://postgr.es/m/CAAaqYe8yKSvzbyu8w-dThRs9aTFMwrFxn_BkTYeXgjqe3CbNjg@mail.gmail.com
2019-03-01 17:14:17 -05:00
Tom Lane c94fb8e8ac Standardize some more loops that chase down parallel lists.
We have forboth() and forthree() macros that simplify iterating
through several parallel lists, but not everyplace that could
reasonably use those was doing so.  Also invent forfour() and
forfive() macros to do the same for four or five parallel lists,
and use those where applicable.

The immediate motivation for doing this is to reduce the number
of ad-hoc lnext() calls, to reduce the footprint of a WIP patch.
However, it seems like good cleanup and error-proofing anyway;
the places that were combining forthree() with a manually iterated
loop seem particularly illegible and bug-prone.

There was some speculation about restructuring related parsetree
representations to reduce the need for parallel list chasing of
this sort.  Perhaps that's a win, or perhaps not, but in any case
it would be considerably more invasive than this patch; and it's
not particularly related to my immediate goal of improving the
List infrastructure.  So I'll leave that question for another day.

Patch by me; thanks to David Rowley for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-02-28 14:25:01 -05:00
Robert Haas f4b6341d5f Change lock acquisition order in expand_inherited_rtentry.
Previously, this function acquired locks in the order using
find_all_inheritors(), which locks the children of each table that it
processes in ascending OID order, and which processes the inheritance
hierarchy as a whole in a breadth-first fashion.  Now, it processes
the inheritance hierarchy in a depth-first fashion, and at each level
it proceeds in the order in which tables appear in the PartitionDesc.
If table inheritance rather than table partitioning is used, the old
order is preserved.

This change moves the locking of any given partition much closer to
the code that actually expands that partition.  This seems essential
if we ever want to allow concurrent DDL to add or remove partitions,
because if the set of partitions can change, we must use the same data
to decide which partitions to lock as we do to decide which partitions
to expand; otherwise, we might expand a partition that we haven't
locked.  It should hopefully also facilitate efforts to postpone
inheritance expansion or locking for performance reasons, because
there's really no way to postpone locking some partitions if
we're blindly locking them all using find_all_inheritors().

The only downside of this change which is known to me is that it
further deviates from the principle that we should always lock the
inheritance hierarchy in find_all_inheritors() order to avoid deadlock
risk.  However, we've already crossed that bridge in commit
9eefba181f and there are futher patches
pending that make similar changes, so this isn't really giving up
anything that we haven't surrendered already -- and it seems entirely
worth it, given the performance benefits some of those changes seem
likely to bring.

Patch by me; thanks to David Rowley for discussion of these issues.

Discussion: http://postgr.es/m/CAKJS1f_eEYVEq5tM8sm1k-HOwG0AyCPwX54XG9x4w0zy_N4Q_Q@mail.gmail.com
Discussion: http://postgr.es/m/CA+TgmoZUwPf_uanjF==gTGBMJrn8uCq52XYvAEorNkLrUdoawg@mail.gmail.com
2019-02-26 12:22:57 -05:00
Tom Lane ab5fcf2b04 Fix plan created for inherited UPDATE/DELETE with all tables excluded.
In the case where inheritance_planner() finds that every table has
been excluded by constraints, it thought it could get away with
making a plan consisting of just a dummy Result node.  While certainly
there's no updating or deleting to be done, this had two user-visible
problems: the plan did not report the correct set of output columns
when a RETURNING clause was present, and if there were any
statement-level triggers that should be fired, it didn't fire them.

Hence, rather than only generating the dummy Result, we need to
stick a valid ModifyTable node on top, which requires a tad more
effort here.

It's been broken this way for as long as inheritance_planner() has
known about deleting excluded subplans at all (cf commit 635d42e9c),
so back-patch to all supported branches.

Amit Langote and Tom Lane, per a report from Petr Fedorov.

Discussion: https://postgr.es/m/5da6f0f0-1364-1876-6978-907678f89a3e@phystech.edu
2019-02-22 12:23:19 -05:00
Tom Lane 0c7d537930 Move estimate_hashagg_tablesize to selfuncs.c, and widen result to double.
It seems to make more sense for this to be in selfuncs.c, since it's
largely a statistical-estimation thing, and it's related to other
functions like estimate_hash_bucket_stats that are there.

While at it, change the result type from Size to double.  Perhaps at one
point it was impossible for the result to overflow an integer, but
I've got no confidence in that proposition anymore.  Nothing's actually
done with the result except to compare it to a work_mem-based limit,
so as long as we don't get an overflow on the way to that comparison,
things should be fine even with very large dNumGroups.

Code movement proposed by Antonin Houska, type change by me

Discussion: https://postgr.es/m/25767.1549359615@localhost
2019-02-21 14:59:12 -05:00
Robert Haas 1bb5e78218 Move code for managing PartitionDescs into a new file, partdesc.c
This is similar in spirit to the existing partbounds.c file in the
same directory, except that there's a lot less code in the new file
created by this commit.  Pending work in this area proposes to add a
bunch more code related to PartitionDescs, though, and this will give
us a good place to put it.

Discussion: http://postgr.es/m/CA+TgmoZUwPf_uanjF==gTGBMJrn8uCq52XYvAEorNkLrUdoawg@mail.gmail.com
2019-02-21 11:45:02 -05:00
Tom Lane fa86238f1e Speed up match_eclasses_to_foreign_key_col() when there are many ECs.
Check ec_relids before bothering to iterate through the EC members.
On a perhaps extreme, but still real-world, query in which
match_eclasses_to_foreign_key_col() accounts for the bulk of the
planner's runtime, this saves nearly 40% of the runtime.  It's a bit
of a stopgap fix, but it's simple enough to be back-patched to 9.6
where this code came in; so let's do that.

David Rowley

Discussion: https://postgr.es/m/6970.1545327857@sss.pgh.pa.us
2019-02-20 20:53:17 -05:00
Tom Lane e04a3905e4 Improve planner's understanding of strictness of type coercions.
PG type coercions are generally strict, ie a NULL input must produce
a NULL output (or, in domain cases, possibly an error).  The planner's
understanding of that was a bit incomplete though, so improve it:

* Teach contain_nonstrict_functions() that CoerceViaIO can always be
considered strict.  Previously it believed that only if the underlying
I/O functions were marked strict, which is often but not always true.

* Teach clause_is_strict_for() that CoerceViaIO, ArrayCoerceExpr,
ConvertRowtypeExpr, CoerceToDomain can all be considered strict.
Previously it knew nothing about any of them.

The main user-visible impact of this is that IS NOT NULL predicates
can be proven to hold from expressions involving casts in more cases
than before, allowing partial indexes with such predicates to be used
without extra pushups.  This reduces the surprise factor for users,
who may well be used to ordinary (function-call-based) casts being
known to be strict.

Per a gripe from Samuel Williams.  This doesn't rise to the level of
a bug, IMO, so no back-patch.

Discussion: https://postgr.es/m/27571.1550617881@sss.pgh.pa.us
2019-02-20 14:39:11 -05:00
Tom Lane 1571bc0f06 Fix incorrect strictness test for ArrayCoerceExpr expressions.
The recursion in contain_nonstrict_functions_walker() was done wrong,
causing the strictness check to be bypassed for a parse node that
is the immediate input of an ArrayCoerceExpr node.  This could allow,
for example, incorrect decisions about whether a strict SQL function
can be inlined.

I didn't add a regression test, because (a) the bug is so narrow
and (b) I couldn't think of a test case that wasn't dependent on a
large number of other behaviors, to the point where it would likely
soon rot to the point of not testing what it was intended to.

I broke this in commit c12d570fa, so back-patch to v11.

Discussion: https://postgr.es/m/27571.1550617881@sss.pgh.pa.us
2019-02-20 13:36:55 -05:00
Etsuro Fujita 3fdc374b5d Save PathTargets for distinct/ordered relations in root->upper_targets[].
For the convenience of extensions, we previously only saved PathTargets
for grouped, window, and final relations in root->upper_targets[] in
grouping_planner().  To improve the convenience, save PathTargets for
distinct and ordered relations as well.

Author: Antonin Houska, with an additional change by me
Discussion: https://postgr.es/m/10994.1549559088@localhost
2019-02-18 16:13:46 +09:00
Tom Lane 608b167f9f Allow user control of CTE materialization, and change the default behavior.
Historically we've always materialized the full output of a CTE query,
treating WITH as an optimization fence (so that, for example, restrictions
from the outer query cannot be pushed into it).  This is appropriate when
the CTE query is INSERT/UPDATE/DELETE, or is recursive; but when the CTE
query is non-recursive and side-effect-free, there's no hazard of changing
the query results by pushing restrictions down.

Another argument for materialization is that it can avoid duplicate
computation of an expensive WITH query --- but that only applies if
the WITH query is called more than once in the outer query.  Even then
it could still be a net loss, if each call has restrictions that
would allow just a small part of the WITH query to be computed.

Hence, let's change the behavior for WITH queries that are non-recursive
and side-effect-free.  By default, we will inline them into the outer
query (removing the optimization fence) if they are called just once.
If they are called more than once, we will keep the old behavior by
default, but the user can override this and force inlining by specifying
NOT MATERIALIZED.  Lastly, the user can force the old behavior by
specifying MATERIALIZED; this would mainly be useful when the query had
deliberately been employing WITH as an optimization fence to prevent a
poor choice of plan.

Andreas Karlsson, Andrew Gierth, David Fetter

Discussion: https://postgr.es/m/87sh48ffhb.fsf@news-spur.riddles.org.uk
2019-02-16 16:11:12 -05:00
Tom Lane 8fd3fdd85a Simplify the planner's new representation of indexable clauses a little.
In commit 1a8d5afb0, I thought it'd be a good idea to define
IndexClause.indexquals as NIL in the most common case where the given
clause (IndexClause.rinfo) is usable exactly as-is.  It'd be more
consistent to define the indexquals in that case as being a one-element
list containing IndexClause.rinfo, but I thought saving the palloc
overhead for making such a list would be worthwhile.

In hindsight, that was a great example of "premature optimization is the
root of all evil": it's complicated everyplace that needs to deal with
the indexquals, requiring duplicative code to handle both the simple
case and the not-simple case.  I'd initially found that tolerable but
it's getting less so as I mop up some areas that I'd not touched in
1a8d5afb0.  In any case, two more pallocs during a planner run are
surely at the noise level (a conclusion confirmed by a bit of
microbenchmarking).  So let's change this decision before it becomes
set in stone, and insist that IndexClause.indexquals always be a valid
list of the actual index quals for the clause.

Discussion: https://postgr.es/m/24586.1550106354@sss.pgh.pa.us
2019-02-14 19:37:30 -05:00
Michael Paquier 6ea95166a0 Fix comment related to calculation location of total_table_pages
As of commit c6e4133, the calculation happens in make_one_rel() and not
query_planner().

Author: Amit Langote
Discussion: https://postgr.es/m/c7a04a90-42e6-28a4-811a-a7e352831ba1@lab.ntt.co.jp
2019-02-13 16:31:20 +09:00
Tom Lane 75c46149fc Clean up planner confusion between ncolumns and nkeycolumns.
We're only going to consider key columns when creating indexquals,
so there is no point in having the outer loops in indxpath.c iterate
further than nkeycolumns.

Doing so in match_pathkeys_to_index() is actually wrong, and would have
caused crashes by now, except that we have no index AMs supporting both
amcanorderbyop and amcaninclude.

It's also wrong in relation_has_unique_index_for().  The effect there is
to fail to prove uniqueness even when the index does prove it, if there
are extra columns.

Also future-proof examine_variable() for the day when extra columns can
be expressions, and fix what's either a thinko or just an oversight in
btcostestimate(): we should consider the number of key columns, not the
total, when deciding whether to derate correlation.

None of these things seemed important enough to risk changing in a
just-before-wrap patch, but since we're past the release wrap window,
time to fix 'em.

Discussion: https://postgr.es/m/25526.1549847928@sss.pgh.pa.us
2019-02-12 18:38:32 -05:00
Tom Lane 74dfe58a59 Allow extensions to generate lossy index conditions.
For a long time, indxpath.c has had the ability to extract derived (lossy)
index conditions from certain operators such as LIKE.  For just as long,
it's been obvious that we really ought to make that capability available
to extensions.  This commit finally accomplishes that, by adding another
API for planner support functions that lets them create derived index
conditions for their functions.  As proof of concept, the hardwired
"special index operator" code formerly present in indxpath.c is pushed
out to planner support functions attached to LIKE and other relevant
operators.

A weak spot in this design is that an extension needs to know OIDs for
the operators, datatypes, and opfamilies involved in the transformation
it wants to make.  The core-code prototypes use hard-wired OID references
but extensions don't have that option for their own operators etc.  It's
usually possible to look up the required info, but that may be slow and
inconvenient.  However, improving that situation is a separate task.

I want to do some additional refactorization around selfuncs.c, but
that also seems like a separate task.

Discussion: https://postgr.es/m/15193.1548028093@sss.pgh.pa.us
2019-02-11 21:26:14 -05:00
Tom Lane 6bdc3005b5 Fix indexable-row-comparison logic to account for covering indexes.
indxpath.c needs a good deal more attention for covering indexes than
it's gotten.  But so far as I can tell, the only really awful breakage
is in expand_indexqual_rowcompare (nee adjust_rowcompare_for_index),
which was only half fixed in c266ed31a.  The other problems aren't
bad enough to take the risk of a just-before-wrap fix.

The problem here is that if the leading column of a row comparison
matches an index (allowing this code to be reached), and some later
column doesn't match the index, it'll nonetheless believe that that
column matches the first included index column.  Typically that'll
lead to an error like "operator M is not a member of opfamily N" as
a result of fetching a garbage opfamily OID.  But with enough bad
luck, maybe a broken plan would be generated.

Discussion: https://postgr.es/m/25526.1549847928@sss.pgh.pa.us
2019-02-10 22:51:32 -05:00
Tom Lane a391ff3c3d Build out the planner support function infrastructure.
Add support function requests for estimating the selectivity, cost,
and number of result rows (if a SRF) of the target function.

The lack of a way to estimate selectivity of a boolean-returning
function in WHERE has been a recognized deficiency of the planner
since Berkeley days.  This commit finally fixes it.

In addition, non-constant estimates of cost and number of output
rows are now possible.  We still fall back to looking at procost
and prorows if the support function doesn't service the request,
of course.

To make concrete use of the possibility of estimating output rowcount
for SRFs, this commit adds support functions for array_unnest(anyarray)
and the integer variants of generate_series; the lack of plausible
rowcount estimates for those, even when it's obvious to a human,
has been a repeated subject of complaints.  Obviously, much more
could now be done in this line, but I'm mostly just trying to get
the infrastructure in place.

Discussion: https://postgr.es/m/15193.1548028093@sss.pgh.pa.us
2019-02-09 18:32:23 -05:00
Tom Lane 1fb57af920 Create the infrastructure for planner support functions.
Rename/repurpose pg_proc.protransform as "prosupport".  The idea is
still that it names an internal function that provides knowledge to
the planner about the behavior of the function it's attached to;
but redesign the API specification so that it's not limited to doing
just one thing, but can support an extensible set of requests.

The original purpose of simplifying a function call is handled by
the first request type to be invented, SupportRequestSimplify.
Adjust all the existing transform functions to handle this API,
and rename them fron "xxx_transform" to "xxx_support" to reflect
the potential generalization of what they do.  (Since we never
previously provided any way for extensions to add transform functions,
this change doesn't create an API break for them.)

Also add DDL and pg_dump support for attaching a support function to a
user-defined function.  Unfortunately, DDL access has to be restricted
to superusers, at least for now; but seeing that support functions
will pretty much have to be written in C, that limitation is just
theoretical.  (This support is untested in this patch, but a follow-on
patch will add cases that exercise it.)

Discussion: https://postgr.es/m/15193.1548028093@sss.pgh.pa.us
2019-02-09 18:08:48 -05:00
Tom Lane 1a8d5afb0d Refactor the representation of indexable clauses in IndexPaths.
In place of three separate but interrelated lists (indexclauses,
indexquals, and indexqualcols), an IndexPath now has one list
"indexclauses" of IndexClause nodes.  This holds basically the same
information as before, but in a more useful format: in particular, there
is now a clear connection between an indexclause (an original restriction
clause from WHERE or JOIN/ON) and the indexquals (directly usable index
conditions) derived from it.

We also change the ground rules a bit by mandating that clause commutation,
if needed, be done up-front so that what is stored in the indexquals list
is always directly usable as an index condition.  This gets rid of repeated
re-determination of which side of the clause is the indexkey during costing
and plan generation, as well as repeated lookups of the commutator
operator.  To minimize the added up-front cost, the typical case of
commuting a plain OpExpr is handled by a new special-purpose function
commute_restrictinfo().  For RowCompareExprs, generating the new clause
properly commuted to begin with is not really any more complex than before,
it's just different --- and we can save doing that work twice, as the
pretty-klugy original implementation did.

Tracking the connection between original and derived clauses lets us
also track explicitly whether the derived clauses are an exact or lossy
translation of the original.  This provides a cheap solution to getting
rid of unnecessary rechecks of boolean index clauses, which previously
seemed like it'd be more expensive than it was worth.

Another pleasant (IMO) side-effect is that EXPLAIN now always shows
index clauses with the indexkey on the left; this seems less confusing.

This commit leaves expand_indexqual_conditions() and some related
functions in a slightly messy state.  I didn't bother to change them
any more than minimally necessary to work with the new data structure,
because all that code is going to be refactored out of existence in
a follow-on patch.

Discussion: https://postgr.es/m/22182.1549124950@sss.pgh.pa.us
2019-02-09 17:30:43 -05:00
Tom Lane 6401583863 Call set_rel_pathlist_hook before generate_gather_paths, not after.
The previous ordering of these steps satisfied the nominal requirement
that set_rel_pathlist_hook could editorialize on the whole set of Paths
constructed for a base relation.  In practice, though, trying to change
the set of partial paths was impossible.  Adding one didn't work because
(a) it was too late to be included in Gather paths made by the core code,
and (b) calling add_partial_path after generate_gather_paths is unsafe,
because it might try to delete a path it thinks is dominated, but that
is already embedded in some Gather path(s).  Nor could the hook safely
remove partial paths, for the same reason that they might already be
embedded in Gathers.

Better to call extensions first, let them add partial paths as desired,
and then gather.  In v11 and up, we already doubled down on that ordering
by postponing gathering even further for single-relation queries; so even
if the hook wished to editorialize on Gather path construction, it could
not.

Report and patch by KaiGai Kohei.  Back-patch to 9.6 where Gather paths
were added.

Discussion: https://postgr.es/m/CAOP8fzahwpKJRTVVTqo2AE=mDTz_efVzV6Get_0=U3SO+-ha1A@mail.gmail.com
2019-02-09 11:41:09 -05:00
Tom Lane 34ea1ab7fd Split create_foreignscan_path() into three functions.
Up to now postgres_fdw has been using create_foreignscan_path() to
generate not only base-relation paths, but also paths for foreign joins
and foreign upperrels.  This is wrong, because create_foreignscan_path()
calls get_baserel_parampathinfo() which will only do the right thing for
baserels.  It accidentally fails to fail for unparameterized paths, which
are the only ones postgres_fdw (thought it) was handling, but we really
need different APIs for the baserel and join cases.

In HEAD, the best thing to do seems to be to split up the baserel,
joinrel, and upperrel cases into three functions so that they can
have different APIs.  I haven't actually given create_foreign_join_path
a different API in this commit: we should spend a bit of time thinking
about just what we want to do there, since perhaps FDWs would want to
do something different from the build-up-a-join-pairwise approach that
get_joinrel_parampathinfo expects.  In the meantime, since postgres_fdw
isn't prepared to generate parameterized joins anyway, just give it a
defense against trying to plan joins with lateral refs.

In addition (and this is what triggered this whole mess) fix bug #15613
from Srinivasan S A, by teaching file_fdw and postgres_fdw that plain
baserel foreign paths still have outer refs if the relation has
lateral_relids.  Add some assertions in relnode.c to catch future
occurrences of the same error --- in particular, to catch other FDWs
doing that, but also as backstop against core-code mistakes like the
one fixed by commit bdd9a99aa.

Bug #15613 also needs to be fixed in the back branches, but the
appropriate fix will look quite a bit different there, since we don't
want to assume that existing FDWs get the word right away.

Discussion: https://postgr.es/m/15613-092be1be9576c728@postgresql.org
2019-02-07 13:11:12 -05:00
Tom Lane bdd9a99aac Propagate lateral-reference information to indirect descendant relations.
create_lateral_join_info() computes a bunch of information about lateral
references between base relations, and then attempts to propagate those
markings to appendrel children of the original base relations.  But the
original coding neglected the possibility of indirect descendants
(grandchildren etc).  During v11 development we noticed that this was
wrong for partitioned-table cases, but failed to realize that it was just
as wrong for any appendrel.  While the case can't arise for appendrels
derived from traditional table inheritance (because we make a flat
appendrel for that), nested appendrels can arise from nested UNION ALL
subqueries.  Failure to mark the lower-level relations as having lateral
references leads to confusion in add_paths_to_append_rel about whether
unparameterized paths can be built.  It's not very clear whether that
leads to any user-visible misbehavior; the lack of field reports suggests
that it may cause nothing worse than minor cost misestimation.  Still,
it's a bug, and it leads to failures of Asserts that I intend to add
later.

To fix, we need to propagate information from all appendrel parents,
not just those that are RELOPT_BASERELs.  We can still do it in one
pass, if we rely on the append_rel_list to be ordered with ancestor
relationships before descendant ones; add assertions checking that.
While fixing this, we can make a small performance improvement by
traversing the append_rel_list just once instead of separately for
each appendrel parent relation.

Noted while investigating bug #15613, though this patch does not fix
that (which is why I'm not committing the related Asserts yet).

Discussion: https://postgr.es/m/3951.1549403812@sss.pgh.pa.us
2019-02-06 12:45:21 -05:00
Tom Lane 24114e8b4d Remove unnecessary "inline" marker introduced in commit 4be058fe9.
Some of our older buildfarm members bleat about this coding,
along the lines of

prepjointree.c:112: warning: 'get_result_relid' declared inline after being called
prepjointree.c:112: warning: previous declaration of 'get_result_relid' was here

Modern compilers will probably inline this function without being
prompted, so rather than move the function, let's just drop the
marking.
2019-02-04 21:45:39 -05:00
Alvaro Herrera 558d77f20e Renaming for new subscripting mechanism
Over at patch https://commitfest.postgresql.org/21/1062/ Dmitry wants to
introduce a more generic subscription mechanism, which allows
subscripting not only arrays but also other object types such as JSONB.
That functionality is introduced in a largish invasive patch, out of
which this internal renaming patch was extracted.

Author: Dmitry Dolgov
Reviewed-by: Tom Lane, Arthur Zakirov
Discussion: https://postgr.es/m/CA+q6zcUK4EqPAu7XRRO5CCjMwhz5zvg+rfWuLzVoxp_5sKS6=w@mail.gmail.com
2019-02-01 12:50:32 -03:00
Alvaro Herrera 80579f9bb1 Move building of child base quals out into a new function
An upcoming patch which changes how inheritance planning works requires
adding a new function that does a similar job to set_append_rel_size() but
for child target relations.  To save it from having to duplicate the qual
building code, move that to a separate function first.

Here we also change things so that we never attempt to build security quals
after detecting some const false child quals.  We needlessly used to do this
just before we marked the child relation as a dummy rel.

In passing, this also moves the partition pruned check to before the qual
building code.  We don't need to build the child quals before we check if
the partition has been pruned.

Author: David Rowley
Discussion: https://postgr.es/m/CAKJS1f_i+jrrD+if8qC7KPuTAAWsd=dtepgY_7u=P86GDEwm7A@mail.gmail.com
2019-02-01 06:47:49 -03:00
Tom Lane fa2cf164aa Rename nodes/relation.h to nodes/pathnodes.h.
The old name of this file was never a very good indication of what it
was for.  Now that there's also access/relation.h, we have a potential
confusion hazard as well, so let's rename it to something more apropos.
Per discussion, "pathnodes.h" is reasonable, since a good fraction of
the file is Path node definitions.

While at it, tweak a couple of other headers that were gratuitously
importing relation.h into modules that don't need it.

Discussion: https://postgr.es/m/7719.1548688728@sss.pgh.pa.us
2019-01-29 16:49:25 -05:00
Tom Lane f09346a9c6 Refactor planner's header files.
Create a new header optimizer/optimizer.h, which exposes just the
planner functions that can be used "at arm's length", without need
to access Paths or the other planner-internal data structures defined
in nodes/relation.h.  This is intended to provide the whole planner
API seen by most of the rest of the system; although FDWs still need
to use additional stuff, and more thought is also needed about just
what selfuncs.c should rely on.

The main point of doing this now is to limit the amount of new
#include baggage that will be needed by "planner support functions",
which I expect to introduce later, and which will be in relevant
datatype modules rather than anywhere near the planner.

This commit just moves relevant declarations into optimizer.h from
other header files (a couple of which go away because everything
got moved), and adjusts #include lists to match.  There's further
cleanup that could be done if we want to decide that some stuff
being exposed by optimizer.h doesn't belong in the planner at all,
but I'll leave that for another day.

Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
2019-01-29 15:48:51 -05:00
Tom Lane a1b8c41e99 Make some small planner API cleanups.
Move a few very simple node-creation and node-type-testing functions
from the planner's clauses.c to nodes/makefuncs and nodes/nodeFuncs.
There's nothing planner-specific about them, as evidenced by the
number of other places that were using them.

While at it, rename and_clause() etc to is_andclause() etc, to clarify
that they are node-type-testing functions not node-creation functions.
And use "static inline" implementations for the shortest ones.

Also, modify flatten_join_alias_vars() and some subsidiary functions
to take a Query not a PlannerInfo to define the join structure that
Vars should be translated according to.  They were only using the
"parse" field of the PlannerInfo anyway, so this just requires removing
one level of indirection.  The advantage is that now parse_agg.c can
use flatten_join_alias_vars() without the horrid kluge of creating an
incomplete PlannerInfo, which will allow that file to be decoupled from
relation.h in a subsequent patch.

Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
2019-01-29 15:26:44 -05:00
Tom Lane 4be058fe9e In the planner, replace an empty FROM clause with a dummy RTE.
The fact that "SELECT expression" has no base relations has long been a
thorn in the side of the planner.  It makes it hard to flatten a sub-query
that looks like that, or is a trivial VALUES() item, because the planner
generally uses relid sets to identify sub-relations, and such a sub-query
would have an empty relid set if we flattened it.  prepjointree.c contains
some baroque logic that works around this in certain special cases --- but
there is a much better answer.  We can replace an empty FROM clause with a
dummy RTE that acts like a table of one row and no columns, and then there
are no such corner cases to worry about.  Instead we need some logic to
get rid of useless dummy RTEs, but that's simpler and covers more cases
than what was there before.

For really trivial cases, where the query is just "SELECT expression" and
nothing else, there's a hazard that adding the extra RTE makes for a
noticeable slowdown; even though it's not much processing, there's not
that much for the planner to do overall.  However testing says that the
penalty is very small, close to the noise level.  In more complex queries,
this is able to find optimizations that we could not find before.

The new RTE type is called RTE_RESULT, since the "scan" plan type it
gives rise to is a Result node (the same plan we produced for a "SELECT
expression" query before).  To avoid confusion, rename the old ResultPath
path type to GroupResultPath, reflecting that it's only used in degenerate
grouping cases where we know the query produces just one grouped row.
(It wouldn't work to unify the two cases, because there are different
rules about where the associated quals live during query_planner.)

Note: although this touches readfuncs.c, I don't think a catversion
bump is required, because the added case can't occur in stored rules,
only plans.

Patch by me, reviewed by David Rowley and Mark Dilger

Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
2019-01-28 17:54:23 -05:00
Tom Lane 18c0da88a5 Split QTW_EXAMINE_RTES flag into QTW_EXAMINE_RTES_BEFORE/_AFTER.
This change allows callers of query_tree_walker() to choose whether
to visit an RTE before or after visiting the contents of the RTE
(i.e., prefix or postfix tree order).  All existing users of
QTW_EXAMINE_RTES want the QTW_EXAMINE_RTES_BEFORE behavior, but
an upcoming patch will want QTW_EXAMINE_RTES_AFTER, and it seems
like a potentially useful change on its own.

Andreas Karlsson (extracted from CTE inlining patch)

Discussion: https://postgr.es/m/8810.1542402910@sss.pgh.pa.us
2019-01-25 17:09:45 -05:00
Peter Eisentraut 7c079d7417 Allow generalized expression syntax for partition bounds
Previously, only literals were allowed.  This change allows general
expressions, including functions calls, which are evaluated at the
time the DDL command is executed.

Besides offering some more functionality, it simplifies the parser
structures and removes some inconsistencies in how the literals were
handled.

Author: Kyotaro Horiguchi, Tom Lane, Amit Langote
Reviewed-by: Peter Eisentraut <peter.eisentraut@2ndquadrant.com>
Discussion: https://www.postgresql.org/message-id/flat/9f88b5e0-6da2-5227-20d0-0d7012beaa1c@lab.ntt.co.jp/
2019-01-25 11:28:49 +01:00
Andres Freund 346ed70b0a Rename RelationData.rd_amroutine to rd_indam.
The upcoming table AM support makes rd_amroutine to generic, as its
only about index AMs. The new name makes that clear, and is shorter to
boot.

Author: Andres Freund
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-01-21 17:36:55 -08:00
Andres Freund e0c4ec0728 Replace uses of heap_open et al with the corresponding table_* function.
Author: Andres Freund
Discussion: https://postgr.es/m/20190111000539.xbv7s6w7ilcvm7dp@alap3.anarazel.de
2019-01-21 10:51:37 -08:00
Andres Freund 111944c5ee Replace heapam.h includes with {table, relation}.h where applicable.
A lot of files only included heapam.h for relation_open, heap_open etc
- replace the heapam.h include in those files with the narrower
header.

Author: Andres Freund
Discussion: https://postgr.es/m/20190111000539.xbv7s6w7ilcvm7dp@alap3.anarazel.de
2019-01-21 10:51:37 -08:00
Etsuro Fujita 8d8dcead12 Postpone generating tlists and EC members for inheritance dummy children.
Previously, in set_append_rel_size(), we generated tlists and EC members
for dummy children for possible use by partition-wise join, even if
partition-wise join was disabled or the top parent was not a partitioned
table, but adding such EC members causes noticeable planning speed
degradation for queries with certain kinds of join quals like
"(foo.x + bar.y) = constant" where foo and bar are partitioned tables in
cases where there are lots of dummy children, as the EC members lists
grow huge, especially for the ECs derived from such join quals, which
makes the search for the parent EC members in add_child_rel_equivalences()
very time-consuming.  Postpone the work until such children are actually
involved in a partition-wise join.

Reported-by: Sanyo Capobiango
Analyzed-by: Justin Pryzby and Alvaro Herrera
Author: Amit Langote, with a few additional changes by me
Reviewed-by: Ashutosh Bapat
Backpatch-through: v11 where partition-wise join was added
Discussion: https://postgr.es/m/CAO698qZnrxoZu7MEtfiJmpmUtz3AVYFVnwzR%2BpqjF%3DrmKBTgpw%40mail.gmail.com
2019-01-21 17:12:40 +09:00
Alvaro Herrera d723f56872 Reorganize planner code moved in b60c397599
It seems modules are better defined like this instead of the original
split.

Per complaints from David Rowley as well as Amit Langote's self review.
Discussion: https://postgr.es/m/CAKJS1f988rsyhwvLgfT-y1UCYUfXDOv67ENQk=v24OxhsZOzZw@mail.gmail.com
2019-01-16 16:27:44 -03:00
Andres Freund 0944ec54de Don't include genam.h from execnodes.h and relscan.h anymore.
This is the genam.h equivalent of 4c850ecec6 (which removed
heapam.h from a lot of other headers).  There's still a few header
includes of genam.h, but not from central headers anymore.

As a few headers are not indirectly included anymore, execnodes.h and
relscan.h need a few additional includes. Some of the depended on
types were replacable by using the underlying structs, but e.g. for
Snapshot in execnodes.h that'd have gotten more invasive than
reasonable in this commit.

Like the aforementioned commit 4c850ecec6, this requires adding new
genam.h includes to a number of backend files, which likely is also
required in a few external projects.

Author: Andres Freund
Discussion: https://postgr.es/m/20190114000701.y4ttcb74jpskkcfb@alap3.anarazel.de
2019-01-14 17:02:12 -08:00
Andres Freund 4c850ecec6 Don't include heapam.h from others headers.
heapam.h previously was included in a number of widely used
headers (e.g. execnodes.h, indirectly in executor.h, ...). That's
problematic on its own, as heapam.h contains a lot of low-level
details that don't need to be exposed that widely, but becomes more
problematic with the upcoming introduction of pluggable table storage
- it seems inappropriate for heapam.h to be included that widely
afterwards.

heapam.h was largely only included in other headers to get the
HeapScanDesc typedef (which was defined in heapam.h, even though
HeapScanDescData is defined in relscan.h). The better solution here
seems to be to just use the underlying struct (forward declared where
necessary). Similar for BulkInsertState.

Another problem was that LockTupleMode was used in executor.h - parts
of the file tried to cope without heapam.h, but due to the fact that
it indirectly included it, several subsequent violations of that goal
were not not noticed. We could just reuse the approach of declaring
parameters as int, but it seems nicer to move LockTupleMode to
lockoptions.h - that's not a perfect location, but also doesn't seem
bad.

As a number of files relied on implicitly included heapam.h, a
significant number of files grew an explicit include. It's quite
probably that a few external projects will need to do the same.

Author: Andres Freund
Reviewed-By: Alvaro Herrera
Discussion: https://postgr.es/m/20190114000701.y4ttcb74jpskkcfb@alap3.anarazel.de
2019-01-14 16:24:41 -08:00
Andres Freund 1845ca2cfd Remove heapam.h include made superfluous by b60c397599.
Noticed this while working on another patch.

Author: Andres Freund
2019-01-12 22:27:35 -08:00
Tom Lane 1db5667bac Avoid sharing PARAM_EXEC slots between different levels of NestLoop.
Up to now, createplan.c attempted to share PARAM_EXEC slots for
NestLoopParams across different plan levels, if the same underlying Var
was being fed down to different righthand-side subplan trees by different
NestLoops.  This was, I think, more of an artifact of using subselect.c's
PlannerParamItem infrastructure than an explicit design goal, but anyway
that was the end result.

This works well enough as long as the plan tree is executing synchronously,
but the feature whereby Gather can execute the parallelized subplan locally
breaks it.  An upper NestLoop node might execute for a row retrieved from
a parallel worker, and assign a value for a PARAM_EXEC slot from that row,
while the leader's copy of the parallelized subplan is suspended with a
different active value of the row the Var comes from.  When control
eventually returns to the leader's subplan, it gets the wrong answers if
the same PARAM_EXEC slot is being used within the subplan, as reported
in bug #15577 from Bartosz Polnik.

This is pretty reminiscent of the problem fixed in commit 46c508fbc, and
the proper fix seems to be the same: don't try to share PARAM_EXEC slots
across different levels of controlling NestLoop nodes.

This requires decoupling NestLoopParam handling from PlannerParamItem
handling, although the logic remains somewhat similar.  To avoid bizarre
division of labor between subselect.c and createplan.c, I decided to move
all the param-slot-assignment logic for both cases out of those files
and put it into a new file paramassign.c.  Hopefully it's a bit better
documented now, too.

A regression test case for this might be nice, but we don't know a
test case that triggers the problem with a suitably small amount
of data.

Back-patch to 9.6 where we added Gather nodes.  It's conceivable that
related problems exist in older branches; but without some evidence
for that, I'll leave the older branches alone.

Discussion: https://postgr.es/m/15577-ca61ab18904af852@postgresql.org
2019-01-11 15:54:06 -05:00
Tom Lane eaf0380ecc Fix C++ compile failures in headers.
Avoid using "typeid" as a parameter name in header files, since that
is a C++ keyword.  These cases were introduced recently, in 04fe805a1
and 586b98fdf.

Since I'm an incurable neatnik, also rename these parameters in the
underlying function definitions.  That's not really necessary per
project rules, but I don't like function declarations that don't
quite agree with the underlying definitions.

Per src/tools/pginclude/cpluspluscheck.
2019-01-10 14:07:01 -05:00
Alvaro Herrera b60c397599 Move inheritance expansion code into its own file
This commit moves expand_inherited_tables and underlings from
optimizer/prep/prepunionc.c to optimizer/utils/inherit.c.
Also, all of the AppendRelInfo-based expression manipulation routines
are moved to optimizer/utils/appendinfo.c.

No functional code changes.  One exception is the introduction of
make_append_rel_info, but that's still just moving around code.

Also, stop including <limits.h> in prepunion.c, which no longer needs
it since 3fc6e2d7f5.  I (Álvaro) noticed this because Amit was copying
that to inherit.c, which likewise doesn't need it.

Author: Amit Langote
Discussion: https://postgr.es/m/3be67028-a00a-502c-199a-da00eec8fb6e@lab.ntt.co.jp
2019-01-10 14:54:31 -03:00
Tom Lane 68a13f28be Don't believe MinMaxExpr is leakproof without checking.
MinMaxExpr invokes the btree comparison function for its input datatype,
so it's only leakproof if that function is.  Many such functions are
indeed leakproof, but others are not, and we should not just assume that
they are.  Hence, adjust contain_leaked_vars to verify the leakproofness
of the referenced function explicitly.

I didn't add a regression test because it would need to depend on
some particular comparison function being leaky, and that's a moving
target, per discussion.

This has been wrong all along, so back-patch to supported branches.

Discussion: https://postgr.es/m/31042.1546194242@sss.pgh.pa.us
2019-01-02 16:34:04 -05:00
Bruce Momjian 97c39498e5 Update copyright for 2019
Backpatch-through: certain files through 9.4
2019-01-02 12:44:25 -05:00
Tom Lane b2edbbd02d Fix oversight in commit b5415e3c21.
While rearranging code in tidpath.c, I overlooked the fact that we ought
to check restriction_is_securely_promotable when trying to use a join
clause as a TID qual.  Since tideq itself is leakproof, this wouldn't
really allow any interesting leak AFAICT, but it still seems like we
had better check it.

For consistency with the corresponding logic in indxpath.c, also
check rinfo->pseudoconstant.  I'm not sure right now that it's
possible for that to be set in a join clause, but if it were,
a match couldn't be made anyway.
2018-12-31 12:39:15 -05:00
Tom Lane b5415e3c21 Support parameterized TidPaths.
Up to now we've not worried much about joins where the join key is a
relation's CTID column, reasoning that storing a table's CTIDs in some
other table would be pretty useless.  However, there are use-cases for
this sort of query involving self-joins, so that argument doesn't really
hold water.

This patch allows generating plans for joins on CTID that use a nestloop
with inner TidScan, similar to what we might do with an index on the join
column.  This is the most efficient way to join when the outer side of
the nestloop is expected to yield relatively few rows.

This change requires upgrading tidpath.c and the generated TidPaths
to work with RestrictInfos instead of bare qual clauses, but that's
long-postponed technical debt anyway.

Discussion: https://postgr.es/m/17443.1545435266@sss.pgh.pa.us
2018-12-30 15:24:28 -05:00
Tom Lane 6f19a8c41f Teach eval_const_expressions to constant-fold LEAST/GREATEST expressions.
Doing this requires an assumption that the invoked btree comparison
function is immutable.  We could check that explicitly, but in other
places such as contain_mutable_functions we just assume that it's true,
so we may as well do likewise here.  (If the comparison function's
behavior isn't immutable, the sort order in indexes built with it would
be unstable, so it seems certainly wrong for it not to be so.)

Vik Fearing

Discussion: https://postgr.es/m/c6e8504c-4c43-35fa-6c8f-3c0b80a912cc@2ndquadrant.com
2018-12-30 13:42:04 -05:00
Peter Eisentraut ae4472c619 Remove obsolete IndexIs* macros
Remove IndexIsValid(), IndexIsReady(), IndexIsLive() in favor of
accessing the index structure directly.  These macros haven't been
used consistently, and the original reason of maintaining source
compatibility with PostgreSQL 9.2 is gone.

Discussion: https://www.postgresql.org/message-id/flat/d419147c-09d4-6196-5d9d-0234b230880a%402ndquadrant.com
2018-12-27 10:07:46 +01:00
Tom Lane 2ece7c07dc Add text-vs-name cross-type operators, and unify name_ops with text_ops.
Now that name comparison has effectively the same behavior as text
comparison, we might as well merge the name_ops opfamily into text_ops,
allowing cross-type comparisons to be processed without forcing a
datatype coercion first.  We need do little more than add cross-type
operators to make the opfamily complete, and fix one or two places
in the planner that assumed text_ops was a single-datatype opfamily.

I chose to unify hash name_ops into hash text_ops as well, since the
types have compatible hashing semantics.  This allows marking the
new cross-type equality operators as oprcanhash.

(Note: this doesn't remove the name_ops opclasses, so there's no
breakage of index definitions.  Those opclasses are just reparented
into the text_ops opfamily.)

Discussion: https://postgr.es/m/15938.1544377821@sss.pgh.pa.us
2018-12-19 17:46:25 -05:00
Tom Lane 586b98fdf1 Make type "name" collation-aware.
The "name" comparison operators now all support collations, making them
functionally equivalent to "text" comparisons, except for the different
physical representation of the datatype.  They do, in fact, mostly share
the varstr_cmp and varstr_sortsupport infrastructure, which has been
slightly enlarged to handle the case.

To avoid changes in the default behavior of the datatype, set name's
typcollation to C_COLLATION_OID not DEFAULT_COLLATION_OID, so that
by default comparisons to a name value will continue to use strcmp
semantics.  (This would have been the case for system catalog columns
anyway, because of commit 6b0faf723, but doing this makes it true for
user-created name columns as well.  In particular, this avoids
locale-dependent changes in our regression test results.)

In consequence, tweak a couple of places that made assumptions about
collatable base types always having typcollation DEFAULT_COLLATION_OID.
I have not, however, attempted to relax the restriction that user-
defined collatable types must have that.  Hence, "name" doesn't
behave quite like a user-defined type; it acts more like a domain
with COLLATE "C".  (Conceivably, if we ever get rid of the need for
catalog name columns to be fixed-length, "name" could actually become
such a domain over text.  But that'd be a pretty massive undertaking,
and I'm not volunteering.)

Discussion: https://postgr.es/m/15938.1544377821@sss.pgh.pa.us
2018-12-19 17:46:25 -05:00
Tom Lane d364e88155 Fix ancient thinko in mergejoin cost estimation.
"rescanratio" was computed as 1 + rescanned-tuples / total-inner-tuples,
which is sensible if it's to be multiplied by total-inner-tuples or a cost
value corresponding to scanning all the inner tuples.  But in reality it
was (mostly) multiplied by inner_rows or a related cost, numbers that take
into account the possibility of stopping short of scanning the whole inner
relation thanks to a limited key range in the outer relation.  This'd
still make sense if we could expect that stopping short would result in a
proportional decrease in the number of tuples that have to be rescanned.
It does not, however.  The argument that establishes the validity of our
estimate for that number is independent of whether we scan all of the inner
relation or stop short, and experimentation also shows that stopping short
doesn't reduce the number of rescanned tuples.  So the correct calculation
is 1 + rescanned-tuples / inner_rows, and we should be sure to multiply
that by inner_rows or a corresponding cost value.

Most of the time this doesn't make much difference, but if we have
both a high rescan rate (due to lots of duplicate values) and an outer
key range much smaller than the inner key range, then the error can
be significant, leading to a large underestimate of the cost associated
with rescanning.

Per report from Vijaykumar Jain.  This thinko appears to go all the way
back to the introduction of the rescan estimation logic in commit
70fba7043, so back-patch to all supported branches.

Discussion: https://postgr.es/m/CAE7uO5hMb_TZYJcZmLAgO6iD68AkEK6qCe7i=vZUkCpoKns+EQ@mail.gmail.com
2018-12-18 11:19:38 -05:00
Amit Kapila 3abb11e55b Remove extra semicolons.
Reported-by: David Rowley
Author: David Rowley
Reviewed-by: Amit Kapila
Backpatch-through: 10
Discussion: https://postgr.es/m/CAKJS1f8EneeYyzzvdjahVZ6gbAHFkHbSFB5m_C0Y6TUJs9Dgdg@mail.gmail.com
2018-12-17 14:32:25 +05:30
Tom Lane 04fe805a17 Drop no-op CoerceToDomain nodes from expressions at planning time.
If a domain has no constraints, then CoerceToDomain doesn't really do
anything and can be simplified to a RelabelType.  This not only
eliminates cycles at execution, but allows the planner to optimize better
(for instance, match the coerced expression to an index on the underlying
column).  However, we do have to support invalidating the plan later if
a constraint gets added to the domain.  That's comparable to the case of
a change to a SQL function that had been inlined into a plan, so all the
necessary logic already exists for plans depending on functions.  We
need only duplicate or share that logic for domains.

ALTER DOMAIN ADD/DROP CONSTRAINT need to be taught to send out sinval
messages for the domain's pg_type entry, since those operations don't
update that row.  (ALTER DOMAIN SET/DROP NOT NULL do update that row,
so no code change is needed for them.)

Testing this revealed what's really a pre-existing bug in plpgsql:
it caches the SQL-expression-tree expansion of type coercions and
had no provision for invalidating entries in that cache.  Up to now
that was only a problem if such an expression had inlined a SQL
function that got changed, which is unlikely though not impossible.
But failing to track changes of domain constraints breaks an existing
regression test case and would likely cause practical problems too.

We could fix that locally in plpgsql, but what seems like a better
idea is to build some generic infrastructure in plancache.c to store
standalone expressions and track invalidation events for them.
(It's tempting to wonder whether plpgsql's "simple expression" stuff
could use this code with lower overhead than its current use of the
heavyweight plancache APIs.  But I've left that idea for later.)

Other stuff fixed in passing:

* Allow estimate_expression_value() to drop CoerceToDomain
unconditionally, effectively assuming that the coercion will succeed.
This will improve planner selectivity estimates for cases involving
estimatable expressions that are coerced to domains.  We could have
done this independently of everything else here, but there wasn't
previously any need for eval_const_expressions_mutator to know about
CoerceToDomain at all.

* Use a dlist for plancache.c's list of cached plans, rather than a
manually threaded singly-linked list.  That eliminates a potential
performance problem in DropCachedPlan.

* Fix a couple of inconsistencies in typecmds.c about whether
operations on domains drop RowExclusiveLock on pg_type.  Our common
practice is that DDL operations do drop catalog locks, so standardize
on that choice.

Discussion: https://postgr.es/m/19958.1544122124@sss.pgh.pa.us
2018-12-13 13:24:43 -05:00
Tom Lane 77d4d88afb Repair bogus EPQ plans generated for postgres_fdw foreign joins.
postgres_fdw's postgresGetForeignPlan() assumes without checking that the
outer_plan it's given for a join relation must have a NestLoop, MergeJoin,
or HashJoin node at the top.  That's been wrong at least since commit
4bbf6edfb (which could cause insertion of a Sort node on top) and it seems
like a pretty unsafe thing to Just Assume even without that.

Through blind good fortune, this doesn't seem to have any worse
consequences today than strange EXPLAIN output, but it's clearly trouble
waiting to happen.

To fix, test the node type explicitly before touching Join-specific
fields, and avoid jamming the new tlist into a node type that can't
do projection.  Export a new support function from createplan.c
to avoid building low-level knowledge about the latter into FDWs.

Back-patch to 9.6 where the faulty coding was added.  Note that the
associated regression test cases don't show any changes before v11,
apparently because the tests back-patched with 4bbf6edfb don't actually
exercise the problem case before then (there's no top-level Sort
in those plans).

Discussion: https://postgr.es/m/8946.1544644803@sss.pgh.pa.us
2018-12-12 16:08:30 -05:00
Tom Lane 0f7ec8d9c3 Repair bogus handling of multi-assignment Params in upper plan levels.
Our support for multiple-set-clauses in UPDATE assumes that the Params
referencing a MULTIEXPR_SUBLINK SubPlan will appear before that SubPlan
in the targetlist of the plan node that calculates the updated row.
(Yeah, it's a hack...)  In some PG branches it's possible that a Result
node gets inserted between the primary calculation of the update tlist
and the ModifyTable node.  setrefs.c did the wrong thing in this case
and left the upper-level Params as Params, causing a crash at runtime.
What it should do is replace them with "outer" Vars referencing the child
plan node's output.  That's a result of careless ordering of operations
in fix_upper_expr_mutator, so we can fix it just by reordering the code.

Fix fix_join_expr_mutator similarly for consistency, even though join
nodes could never appear in such a context.  (In general, it seems
likely to be a bit cheaper to use Vars than Params in such situations
anyway, so this patch might offer a tiny performance improvement.)

The hazard extends back to 9.5 where the MULTIEXPR_SUBLINK stuff
was introduced, so back-patch that far.  However, this may be a live
bug only in 9.6.x and 10.x, as the other branches don't seem to want
to calculate the final tlist below the Result node.  (That plan shape
change between branches might be a mini-bug in itself, but I'm not
really interested in digging into the reasons for that right now.
Still, add a regression test memorializing what we expect there,
so we'll notice if it changes again.)

Per bug report from Eduards Bezverhijs.

Discussion: https://postgr.es/m/b6cd572a-3e44-8785-75e9-c512a5a17a73@tieto.com
2018-12-12 13:49:41 -05:00
Andres Freund 578b229718 Remove WITH OIDS support, change oid catalog column visibility.
Previously tables declared WITH OIDS, including a significant fraction
of the catalog tables, stored the oid column not as a normal column,
but as part of the tuple header.

This special column was not shown by default, which was somewhat odd,
as it's often (consider e.g. pg_class.oid) one of the more important
parts of a row.  Neither pg_dump nor COPY included the contents of the
oid column by default.

The fact that the oid column was not an ordinary column necessitated a
significant amount of special case code to support oid columns. That
already was painful for the existing, but upcoming work aiming to make
table storage pluggable, would have required expanding and duplicating
that "specialness" significantly.

WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0).
Remove it.

Removing includes:
- CREATE TABLE and ALTER TABLE syntax for declaring the table to be
  WITH OIDS has been removed (WITH (oids[ = true]) will error out)
- pg_dump does not support dumping tables declared WITH OIDS and will
  issue a warning when dumping one (and ignore the oid column).
- restoring an pg_dump archive with pg_restore will warn when
  restoring a table with oid contents (and ignore the oid column)
- COPY will refuse to load binary dump that includes oids.
- pg_upgrade will error out when encountering tables declared WITH
  OIDS, they have to be altered to remove the oid column first.
- Functionality to access the oid of the last inserted row (like
  plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed.

The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false)
for CREATE TABLE) is still supported. While that requires a bit of
support code, it seems unnecessary to break applications / dumps that
do not use oids, and are explicit about not using them.

The biggest user of WITH OID columns was postgres' catalog. This
commit changes all 'magic' oid columns to be columns that are normally
declared and stored. To reduce unnecessary query breakage all the
newly added columns are still named 'oid', even if a table's column
naming scheme would indicate 'reloid' or such.  This obviously
requires adapting a lot code, mostly replacing oid access via
HeapTupleGetOid() with access to the underlying Form_pg_*->oid column.

The bootstrap process now assigns oids for all oid columns in
genbki.pl that do not have an explicit value (starting at the largest
oid previously used), only oids assigned later by oids will be above
FirstBootstrapObjectId. As the oid column now is a normal column the
special bootstrap syntax for oids has been removed.

Oids are not automatically assigned during insertion anymore, all
backend code explicitly assigns oids with GetNewOidWithIndex(). For
the rare case that insertions into the catalog via SQL are called for
the new pg_nextoid() function can be used (which only works on catalog
tables).

The fact that oid columns on system tables are now normal columns
means that they will be included in the set of columns expanded
by * (i.e. SELECT * FROM pg_class will now include the table's oid,
previously it did not). It'd not technically be hard to hide oid
column by default, but that'd mean confusing behavior would either
have to be carried forward forever, or it'd cause breakage down the
line.

While it's not unlikely that further adjustments are needed, the
scope/invasiveness of the patch makes it worthwhile to get merge this
now. It's painful to maintain externally, too complicated to commit
after the code code freeze, and a dependency of a number of other
patches.

Catversion bump, for obvious reasons.

Author: Andres Freund, with contributions by John Naylor
Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-20 16:00:17 -08:00
Alvaro Herrera 3f2393edef Redesign initialization of partition routing structures
This speeds up write operations (INSERT, UPDATE, DELETE, COPY, as well
as the future MERGE) on partitioned tables.

This changes the setup for tuple routing so that it does far less work
during the initial setup and pushes more work out to when partitions
receive tuples.  PartitionDispatchData structs for sub-partitioned
tables are only created when a tuple gets routed through it.  The
possibly large arrays in the PartitionTupleRouting struct have largely
been removed.  The partitions[] array remains but now never contains any
NULL gaps.  Previously the NULLs had to be skipped during
ExecCleanupTupleRouting(), which could add a large overhead to the
cleanup when the number of partitions was large.  The partitions[] array
is allocated small to start with and only enlarged when we route tuples
to enough partitions that it runs out of space. This allows us to keep
simple single-row partition INSERTs running quickly.  Redesign

The arrays in PartitionTupleRouting which stored the tuple translation maps
have now been removed.  These have been moved out into a
PartitionRoutingInfo struct which is an additional field in ResultRelInfo.

The find_all_inheritors() call still remains by far the slowest part of
ExecSetupPartitionTupleRouting(). This commit just removes the other slow
parts.

In passing also rename the tuple translation maps from being ParentToChild
and ChildToParent to being RootToPartition and PartitionToRoot. The old
names mislead you into thinking that a partition of some sub-partitioned
table would translate to the rowtype of the sub-partitioned table rather
than the root partitioned table.

Authors: David Rowley and Amit Langote, heavily revised by Álvaro Herrera
Testing help from Jesper Pedersen and Kato Sho.
Discussion: https://postgr.es/m/CAKJS1f_1RJyFquuCKRFHTdcXqoPX-PYqAd7nz=GVBwvGh4a6xA@mail.gmail.com
2018-11-16 15:01:05 -03:00
Tom Lane e3f005d974 Limit the number of index clauses considered in choose_bitmap_and().
classify_index_clause_usage() is O(N^2) in the number of distinct index
qual clauses it considers, because of its use of a simple search list to
store them.  For nearly all queries, that's fine because only a few clauses
will be considered.  But Alexander Kuzmenkov reported a machine-generated
query with 80000 (!) index qual clauses, which caused this code to take
forever.  Somewhat remarkably, this is the only O(N^2) behavior we now
have for such a query, so let's fix it.

We can get rid of the O(N^2) runtime for cases like this without much
damage to the functionality of choose_bitmap_and() by separating out
paths with "too many" qual or pred clauses, and deeming them to always
be nonredundant with other paths.  Then their clauses needn't go into
the search list, so it doesn't get too long, but we don't lose the
ability to consider bitmap AND plans altogether.  I set the threshold
for "too many" to be 100 clauses per path, which should be plenty to
ensure no change in planning behavior for normal queries.

There are other things we could do to make this go faster, but it's not
clear that it's worth any additional effort.  80000 qual clauses require
a whole lot of work in many other places, too.

The code's been like this for a long time, so back-patch to all supported
branches.  The troublesome query only works back to 9.5 (in 9.4 it fails
with stack overflow in the parser); so I'm not sure that fixing this in
9.4 has any real-world benefit, but perhaps it does.

Discussion: https://postgr.es/m/90c5bdfa-d633-dabe-9889-3cf3e1acd443@postgrespro.ru
2018-11-12 11:19:04 -05:00
Tom Lane c6e4133fae Postpone calculating total_table_pages until after pruning/exclusion.
The planner doesn't make any use of root->total_table_pages until it
estimates costs of indexscans, so we don't need to compute it as
early as that's currently done.  By doing the calculation between
set_base_rel_sizes and set_base_rel_pathlists, we can omit relations
that get removed from the query by partition pruning or constraint
exclusion, which seems like a more accurate basis for costing.

(Historical note: I think at the time this code was written, there
was not a separation between the "set sizes" and "set pathlists"
steps, so that this approach would have been impossible at the time.
But now that we have that separation, this is clearly the better way
to do things.)

David Rowley, reviewed by Edmund Horner

Discussion: https://postgr.es/m/CAKJS1f-NG1mRM0VOtkAG7=ZLQWihoqees9R4ki3CKBB0-fRfCA@mail.gmail.com
2018-11-07 12:12:56 -05:00
Andrew Gierth 5613da4cc7 Optimize nested ConvertRowtypeExpr nodes.
A ConvertRowtypeExpr is used to translate a whole-row reference of a
child to that of a parent. The planner produces nested
ConvertRowtypeExpr while translating whole-row reference of a leaf
partition in a multi-level partition hierarchy. Executor then
translates the whole-row reference from the leaf partition into all
the intermediate parent's whole-row references before arriving at the
final whole-row reference. It could instead translate the whole-row
reference from the leaf partition directly to the top-most parent's
whole-row reference skipping any intermediate translations.

Ashutosh Bapat, with tests by Kyotaro Horiguchi and some
editorialization by me. Reviewed by Andres Freund, Pavel Stehule,
Kyotaro Horiguchi, Dmitry Dolgov, Tom Lane.
2018-11-06 21:10:10 +00:00
Magnus Hagander fbec7459aa Fix spelling errors and typos in comments
Author: Daniel Gustafsson <daniel@yesql.se>
2018-11-02 13:56:52 +01:00
Tom Lane 14a158f9bf Fix interaction of CASE and ArrayCoerceExpr.
An array-type coercion appearing within a CASE that has a constant
(after const-folding) test expression was mangled by the planner, causing
all the elements of the resulting array to be equal to the coerced value
of the CASE's test expression.  This is my oversight in commit c12d570fa:
that changed ArrayCoerceExpr to use a subexpression involving a
CaseTestExpr, and I didn't notice that eval_const_expressions needed an
adjustment to keep from folding such a CaseTestExpr to a constant when
it's inside a suitable CASE.

This is another in what's getting to be a depressingly long line of bugs
associated with misidentification of the referent of a CaseTestExpr.
We're overdue to redesign that mechanism; but any such fix is unlikely
to be back-patchable into v11.  As a stopgap, fix eval_const_expressions
to do what it must here.  Also add a bunch of comments pointing out the
restrictions and assumptions that are needed to make this work at all.

Also fix a related oversight: contain_context_dependent_node() was not
aware of the relationship of ArrayCoerceExpr to CaseTestExpr.  That was
somewhat fail-soft, in that the outcome of a wrong answer would be to
prevent optimizations that could have been made, but let's fix it while
we're at it.

Per bug #15471 from Matt Williams.  Back-patch to v11 where the faulty
logic came in.

Discussion: https://postgr.es/m/15471-1117f49271989bad@postgresql.org
2018-10-30 15:26:11 -04:00
Andres Freund 02a30a09f9 Correct constness of system attributes in heap.c & prerequisites.
This allows the compiler / linker to mark affected pages as read-only.

There's a fair number of pre-requisite changes, to allow the const
properly be propagated. Most of consts were already required for
correctness anyway, just not represented on the type-level.  Arguably
we could be more aggressive in using consts in related code, but..

This requires using a few of the types underlying typedefs that
removes pointers (e.g. const NameData *) as declaring the typedefed
type constant doesn't have the same meaning (it makes the variable
const, not what it points to).

Discussion: https://postgr.es/m/20181015200754.7y7zfuzsoux2c4ya@alap3.anarazel.de
2018-10-16 09:44:43 -07:00
Tom Lane 7d4a10e260 Use PlaceHolderVars within the quals of a FULL JOIN.
This prevents failures in cases where we pull up a constant or var-free
expression from a subquery and put it into a full join's qual.  That can
result in not recognizing the qual as containing a mergejoin-able or
hashjoin-able condition.  A PHV prevents the problem because it is still
recognized as belonging to the side of the join the subquery is in.

I'm not very sure about the net effect of this change on plan quality.
In "typical" cases where the join keys are Vars, nothing changes.
In an affected case, the PHV-wrapped expression is less likely to be seen
as equal to PHV-less instances below the join, but more likely to be seen
as equal to similar expressions above the join, so it may end up being a
wash.  In the one existing case where there's any visible change in a
regression-test plan, it amounts to referencing a lower computation of a
COALESCE result instead of recomputing it, which seems like a win.

Given my uncertainty about that and the lack of field complaints,
no back-patch, even though this is a very ancient problem.

Discussion: https://postgr.es/m/32090.1539378124@sss.pgh.pa.us
2018-10-14 13:07:29 -04:00
Tom Lane 52ed730d51 Remove some unnecessary fields from Plan trees.
In the wake of commit f2343653f, we no longer need some fields that
were used before to control executor lock acquisitions:

* PlannedStmt.nonleafResultRelations can go away entirely.

* partitioned_rels can go away from Append, MergeAppend, and ModifyTable.
However, ModifyTable still needs to know the RT index of the partition
root table if any, which was formerly kept in the first entry of that
list.  Add a new field "rootRelation" to remember that.  rootRelation is
partly redundant with nominalRelation, in that if it's set it will have
the same value as nominalRelation.  However, the latter field has a
different purpose so it seems best to keep them distinct.

Amit Langote, reviewed by David Rowley and Jesper Pedersen,
and whacked around a bit more by me

Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
2018-10-07 14:33:17 -04:00
Tom Lane 9ddef36278 Centralize executor's opening/closing of Relations for rangetable entries.
Create an array estate->es_relations[] paralleling the es_range_table,
and store references to Relations (relcache entries) there, so that any
given RT entry is opened and closed just once per executor run.  Scan
nodes typically still call ExecOpenScanRelation, but ExecCloseScanRelation
is no more; relation closing is now done centrally in ExecEndPlan.

This is slightly more complex than one would expect because of the
interactions with relcache references held in ResultRelInfo nodes.
The general convention is now that ResultRelInfo->ri_RelationDesc does
not represent a separate relcache reference and so does not need to be
explicitly closed; but there is an exception for ResultRelInfos in the
es_trig_target_relations list, which are manufactured by
ExecGetTriggerResultRel and have to be cleaned up by
ExecCleanUpTriggerState.  (That much was true all along, but these
ResultRelInfos are now more different from others than they used to be.)

To allow the partition pruning logic to make use of es_relations[] rather
than having its own relcache references, adjust PartitionedRelPruneInfo
to store an RT index rather than a relation OID.

Amit Langote, reviewed by David Rowley and Jesper Pedersen,
some mods by me

Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
2018-10-04 14:03:42 -04:00
Tom Lane 6e35939feb Change rewriter/planner/executor/plancache to depend on RTE rellockmode.
Instead of recomputing the required lock levels in all these places,
just use what commit fdba460a2 made the parser store in the RTE fields.
This already simplifies the code measurably in these places, and
follow-on changes will remove a bunch of no-longer-needed infrastructure.

In a few cases, this change causes us to acquire a higher lock level
than we did before.  This is OK primarily because said higher lock level
should've been acquired already at query parse time; thus, we're saving
a useless extra trip through the shared lock manager to acquire a lesser
lock alongside the original lock.  The only known exception to this is
that re-execution of a previously planned SELECT FOR UPDATE/SHARE query,
for a table that uses ROW_MARK_REFERENCE or ROW_MARK_COPY methods, might
have gotten only AccessShareLock before.  Now it will get RowShareLock
like the first execution did, which seems fine.

While there's more to do, push it in this state anyway, to let the
buildfarm help verify that nothing bad happened.

Amit Langote, reviewed by David Rowley and Jesper Pedersen,
and whacked around a bit more by me

Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
2018-10-02 14:43:09 -04:00
Tom Lane fdba460a26 Create an RTE field to record the query's lock mode for each relation.
Add RangeTblEntry.rellockmode, which records the appropriate lock mode for
each RTE_RELATION rangetable entry (either AccessShareLock, RowShareLock,
or RowExclusiveLock depending on the RTE's role in the query).

This patch creates the field and makes all creators of RTE nodes fill it
in reasonably, but for the moment nothing much is done with it.  The plan
is to replace assorted post-parser logic that re-determines the right
lockmode to use with simple uses of rte->rellockmode.  For now, just add
Asserts in each of those places that the rellockmode matches what they are
computing today.  (In some cases the match isn't perfect, so the Asserts
are weaker than you might expect; but this seems OK, as per discussion.)

This passes check-world for me, but it seems worth pushing in this state
to see if the buildfarm finds any problems in cases I failed to test.

catversion bump due to change of stored rules.

Amit Langote, reviewed by David Rowley and Jesper Pedersen,
and whacked around a bit more by me

Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
2018-09-30 13:55:51 -04:00
Tom Lane db1071d4ee Fix some minor issues exposed by outfuncs/readfuncs testing.
A test patch to pass parse and plan trees through outfuncs + readfuncs
exposed several issues that need to be fixed to get clean matches:

Query.withCheckOptions failed to get copied; it's intentionally ignored
by outfuncs/readfuncs on the grounds that it'd always be NIL anyway in
stored rules.  This seems less than future-proof, and it's not even
saving very much, so just undo the decision and treat the field like
all others.

Several places that convert a view RTE into a subquery RTE, or similar
manipulations, failed to clear out fields that were specific to the
original RTE type and should be zero in a subquery RTE.  Since readfuncs.c
will leave such fields as zero, equalfuncs.c thinks the nodes are different
leading to a reported mismatch.  It seems like a good idea to clear out the
no-longer-needed fields, even though in principle nothing should look at
them; the node ought to be indistinguishable from how it would look if
we'd built a new node instead of scribbling on the old one.

BuildOnConflictExcludedTargetlist randomly set the resname of some
TargetEntries to "" not NULL.  outfuncs/readfuncs don't distinguish those
cases, and so the string will read back in as NULL ... but equalfuncs.c
does distinguish.  Perhaps we ought to try to make things more consistent
in this area --- but it's just useless extra code space for
BuildOnConflictExcludedTargetlist to not use NULL here, so I fixed it for
now by making it do that.

catversion bumped because the change in handling of Query.withCheckOptions
affects stored rules.

Discussion: https://postgr.es/m/17114.1537138992@sss.pgh.pa.us
2018-09-18 15:08:28 -04:00
Andrew Gierth 728202b63c Order active window clauses for greater reuse of Sort nodes.
By sorting the active window list lexicographically by the sort clause
list but putting longer clauses before shorter prefixes, we generate
more chances to elide Sort nodes when building the path.

Author: Daniel Gustafsson (with some editorialization by me)
Reviewed-by: Alexander Kuzmenkov, Masahiko Sawada, Tom Lane
Discussion: https://postgr.es/m/124A7F69-84CD-435B-BA0E-2695BE21E5C2%40yesql.se
2018-09-14 17:35:42 +01:00
Amit Kapila 75f9c4ca5a Don't allow LIMIT/OFFSET clause within sub-selects to be pushed to workers.
Allowing sub-select containing LIMIT/OFFSET in workers can lead to
inconsistent results at the top-level as there is no guarantee that the
row order will be fully deterministic.  The fix is to prohibit pushing
LIMIT/OFFSET within sub-selects to workers.

Reported-by: Andrew Fletcher
Bug: 15324
Author: Amit Kapila
Reviewed-by: Dilip Kumar
Backpatch-through: 9.6
Discussion: https://postgr.es/m/153417684333.10284.11356259990921828616@wrigleys.postgresql.org
2018-09-14 09:36:30 +05:30
Amit Kapila 14e9b2a752 Prohibit pushing subqueries containing window function calculation to
workers.

Allowing window function calculation in workers leads to inconsistent
results because if the input row ordering is not fully deterministic, the
output of window functions might vary across workers.  The fix is to treat
them as parallel-restricted.

In the passing, improve the coding pattern in max_parallel_hazard_walker
so that it has a chain of mutually-exclusive if ... else if ... else if
... else if ... IsA tests.

Reported-by: Marko Tiikkaja
Bug: 15324
Author: Amit Kapila
Reviewed-by: Tom Lane
Backpatch-through: 9.6
Discussion: https://postgr.es/m/CAL9smLAnfPJCDUUG4ckX2iznj53V7VSMsYefzZieN93YxTNOcw@mail.gmail.com
2018-09-04 10:28:08 +05:30
Etsuro Fujita 7cfdc77023 Disable support for partitionwise joins in problematic cases.
Commit f49842d, which added support for partitionwise joins, built the
child's tlist by applying adjust_appendrel_attrs() to the parent's.  So in
the case where the parent's included a whole-row Var for the parent, the
child's contained a ConvertRowtypeExpr.  To cope with that, that commit
added code to the planner, such as setrefs.c, but some code paths still
assumed that the tlist for a scan (or join) rel would only include Vars
and PlaceHolderVars, which was true before that commit, causing errors:

* When creating an explicit sort node for an input path for a mergejoin
  path for a child join, prepare_sort_from_pathkeys() threw the 'could not
  find pathkey item to sort' error.
* When deparsing a relation participating in a pushed down child join as a
  subquery in contrib/postgres_fdw, get_relation_column_alias_ids() threw
  the 'unexpected expression in subquery output' error.
* When performing set_plan_references() on a local join plan generated by
  contrib/postgres_fdw for EvalPlanQual support for a pushed down child
  join, fix_join_expr() threw the 'variable not found in subplan target
  lists' error.

To fix these, two approaches have been proposed: one by Ashutosh Bapat and
one by me.  While the former keeps building the child's tlist with a
ConvertRowtypeExpr, the latter builds it with a whole-row Var for the
child not to violate the planner assumption, and tries to fix it up later,
But both approaches need more work, so refuse to generate partitionwise
join paths when whole-row Vars are involved, instead.  We don't need to
handle ConvertRowtypeExprs in the child's tlists for now, so this commit
also removes the changes to the planner.

Previously, partitionwise join computed attr_needed data for each child
separately, and built the child join's tlist using that data, which also
required an extra step for adding PlaceHolderVars to that tlist, but it
would be more efficient to build it from the parent join's tlist through
the adjust_appendrel_attrs() transformation.  So this commit builds that
list that way, and simplifies build_joinrel_tlist() and placeholder.c as
well as part of set_append_rel_size() to basically what they were before
partitionwise join went in.

Back-patch to PG11 where partitionwise join was introduced.

Report by Rajkumar Raghuwanshi.  Analysis by Ashutosh Bapat, who also
provided some of regression tests.  Patch by me, reviewed by Robert Haas.

Discussion: https://postgr.es/m/CAKcux6ktu-8tefLWtQuuZBYFaZA83vUzuRd7c1YHC-yEWyYFpg@mail.gmail.com
2018-08-31 20:34:06 +09:00
Etsuro Fujita 2e39f69b66 Remove extra word from src/backend/optimizer/README 2018-08-31 16:40:17 +09:00
Tom Lane 4a2994f055 Fix wrong order of operations in inheritance_planner.
When considering a partitioning parent rel, we should stop processing that
subroot as soon as we've done adjust_appendrel_attrs and any securityQuals
updates.  The rest of this is unnecessary, and indeed adding duplicate
subquery RTEs to the subroot is *wrong*.  As the code stood, the children
of that partition ended up with two sets of copied subquery RTEs, confusing
matters greatly.  Even more hilarity ensued if all of the children got
excluded by constraint exclusion, so that the extra RTEs didn't make it
back into the parent rtable.

Per fuzz testing by Andreas Seltenreich.  Back-patch to v11 where this
got broken (by commit 0a480502b, it looks like).

Discussion: https://postgr.es/m/87va8g7vq0.fsf@ansel.ydns.eu
2018-08-11 15:53:20 -04:00
Heikki Linnakangas 31380bc7c2 Spell "partitionwise" consistently.
I'm not sure which spelling is better, "partitionwise" or "partition-wise",
but everywhere else we spell it "partitionwise", so be consistent.

Tatsuro Yamada reported the one in README, I found the other one with grep.

Discussion: https://www.postgresql.org/message-id/d25ebf36-5a6d-8b2c-1ff3-d6f022a56000@lab.ntt.co.jp
2018-08-09 10:43:18 +03:00
Tom Lane 1c2cb2744b Fix run-time partition pruning for appends with multiple source rels.
The previous coding here supposed that if run-time partitioning applied to
a particular Append/MergeAppend plan, then all child plans of that node
must be members of a single partitioning hierarchy.  This is totally wrong,
since an Append could be formed from a UNION ALL: we could have multiple
hierarchies sharing the same Append, or child plans that aren't part of any
hierarchy.

To fix, restructure the related plan-time and execution-time data
structures so that we can have a separate list or array for each
partitioning hierarchy.  Also track subplans that are not part of any
hierarchy, and make sure they don't get pruned.

Per reports from Phil Florent and others.  Back-patch to v11, since
the bug originated there.

David Rowley, with a lot of cosmetic adjustments by me; thanks also
to Amit Langote for review.

Discussion: https://postgr.es/m/HE1PR03MB17068BB27404C90B5B788BCABA7B0@HE1PR03MB1706.eurprd03.prod.outlook.com
2018-08-01 19:42:52 -04:00
Tom Lane 662d12aea1 Avoid crash in eval_const_expressions if a Param's type changes.
Since commit 6719b238e it's been possible for the values of plpgsql
record field variables to be exposed to the planner as Params.
(Before that, plpgsql never supplied values for such variables during
planning, so that the problematic code wasn't reached.)  Other places
that touch potentially-type-mutable Params either cope gracefully or
do runtime-test-and-ereport checks that the type is what they expect.
But eval_const_expressions() just had an Assert, meaning that it either
failed the assertion or risked crashes due to using an incompatible
value.

In this case, rather than throwing an ereport immediately, we can just
not perform a const-substitution in case of a mismatch.  This seems
important for the same reason that the Param fetch was speculative:
we might not actually reach this part of the expression at runtime.

Test case will follow in a separate commit.

Patch by me, pursuant to bug report from Andrew Gierth.
Back-patch to v11 where the previous commit appeared.

Discussion: https://postgr.es/m/87wotkfju1.fsf@news-spur.riddles.org.uk
2018-07-26 16:08:45 -04:00
Heikki Linnakangas 5220bb7533 Expand run-time partition pruning to work with MergeAppend
This expands the support for the run-time partition pruning which was added
for Append in 499be013de to also allow unneeded subnodes of a MergeAppend
to be removed.

Author: David Rowley
Discussion: https://www.postgresql.org/message-id/CAKJS1f_F_V8D7Wu-HVdnH7zCUxhoGK8XhLLtd%3DCu85qDZzXrgg%40mail.gmail.com
2018-07-19 13:49:43 +03:00
Michael Paquier b33ef397a1 Fix print of Path nodes when using OPTIMIZER_DEBUG
GatherMergePath (introduced in 10) and CustomPath (introduced in 9.5)
have gone missing.  The order of the Path nodes was inconsistent with
what is listed in nodes.h, so make the order consistent at the same time
to ease future checks and additions.

Author: Sawada Masahiko
Reviewed-by: Michael Paquier
Discussion: https://postgr.es/m/CAD21AoBQMLoc=ohH-oocuAPsELrmk8_EsRJjOyR8FQLZkbE0wA@mail.gmail.com
2018-07-19 09:54:39 +09:00
Michael Paquier c6598b8b05 Fix re-parameterize of MergeAppendPath
Instead of MergeAppendPath, MergeAppend nodes were considered.  This
code is not covered by any tests now, which should be addressed at some
point.

This is an oversight from f49842d, which introduced partition-wise joins
in v11, so back-patch down to that.

Author: Michael Paquier
Reviewed-by: Ashutosh Bapat
Discussion: https://postgr.es/m/20180718062202.GC8565@paquier.xyz
2018-07-19 09:01:57 +09:00
Heikki Linnakangas 6b387179ba Fix misc typos, mostly in comments.
A collection of typos I happened to spot while reading code, as well as
grepping for common mistakes.

Backpatch to all supported versions, as applicable, to avoid conflicts
when backporting other commits in the future.
2018-07-18 16:17:32 +03:00
Tom Lane 1007b0a126 Fix hashjoin costing mistake introduced with inner_unique optimization.
In final_cost_hashjoin(), commit 9c7f5229a allowed inner_unique cases
to follow a code path previously used only for SEMI/ANTI joins; but it
neglected to fix an if-test within that path that assumed SEMI and ANTI
were the only possible cases.  This resulted in a wrong value for
hashjointuples, and an ensuing bad cost estimate, for inner_unique normal
joins.  Fortunately, for inner_unique normal joins we can assume the number
of joined tuples is the same as for a SEMI join; so there's no need for
more code, we just have to invert the test to check for ANTI not SEMI.

It turns out that in two contrib tests in which commit 9c7f5229a
changed the plan expected for a query, the change was actually wrong
and induced by this estimation error, not by any real improvement.
Hence this patch also reverts those changes.

Per report from RK Korlapati.  Backpatch to v10 where the error was
introduced.

David Rowley

Discussion: https://postgr.es/m/CA+SNy03bhq0fodsfOkeWDCreNjJVjsdHwUsb7AG=jpe0PtZc_g@mail.gmail.com
2018-07-14 11:59:12 -04:00
Heikki Linnakangas 42f70cd9c3 Improve performance of tuple conversion map generation
Previously convert_tuples_by_name_map naively performed a search of each
outdesc column starting at the first column in indesc and searched each
indesc column until a match was found.  When partitioned tables had many
columns this could result in slow generation of the tuple conversion maps.
For INSERT and UPDATE statements that touched few rows, this could mean a
very large overhead indeed.

We can do a bit better with this loop.  It's quite likely that the columns
in partitioned tables and their partitions are in the same order, so it
makes sense to start searching for each column outer column at the inner
column position 1 after where the previous match was found (per idea from
Alexander Kuzmenkov). This makes the best case search O(N) instead of
O(N^2).  The worst case is still O(N^2), but it seems unlikely that would
happen.

Likewise, in the planner, make_inh_translation_list's search for the
matching column could often end up falling back on an O(N^2) type search.
This commit also improves that by first checking the column that follows
the previous match, instead of the column with the same attnum.  If we
fail to match here we fallback on the syscache's hashtable lookup.

Author: David Rowley
Reviewed-by: Alexander Kuzmenkov
Discussion: https://www.postgresql.org/message-id/CAKJS1f9-wijVgMdRp6_qDMEQDJJ%2BA_n%3DxzZuTmLx5Fz6cwf%2B8A%40mail.gmail.com
2018-07-13 19:54:05 +03:00
Tom Lane 57cd2b6e6d Fix create_scan_plan's handling of sortgrouprefs for physical tlists.
We should only run apply_pathtarget_labeling_to_tlist if CP_LABEL_TLIST
was specified, because only in that case has use_physical_tlist checked
that the labeling will succeed; otherwise we may get an "ORDER/GROUP BY
expression not found in targetlist" error.  (This subsumes the previous
test about gating_clauses, because we reset "flags" to zero earlier
if there are gating clauses to apply.)

The only known case in which a failure can occur is with a ProjectSet
path directly atop a table scan path, although it seems likely that there
are other cases or will be such in future.  This means that the failure
is currently only visible in the v10 branch: 9.6 didn't have ProjectSet,
while in v11 and HEAD, apply_scanjoin_target_to_paths for some weird
reason is using create_projection_path not apply_projection_to_path,
masking the problem because there's a ProjectionPath in between.

Nonetheless this code is clearly wrong on its own terms, so back-patch
to 9.6 where this logic was introduced.

Per report from Regina Obe.

Discussion: https://postgr.es/m/001501d40f88$75186950$5f493bf0$@pcorp.us
2018-07-11 15:25:28 -04:00
Tom Lane ff4f889164 Fix bugs with degenerate window ORDER BY clauses in GROUPS/RANGE mode.
nodeWindowAgg.c failed to cope with the possibility that no ordering
columns are defined in the window frame for GROUPS mode or RANGE OFFSET
mode, leading to assertion failures or odd errors, as reported by Masahiko
Sawada and Lukas Eder.  In RANGE OFFSET mode, an ordering column is really
required, so add an Assert about that.  In GROUPS mode, the code would
work, except that the node initialization code wasn't in sync with the
execution code about when to set up tuplestore read pointers and spare
slots.  Fix the latter for consistency's sake (even though I think the
changes described below make the out-of-sync cases unreachable for now).

Per SQL spec, a single ordering column is required for RANGE OFFSET mode,
and at least one ordering column is required for GROUPS mode.  The parser
enforced the former but not the latter; add a check for that.

We were able to reach the no-ordering-column cases even with fully spec
compliant queries, though, because the planner would drop partitioning
and ordering columns from the generated plan if they were redundant with
earlier columns according to the redundant-pathkey logic, for instance
"PARTITION BY x ORDER BY y" in the presence of a "WHERE x=y" qual.
While in principle that's an optimization that could save some pointless
comparisons at runtime, it seems unlikely to be meaningful in the real
world.  I think this behavior was not so much an intentional optimization
as a side-effect of an ancient decision to construct the plan node's
ordering-column info by reverse-engineering the PathKeys of the input
path.  If we give up redundant-column removal then it takes very little
code to generate the plan node info directly from the WindowClause,
ensuring that we have the expected number of ordering columns in all
cases.  (If anyone does complain about this, the planner could perhaps
be taught to remove redundant columns only when it's safe to do so,
ie *not* in RANGE OFFSET mode.  But I doubt anyone ever will.)

With these changes, the WindowAggPath.winpathkeys field is not used for
anything anymore, so remove it.

The test cases added here are not actually very interesting given the
removal of the redundant-column-removal logic, but they would represent
important corner cases if anyone ever tries to put that back.

Tom Lane and Masahiko Sawada.  Back-patch to v11 where RANGE OFFSET
and GROUPS modes were added.

Discussion: https://postgr.es/m/CAD21AoDrWqycq-w_+Bx1cjc+YUhZ11XTj9rfxNiNDojjBx8Fjw@mail.gmail.com
Discussion: https://postgr.es/m/153086788677.17476.8002640580496698831@wrigleys.postgresql.org
2018-07-11 12:07:20 -04:00
Alvaro Herrera f2c587067a Rethink how to get float.h in old Windows API for isnan/isinf
We include <float.h> in every place that needs isnan(), because MSVC
used to require it.  However, since MSVC 2013 that's no longer necessary
(cf. commit cec8394b5c), so we can retire the inclusion to a
version-specific stanza in win32_port.h, where it doesn't need to
pollute random .c files.  The header is of course still needed in a few
places for other reasons.

I (Álvaro) removed float.h from a few more files than in Emre's original
patch.  This doesn't break the build in my system, but we'll see what
the buildfarm has to say about it all.

Author: Emre Hasegeli
Discussion: https://postgr.es/m/CAE2gYzyc0+5uG+Cd9-BSL7NKC8LSHLNg1Aq2=8ubjnUwut4_iw@mail.gmail.com
2018-07-11 09:11:48 -04:00
Peter Eisentraut bcbd940806 Remove dynamic_shared_memory_type=none
PostgreSQL nowadays offers some kind of dynamic shared memory feature on
all supported platforms.  Having the choice of "none" prevents us from
relying on DSM in core features.  So this patch removes the choice of
"none".

Author: Kyotaro Horiguchi <horiguchi.kyotaro@lab.ntt.co.jp>
2018-07-10 18:35:24 +02:00
Michael Paquier fc057b2b8f Remove dead code for temporary relations in partition planning
Since recent commit 1c7c317c, temporary relations cannot be mixed with
permanent relations within the same partition tree, and the same counts
for temporary relations created by other sessions, which the planner
simply discarded.  Instead be paranoid and issue an error, as those
should be blocked at definition time, at least for now.

At the same time, a test case is added to stress what has been moved
when expand_partitioned_rtentry gets called recursively but bumps on a
partitioned relation with no partitions which should be handled the same
way as the non-inheritance case.  This code may be reworked in a close
future, and covering this code path will limit surprises.

Reported-by: David Rowley
Author: David Rowley
Reviewed-by: Amit Langote, Robert Haas, Michael Paquier
Discussion: https://postgr.es/m/CAKJS1f_HyV1txn_4XSdH5EOhBMYaCwsXyAj6bHXk9gOu4JKsbw@mail.gmail.com
2018-07-04 10:37:40 +09:00
Alvaro Herrera 7d872c91a3 Allow direct lookups of AppendRelInfo by child relid
find_appinfos_by_relids had quite a large overhead when the number of
items in the append_rel_list was high, as it had to trawl through the
append_rel_list looking for AppendRelInfos belonging to the given
childrelids.  Since there can only be a single AppendRelInfo for each
child rel, it seems much better to store an array in PlannerInfo which
indexes these by child relid, making the function O(1) rather than O(N).
This function was only called once inside the planner, so just replace
that call with a lookup to the new array.  find_childrel_appendrelinfo
is now unused and thus removed.

This fixes a planner performance regression new to v11 reported by
Thomas Reiss.

Author: David Rowley
Reported-by: Thomas Reiss
Reviewed-by: Ashutosh Bapat
Reviewed-by: Álvaro Herrera
Discussion: https://postgr.es/m/94dd7a4b-5e50-0712-911d-2278e055c622@dalibo.com
2018-06-26 10:35:26 -04:00
Robert Haas c6f28af5d7 Avoid generating bogus paths with partitionwise aggregate.
Previously, if some or all partitions had no partially aggregated path,
we would still try to generate a partially aggregated path for the
parent, leading to assertion failures or wrong answers.

Report by Rajkumar Raghuwanshi.  Patch by Jeevan Chalke, reviewed
by Ashutosh Bapat.  A few changes by me.

Discussion: http://postgr.es/m/CAKcux6=q4+Mw8gOOX16ef6ZMFp9Cve7KWFstUsrDa4GiFaXGUQ@mail.gmail.com
2018-06-22 09:20:19 -04:00
Amit Kapila 98d476a965 Improve coding pattern in Parallel Append code.
The create_append_path code didn't consider that list_concat will
modify it's first argument leading to inconsistent traversal of
resulting list.  In practice, it won't lead to any user-visible bug
but changing it for making the code behave consistently.

Reported-by: Tom Lane
Author: Tom Lane
Reviewed-by: Amit Khandekar and Amit Kapila
Discussion: https://postgr.es/m/32365.1528994120@sss.pgh.pa.us
2018-06-22 08:43:36 +05:30
Tom Lane 07e5a21352 Fix mishandling of sortgroupref labels while splitting SRF targetlists.
split_pathtarget_at_srfs() neglected to worry about sortgroupref labels
in the intermediate PathTargets it constructs.  I think we'd supposed
that their labeling didn't matter, but it does at least for the case that
GroupAggregate/GatherMerge nodes appear immediately under the ProjectSet
step(s).  This results in "ERROR: ORDER/GROUP BY expression not found in
targetlist" during create_plan(), as reported by Rajkumar Raghuwanshi.

To fix, make this logic track the sortgroupref labeling of expressions,
not just their contents.  This also restores the pre-v10 behavior that
separate GROUP BY expressions will be kept distinct even if they are
textually equal().

Discussion: https://postgr.es/m/CAKcux6=1_Ye9kx8YLBPmJs_xE72PPc6vNi5q2AOHowMaCWjJ2w@mail.gmail.com
2018-06-21 10:58:42 -04:00
Amit Kapila 403318b71f Don't consider parallel append for parallel unsafe paths.
Commit ab72716778 allowed Parallel Append paths to be generated for a
relation that is not parallel safe.  Prevent that from happening.

Initial analysis by Tom Lane.

Reported-by: Rajkumar Raghuwanshi
Author: Amit Kapila and Rajkumar Raghuwanshi
Reviewed-by: Amit Khandekar and Robert Haas
Discussion:https://postgr.es/m/CAKcux6=tPJ6nJ08r__nU_pmLQiC0xY15Fn0HvG1Cprsjdd9s_Q@mail.gmail.com
2018-06-20 07:51:42 +05:30
Tom Lane 4e23236403 Improve commentary about run-time partition pruning data structures.
No code changes except for a couple of new Asserts.

David Rowley and Tom Lane

Discussion: https://postgr.es/m/CAKJS1f-6GODRNgEtdPxCnAPme2h2hTztB6LmtfdmcYAAOE0kQg@mail.gmail.com
2018-06-11 17:35:53 -04:00
Tom Lane 939449de0e Relocate partition pruning structs to a saner place.
These struct definitions were originally dropped into primnodes.h,
which is a poor choice since that's mainly intended for primitive
expression node types; these are not in that category.  What they
are is auxiliary info in Plan trees, so move them to plannodes.h.

For consistency, also relocate some related code that was apparently
placed with the aid of a dartboard.

There's no interesting code changes in this commit, just reshuffling.

David Rowley and Tom Lane

Discussion: https://postgr.es/m/CAFj8pRBjrufA3ocDm8o4LPGNye9Y+pm1b9kCwode4X04CULG3g@mail.gmail.com
2018-06-10 16:30:14 -04:00
Magnus Hagander 848b1f3e35 Fix typo in README
Author: Daniel Gustafsson <daniel@yesql.se>
2018-06-07 14:40:38 +02:00
Heikki Linnakangas a0b37684ba Fix typo in comment. 2018-05-22 11:18:16 +03:00
Tom Lane a11b3bd37f Fix misprocessing of equivalence classes involving record_eq().
canonicalize_ec_expression() is supposed to agree with coerce_type() as to
whether a RelabelType should be inserted to make a subexpression be valid
input for the operators of a given opclass.  However, it did the wrong
thing with named-composite-type inputs to record_eq(): it put in a
RelabelType to RECORDOID, which the parser doesn't.  In some cases this was
harmless because all code paths involving a particular equivalence class
did the same thing, but in other cases this would result in failing to
recognize a composite-type expression as being a member of an equivalence
class that it actually is a member of.  The most obvious bad effect was to
fail to recognize that an index on a composite column could provide the
sort order needed for a mergejoin on that column, as reported by Teodor
Sigaev.  I think there might be other, subtler, cases that result in
misoptimization.  It also seems possible that an unwanted RelabelType
would sometimes get into an emitted plan --- but because record_eq and
friends don't examine the declared type of their input expressions, that
would not create any visible problems.

To fix, just treat RECORDOID as if it were a polymorphic type, which in
some sense it is.  We might want to consider formalizing that a bit more
someday, but for the moment this seems to be the only place where an
IsPolymorphicType() test ought to include RECORDOID as well.

This has been broken for a long time, so back-patch to all supported
branches.

Discussion: https://postgr.es/m/a6b22369-e3bf-4d49-f59d-0c41d3551e81@sigaev.ru
2018-05-16 13:46:23 -04:00
Robert Haas 7fc7dac1a7 Pass the correct PlannerInfo to PlanForeignModify/PlanDirectModify.
Previously, we passed the toplevel PlannerInfo, but we actually want
to pass the relevant subroot.  One problem with passing the toplevel
PlannerInfo is that the FDW which wants to push down an UPDATE or
DELETE against a join won't find the relevant joinrel there.
As of commit 1bc0100d27, postgres_fdw
tries to do exactly this and can be made to fail an assertion as a
result.

It's possible that this should be regarded as a bug fix and
back-patched to earlier releases, but for lack of a test case that
fails in earlier releases, no back-patch for now.

Etsuro Fujita, reviewed by Amit Langote.

Discussion: http://postgr.es/m/5AF43E02.30000@lab.ntt.co.jp
2018-05-16 11:32:38 -04:00
Tom Lane bdf46af748 Post-feature-freeze pgindent run.
Discussion: https://postgr.es/m/15719.1523984266@sss.pgh.pa.us
2018-04-26 14:47:16 -04:00
Robert Haas dc1057fcd8 Prevent generation of bogus subquery scan paths.
Commit 0927d2f46d didn't check that
consider_parallel was set for the target relation or account for
the possibility that required_outer might be non-empty.

To prevent future bugs of this ilk, add some assertions to
add_partial_path and do a bit of future-proofing of the code
recently added to recurse_set_operations.

Report by Andreas Seltenreich.  Patch by Jeevan Chalke.  Review
by Amit Kapila and by me.

Discussion: http://postgr.es/m/CAM2+6=U+9otsyF2fYB8x_2TBeHTR90itarqW=qAEjN-kHaC7kw@mail.gmail.com
2018-04-25 15:25:55 -04:00
Alvaro Herrera 055fb8d33d Add GUC enable_partition_pruning
This controls both plan-time and execution-time new-style partition
pruning.  While finer-grain control is possible (maybe using an enum GUC
instead of boolean), there doesn't seem to be much need for that.

This new parameter controls partition pruning for all queries:
trivially, SELECT queries that affect partitioned tables are naturally
under its control since they are using the new technology.  However,
while UPDATE/DELETE queries do not use the new code, we make the new GUC
control their behavior also (stealing control from
constraint_exclusion), because it is more natural, and it leads to a
more natural transition to the future in which those queries will also
use the new pruning code.

Constraint exclusion still controls pruning for regular inheritance
situations (those not involving partitioned tables).

Author: David Rowley
Review: Amit Langote, Ashutosh Bapat, Justin Pryzby, David G. Johnston
Discussion: https://postgr.es/m/CAKJS1f_0HwsxJG9m+nzU+CizxSdGtfe6iF_ykPYBiYft302DCw@mail.gmail.com
2018-04-23 17:57:43 -03:00
Tom Lane ec38dcd363 Tweak a couple of planner APIs to save recalculating join relids.
Discussion: https://postgr.es/m/f8128b11-c5bf-3539-48cd-234178b2314d@proxel.se
2018-04-20 16:00:47 -04:00
Tom Lane c792c7db41 Change more places to be less trusting of RestrictInfo.is_pushed_down.
On further reflection, commit e5d83995e didn't go far enough: pretty much
everywhere in the planner that examines a clause's is_pushed_down flag
ought to be changed to use the more complicated behavior where we also
check the clause's required_relids.  Otherwise we could make incorrect
decisions about whether, say, a clause is safe to use as a hash clause.

Some (many?) of these places are safe as-is, either because they are
never reached while considering a parameterized path, or because there
are additional checks that would reject a pushed-down clause anyway.
However, it seems smarter to just code them all the same way rather
than rely on easily-broken reasoning of that sort.

In support of that, invent a new macro RINFO_IS_PUSHED_DOWN that should
be used in place of direct tests on the is_pushed_down flag.

Like the previous patch, back-patch to all supported branches.

Discussion: https://postgr.es/m/f8128b11-c5bf-3539-48cd-234178b2314d@proxel.se
2018-04-20 15:19:16 -04:00
Tom Lane e5d83995e9 Fix incorrect handling of join clauses pushed into parameterized paths.
In some cases a clause attached to an outer join can be pushed down into
the outer join's RHS even though the clause is not degenerate --- this
can happen if we choose to make a parameterized path for the RHS.  If
the clause ends up attached to a lower outer join, we'd misclassify it
as being a "join filter" not a plain "filter" condition at that node,
leading to wrong query results.

To fix, teach extract_actual_join_clauses to examine each join clause's
required_relids, not just its is_pushed_down flag.  (The latter now
seems vestigial, or at least in need of rethinking, but we won't do
anything so invasive as redefining it in a bug-fix patch.)

This has been wrong since we introduced parameterized paths in 9.2,
though it's evidently hard to hit given the lack of previous reports.
The test case used here involves a lateral function call, and I think
that a lateral reference may be required to get the planner to select
a broken plan; though I wouldn't swear to that.  In any case, even if
LATERAL is needed to trigger the bug, it still affects all supported
branches, so back-patch to all.

Per report from Andreas Karlsson.  Thanks to Andrew Gierth for
preliminary investigation.

Discussion: https://postgr.es/m/f8128b11-c5bf-3539-48cd-234178b2314d@proxel.se
2018-04-19 15:49:30 -04:00
Alvaro Herrera da6f3e45dd Reorganize partitioning code
There's been a massive addition of partitioning code in PostgreSQL 11,
with little oversight on its placement, resulting in a
catalog/partition.c with poorly defined boundaries and responsibilities.
This commit tries to set a couple of distinct modules to separate things
a little bit.  There are no code changes here, only code movement.

There are three new files:
  src/backend/utils/cache/partcache.c
  src/include/partitioning/partdefs.h
  src/include/utils/partcache.h

The previous arrangement of #including catalog/partition.h almost
everywhere is no more.

Authors: Amit Langote and Álvaro Herrera
Discussion: https://postgr.es/m/98e8d509-790a-128c-be7f-e48a5b2d8d97@lab.ntt.co.jp
	https://postgr.es/m/11aa0c50-316b-18bb-722d-c23814f39059@lab.ntt.co.jp
	https://postgr.es/m/143ed9a4-6038-76d4-9a55-502035815e68@lab.ntt.co.jp
	https://postgr.es/m/20180413193503.nynq7bnmgh6vs5vm@alvherre.pgsql
2018-04-14 21:12:14 -03:00
Peter Eisentraut a8677e3ff6 Support named and default arguments in CALL
We need to call expand_function_arguments() to expand named and default
arguments.

In PL/pgSQL, we also need to deal with named and default INOUT arguments
when receiving the output values into variables.

Author: Pavel Stehule <pavel.stehule@gmail.com>
2018-04-14 09:13:53 -04:00
Teodor Sigaev c266ed31a8 Cleanup covering infrastructure
- Explicitly forbids opclass, collation and indoptions (like DESC/ASC etc) for
  including columns. Throw an error if user points that.
- Truncated storage arrays for such attributes to store only key atrributes,
  added assertion checks.
- Do not check opfamily and collation for including columns in
  CompareIndexInfo()

Discussion: https://www.postgresql.org/message-id/5ee72852-3c4e-ee35-e2ed-c1d053d45c08@sigaev.ru
2018-04-12 16:37:22 +03:00
Simon Riggs 08ea7a2291 Revert MERGE patch
This reverts commits d204ef6377,
83454e3c2b and a few more commits thereafter
(complete list at the end) related to MERGE feature.

While the feature was fully functional, with sufficient test coverage and
necessary documentation, it was felt that some parts of the executor and
parse-analyzer can use a different design and it wasn't possible to do that in
the available time. So it was decided to revert the patch for PG11 and retry
again in the future.

Thanks again to all reviewers and bug reporters.

List of commits reverted, in reverse chronological order:

 f1464c5380 Improve parse representation for MERGE
 ddb4158579 MERGE syntax diagram correction
 530e69e59b Allow cpluspluscheck to pass by renaming variable
 01b88b4df5 MERGE minor errata
 3af7b2b0d4 MERGE fix variable warning in non-assert builds
 a5d86181ec MERGE INSERT allows only one VALUES clause
 4b2d44031f MERGE post-commit review
 4923550c20 Tab completion for MERGE
 aa3faa3c7a WITH support in MERGE
 83454e3c2b New files for MERGE
 d204ef6377 MERGE SQL Command following SQL:2016

Author: Pavan Deolasee
Reviewed-by: Michael Paquier
2018-04-12 11:22:56 +01:00
Tom Lane cefa387153 Merge catalog/pg_foo_fn.h headers back into pg_foo.h headers.
Traditionally, include/catalog/pg_foo.h contains extern declarations
for functions in backend/catalog/pg_foo.c, in addition to its function
as the authoritative definition of the pg_foo catalog's rowtype.
In some cases, we'd been forced to split out those extern declarations
into separate pg_foo_fn.h headers so that the catalog definitions
could be #include'd by frontend code.  That problem is gone as of
commit 9c0a0de4c, so let's undo the splits to make things less
confusing.

Discussion: https://postgr.es/m/23690.1523031777@sss.pgh.pa.us
2018-04-08 14:35:29 -04:00
Teodor Sigaev 02f3e558f2 match_clause_to_index should check only key columns
Alexander Korotkov per gripe from Tom Lane noticed on valgrind-enabled
buildfarm members
2018-04-08 19:58:15 +03:00
Alvaro Herrera 499be013de Support partition pruning at execution time
Existing partition pruning is only able to work at plan time, for query
quals that appear in the parsed query.  This is good but limiting, as
there can be parameters that appear later that can be usefully used to
further prune partitions.

This commit adds support for pruning subnodes of Append which cannot
possibly contain any matching tuples, during execution, by evaluating
Params to determine the minimum set of subnodes that can possibly match.
We support more than just simple Params in WHERE clauses. Support
additionally includes:

1. Parameterized Nested Loop Joins: The parameter from the outer side of the
   join can be used to determine the minimum set of inner side partitions to
   scan.

2. Initplans: Once an initplan has been executed we can then determine which
   partitions match the value from the initplan.

Partition pruning is performed in two ways.  When Params external to the plan
are found to match the partition key we attempt to prune away unneeded Append
subplans during the initialization of the executor.  This allows us to bypass
the initialization of non-matching subplans meaning they won't appear in the
EXPLAIN or EXPLAIN ANALYZE output.

For parameters whose value is only known during the actual execution
then the pruning of these subplans must wait.  Subplans which are
eliminated during this stage of pruning are still visible in the EXPLAIN
output.  In order to determine if pruning has actually taken place, the
EXPLAIN ANALYZE must be viewed.  If a certain Append subplan was never
executed due to the elimination of the partition then the execution
timing area will state "(never executed)".  Whereas, if, for example in
the case of parameterized nested loops, the number of loops stated in
the EXPLAIN ANALYZE output for certain subplans may appear lower than
others due to the subplan having been scanned fewer times.  This is due
to the list of matching subnodes having to be evaluated whenever a
parameter which was found to match the partition key changes.

This commit required some additional infrastructure that permits the
building of a data structure which is able to perform the translation of
the matching partition IDs, as returned by get_matching_partitions, into
the list index of a subpaths list, as exist in node types such as
Append, MergeAppend and ModifyTable.  This allows us to translate a list
of clauses into a Bitmapset of all the subpath indexes which must be
included to satisfy the clause list.

Author: David Rowley, based on an earlier effort by Beena Emerson
Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi,
Jesper Pedersen
Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
2018-04-07 17:54:39 -03:00
Teodor Sigaev 8224de4f42 Indexes with INCLUDE columns and their support in B-tree
This patch introduces INCLUDE clause to index definition.  This clause
specifies a list of columns which will be included as a non-key part in
the index.  The INCLUDE columns exist solely to allow more queries to
benefit from index-only scans.  Also, such columns don't need to have
appropriate operator classes.  Expressions are not supported as INCLUDE
columns since they cannot be used in index-only scans.

Index access methods supporting INCLUDE are indicated by amcaninclude flag
in IndexAmRoutine.  For now, only B-tree indexes support INCLUDE clause.

In B-tree indexes INCLUDE columns are truncated from pivot index tuples
(tuples located in non-leaf pages and high keys).  Therefore, B-tree indexes
now might have variable number of attributes.  This patch also provides
generic facility to support that: pivot tuples contain number of their
attributes in t_tid.ip_posid.  Free 13th bit of t_info is used for indicating
that.  This facility will simplify further support of index suffix truncation.
The changes of above are backward-compatible, pg_upgrade doesn't need special
handling of B-tree indexes for that.

Bump catalog version

Author: Anastasia Lubennikova with contribition by Alexander Korotkov and me
Reviewed by: Peter Geoghegan, Tomas Vondra, Antonin Houska, Jeff Janes,
			 David Rowley, Alexander Korotkov
Discussion: https://www.postgresql.org/message-id/flat/56168952.4010101@postgrespro.ru
2018-04-07 23:00:39 +03:00
Alvaro Herrera 9fdb675fc5 Faster partition pruning
Add a new module backend/partitioning/partprune.c, implementing a more
sophisticated algorithm for partition pruning.  The new module uses each
partition's "boundinfo" for pruning instead of constraint exclusion,
based on an idea proposed by Robert Haas of a "pruning program": a list
of steps generated from the query quals which are run iteratively to
obtain a list of partitions that must be scanned in order to satisfy
those quals.

At present, this targets planner-time partition pruning, but there exist
further patches to apply partition pruning at execution time as well.

This commit also moves some definitions from include/catalog/partition.h
to a new file include/partitioning/partbounds.h, in an attempt to
rationalize partitioning related code.

Authors: Amit Langote, David Rowley, Dilip Kumar
Reviewers: Robert Haas, Kyotaro Horiguchi, Ashutosh Bapat, Jesper Pedersen.
Discussion: https://postgr.es/m/098b9c71-1915-1a2a-8d52-1a7a50ce79e8@lab.ntt.co.jp
2018-04-06 16:44:05 -03:00
Simon Riggs 4b2d44031f MERGE post-commit review
Review comments from Andres Freund

* Consolidate code into AfterTriggerGetTransitionTable()
* Rename nodeMerge.c to execMerge.c
* Rename nodeMerge.h to execMerge.h
* Move MERGE handling in ExecInitModifyTable()
  into a execMerge.c ExecInitMerge()
* Move mt_merge_subcommands flags into execMerge.h
* Rename opt_and_condition to opt_merge_when_and_condition
* Wordsmith various comments

Author: Pavan Deolasee
Reviewer: Simon Riggs
2018-04-05 09:54:07 +01:00
Simon Riggs d204ef6377 MERGE SQL Command following SQL:2016
MERGE performs actions that modify rows in the target table
using a source table or query. MERGE provides a single SQL
statement that can conditionally INSERT/UPDATE/DELETE rows
a task that would other require multiple PL statements.
e.g.

MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
  UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
  DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
  INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
  DO NOTHING;

MERGE works with regular and partitioned tables, including
column and row security enforcement, as well as support for
row, statement and transition triggers.

MERGE is optimized for OLTP and is parameterizable, though
also useful for large scale ETL/ELT. MERGE is not intended
to be used in preference to existing single SQL commands
for INSERT, UPDATE or DELETE since there is some overhead.
MERGE can be used statically from PL/pgSQL.

MERGE does not yet support inheritance, write rules,
RETURNING clauses, updatable views or foreign tables.
MERGE follows SQL Standard per the most recent SQL:2016.

Includes full tests and documentation, including full
isolation tests to demonstrate the concurrent behavior.

This version written from scratch in 2017 by Simon Riggs,
using docs and tests originally written in 2009. Later work
from Pavan Deolasee has been both complex and deep, leaving
the lead author credit now in his hands.
Extensive discussion of concurrency from Peter Geoghegan,
with thanks for the time and effort contributed.

Various issues reported via sqlsmith by Andreas Seltenreich

Authors: Pavan Deolasee, Simon Riggs
Reviewer: Peter Geoghegan, Amit Langote, Tomas Vondra, Simon Riggs

Discussion:
https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.com
https://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
2018-04-03 09:28:16 +01:00
Simon Riggs 7cf8a5c302 Revert "Modified files for MERGE"
This reverts commit 354f13855e.
2018-04-02 21:34:15 +01:00
Simon Riggs 354f13855e Modified files for MERGE 2018-04-02 21:12:47 +01:00
Robert Haas 7e0d64c7a5 postgres_fdw: Push down partition-wise aggregation.
Since commit 7012b132d0, postgres_fdw
has been able to push down the toplevel aggregation operation to the
remote server.  Commit e2f1eb0ee3 made
it possible to break down the toplevel aggregation into one
aggregate per partition.  This commit lets postgres_fdw push down
aggregation in that case just as it does at the top level.

In order to make this work, this commit adds an additional argument
to the GetForeignUpperPaths FDW API.  A matching argument is added
to the signature for create_upper_paths_hook.  Third-party code using
either of these will need to be updated.

Also adjust create_foreignscan_plan() so that it picks up the correct
set of relids in this case.

Jeevan Chalke, reviewed by Ashutosh Bapat and by me and with some
adjustments by me.  The larger patch series of which this patch is a
part was also reviewed and tested by Antonin Houska, Rajkumar
Raghuwanshi, David Rowley, Dilip Kumar, Konstantin Knizhnik, Pascal
Legrand, and Rafia Sabih.

Discussion: http://postgr.es/m/CAM2+6=V64_xhstVHie0Rz=KPEQnLJMZt_e314P0jaT_oJ9MR8A@mail.gmail.com
Discussion: http://postgr.es/m/CAM2+6=XPWujjmj5zUaBTGDoB38CemwcPmjkRy0qOcsQj_V+2sQ@mail.gmail.com
2018-04-02 10:51:50 -04:00