Commit Graph

221 Commits

Author SHA1 Message Date
Alvaro Herrera 499be013de Support partition pruning at execution time
Existing partition pruning is only able to work at plan time, for query
quals that appear in the parsed query.  This is good but limiting, as
there can be parameters that appear later that can be usefully used to
further prune partitions.

This commit adds support for pruning subnodes of Append which cannot
possibly contain any matching tuples, during execution, by evaluating
Params to determine the minimum set of subnodes that can possibly match.
We support more than just simple Params in WHERE clauses. Support
additionally includes:

1. Parameterized Nested Loop Joins: The parameter from the outer side of the
   join can be used to determine the minimum set of inner side partitions to
   scan.

2. Initplans: Once an initplan has been executed we can then determine which
   partitions match the value from the initplan.

Partition pruning is performed in two ways.  When Params external to the plan
are found to match the partition key we attempt to prune away unneeded Append
subplans during the initialization of the executor.  This allows us to bypass
the initialization of non-matching subplans meaning they won't appear in the
EXPLAIN or EXPLAIN ANALYZE output.

For parameters whose value is only known during the actual execution
then the pruning of these subplans must wait.  Subplans which are
eliminated during this stage of pruning are still visible in the EXPLAIN
output.  In order to determine if pruning has actually taken place, the
EXPLAIN ANALYZE must be viewed.  If a certain Append subplan was never
executed due to the elimination of the partition then the execution
timing area will state "(never executed)".  Whereas, if, for example in
the case of parameterized nested loops, the number of loops stated in
the EXPLAIN ANALYZE output for certain subplans may appear lower than
others due to the subplan having been scanned fewer times.  This is due
to the list of matching subnodes having to be evaluated whenever a
parameter which was found to match the partition key changes.

This commit required some additional infrastructure that permits the
building of a data structure which is able to perform the translation of
the matching partition IDs, as returned by get_matching_partitions, into
the list index of a subpaths list, as exist in node types such as
Append, MergeAppend and ModifyTable.  This allows us to translate a list
of clauses into a Bitmapset of all the subpath indexes which must be
included to satisfy the clause list.

Author: David Rowley, based on an earlier effort by Beena Emerson
Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi,
Jesper Pedersen
Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
2018-04-07 17:54:39 -03:00
Simon Riggs d204ef6377 MERGE SQL Command following SQL:2016
MERGE performs actions that modify rows in the target table
using a source table or query. MERGE provides a single SQL
statement that can conditionally INSERT/UPDATE/DELETE rows
a task that would other require multiple PL statements.
e.g.

MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
  UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
  DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
  INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
  DO NOTHING;

MERGE works with regular and partitioned tables, including
column and row security enforcement, as well as support for
row, statement and transition triggers.

MERGE is optimized for OLTP and is parameterizable, though
also useful for large scale ETL/ELT. MERGE is not intended
to be used in preference to existing single SQL commands
for INSERT, UPDATE or DELETE since there is some overhead.
MERGE can be used statically from PL/pgSQL.

MERGE does not yet support inheritance, write rules,
RETURNING clauses, updatable views or foreign tables.
MERGE follows SQL Standard per the most recent SQL:2016.

Includes full tests and documentation, including full
isolation tests to demonstrate the concurrent behavior.

This version written from scratch in 2017 by Simon Riggs,
using docs and tests originally written in 2009. Later work
from Pavan Deolasee has been both complex and deep, leaving
the lead author credit now in his hands.
Extensive discussion of concurrency from Peter Geoghegan,
with thanks for the time and effort contributed.

Various issues reported via sqlsmith by Andreas Seltenreich

Authors: Pavan Deolasee, Simon Riggs
Reviewer: Peter Geoghegan, Amit Langote, Tomas Vondra, Simon Riggs

Discussion:
https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.com
https://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
2018-04-03 09:28:16 +01:00
Simon Riggs 7cf8a5c302 Revert "Modified files for MERGE"
This reverts commit 354f13855e.
2018-04-02 21:34:15 +01:00
Simon Riggs 354f13855e Modified files for MERGE 2018-04-02 21:12:47 +01:00
Andres Freund cc415a56d0 Basic planner and executor integration for JIT.
This adds simple cost based plan time decision about whether JIT
should be performed. jit_above_cost, jit_optimize_above_cost are
compared with the total cost of a plan, and if the cost is above them
JIT is performed / optimization is performed respectively.

For that PlannedStmt and EState have a jitFlags (es_jit_flags) field
that stores information about what JIT operations should be performed.

EState now also has a new es_jit field, which can store a
JitContext. When there are no errors the context is released in
standard_ExecutorEnd().

It is likely that the default values for jit_[optimize_]above_cost
will need to be adapted further, but in my test these values seem to
work reasonably.

Author: Andres Freund, with feedback by Peter Eisentraut
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
2018-03-22 11:51:58 -07:00
Tom Lane 0a459cec96 Support all SQL:2011 options for window frame clauses.
This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING"
frame boundaries in window functions.  We'd punted on that back in the
original patch to add window functions, because it was not clear how to
do it in a reasonably data-type-extensible fashion.  That problem is
resolved here by adding the ability for btree operator classes to provide
an "in_range" support function that defines how to add or subtract the
RANGE offset value.  Factoring it this way also allows the operator class
to avoid overflow problems near the ends of the datatype's range, if it
wishes to expend effort on that.  (In the committed patch, the integer
opclasses handle that issue, but it did not seem worth the trouble to
avoid overflow failures for datetime types.)

The patch includes in_range support for the integer_ops opfamily
(int2/int4/int8) as well as the standard datetime types.  Support for
other numeric types has been requested, but that seems like suitable
material for a follow-on patch.

In addition, the patch adds GROUPS mode which counts the offset in
ORDER-BY peer groups rather than rows, and it adds the frame_exclusion
options specified by SQL:2011.  As far as I can see, we are now fully
up to spec on window framing options.

Existing behaviors remain unchanged, except that I changed the errcode
for a couple of existing error reports to meet the SQL spec's expectation
that negative "offset" values should be reported as SQLSTATE 22013.

Internally and in relevant parts of the documentation, we now consistently
use the terminology "offset PRECEDING/FOLLOWING" rather than "value
PRECEDING/FOLLOWING", since the term "value" is confusingly vague.

Oliver Ford, reviewed and whacked around some by me

Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
2018-02-07 00:06:56 -05:00
Robert Haas 2f17844104 Allow UPDATE to move rows between partitions.
When an UPDATE causes a row to no longer match the partition
constraint, try to move it to a different partition where it does
match the partition constraint.  In essence, the UPDATE is split into
a DELETE from the old partition and an INSERT into the new one.  This
can lead to surprising behavior in concurrency scenarios because
EvalPlanQual rechecks won't work as they normally did; the known
problems are documented.  (There is a pending patch to improve the
situation further, but it needs more review.)

Amit Khandekar, reviewed and tested by Amit Langote, David Rowley,
Rajkumar Raghuwanshi, Dilip Kumar, Amul Sul, Thomas Munro, Álvaro
Herrera, Amit Kapila, and me.  A few final revisions by me.

Discussion: http://postgr.es/m/CAJ3gD9do9o2ccQ7j7+tSgiE1REY65XRiMb=yJO3u3QhyP8EEPQ@mail.gmail.com
2018-01-19 15:33:06 -05:00
Bruce Momjian 9d4649ca49 Update copyright for 2018
Backpatch-through: certain files through 9.3
2018-01-02 23:30:12 -05:00
Andres Freund 1804284042 Add parallel-aware hash joins.
Introduce parallel-aware hash joins that appear in EXPLAIN plans as Parallel
Hash Join with Parallel Hash.  While hash joins could already appear in
parallel queries, they were previously always parallel-oblivious and had a
partial subplan only on the outer side, meaning that the work of the inner
subplan was duplicated in every worker.

After this commit, the planner will consider using a partial subplan on the
inner side too, using the Parallel Hash node to divide the work over the
available CPU cores and combine its results in shared memory.  If the join
needs to be split into multiple batches in order to respect work_mem, then
workers process different batches as much as possible and then work together
on the remaining batches.

The advantages of a parallel-aware hash join over a parallel-oblivious hash
join used in a parallel query are that it:

 * avoids wasting memory on duplicated hash tables
 * avoids wasting disk space on duplicated batch files
 * divides the work of building the hash table over the CPUs

One disadvantage is that there is some communication between the participating
CPUs which might outweigh the benefits of parallelism in the case of small
hash tables.  This is avoided by the planner's existing reluctance to supply
partial plans for small scans, but it may be necessary to estimate
synchronization costs in future if that situation changes.  Another is that
outer batch 0 must be written to disk if multiple batches are required.

A potential future advantage of parallel-aware hash joins is that right and
full outer joins could be supported, since there is a single set of matched
bits for each hashtable, but that is not yet implemented.

A new GUC enable_parallel_hash is defined to control the feature, defaulting
to on.

Author: Thomas Munro
Reviewed-By: Andres Freund, Robert Haas
Tested-By: Rafia Sabih, Prabhat Sahu
Discussion:
    https://postgr.es/m/CAEepm=2W=cOkiZxcg6qiFQP-dHUe09aqTrEMM7yJDrHMhDv_RA@mail.gmail.com
    https://postgr.es/m/CAEepm=37HKyJ4U6XOLi=JgfSHM3o6B-GaeO-6hkOmneTDkH+Uw@mail.gmail.com
2017-12-21 00:43:41 -08:00
Robert Haas ab72716778 Support Parallel Append plan nodes.
When we create an Append node, we can spread out the workers over the
subplans instead of piling on to each subplan one at a time, which
should typically be a bit more efficient, both because the startup
cost of any plan executed entirely by one worker is paid only once and
also because of reduced contention.  We can also construct Append
plans using a mix of partial and non-partial subplans, which may allow
for parallelism in places that otherwise couldn't support it.
Unfortunately, this patch doesn't handle the important case of
parallelizing UNION ALL by running each branch in a separate worker;
the executor infrastructure is added here, but more planner work is
needed.

Amit Khandekar, Robert Haas, Amul Sul, reviewed and tested by
Ashutosh Bapat, Amit Langote, Rafia Sabih, Amit Kapila, and
Rajkumar Raghuwanshi.

Discussion: http://postgr.es/m/CAJ3gD9dy0K_E8r727heqXoBmWZ83HwLFwdcaSSmBQ1+S+vRuUQ@mail.gmail.com
2017-12-05 17:28:39 -05:00
Robert Haas e89a71fb44 Pass InitPlan values to workers via Gather (Merge).
If a PARAM_EXEC parameter is used below a Gather (Merge) but the InitPlan
that computes it is attached to or above the Gather (Merge), force the
value to be computed before starting parallelism and pass it down to all
workers.  This allows us to use parallelism in cases where it previously
would have had to be rejected as unsafe.  We do - in this case - lose the
optimization that the value is only computed if it's actually used.  An
alternative strategy would be to have the first worker that needs the value
compute it, but one downside of that approach is that we'd then need to
select a parallel-safe path to compute the parameter value; it couldn't for
example contain a Gather (Merge) node.  At some point in the future, we
might want to consider both approaches.

Independent of that consideration, there is a great deal more work that
could be done to make more kinds of PARAM_EXEC parameters parallel-safe.
This infrastructure could be used to allow a Gather (Merge) on the inner
side of a nested loop (although that's not a very appealing plan) and
cases where the InitPlan is attached below the Gather (Merge) could be
addressed as well using various techniques.  But this is a good start.

Amit Kapila, reviewed and revised by me.  Reviewing and testing from
Kuntal Ghosh, Haribabu Kommi, and Tushar Ahuja.

Discussion: http://postgr.es/m/CAA4eK1LV0Y1AUV4cUCdC+sYOx0Z0-8NAJ2Pd9=UKsbQ5Sr7+JQ@mail.gmail.com
2017-11-16 12:06:14 -05:00
Robert Haas e64861c79b Track in the plan the types associated with PARAM_EXEC parameters.
Up until now, we only tracked the number of parameters, which was
sufficient to allocate an array of Datums of the appropriate size,
but not sufficient to, for example, know how to serialize a Datum
stored in one of those slots.  An upcoming patch wants to do that,
so add this tracking to make it possible.

Patch by me, reviewed by Tom Lane and Amit Kapila.

Discussion: http://postgr.es/m/CA+TgmoYqpxDKn8koHdW8BEKk8FMUL0=e8m2Qe=M+r0UBjr3tuQ@mail.gmail.com
2017-11-13 15:24:12 -05:00
Robert Haas cff440d368 pg_stat_statements: Widen query IDs from 32 bits to 64 bits.
This takes advantage of the infrastructure introduced by commit
81c5e46c49 to greatly reduce the
likelihood that two different queries will end up with the same query
ID.  It's still possible, of course, but whereas before it the chances
of a collision reached 25% around 50,000 queries, it will now take
more than 3 billion queries.

Backward incompatibility: Because the type exposed at the SQL level is
int8, users may now see negative query IDs in the pg_stat_statements
view (and also, query IDs more than 4 billion, which was the old
limit).

Patch by me, reviewed by Michael Paquier and Peter Geoghegan.

Discussion: http://postgr.es/m/CA+TgmobG_Kp4cBKFmsznUAaM1GWW6hhRNiZC0KjRMOOeYnz5Yw@mail.gmail.com
2017-10-11 19:52:46 -04:00
Tom Lane 7df2c1f8da Force rescanning of parallel-aware scan nodes below a Gather[Merge].
The ExecReScan machinery contains various optimizations for postponing
or skipping rescans of plan subtrees; for example a HashAgg node may
conclude that it can re-use the table it built before, instead of
re-reading its input subtree.  But that is wrong if the input contains
a parallel-aware table scan node, since the portion of the table scanned
by the leader process is likely to vary from one rescan to the next.
This explains the timing-dependent buildfarm failures we saw after
commit a2b70c89c.

The established mechanism for showing that a plan node's output is
potentially variable is to mark it as depending on some runtime Param.
Hence, to fix this, invent a dummy Param (one that has a PARAM_EXEC
parameter number, but carries no actual value) associated with each Gather
or GatherMerge node, mark parallel-aware nodes below that node as dependent
on that Param, and arrange for ExecReScanGather[Merge] to flag that Param
as changed whenever the Gather[Merge] node is rescanned.

This solution breaks an undocumented assumption made by the parallel
executor logic, namely that all rescans of nodes below a Gather[Merge]
will happen synchronously during the ReScan of the top node itself.
But that's fundamentally contrary to the design of the ExecReScan code,
and so was doomed to fail someday anyway (even if you want to argue
that the bug being fixed here wasn't a failure of that assumption).
A follow-on patch will address that issue.  In the meantime, the worst
that's expected to happen is that given very bad timing luck, the leader
might have to do all the work during a rescan, because workers think
they have nothing to do, if they are able to start up before the eventual
ReScan of the leader's parallel-aware table scan node has reset the
shared scan state.

Although this problem exists in 9.6, there does not seem to be any way
for it to manifest there.  Without GatherMerge, it seems that a plan tree
that has a rescan-short-circuiting node below Gather will always also
have one above it that will short-circuit in the same cases, preventing
the Gather from being rescanned.  Hence we won't take the risk of
back-patching this change into 9.6.  But v10 needs it.

Discussion: https://postgr.es/m/CAA4eK1JkByysFJNh9M349u_nNjqETuEnY_y1VUc_kJiU0bxtaQ@mail.gmail.com
2017-08-30 09:29:55 -04:00
Robert Haas e694010758 Fix typo in comment.
Etsuro Fujita

Discussion: http://postgr.es/m/5f794b91-67df-1ac6-8a4f-069f8e8e169d@lab.ntt.co.jp
2017-08-10 13:14:47 -04:00
Tom Lane c7b8998ebb Phase 2 of pgindent updates.
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.

Commit e3860ffa4d wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code.  The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there.  BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs.  So the
net result is that in about half the cases, such comments are placed
one tab stop left of before.  This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.

Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.

This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.

Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 15:19:25 -04:00
Bruce Momjian a6fd7b7a5f Post-PG 10 beta1 pgindent run
perltidy run not included.
2017-05-17 16:31:56 -04:00
Tom Lane f674743487 Remove no-longer-needed fields of Hash plan nodes.
skewColType/skewColTypmod are no longer used in the wake of commit
9aab83fc5, and seem unlikely to be wanted in future, so let's drop 'em.

Discussion: https://postgr.es/m/16364.1494520862@sss.pgh.pa.us
2017-05-14 11:07:40 -04:00
Robert Haas e180c8aa8c Fire per-statement triggers on partitioned tables.
Even though no actual tuples are ever inserted into a partitioned
table (the actual tuples are in the partitions, not the partitioned
table itself), we still need to have a ResultRelInfo for the
partitioned table, or per-statement triggers won't get fired.

Amit Langote, per a report from Rajkumar Raghuwanshi.  Reviewed by me.

Discussion: http://postgr.es/m/CAKcux6%3DwYospCRY2J4XEFuVy0L41S%3Dfic7rmkbsU-GXhhSbmBg%40mail.gmail.com
2017-05-01 08:23:01 -04:00
Tom Lane 16ebab6886 Avoid transferring parallel-unsafe subplans to parallel workers.
Commit 5e6d8d2bb allowed parallel workers to execute parallel-safe
subplans, but it transmitted the query's entire list of subplans to
the worker(s).  Since execMain.c blindly does ExecInitNode and later
ExecEndNode on every list element, this resulted in parallel-unsafe plan
nodes nonetheless getting started up and shut down in parallel workers.
That seems mostly harmless as far as core plan node types go (but
maybe not so much for Gather?).  But it resulted in postgres_fdw
opening and then closing extra remote connections, and it's likely
that other non-parallel-safe FDWs or custom scan providers would have
worse reactions.

To fix, just make ExecSerializePlan replace parallel-unsafe subplans
with NULLs in the cut-down plan tree that it transmits to workers.
This relies on ExecInitNode and ExecEndNode to do nothing on NULL
input, but they do anyway.  If anything else is touching the dropped
subplans in a parallel worker, that would be a bug to be fixed.
(This thus provides a strong guarantee that we won't try to do
something with a parallel-unsafe subplan in a worker.)

This is, I think, the last fix directly occasioned by Andreas Seltenreich's
bug report of a few days ago.

Tom Lane and Amit Kapila

Discussion: https://postgr.es/m/87tw5x4vcu.fsf@credativ.de
2017-04-12 16:07:00 -04:00
Tom Lane 003d80f3df Mark finished Plan nodes with parallel_safe flags.
We'd managed to avoid doing this so far, but it seems pretty obvious
that it would be forced on us some day, and this is much the cleanest
way of approaching the open problem that parallel-unsafe subplans are
being transmitted to parallel workers.  Anyway there's no space cost
due to alignment considerations, and the time cost is pretty minimal
since we're just copying the flag from the corresponding Path node.
(At least in most cases ... some of the klugier spots in createplan.c
have to work a bit harder.)

In principle we could perhaps get rid of SubPlan.parallel_safe,
but I thought it better to keep that in case there are reasons to
consider a SubPlan unsafe even when its child plan is parallel-safe.

This patch doesn't actually do anything with the new flags, but
I thought I'd commit it separately anyway.

Note: although this touches outfuncs/readfuncs, there's no need for
a catversion bump because Plan trees aren't stored on disk.

Discussion: https://postgr.es/m/87tw5x4vcu.fsf@credativ.de
2017-04-12 15:13:34 -04:00
Tom Lane 9c7f5229ad Optimize joins when the inner relation can be proven unique.
If there can certainly be no more than one matching inner row for a given
outer row, then the executor can move on to the next outer row as soon as
it's found one match; there's no need to continue scanning the inner
relation for this outer row.  This saves useless scanning in nestloop
and hash joins.  In merge joins, it offers the opportunity to skip
mark/restore processing, because we know we have not advanced past the
first possible match for the next outer row.

Of course, the devil is in the details: the proof of uniqueness must
depend only on joinquals (not otherquals), and if we want to skip
mergejoin mark/restore then it must depend only on merge clauses.
To avoid adding more planning overhead than absolutely necessary,
the present patch errs in the conservative direction: there are cases
where inner_unique or skip_mark_restore processing could be used, but
it will not do so because it's not sure that the uniqueness proof
depended only on "safe" clauses.  This could be improved later.

David Rowley, reviewed and rather heavily editorialized on by me

Discussion: https://postgr.es/m/CAApHDvqF6Sw-TK98bW48TdtFJ+3a7D2mFyZ7++=D-RyPsL76gw@mail.gmail.com
2017-04-07 22:20:13 -04:00
Kevin Grittner 18ce3a4ab2 Add infrastructure to support EphemeralNamedRelation references.
A QueryEnvironment concept is added, which allows new types of
objects to be passed into queries from parsing on through
execution.  At this point, the only thing implemented is a
collection of EphemeralNamedRelation objects -- relations which
can be referenced by name in queries, but do not exist in the
catalogs.  The only type of ENR implemented is NamedTuplestore, but
provision is made to add more types fairly easily.

An ENR can carry its own TupleDesc or reference a relation in the
catalogs by relid.

Although these features can be used without SPI, convenience
functions are added to SPI so that ENRs can easily be used by code
run through SPI.

The initial use of all this is going to be transition tables in
AFTER triggers, but that will be added to each PL as a separate
commit.

An incidental effect of this patch is to produce a more informative
error message if an attempt is made to modify the contents of a CTE
from a referencing DML statement.  No tests previously covered that
possibility, so one is added.

Kevin Grittner and Thomas Munro
Reviewed by Heikki Linnakangas, David Fetter, and Thomas Munro
with valuable comments and suggestions from many others
2017-03-31 23:17:18 -05:00
Andrew Gierth b5635948ab Support hashed aggregation with grouping sets.
This extends the Aggregate node with two new features: HashAggregate
can now run multiple hashtables concurrently, and a new strategy
MixedAggregate populates hashtables while doing sorted grouping.

The planner will now attempt to save as many sorts as possible when
planning grouping sets queries, while not exceeding work_mem for the
estimated combined sizes of all hashtables used.  No SQL-level changes
are required.  There should be no user-visible impact other than the
new EXPLAIN output and possible changes to result ordering when ORDER
BY was not used (which affected a few regression tests).  The
enable_hashagg option is respected.

Author: Andrew Gierth
Reviewers: Mark Dilger, Andres Freund
Discussion: https://postgr.es/m/87vatszyhj.fsf@news-spur.riddles.org.uk
2017-03-27 04:20:54 +01:00
Robert Haas d3cc37f1d8 Don't scan partitioned tables.
Partitioned tables do not contain any data; only their unpartitioned
descendents need to be scanned.  However, the partitioned tables still
need to be locked, even though they're not scanned.  To make that
work, Append and MergeAppend relations now need to carry a list of
(unscanned) partitioned relations that must be locked, and InitPlan
must lock all partitioned result relations.

Aside from the obvious advantage of avoiding some work at execution
time, this has two other advantages.  First, it may improve the
planner's decision-making in some cases since the empty relation
might throw things off.  Second, it paves the way to getting rid of
the storage for partitioned tables altogether.

Amit Langote, reviewed by me.

Discussion: http://postgr.es/m/6837c359-45c4-8044-34d1-736756335a15@lab.ntt.co.jp
2017-03-21 09:48:04 -04:00
Robert Haas 355d3993c5 Add a Gather Merge executor node.
Like Gather, we spawn multiple workers and run the same plan in each
one; however, Gather Merge is used when each worker produces the same
output ordering and we want to preserve that output ordering while
merging together the streams of tuples from various workers.  (In a
way, Gather Merge is like a hybrid of Gather and MergeAppend.)

This works out to a win if it saves us from having to perform an
expensive Sort.  In cases where only a small amount of data would need
to be sorted, it may actually be faster to use a regular Gather node
and then sort the results afterward, because Gather Merge sometimes
needs to wait synchronously for tuples whereas a pure Gather generally
doesn't.  But if this avoids an expensive sort then it's a win.

Rushabh Lathia, reviewed and tested by Amit Kapila, Thomas Munro,
and Neha Sharma, and reviewed and revised by me.

Discussion: http://postgr.es/m/CAGPqQf09oPX-cQRpBKS0Gq49Z+m6KBxgxd_p9gX8CKk_d75HoQ@mail.gmail.com
2017-03-09 07:49:29 -05:00
Robert Haas f35742ccb7 Support parallel bitmap heap scans.
The index is scanned by a single process, but then all cooperating
processes can iterate jointly over the resulting set of heap blocks.
In the future, we might also want to support using a parallel bitmap
index scan to set up for a parallel bitmap heap scan, but that's a
job for another day.

Dilip Kumar, with some corrections and cosmetic changes by me.  The
larger patch set of which this is a part has been reviewed and tested
by (at least) Andres Freund, Amit Khandekar, Tushar Ahuja, Rafia
Sabih, Haribabu Kommi, Thomas Munro, and me.

Discussion: http://postgr.es/m/CAFiTN-uc4=0WxRGfCzs-xfkMYcSEWUC-Fon6thkJGjkh9i=13A@mail.gmail.com
2017-03-08 12:05:43 -05:00
Alvaro Herrera fcec6caafa Support XMLTABLE query expression
XMLTABLE is defined by the SQL/XML standard as a feature that allows
turning XML-formatted data into relational form, so that it can be used
as a <table primary> in the FROM clause of a query.

This new construct provides significant simplicity and performance
benefit for XML data processing; what in a client-side custom
implementation was reported to take 20 minutes can be executed in 400ms
using XMLTABLE.  (The same functionality was said to take 10 seconds
using nested PostgreSQL XPath function calls, and 5 seconds using
XMLReader under PL/Python).

The implemented syntax deviates slightly from what the standard
requires.  First, the standard indicates that the PASSING clause is
optional and that multiple XML input documents may be given to it; we
make it mandatory and accept a single document only.  Second, we don't
currently support a default namespace to be specified.

This implementation relies on a new executor node based on a hardcoded
method table.  (Because the grammar is fixed, there is no extensibility
in the current approach; further constructs can be implemented on top of
this such as JSON_TABLE, but they require changes to core code.)

Author: Pavel Stehule, Álvaro Herrera
Extensively reviewed by: Craig Ringer
Discussion: https://postgr.es/m/CAFj8pRAgfzMD-LoSmnMGybD0WsEznLHWap8DO79+-GTRAPR4qA@mail.gmail.com
2017-03-08 12:40:26 -03:00
Andres Freund 69f4b9c85f Move targetlist SRF handling from expression evaluation to new executor node.
Evaluation of set returning functions (SRFs_ in the targetlist (like SELECT
generate_series(1,5)) so far was done in the expression evaluation (i.e.
ExecEvalExpr()) and projection (i.e. ExecProject/ExecTargetList) code.

This meant that most executor nodes performing projection, and most
expression evaluation functions, had to deal with the possibility that an
evaluated expression could return a set of return values.

That's bad because it leads to repeated code in a lot of places. It also,
and that's my (Andres's) motivation, made it a lot harder to implement a
more efficient way of doing expression evaluation.

To fix this, introduce a new executor node (ProjectSet) that can evaluate
targetlists containing one or more SRFs. To avoid the complexity of the old
way of handling nested expressions returning sets (e.g. having to pass up
ExprDoneCond, and dealing with arguments to functions returning sets etc.),
those SRFs can only be at the top level of the node's targetlist.  The
planner makes sure (via split_pathtarget_at_srfs()) that SRF evaluation is
only necessary in ProjectSet nodes and that SRFs are only present at the
top level of the node's targetlist. If there are nested SRFs the planner
creates multiple stacked ProjectSet nodes.  The ProjectSet nodes always get
input from an underlying node.

We also discussed and prototyped evaluating targetlist SRFs using ROWS
FROM(), but that turned out to be more complicated than we'd hoped.

While moving SRF evaluation to ProjectSet would allow to retain the old
"least common multiple" behavior when multiple SRFs are present in one
targetlist (i.e.  continue returning rows until all SRFs are at the end of
their input at the same time), we decided to instead only return rows till
all SRFs are exhausted, returning NULL for already exhausted ones.  We
deemed the previous behavior to be too confusing, unexpected and actually
not particularly useful.

As a side effect, the previously prohibited case of multiple set returning
arguments to a function, is now allowed. Not because it's particularly
desirable, but because it ends up working and there seems to be no argument
for adding code to prohibit it.

Currently the behavior for COALESCE and CASE containing SRFs has changed,
returning multiple rows from the expression, even when the SRF containing
"arm" of the expression is not evaluated. That's because the SRFs are
evaluated in a separate ProjectSet node.  As that's quite confusing, we're
likely to instead prohibit SRFs in those places.  But that's still being
discussed, and the code would reside in places not touched here, so that's
a task for later.

There's a lot of, now superfluous, code dealing with set return expressions
around. But as the changes to get rid of those are verbose largely boring,
it seems better for readability to keep the cleanup as a separate commit.

Author: Tom Lane and Andres Freund
Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
2017-01-18 13:40:27 -08:00
Tom Lane ab1f0c8225 Change representation of statement lists, and add statement location info.
This patch makes several changes that improve the consistency of
representation of lists of statements.  It's always been the case
that the output of parse analysis is a list of Query nodes, whatever
the types of the individual statements in the list.  This patch brings
similar consistency to the outputs of raw parsing and planning steps:

* The output of raw parsing is now always a list of RawStmt nodes;
the statement-type-dependent nodes are one level down from that.

* The output of pg_plan_queries() is now always a list of PlannedStmt
nodes, even for utility statements.  In the case of a utility statement,
"planning" just consists of wrapping a CMD_UTILITY PlannedStmt around
the utility node.  This list representation is now used in Portal and
CachedPlan plan lists, replacing the former convention of intermixing
PlannedStmts with bare utility-statement nodes.

Now, every list of statements has a consistent head-node type depending
on how far along it is in processing.  This allows changing many places
that formerly used generic "Node *" pointers to use a more specific
pointer type, thus reducing the number of IsA() tests and casts needed,
as well as improving code clarity.

Also, the post-parse-analysis representation of DECLARE CURSOR is changed
so that it looks more like EXPLAIN, PREPARE, etc.  That is, the contained
SELECT remains a child of the DeclareCursorStmt rather than getting flipped
around to be the other way.  It's now true for both Query and PlannedStmt
that utilityStmt is non-null if and only if commandType is CMD_UTILITY.
That allows simplifying a lot of places that were testing both fields.
(I think some of those were just defensive programming, but in many places,
it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.)

Because PlannedStmt carries a canSetTag field, we're also able to get rid
of some ad-hoc rules about how to reconstruct canSetTag for a bare utility
statement; specifically, the assumption that a utility is canSetTag if and
only if it's the only one in its list.  While I see no near-term need for
relaxing that restriction, it's nice to get rid of the ad-hocery.

The API of ProcessUtility() is changed so that what it's passed is the
wrapper PlannedStmt not just the bare utility statement.  This will affect
all users of ProcessUtility_hook, but the changes are pretty trivial; see
the affected contrib modules for examples of the minimum change needed.
(Most compilers should give pointer-type-mismatch warnings for uncorrected
code.)

There's also a change in the API of ExplainOneQuery_hook, to pass through
cursorOptions instead of expecting hook functions to know what to pick.
This is needed because of the DECLARE CURSOR changes, but really should
have been done in 9.6; it's unlikely that any extant hook functions
know about using CURSOR_OPT_PARALLEL_OK.

Finally, teach gram.y to save statement boundary locations in RawStmt
nodes, and pass those through to Query and PlannedStmt nodes.  This allows
more intelligent handling of cases where a source query string contains
multiple statements.  This patch doesn't actually do anything with the
information, but a follow-on patch will.  (Passing this information through
cleanly is the true motivation for these changes; while I think this is all
good cleanup, it's unlikely we'd have bothered without this end goal.)

catversion bump because addition of location fields to struct Query
affects stored rules.

This patch is by me, but it owes a good deal to Fabien Coelho who did
a lot of preliminary work on the problem, and also reviewed the patch.

Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
2017-01-14 16:02:35 -05:00
Bruce Momjian 1d25779284 Update copyright via script for 2017 2017-01-03 13:48:53 -05:00
Robert Haas 530fb68e0f Update comments to reflect code rearrangement.
Commit f9143d102f falsified these.

KaiGai Kohei
2016-08-31 12:36:18 +05:30
Tom Lane 2c00fad286 Fix improper repetition of previous results from a hashed aggregate.
ExecReScanAgg's check for whether it could re-use a previously calculated
hashtable neglected the possibility that the Agg node might reference
PARAM_EXEC Params that are not referenced by its input plan node.  That's
okay if the Params are in upper tlist or qual expressions; but if one
appears in aggregate input expressions, then the hashtable contents need
to be recomputed when the Param's value changes.

To avoid unnecessary performance degradation in the case of a Param that
isn't within an aggregate input, add logic to the planner to determine
which Params are within aggregate inputs.  This requires a new field in
struct Agg, but fortunately we never write plans to disk, so this isn't
an initdb-forcing change.

Per report from Jeevan Chalke.  This has been broken since forever,
so back-patch to all supported branches.

Andrew Gierth, with minor adjustments by me

Report: <CAM2+6=VY8ykfLT5Q8vb9B6EbeBk-NGuLbT6seaQ+Fq4zXvrDcA@mail.gmail.com>
2016-08-24 14:38:12 -04:00
Tom Lane 45639a0525 Avoid invalidating all foreign-join cached plans when user mappings change.
We must not push down a foreign join when the foreign tables involved
should be accessed under different user mappings.  Previously we tried
to enforce that rule literally during planning, but that meant that the
resulting plans were dependent on the current contents of the
pg_user_mapping catalog, and we had to blow away all cached plans
containing any remote join when anything at all changed in pg_user_mapping.
This could have been improved somewhat, but the fact that a syscache inval
callback has very limited info about what changed made it hard to do better
within that design.  Instead, let's change the planner to not consider user
mappings per se, but to allow a foreign join if both RTEs have the same
checkAsUser value.  If they do, then they necessarily will use the same
user mapping at runtime, and we don't need to know specifically which one
that is.  Post-plan-time changes in pg_user_mapping no longer require any
plan invalidation.

This rule does give up some optimization ability, to wit where two foreign
table references come from views with different owners or one's from a view
and one's directly in the query, but nonetheless the same user mapping
would have applied.  We'll sacrifice the first case, but to not regress
more than we have to in the second case, allow a foreign join involving
both zero and nonzero checkAsUser values if the nonzero one is the same as
the prevailing effective userID.  In that case, mark the plan as only
runnable by that userID.

The plancache code already had a notion of plans being userID-specific,
in order to support RLS.  It was a little confused though, in particular
lacking clarity of thought as to whether it was the rewritten query or just
the finished plan that's dependent on the userID.  Rearrange that code so
that it's clearer what depends on which, and so that the same logic applies
to both RLS-injected role dependency and foreign-join-injected role
dependency.

Note that this patch doesn't remove the other issue mentioned in the
original complaint, which is that while we'll reliably stop using a foreign
join if it's disallowed in a new context, we might fail to start using a
foreign join if it's now allowed, but we previously created a generic
cached plan that didn't use one.  It was agreed that the chance of winning
that way was not high enough to justify the much larger number of plan
invalidations that would have to occur if we tried to cause it to happen.

In passing, clean up randomly-varying spelling of EXPLAIN commands in
postgres_fdw.sql, and fix a COSTS ON example that had been allowed to
leak into the committed tests.

This reverts most of commits fbe5a3fb7 and 5d4171d1c, which were the
previous attempt at ensuring we wouldn't push down foreign joins that
span permissions contexts.

Etsuro Fujita and Tom Lane

Discussion: <d49c1e5b-f059-20f4-c132-e9752ee0113e@lab.ntt.co.jp>
2016-07-15 17:23:02 -04:00
Tom Lane 19e972d558 Rethink node-level representation of partial-aggregation modes.
The original coding had three separate booleans representing partial
aggregation behavior, which was confusing, unreadable, and error-prone,
not least because the booleans weren't always listed in the same order.
It was also inadequate for the allegedly-desirable future extension to
support intermediate partial aggregation, because we'd need separate
markers for serialization and deserialization in such a case.

Merge these bools into an enum "AggSplit" to provide symbolic names for
the supported operating modes (and document what those are).  By assigning
the values of the enum constants carefully, we can treat AggSplit values
as options bitmasks so that tests of what to do aren't noticeably more
expensive than before.

While at it, get rid of Aggref.aggoutputtype.  That's not needed since
commit 59a3795c2 got rid of setrefs.c's special-purpose Aggref comparison
code, and it likewise seemed more confusing than helpful.

Assorted comment cleanup as well (there's still more that I want to do
in that line).

catversion bump for change in Aggref node contents.  Should be the last
one for partial-aggregation changes.

Discussion: <29309.1466699160@sss.pgh.pa.us>
2016-06-26 14:33:38 -04:00
Robert Haas 4bc424b968 pgindent run for 9.6 2016-06-09 18:02:36 -04:00
Robert Haas 5fe5a2cee9 Allow aggregate transition states to be serialized and deserialized.
This is necessary infrastructure for supporting parallel aggregation
for aggregates whose transition type is "internal".  Such values
can't be passed between cooperating processes, because they are
just pointers.

David Rowley, reviewed by Tomas Vondra and by me.
2016-03-29 15:04:05 -04:00
Robert Haas f9143d102f Rework custom scans to work more like the new extensible node stuff.
Per discussion, the new extensible node framework is thought to be
better designed than the custom path/scan/scanstate stuff we added
in PostgreSQL 9.5.  Rework the latter to be more like the former.

This is not backward-compatible, but we generally don't promise that
for C APIs, and there probably aren't many people using this yet
anyway.

KaiGai Kohei, reviewed by Petr Jelinek and me.  Some further
cosmetic changes by me.
2016-03-29 11:28:04 -04:00
Robert Haas 0bf3ae88af Directly modify foreign tables.
postgres_fdw can now sent an UPDATE or DELETE statement directly to
the foreign server in simple cases, rather than sending a SELECT FOR
UPDATE statement and then updating or deleting rows one-by-one.

Etsuro Fujita, reviewed by Rushabh Lathia, Shigeru Hanada, Kyotaro
Horiguchi, Albe Laurenz, Thom Brown, and me.
2016-03-18 13:55:52 -04:00
Tom Lane 3fc6e2d7f5 Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is.  This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps.  Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step.  We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.

In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan.  It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation.  (A couple of regression test outputs change in consequence of
that.  However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)

There is a great deal left to do here.  This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations.  (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.)  I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.

Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 15:58:22 -05:00
Robert Haas 7c944bd903 Introduce a new GUC force_parallel_mode for testing purposes.
When force_parallel_mode = true, we enable the parallel mode restrictions
for all queries for which this is believed to be safe.  For the subset of
those queries believed to be safe to run entirely within a worker, we spin
up a worker and run the query there instead of running it in the
original process.  When force_parallel_mode = regress, make additional
changes to allow the regression tests to run cleanly even though parallel
workers have been injected under the hood.

Taken together, this facilitates both better user testing and better
regression testing of the parallelism code.

Robert Haas, with help from Amit Kapila and Rushabh Lathia.
2016-02-07 11:41:33 -05:00
Robert Haas fbe5a3fb73 Only try to push down foreign joins if the user mapping OIDs match.
Previously, the foreign join pushdown infrastructure left the question
of security entirely up to individual FDWs, but it would be easy for
a foreign data wrapper to inadvertently open up subtle security holes
that way.  So, make it the core code's job to determine which user
mapping OID is relevant, and don't attempt join pushdown unless it's
the same for all relevant relations.

Per a suggestion from Tom Lane.  Shigeru Hanada and Ashutosh Bapat,
reviewed by Etsuro Fujita and KaiGai Kohei, with some further
changes by me.
2016-01-28 14:05:36 -05:00
Robert Haas a7de3dc5c3 Support multi-stage aggregation.
Aggregate nodes now have two new modes: a "partial" mode where they
output the unfinalized transition state, and a "finalize" mode where
they accept unfinalized transition states rather than individual
values as input.

These new modes are not used anywhere yet, but they will be necessary
for parallel aggregation.  The infrastructure also figures to be
useful for cases where we want to aggregate local data and remote
data via the FDW interface, and want to bring back partial aggregates
from the remote side that can then be combined with locally generated
partial aggregates to produce the final value.  It may also be useful
even when neither FDWs nor parallelism are in play, as explained in
the comments in nodeAgg.c.

David Rowley and Simon Riggs, reviewed by KaiGai Kohei, Heikki
Linnakangas, Haribabu Kommi, and me.
2016-01-20 13:46:50 -05:00
Bruce Momjian ee94300446 Update copyright for 2016
Backpatch certain files through 9.1
2016-01-02 13:33:40 -05:00
Robert Haas a05dc4d7fd Provide readfuncs support for custom scans.
Commit a0d9f6e434 added this support for
all other plan node types; this fills in the gap.

Since TextOutCustomScan complicates this and is pretty well useless,
remove it.

KaiGai Kohei, with some modifications by me.
2015-11-12 07:40:31 -05:00
Robert Haas f0661c4e8c Make sequential scans parallel-aware.
In addition, this path fills in a number of missing bits and pieces in
the parallel infrastructure.  Paths and plans now have a parallel_aware
flag indicating whether whatever parallel-aware logic they have should
be engaged.  It is believed that we will need this flag for a number of
path/plan types, not just sequential scans, which is why the flag is
generic rather than part of the SeqScan structures specifically.
Also, execParallel.c now gives parallel nodes a chance to initialize
their PlanState nodes from the DSM during parallel worker startup.

Amit Kapila, with a fair amount of adjustment by me.  Review of previous
patch versions by Haribabu Kommi and others.
2015-11-11 08:57:52 -05:00
Robert Haas a1c466c5dd Fix incorrect comment in plannodes.h
Etsuro Fujita
2015-10-20 11:11:35 -04:00
Robert Haas 5fc4c26db5 Allow FDWs to push down quals without breaking EvalPlanQual rechecks.
This fixes a long-standing bug which was discovered while investigating
the interaction between the new join pushdown code and the EvalPlanQual
machinery: if a ForeignScan appears on the inner side of a paramaterized
nestloop, an EPQ recheck would re-return the original tuple even if
it no longer satisfied the pushed-down quals due to changed parameter
values.

This fix adds a new member to ForeignScan and ForeignScanState and a
new argument to make_foreignscan, and requires changes to FDWs which
push down quals to populate that new argument with a list of quals they
have chosen to push down.  Therefore, I'm only back-patching to 9.5,
even though the bug is not new in 9.5.

Etsuro Fujita, reviewed by me and by Kyotaro Horiguchi.
2015-10-15 13:00:40 -04:00
Robert Haas 3bd909b220 Add a Gather executor node.
A Gather executor node runs any number of copies of a plan in an equal
number of workers and merges all of the results into a single tuple
stream.  It can also run the plan itself, if the workers are
unavailable or haven't started up yet.  It is intended to work with
the Partial Seq Scan node which will be added in future commits.

It could also be used to implement parallel query of a different sort
by itself, without help from Partial Seq Scan, if the single_copy mode
is used.  In that mode, a worker executes the plan, and the parallel
leader does not, merely collecting the worker's results.  So, a Gather
node could be inserted into a plan to split the execution of that plan
across two processes.  Nested Gather nodes aren't currently supported,
but we might want to add support for that in the future.

There's nothing in the planner to actually generate Gather nodes yet,
so it's not quite time to break out the champagne.  But we're getting
close.

Amit Kapila.  Some designs suggestions were provided by me, and I also
reviewed the patch.  Single-copy mode, documentation, and other minor
changes also by me.
2015-09-30 19:23:36 -04:00
Robert Haas d1b7c1ffe7 Parallel executor support.
This code provides infrastructure for a parallel leader to start up
parallel workers to execute subtrees of the plan tree being executed
in the master.  User-supplied parameters from ParamListInfo are passed
down, but PARAM_EXEC parameters are not.  Various other constructs,
such as initplans, subplans, and CTEs, are also not currently shared.
Nevertheless, there's enough here to support a basic implementation of
parallel query, and we can lift some of the current restrictions as
needed.

Amit Kapila and Robert Haas
2015-09-28 21:55:57 -04:00