Commit Graph

1943 Commits

Author SHA1 Message Date
Peter Eisentraut 5e1963fb76 Collations with nondeterministic comparison
This adds a flag "deterministic" to collations.  If that is false,
such a collation disables various optimizations that assume that
strings are equal only if they are byte-wise equal.  That then allows
use cases such as case-insensitive or accent-insensitive comparisons
or handling of strings with different Unicode normal forms.

This functionality is only supported with the ICU provider.  At least
glibc doesn't appear to have any locales that work in a
nondeterministic way, so it's not worth supporting this for the libc
provider.

The term "deterministic comparison" in this context is from Unicode
Technical Standard #10
(https://unicode.org/reports/tr10/#Deterministic_Comparison).

This patch makes changes in three areas:

- CREATE COLLATION DDL changes and system catalog changes to support
  this new flag.

- Many executor nodes and auxiliary code are extended to track
  collations.  Previously, this code would just throw away collation
  information, because the eventually-called user-defined functions
  didn't use it since they only cared about equality, which didn't
  need collation information.

- String data type functions that do equality comparisons and hashing
  are changed to take the (non-)deterministic flag into account.  For
  comparison, this just means skipping various shortcuts and tie
  breakers that use byte-wise comparison.  For hashing, we first need
  to convert the input string to a canonical "sort key" using the ICU
  analogue of strxfrm().

Reviewed-by: Daniel Verite <daniel@manitou-mail.org>
Reviewed-by: Peter Geoghegan <pg@bowt.ie>
Discussion: https://www.postgresql.org/message-id/flat/1ccc668f-4cbc-0bef-af67-450b47cdfee7@2ndquadrant.com
2019-03-22 12:12:43 +01:00
Thomas Munro bb16aba50c Enable parallel query with SERIALIZABLE isolation.
Previously, the SERIALIZABLE isolation level prevented parallel query
from being used.  Allow the two features to be used together by
sharing the leader's SERIALIZABLEXACT with parallel workers.

An extra per-SERIALIZABLEXACT LWLock is introduced to make it safe to
share, and new logic is introduced to coordinate the early release
of the SERIALIZABLEXACT required for the SXACT_FLAG_RO_SAFE
optimization, as follows:

The first backend to observe the SXACT_FLAG_RO_SAFE flag (set by
some other transaction) will 'partially release' the SERIALIZABLEXACT,
meaning that the conflicts and locks it holds are released, but the
SERIALIZABLEXACT itself will remain active because other backends
might still have a pointer to it.

Whenever any backend notices the SXACT_FLAG_RO_SAFE flag, it clears
its own MySerializableXact variable and frees local resources so that
it can skip SSI checks for the rest of the transaction.  In the
special case of the leader process, it transfers the SERIALIZABLEXACT
to a new variable SavedSerializableXact, so that it can be completely
released at the end of the transaction after all workers have exited.

Remove the serializable_okay flag added to CreateParallelContext() by
commit 9da0cc35, because it's now redundant.

Author: Thomas Munro
Reviewed-by: Haribabu Kommi, Robert Haas, Masahiko Sawada, Kevin Grittner
Discussion: https://postgr.es/m/CAEepm=0gXGYhtrVDWOTHS8SQQy_=S9xo+8oCxGLWZAOoeJ=yzQ@mail.gmail.com
2019-03-15 17:47:04 +13:00
Peter Eisentraut 8bee36708f Remove unused #include 2019-03-14 22:03:14 +01:00
Peter Eisentraut c6ff0b892c Refactor ParamListInfo initialization
There were six copies of identical nontrivial code.  Put it into a
function.
2019-03-14 13:30:09 +01:00
Andres Freund c2fe139c20 tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:

1) Heap scans need to be generalized into table scans. Do this by
   introducing TableScanDesc, which will be the "base class" for
   individual AMs. This contains the AM independent fields from
   HeapScanDesc.

   The previous heap_{beginscan,rescan,endscan} et al. have been
   replaced with a table_ version.

   There's no direct replacement for heap_getnext(), as that returned
   a HeapTuple, which is undesirable for a other AMs. Instead there's
   table_scan_getnextslot().  But note that heap_getnext() lives on,
   it's still used widely to access catalog tables.

   This is achieved by new scan_begin, scan_end, scan_rescan,
   scan_getnextslot callbacks.

2) The portion of parallel scans that's shared between backends need
   to be able to do so without the user doing per-AM work. To achieve
   that new parallelscan_{estimate, initialize, reinitialize}
   callbacks are introduced, which operate on a new
   ParallelTableScanDesc, which again can be subclassed by AMs.

   As it is likely that several AMs are going to be block oriented,
   block oriented callbacks that can be shared between such AMs are
   provided and used by heap. table_block_parallelscan_{estimate,
   intiialize, reinitialize} as callbacks, and
   table_block_parallelscan_{nextpage, init} for use in AMs. These
   operate on a ParallelBlockTableScanDesc.

3) Index scans need to be able to access tables to return a tuple, and
   there needs to be state across individual accesses to the heap to
   store state like buffers. That's now handled by introducing a
   sort-of-scan IndexFetchTable, which again is intended to be
   subclassed by individual AMs (for heap IndexFetchHeap).

   The relevant callbacks for an AM are index_fetch_{end, begin,
   reset} to create the necessary state, and index_fetch_tuple to
   retrieve an indexed tuple.  Note that index_fetch_tuple
   implementations need to be smarter than just blindly fetching the
   tuples for AMs that have optimizations similar to heap's HOT - the
   currently alive tuple in the update chain needs to be fetched if
   appropriate.

   Similar to table_scan_getnextslot(), it's undesirable to continue
   to return HeapTuples. Thus index_fetch_heap (might want to rename
   that later) now accepts a slot as an argument. Core code doesn't
   have a lot of call sites performing index scans without going
   through the systable_* API (in contrast to loads of heap_getnext
   calls and working directly with HeapTuples).

   Index scans now store the result of a search in
   IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
   target is not generally a HeapTuple anymore that seems cleaner.

To be able to sensible adapt code to use the above, two further
callbacks have been introduced:

a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
   slots capable of holding a tuple of the AMs
   type. table_slot_callbacks() and table_slot_create() are based
   upon that, but have additional logic to deal with views, foreign
   tables, etc.

   While this change could have been done separately, nearly all the
   call sites that needed to be adapted for the rest of this commit
   also would have been needed to be adapted for
   table_slot_callbacks(), making separation not worthwhile.

b) tuple_satisfies_snapshot checks whether the tuple in a slot is
   currently visible according to a snapshot. That's required as a few
   places now don't have a buffer + HeapTuple around, but a
   slot (which in heap's case internally has that information).

Additionally a few infrastructure changes were needed:

I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
   internally uses a slot to keep track of tuples. While
   systable_getnext() still returns HeapTuples, and will so for the
   foreseeable future, the index API (see 1) above) now only deals with
   slots.

The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.

Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
    https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
    https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
2019-03-11 12:46:41 -07:00
Alvaro Herrera af38498d4c Move hash_any prototype from access/hash.h to utils/hashutils.h
... as well as its implementation from backend/access/hash/hashfunc.c to
backend/utils/hash/hashfn.c.

access/hash is the place for the hash index AM, not really appropriate
for generic facilities, which is what hash_any is; having things the old
way meant that anything using hash_any had to include the AM's include
file, pointlessly polluting its namespace with unrelated, unnecessary
cruft.

Also move the HTEqual strategy number to access/stratnum.h from
access/hash.h.

To avoid breaking third-party extension code, add an #include
"utils/hashutils.h" to access/hash.h.  (An easily removed line by
committers who enjoy their asbestos suits to protect them from angry
extension authors.)

Discussion: https://postgr.es/m/201901251935.ser5e4h6djt2@alvherre.pgsql
2019-03-11 13:17:50 -03:00
Robert Haas 898e5e3290 Allow ATTACH PARTITION with only ShareUpdateExclusiveLock.
We still require AccessExclusiveLock on the partition itself, because
otherwise an insert that violates the newly-imposed partition
constraint could be in progress at the same time that we're changing
that constraint; only the lock level on the parent relation is
weakened.

To make this safe, we have to cope with (at least) three separate
problems. First, relevant DDL might commit while we're in the process
of building a PartitionDesc.  If so, find_inheritance_children() might
see a new partition while the RELOID system cache still has the old
partition bound cached, and even before invalidation messages have
been queued.  To fix that, if we see that the pg_class tuple seems to
be missing or to have a null relpartbound, refetch the value directly
from the table. We can't get the wrong value, because DETACH PARTITION
still requires AccessExclusiveLock throughout; if we ever want to
change that, this will need more thought. In testing, I found it quite
difficult to hit even the null-relpartbound case; the race condition
is extremely tight, but the theoretical risk is there.

Second, successive calls to RelationGetPartitionDesc might not return
the same answer.  The query planner will get confused if lookup up the
PartitionDesc for a particular relation does not return a consistent
answer for the entire duration of query planning.  Likewise, query
execution will get confused if the same relation seems to have a
different PartitionDesc at different times.  Invent a new
PartitionDirectory concept and use it to ensure consistency.  This
ensures that a single invocation of either the planner or the executor
sees the same view of the PartitionDesc from beginning to end, but it
does not guarantee that the planner and the executor see the same
view.  Since this allows pointers to old PartitionDesc entries to
survive even after a relcache rebuild, also postpone removing the old
PartitionDesc entry until we're certain no one is using it.

For the most part, it seems to be OK for the planner and executor to
have different views of the PartitionDesc, because the executor will
just ignore any concurrently added partitions which were unknown at
plan time; those partitions won't be part of the inheritance
expansion, but invalidation messages will trigger replanning at some
point.  Normally, this happens by the time the very next command is
executed, but if the next command acquires no locks and executes a
prepared query, it can manage not to notice until a new transaction is
started.  We might want to tighten that up, but it's material for a
separate patch.  There would still be a small window where a query
that started just after an ATTACH PARTITION command committed might
fail to notice its results -- but only if the command starts before
the commit has been acknowledged to the user. All in all, the warts
here around serializability seem small enough to be worth accepting
for the considerable advantage of being able to add partitions without
a full table lock.

Although in general the consequences of new partitions showing up
between planning and execution are limited to the query not noticing
the new partitions, run-time partition pruning will get confused in
that case, so that's the third problem that this patch fixes.
Run-time partition pruning assumes that indexes into the PartitionDesc
are stable between planning and execution.  So, add code so that if
new partitions are added between plan time and execution time, the
indexes stored in the subplan_map[] and subpart_map[] arrays within
the plan's PartitionedRelPruneInfo get adjusted accordingly.  There
does not seem to be a simple way to generalize this scheme to cope
with partitions that are removed, mostly because they could then get
added back again with different bounds, but it works OK for added
partitions.

This code does not try to ensure that every backend participating in
a parallel query sees the same view of the PartitionDesc.  That
currently doesn't matter, because we never pass PartitionDesc
indexes between backends.  Each backend will ignore the concurrently
added partitions which it notices, and it doesn't matter if different
backends are ignoring different sets of concurrently added partitions.
If in the future that matters, for example because we allow writes in
parallel query and want all participants to do tuple routing to the same
set of partitions, the PartitionDirectory concept could be improved to
share PartitionDescs across backends.  There is a draft patch to
serialize and restore PartitionDescs on the thread where this patch
was discussed, which may be a useful place to start.

Patch by me.  Thanks to Alvaro Herrera, David Rowley, Simon Riggs,
Amit Langote, and Michael Paquier for discussion, and to Alvaro
Herrera for some review.

Discussion: http://postgr.es/m/CA+Tgmobt2upbSocvvDej3yzokd7AkiT+PvgFH+a9-5VV1oJNSQ@mail.gmail.com
Discussion: http://postgr.es/m/CA+TgmoZE0r9-cyA-aY6f8WFEROaDLLL7Vf81kZ8MtFCkxpeQSw@mail.gmail.com
Discussion: http://postgr.es/m/CA+TgmoY13KQZF-=HNTrt9UYWYx3_oYOQpu9ioNT49jGgiDpUEA@mail.gmail.com
2019-03-07 11:13:12 -05:00
Andres Freund 277cb78983 Don't reuse slots between root and partition in ON CONFLICT ... UPDATE.
Until now the the slot to store the conflicting tuple, and the result
of the ON CONFLICT SET, where reused between partitions. That
necessitated changing slots descriptor when switching partitions.

Besides the overhead of switching descriptors on a slot (which
requires memory allocations and prevents JITing), that's importantly
also problematic for tableam. There individual partitions might belong
to different tableams, needing different kinds of slots.

In passing also fix ExecOnConflictUpdate to clear the existing slot at
exit. Otherwise that slot could continue to hold a pin till the query
ends, which could be far too long if the input data set is large, and
there's no further conflicts. While previously also problematic, it's
now more important as there will be more such slots when partitioned.

Author: Andres Freund
Reviewed-By: Robert Haas, David Rowley
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-03-06 15:43:33 -08:00
Andres Freund f217761856 Fix bug in clearing of virtual tuple slot.
I broke/typoed this in 4da597edf1. Astonishingly this mostly
doesn't cause breakage, except when trying to change the tuple
descriptor of a slot (because TTS_FLAG_FIXED is assumed to be set).

Author: Andres Freund
2019-03-06 09:54:38 -08:00
Tom Lane 80b9e9c466 Improve performance of index-only scans with many index columns.
StoreIndexTuple was a loop over index_getattr, which is O(N^2)
if the index columns are variable-width, and the performance
impact is already quite visible at ten columns.  The obvious
move is to replace that with a call to index_deform_tuple ...
but that's *also* a loop over index_getattr.  Improve it to
be essentially a clone of heap_deform_tuple.

(There are a few other places that loop over all index columns
with index_getattr, and perhaps should be changed likewise,
but most of them don't seem performance-critical.  Anyway, the
rest would mostly only be interested in the index key columns,
which there aren't likely to be so many of.  Wide index tuples
are a new thing with INCLUDE.)

Konstantin Knizhnik

Discussion: https://postgr.es/m/e06b2d27-04fc-5c0e-bb8c-ecd72aa24959@postgrespro.ru
2019-03-03 16:57:14 -05:00
Andres Freund 70b9bda65f Use a virtual rather than a heap slot in two places where that suffices.
Author: Andres Freund
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-03-01 17:26:43 -08:00
Andres Freund ad0bda5d24 Store tuples for EvalPlanQual in slots, rather than as HeapTuples.
For the upcoming pluggable table access methods it's quite
inconvenient to store tuples as HeapTuples, as that'd require
converting tuples from a their native format into HeapTuples. Instead
use slots to manage epq tuples.

To fit into that scheme, change the foreign data wrapper callback
RefetchForeignRow, to store the tuple in a slot. Insist on using the
caller provided slot, so it conveniently can be stored in the
corresponding EPQ slot.  As there is no in core user of
RefetchForeignRow, that change was done blindly, but we plan to test
that soon.

To avoid duplicating that work for row locks, move row locks to just
directly use the EPQ slots - it previously temporarily stored tuples
in LockRowsState.lr_curtuples, but that doesn't seem beneficial, given
we'd possibly end up with a significant number of additional slots.

The behaviour of es_epqTupleSet[rti -1] is now checked by
es_epqTupleSlot[rti -1] != NULL, as that is distinguishable from a
slot containing an empty tuple.

Author: Andres Freund, Haribabu Kommi, Ashutosh Bapat
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-03-01 10:37:57 -08:00
Andres Freund 253655116b Don't superfluously materialize slot after DELETE from an FDW.
Previously that was needed to safely store the table oid, but after
b8d71745ea that's not necessary anymore.

Author: Andres Freund
2019-02-28 14:54:12 -08:00
Andres Freund 8f0577386e Don't force materializing when copying a buffer tuple table slot.
After 5408e233f0 it's not necessary to force materializing the
target slot when copying from one buffer slot to another. Previously
that was required because the HeapTupleData portion of the source slot
wasn't guaranteed to stay valid long enough, but now we can simply
copy that part into the destination slot's tupdata.

Author: Andres Freund
2019-02-28 14:54:12 -08:00
Andres Freund f414abd62d Allow buffer tuple table slots to materialize after ExecStoreVirtualTuple().
While not common, it can be useful to store a virtual tuple into a
buffer tuple table slot, and then materialize that slot. So far we've
asserted out, which surprisingly wasn't a problem for anything in
core. But that seems fragile, and it also breaks redis_fdw after
ff11e7f4b9.

Thus, allow materializing a virtual tuple stored in a buffer tuple
table slot.

Author: Andres Freund
Discussion:
    https://postgr.es/m/20190227181621.xholonj7ff7ohxsg@alap3.anarazel.de
    https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-02-28 12:28:03 -08:00
Tom Lane c94fb8e8ac Standardize some more loops that chase down parallel lists.
We have forboth() and forthree() macros that simplify iterating
through several parallel lists, but not everyplace that could
reasonably use those was doing so.  Also invent forfour() and
forfive() macros to do the same for four or five parallel lists,
and use those where applicable.

The immediate motivation for doing this is to reduce the number
of ad-hoc lnext() calls, to reduce the footprint of a WIP patch.
However, it seems like good cleanup and error-proofing anyway;
the places that were combining forthree() with a manually iterated
loop seem particularly illegible and bug-prone.

There was some speculation about restructuring related parsetree
representations to reduce the need for parallel list chasing of
this sort.  Perhaps that's a win, or perhaps not, but in any case
it would be considerably more invasive than this patch; and it's
not particularly related to my immediate goal of improving the
List infrastructure.  So I'll leave that question for another day.

Patch by me; thanks to David Rowley for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-02-28 14:25:01 -05:00
Andres Freund ff11e7f4b9 Use slots in trigger infrastructure, except for the actual invocation.
In preparation for abstracting table storage, convert trigger.c to
track tuples in slots. Which also happens to make code calling
triggers simpler.

As the calling interface for triggers themselves is not changed in
this patch, HeapTuples still are extracted from the slot at that
time. But that's handled solely inside trigger.c, not visible to
callers. It's quite likely that we'll want to revise the external
trigger interface, but that's a separate large project.

As part of this work the slots used for old/new/return tuples are
moved from EState into ResultRelInfo, as different updated tables
might need different slots. The slots are now also now created
on-demand, which is good both from an efficiency POV, but also makes
the modifying code simpler.

Author: Andres Freund, Amit Khandekar and Ashutosh Bapat
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-02-26 20:31:38 -08:00
Andres Freund b8d71745ea Store table oid and tuple's tid in tuple slots directly.
After the introduction of tuple table slots all table AMs need to
support returning the table oid of the tuple stored in a slot created
by said AM. It does not make sense to re-implement that in every AM,
therefore move handling of table OIDs into the TupleTableSlot
structure itself.  It's possible that we, at a later date, might want
to get rid of HeapTupleData.t_tableOid entirely, but doing so before
the abstractions for table AMs are integrated turns out to be too
hard, so delay that for now.

Similarly, every AM needs to support the concept of a tuple
identifier (tid / item pointer) for its tuples. It's quite possible
that we'll generalize the exact form of a tid at a future point (to
allow for things like index organized tables), but for now many parts
of the code know about tids, so there's not much point in abstracting
tids away. Therefore also move into slot (rather than providing API to
set/get the tid associated with the tuple in a slot).

Once table AM includes insert/updating/deleting tuples, the
responsibility to set the correct tid after such an action will move
into that. After that change, code doing such modifications, should
not have to deal with HeapTuples directly anymore.

Author: Andres Freund, Haribabu Kommi and Ashutosh Bapat
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-02-26 20:31:16 -08:00
Andres Freund 8aa02b52db Add ExecStorePinnedBufferHeapTuple.
This allows to avoid an unnecessary pin/unpin cycle when storing a
tuple in an already pinned buffer into a slot, when the pin isn't
further needed at the call site.

Only a single caller for now (to ensure coverage), but upcoming
patches will increase use of the new function.

Author: Andres Freund
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-02-26 17:59:01 -08:00
Robert Haas 1bb5e78218 Move code for managing PartitionDescs into a new file, partdesc.c
This is similar in spirit to the existing partbounds.c file in the
same directory, except that there's a lot less code in the new file
created by this commit.  Pending work in this area proposes to add a
bunch more code related to PartitionDescs, though, and this will give
us a good place to put it.

Discussion: http://postgr.es/m/CA+TgmoZUwPf_uanjF==gTGBMJrn8uCq52XYvAEorNkLrUdoawg@mail.gmail.com
2019-02-21 11:45:02 -05:00
Robert Haas 9eefba181f Delay lock acquisition for partitions until we route a tuple to them.
Instead of locking all partitions to which we might route a tuple at
executor startup, just lock them as we use them.  In some cases such a
partition might get locked at executor startup anyway because it
appears in the query's range table for some other reason, but in other
cases this is a bit savings.

This changes the order in which partitions are locked in some cases,
which might conceivably create deadlock hazards that don't exist
today, but per discussion, it seems like such cases should be rare
enough that we can neglect them in favor of improving performance.

David Rowley, reviewed and tested by Tomas Vondra, Sho Kato, John
Naylor, Tom Lane, and me.

Discussion: http://postgr.es/m/CAKJS1f-=FnMqmQP6qitkD+xEddxw22ySLP-0xFk3JAqUX2yfMw@mail.gmail.com
2019-02-21 11:24:40 -05:00
Andres Freund 22bc403029 Remove line duplicated during conflict resolution.
I included the duplicated ExecTypeFromTL in 578b2297 "Remove WITH OIDS
support".

Reported-By: Peter Eisentraut
Discussion: https://postgr.es/m/ba819888-63c6-7f98-6acb-3731142d9414@2ndquadrant.com
2019-02-18 11:07:30 -08:00
Peter Eisentraut 37d9916020 More unconstify use
Replace casts whose only purpose is to cast away const with the
unconstify() macro.

Discussion: https://www.postgresql.org/message-id/flat/53a28052-f9f3-1808-fed9-460fd43035ab%402ndquadrant.com
2019-02-13 11:50:16 +01:00
Andres Freund 356687bd82 Reset, not recreate, execGrouping.c style hashtables.
This uses the facility added in the preceding commit to fix
performance issues caused by rebuilding the hashtable (with its
comparator expression being the most expensive bit), after every
reset. That's especially important when the comparator is JIT
compiled.

Bug: #15592 #15486
Reported-By: Jakub Janeček, Dmitry Marakasov
Author: Andres Freund
Discussion:
    https://postgr.es/m/15486-05850f065da42931@postgresql.org
    https://postgr.es/m/20190114180423.ywhdg2iagzvh43we@alap3.anarazel.de
Backpatch: 11, where I broke this in bf6c614a2f
2019-02-09 01:05:49 -08:00
Andres Freund 317ffdfeaa Allow to reset execGrouping.c style tuple hashtables.
This has the advantage that the comparator expression, the table's
slot, etc do not have to be rebuilt. Additionally the simplehash.h
hashtable within the tuple hashtable now keeps its previous size and
doesn't need to be reallocated. That both reduces allocator overhead,
and improves performance in cases where the input estimation was off
by a significant factor.

To avoid an API/ABI break, the new parameter is exposed via the new
BuildTupleHashTableExt(), and BuildTupleHashTable() now is a wrapper
around the former, that continues to allocate the table itself in the
tablecxt.

Using this fixes performance issues discovered in the two bugs
referenced. This commit however has not converted the callers, that's
done in a separate commit.

Bug: #15592 #15486
Reported-By: Jakub Janeček, Dmitry Marakasov
Author: Andres Freund
Discussion:
    https://postgr.es/m/15486-05850f065da42931@postgresql.org
    https://postgr.es/m/20190114180423.ywhdg2iagzvh43we@alap3.anarazel.de
Backpatch: 11, this is a prerequisite for other fixes
2019-02-09 01:05:49 -08:00
Andres Freund 5567d12ce0 Plug leak in BuildTupleHashTable by creating ExprContext in correct context.
In bf6c614a2f I added a expr context to evaluate the grouping
expression. Unfortunately the code I added initialized them while in
the calling context, rather the table context.  Additionally, I used
CreateExprContext() rather than CreateStandaloneExprContext(), which
creates the econtext in the estate's query context.

Fix that by using CreateStandaloneExprContext when in the table's
tablecxt. As we rely on the memory being freed by a memory context
reset that means that the econtext's shutdown callbacks aren't being
called, but that seems ok as the expressions are tightly controlled
due to ExecBuildGroupingEqual().

Bug: #15592
Reported-By: Dmitry Marakasov
Author: Andres Freund
Discussion: https://postgr.es/m/20190114222838.h6r3fuyxjxkykf6t@alap3.anarazel.de
Backpatch: 11, where I broke this in bf6c614a2f
2019-02-09 01:05:49 -08:00
Alvaro Herrera 558d77f20e Renaming for new subscripting mechanism
Over at patch https://commitfest.postgresql.org/21/1062/ Dmitry wants to
introduce a more generic subscription mechanism, which allows
subscripting not only arrays but also other object types such as JSONB.
That functionality is introduced in a largish invasive patch, out of
which this internal renaming patch was extracted.

Author: Dmitry Dolgov
Reviewed-by: Tom Lane, Arthur Zakirov
Discussion: https://postgr.es/m/CA+q6zcUK4EqPAu7XRRO5CCjMwhz5zvg+rfWuLzVoxp_5sKS6=w@mail.gmail.com
2019-02-01 12:50:32 -03:00
Tom Lane fa2cf164aa Rename nodes/relation.h to nodes/pathnodes.h.
The old name of this file was never a very good indication of what it
was for.  Now that there's also access/relation.h, we have a potential
confusion hazard as well, so let's rename it to something more apropos.
Per discussion, "pathnodes.h" is reasonable, since a good fraction of
the file is Path node definitions.

While at it, tweak a couple of other headers that were gratuitously
importing relation.h into modules that don't need it.

Discussion: https://postgr.es/m/7719.1548688728@sss.pgh.pa.us
2019-01-29 16:49:25 -05:00
Tom Lane f09346a9c6 Refactor planner's header files.
Create a new header optimizer/optimizer.h, which exposes just the
planner functions that can be used "at arm's length", without need
to access Paths or the other planner-internal data structures defined
in nodes/relation.h.  This is intended to provide the whole planner
API seen by most of the rest of the system; although FDWs still need
to use additional stuff, and more thought is also needed about just
what selfuncs.c should rely on.

The main point of doing this now is to limit the amount of new
#include baggage that will be needed by "planner support functions",
which I expect to introduce later, and which will be in relevant
datatype modules rather than anywhere near the planner.

This commit just moves relevant declarations into optimizer.h from
other header files (a couple of which go away because everything
got moved), and adjusts #include lists to match.  There's further
cleanup that could be done if we want to decide that some stuff
being exposed by optimizer.h doesn't belong in the planner at all,
but I'll leave that for another day.

Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
2019-01-29 15:48:51 -05:00
Tom Lane a1b8c41e99 Make some small planner API cleanups.
Move a few very simple node-creation and node-type-testing functions
from the planner's clauses.c to nodes/makefuncs and nodes/nodeFuncs.
There's nothing planner-specific about them, as evidenced by the
number of other places that were using them.

While at it, rename and_clause() etc to is_andclause() etc, to clarify
that they are node-type-testing functions not node-creation functions.
And use "static inline" implementations for the shortest ones.

Also, modify flatten_join_alias_vars() and some subsidiary functions
to take a Query not a PlannerInfo to define the join structure that
Vars should be translated according to.  They were only using the
"parse" field of the PlannerInfo anyway, so this just requires removing
one level of indirection.  The advantage is that now parse_agg.c can
use flatten_join_alias_vars() without the horrid kluge of creating an
incomplete PlannerInfo, which will allow that file to be decoupled from
relation.h in a subsequent patch.

Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
2019-01-29 15:26:44 -05:00
Tom Lane 4be058fe9e In the planner, replace an empty FROM clause with a dummy RTE.
The fact that "SELECT expression" has no base relations has long been a
thorn in the side of the planner.  It makes it hard to flatten a sub-query
that looks like that, or is a trivial VALUES() item, because the planner
generally uses relid sets to identify sub-relations, and such a sub-query
would have an empty relid set if we flattened it.  prepjointree.c contains
some baroque logic that works around this in certain special cases --- but
there is a much better answer.  We can replace an empty FROM clause with a
dummy RTE that acts like a table of one row and no columns, and then there
are no such corner cases to worry about.  Instead we need some logic to
get rid of useless dummy RTEs, but that's simpler and covers more cases
than what was there before.

For really trivial cases, where the query is just "SELECT expression" and
nothing else, there's a hazard that adding the extra RTE makes for a
noticeable slowdown; even though it's not much processing, there's not
that much for the planner to do overall.  However testing says that the
penalty is very small, close to the noise level.  In more complex queries,
this is able to find optimizations that we could not find before.

The new RTE type is called RTE_RESULT, since the "scan" plan type it
gives rise to is a Result node (the same plan we produced for a "SELECT
expression" query before).  To avoid confusion, rename the old ResultPath
path type to GroupResultPath, reflecting that it's only used in degenerate
grouping cases where we know the query produces just one grouped row.
(It wouldn't work to unify the two cases, because there are different
rules about where the associated quals live during query_planner.)

Note: although this touches readfuncs.c, I don't think a catversion
bump is required, because the added case can't occur in stored rules,
only plans.

Patch by me, reviewed by David Rowley and Mark Dilger

Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
2019-01-28 17:54:23 -05:00
Andres Freund a9c35cf85c Change function call information to be variable length.
Before this change FunctionCallInfoData, the struct arguments etc for
V1 function calls are stored in, always had space for
FUNC_MAX_ARGS/100 arguments, storing datums and their nullness in two
arrays.  For nearly every function call 100 arguments is far more than
needed, therefore wasting memory. Arg and argnull being two separate
arrays also guarantees that to access a single argument, two
cachelines have to be touched.

Change the layout so there's a single variable-length array with pairs
of value / isnull. That drastically reduces memory consumption for
most function calls (on x86-64 a two argument function now uses
64bytes, previously 936 bytes), and makes it very likely that argument
value and its nullness are on the same cacheline.

Arguments are stored in a new NullableDatum struct, which, due to
padding, needs more memory per argument than before. But as usually
far fewer arguments are stored, and individual arguments are cheaper
to access, that's still a clear win.  It's likely that there's other
places where conversion to NullableDatum arrays would make sense,
e.g. TupleTableSlots, but that's for another commit.

Because the function call information is now variable-length
allocations have to take the number of arguments into account. For
heap allocations that can be done with SizeForFunctionCallInfoData(),
for on-stack allocations there's a new LOCAL_FCINFO(name, nargs) macro
that helps to allocate an appropriately sized and aligned variable.

Some places with stack allocation function call information don't know
the number of arguments at compile time, and currently variably sized
stack allocations aren't allowed in postgres. Therefore allow for
FUNC_MAX_ARGS space in these cases. They're not that common, so for
now that seems acceptable.

Because of the need to allocate FunctionCallInfo of the appropriate
size, older extensions may need to update their code. To avoid subtle
breakages, the FunctionCallInfoData struct has been renamed to
FunctionCallInfoBaseData. Most code only references FunctionCallInfo,
so that shouldn't cause much collateral damage.

This change is also a prerequisite for more efficient expression JIT
compilation (by allocating the function call information on the stack,
allowing LLVM to optimize it away); previously the size of the call
information caused problems inside LLVM's optimizer.

Author: Andres Freund
Reviewed-By: Tom Lane
Discussion: https://postgr.es/m/20180605172952.x34m5uz6ju6enaem@alap3.anarazel.de
2019-01-26 14:17:52 -08:00
Heikki Linnakangas 95931133a9 Fix misc typos in comments.
Spotted mostly by Fabien Coelho.

Discussion: https://www.postgresql.org/message-id/alpine.DEB.2.21.1901230947050.16643@lancre
2019-01-23 13:39:00 +02:00
Andres Freund 346ed70b0a Rename RelationData.rd_amroutine to rd_indam.
The upcoming table AM support makes rd_amroutine to generic, as its
only about index AMs. The new name makes that clear, and is shorter to
boot.

Author: Andres Freund
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-01-21 17:36:55 -08:00
Andres Freund c91560defc Move remaining code from tqual.[ch] to heapam.h / heapam_visibility.c.
Given these routines are heap specific, and that there will be more
generic visibility support in via table AM, it makes sense to move the
prototypes to heapam.h (routines like HeapTupleSatisfiesVacuum will
not be exposed in a generic fashion, because they are too storage
specific).

Similarly, the code in tqual.c is specific to heap, so moving it into
access/heap/ makes sense.

Author: Andres Freund
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-01-21 17:07:10 -08:00
Andres Freund b7eda3e0e3 Move generic snapshot related code from tqual.h to snapmgr.h.
The code in tqual.c is largely heap specific. Due to the upcoming
pluggable storage work, it therefore makes sense to move it into
access/heap/ (as the file's header notes, the tqual name isn't very
good).

But the various statically allocated snapshot and snapshot
initialization functions are now (see previous commit) generic and do
not depend on functions declared in tqual.h anymore. Therefore move.
Also move XidInMVCCSnapshot as that's useful for future AMs, and
already used outside of tqual.c.

Author: Andres Freund
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-01-21 17:06:41 -08:00
Andres Freund e7cc78ad43 Remove superfluous tqual.h includes.
Most of these had been obsoleted by 568d4138c / the SnapshotNow
removal.

This is is preparation for moving most of tqual.[ch] into either
snapmgr.h or heapam.h, which in turn is in preparation for pluggable
table AMs.

Author: Andres Freund
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-01-21 12:15:02 -08:00
Andres Freund e0c4ec0728 Replace uses of heap_open et al with the corresponding table_* function.
Author: Andres Freund
Discussion: https://postgr.es/m/20190111000539.xbv7s6w7ilcvm7dp@alap3.anarazel.de
2019-01-21 10:51:37 -08:00
Andres Freund 111944c5ee Replace heapam.h includes with {table, relation}.h where applicable.
A lot of files only included heapam.h for relation_open, heap_open etc
- replace the heapam.h include in those files with the narrower
header.

Author: Andres Freund
Discussion: https://postgr.es/m/20190111000539.xbv7s6w7ilcvm7dp@alap3.anarazel.de
2019-01-21 10:51:37 -08:00
Peter Eisentraut 3bed67bed1 Fix outdated comment
The issue the comment is referring to was fixed by
08859bb5c2.
2019-01-19 09:34:24 +01:00
Andres Freund 148e632c05 Fix parent of WCO qual.
The parent of some WCO expressions was, apparently by accident, set to
the the source of DML queries, rather than the target table.  This
causes problems for the upcoming pluggable storage work, because the
target and source table might be of different storage types.

It's possible that this is already problematic, but neither
experimenting nor inquiries on -hackers have found them. So don't
backpatch for now.

Author: Andres Freund
Discussion: https://postgr.es/m/20181205225213.hiwa3kgoxeybqcqv@alap3.anarazel.de
2019-01-15 12:04:32 -08:00
Andres Freund 0944ec54de Don't include genam.h from execnodes.h and relscan.h anymore.
This is the genam.h equivalent of 4c850ecec6 (which removed
heapam.h from a lot of other headers).  There's still a few header
includes of genam.h, but not from central headers anymore.

As a few headers are not indirectly included anymore, execnodes.h and
relscan.h need a few additional includes. Some of the depended on
types were replacable by using the underlying structs, but e.g. for
Snapshot in execnodes.h that'd have gotten more invasive than
reasonable in this commit.

Like the aforementioned commit 4c850ecec6, this requires adding new
genam.h includes to a number of backend files, which likely is also
required in a few external projects.

Author: Andres Freund
Discussion: https://postgr.es/m/20190114000701.y4ttcb74jpskkcfb@alap3.anarazel.de
2019-01-14 17:02:12 -08:00
Andres Freund 4c850ecec6 Don't include heapam.h from others headers.
heapam.h previously was included in a number of widely used
headers (e.g. execnodes.h, indirectly in executor.h, ...). That's
problematic on its own, as heapam.h contains a lot of low-level
details that don't need to be exposed that widely, but becomes more
problematic with the upcoming introduction of pluggable table storage
- it seems inappropriate for heapam.h to be included that widely
afterwards.

heapam.h was largely only included in other headers to get the
HeapScanDesc typedef (which was defined in heapam.h, even though
HeapScanDescData is defined in relscan.h). The better solution here
seems to be to just use the underlying struct (forward declared where
necessary). Similar for BulkInsertState.

Another problem was that LockTupleMode was used in executor.h - parts
of the file tried to cope without heapam.h, but due to the fact that
it indirectly included it, several subsequent violations of that goal
were not not noticed. We could just reuse the approach of declaring
parameters as int, but it seems nicer to move LockTupleMode to
lockoptions.h - that's not a perfect location, but also doesn't seem
bad.

As a number of files relied on implicitly included heapam.h, a
significant number of files grew an explicit include. It's quite
probably that a few external projects will need to do the same.

Author: Andres Freund
Reviewed-By: Alvaro Herrera
Discussion: https://postgr.es/m/20190114000701.y4ttcb74jpskkcfb@alap3.anarazel.de
2019-01-14 16:24:41 -08:00
Michael Paquier 9f527a6e9a Fix error message for logical replication targets
This fixes an oversight from 373bda6.

Noted by Erik Rijkers.
2019-01-13 22:36:23 +09:00
Michael Paquier 373bda61d2 Improve error messages for incorrect types of logical replication targets
If trying to use something else than a plain table as logical
replication target, a rather-generic error message gets used to report
the problem.  This can be confusing when it comes to foreign tables and
partitioned tables, so use more dedicated messages in these cases.

Author: Amit Langote
Reviewed-by: Peter Eisentraut, Magnus Hagander, Michael Paquier
Discussion: https://postgr.es/m/41799bee-40eb-7bb5-80b1-325ce17518bc@lab.ntt.co.jp
2019-01-13 16:39:49 +09:00
Bruce Momjian 97c39498e5 Update copyright for 2019
Backpatch-through: certain files through 9.4
2019-01-02 12:44:25 -05:00
Alvaro Herrera 4ed6c071b8 Fix thinko in previous commit 2018-12-28 15:18:00 -03:00
Alvaro Herrera e8b0e6b82d Rewrite ExecPartitionCheckEmitError for clarity
The original was hard to follow and failed to comply with DRY principle.

Discussion: https://postgr.es/m/20181206222221.g5witbsklvqthjll@alvherre.pgsql
2018-12-28 14:47:05 -03:00
Peter Eisentraut ae4472c619 Remove obsolete IndexIs* macros
Remove IndexIsValid(), IndexIsReady(), IndexIsLive() in favor of
accessing the index structure directly.  These macros haven't been
used consistently, and the original reason of maintaining source
compatibility with PostgreSQL 9.2 is gone.

Discussion: https://www.postgresql.org/message-id/flat/d419147c-09d4-6196-5d9d-0234b230880a%402ndquadrant.com
2018-12-27 10:07:46 +01:00
Peter Eisentraut 323eaf9825 Add some const decorations
These mainly help understanding the function signatures better.
2018-12-22 07:45:09 +01:00