/* * contrib/hstore/hstore_op.c */ #include "postgres.h" #include "access/htup_details.h" #include "catalog/pg_type.h" #include "common/hashfn.h" #include "funcapi.h" #include "hstore.h" #include "utils/builtins.h" #include "utils/memutils.h" /* old names for C functions */ HSTORE_POLLUTE(hstore_fetchval, fetchval); HSTORE_POLLUTE(hstore_exists, exists); HSTORE_POLLUTE(hstore_defined, defined); HSTORE_POLLUTE(hstore_delete, delete); HSTORE_POLLUTE(hstore_concat, hs_concat); HSTORE_POLLUTE(hstore_contains, hs_contains); HSTORE_POLLUTE(hstore_contained, hs_contained); HSTORE_POLLUTE(hstore_akeys, akeys); HSTORE_POLLUTE(hstore_avals, avals); HSTORE_POLLUTE(hstore_skeys, skeys); HSTORE_POLLUTE(hstore_svals, svals); HSTORE_POLLUTE(hstore_each, each); /* * We're often finding a sequence of keys in ascending order. The * "lowbound" parameter is used to cache lower bounds of searches * between calls, based on this assumption. Pass NULL for it for * one-off or unordered searches. */ int hstoreFindKey(HStore *hs, int *lowbound, char *key, int keylen) { HEntry *entries = ARRPTR(hs); int stopLow = lowbound ? *lowbound : 0; int stopHigh = HS_COUNT(hs); int stopMiddle; char *base = STRPTR(hs); while (stopLow < stopHigh) { int difference; stopMiddle = stopLow + (stopHigh - stopLow) / 2; if (HSTORE_KEYLEN(entries, stopMiddle) == keylen) difference = memcmp(HSTORE_KEY(entries, base, stopMiddle), key, keylen); else difference = (HSTORE_KEYLEN(entries, stopMiddle) > keylen) ? 1 : -1; if (difference == 0) { if (lowbound) *lowbound = stopMiddle + 1; return stopMiddle; } else if (difference < 0) stopLow = stopMiddle + 1; else stopHigh = stopMiddle; } if (lowbound) *lowbound = stopLow; return -1; } Pairs * hstoreArrayToPairs(ArrayType *a, int *npairs) { Datum *key_datums; bool *key_nulls; int key_count; Pairs *key_pairs; int bufsiz; int i, j; deconstruct_array_builtin(a, TEXTOID, &key_datums, &key_nulls, &key_count); if (key_count == 0) { *npairs = 0; return NULL; } /* * A text array uses at least eight bytes per element, so any overflow in * "key_count * sizeof(Pairs)" is small enough for palloc() to catch. * However, credible improvements to the array format could invalidate * that assumption. Therefore, use an explicit check rather than relying * on palloc() to complain. */ if (key_count > MaxAllocSize / sizeof(Pairs)) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("number of pairs (%d) exceeds the maximum allowed (%d)", key_count, (int) (MaxAllocSize / sizeof(Pairs))))); key_pairs = palloc(sizeof(Pairs) * key_count); for (i = 0, j = 0; i < key_count; i++) { if (!key_nulls[i]) { key_pairs[j].key = VARDATA(key_datums[i]); key_pairs[j].keylen = VARSIZE(key_datums[i]) - VARHDRSZ; key_pairs[j].val = NULL; key_pairs[j].vallen = 0; key_pairs[j].needfree = 0; key_pairs[j].isnull = 1; j++; } } *npairs = hstoreUniquePairs(key_pairs, j, &bufsiz); return key_pairs; } PG_FUNCTION_INFO_V1(hstore_fetchval); Datum hstore_fetchval(PG_FUNCTION_ARGS) { HStore *hs = PG_GETARG_HSTORE_P(0); text *key = PG_GETARG_TEXT_PP(1); HEntry *entries = ARRPTR(hs); text *out; int idx = hstoreFindKey(hs, NULL, VARDATA_ANY(key), VARSIZE_ANY_EXHDR(key)); if (idx < 0 || HSTORE_VALISNULL(entries, idx)) PG_RETURN_NULL(); out = cstring_to_text_with_len(HSTORE_VAL(entries, STRPTR(hs), idx), HSTORE_VALLEN(entries, idx)); PG_RETURN_TEXT_P(out); } PG_FUNCTION_INFO_V1(hstore_exists); Datum hstore_exists(PG_FUNCTION_ARGS) { HStore *hs = PG_GETARG_HSTORE_P(0); text *key = PG_GETARG_TEXT_PP(1); int idx = hstoreFindKey(hs, NULL, VARDATA_ANY(key), VARSIZE_ANY_EXHDR(key)); PG_RETURN_BOOL(idx >= 0); } PG_FUNCTION_INFO_V1(hstore_exists_any); Datum hstore_exists_any(PG_FUNCTION_ARGS) { HStore *hs = PG_GETARG_HSTORE_P(0); ArrayType *keys = PG_GETARG_ARRAYTYPE_P(1); int nkeys; Pairs *key_pairs = hstoreArrayToPairs(keys, &nkeys); int i; int lowbound = 0; bool res = false; /* * we exploit the fact that the pairs list is already sorted into strictly * increasing order to narrow the hstoreFindKey search; each search can * start one entry past the previous "found" entry, or at the lower bound * of the last search. */ for (i = 0; i < nkeys; i++) { int idx = hstoreFindKey(hs, &lowbound, key_pairs[i].key, key_pairs[i].keylen); if (idx >= 0) { res = true; break; } } PG_RETURN_BOOL(res); } PG_FUNCTION_INFO_V1(hstore_exists_all); Datum hstore_exists_all(PG_FUNCTION_ARGS) { HStore *hs = PG_GETARG_HSTORE_P(0); ArrayType *keys = PG_GETARG_ARRAYTYPE_P(1); int nkeys; Pairs *key_pairs = hstoreArrayToPairs(keys, &nkeys); int i; int lowbound = 0; bool res = true; /* * we exploit the fact that the pairs list is already sorted into strictly * increasing order to narrow the hstoreFindKey search; each search can * start one entry past the previous "found" entry, or at the lower bound * of the last search. */ for (i = 0; i < nkeys; i++) { int idx = hstoreFindKey(hs, &lowbound, key_pairs[i].key, key_pairs[i].keylen); if (idx < 0) { res = false; break; } } PG_RETURN_BOOL(res); } PG_FUNCTION_INFO_V1(hstore_defined); Datum hstore_defined(PG_FUNCTION_ARGS) { HStore *hs = PG_GETARG_HSTORE_P(0); text *key = PG_GETARG_TEXT_PP(1); HEntry *entries = ARRPTR(hs); int idx = hstoreFindKey(hs, NULL, VARDATA_ANY(key), VARSIZE_ANY_EXHDR(key)); bool res = (idx >= 0 && !HSTORE_VALISNULL(entries, idx)); PG_RETURN_BOOL(res); } PG_FUNCTION_INFO_V1(hstore_delete); Datum hstore_delete(PG_FUNCTION_ARGS) { HStore *hs = PG_GETARG_HSTORE_P(0); text *key = PG_GETARG_TEXT_PP(1); char *keyptr = VARDATA_ANY(key); int keylen = VARSIZE_ANY_EXHDR(key); HStore *out = palloc(VARSIZE(hs)); char *bufs, *bufd, *ptrd; HEntry *es, *ed; int i; int count = HS_COUNT(hs); int outcount = 0; SET_VARSIZE(out, VARSIZE(hs)); HS_SETCOUNT(out, count); /* temporary! */ bufs = STRPTR(hs); es = ARRPTR(hs); bufd = ptrd = STRPTR(out); ed = ARRPTR(out); for (i = 0; i < count; ++i) { int len = HSTORE_KEYLEN(es, i); char *ptrs = HSTORE_KEY(es, bufs, i); if (!(len == keylen && memcmp(ptrs, keyptr, keylen) == 0)) { int vallen = HSTORE_VALLEN(es, i); HS_COPYITEM(ed, bufd, ptrd, ptrs, len, vallen, HSTORE_VALISNULL(es, i)); ++outcount; } } HS_FINALIZE(out, outcount, bufd, ptrd); PG_RETURN_POINTER(out); } PG_FUNCTION_INFO_V1(hstore_delete_array); Datum hstore_delete_array(PG_FUNCTION_ARGS) { HStore *hs = PG_GETARG_HSTORE_P(0); HStore *out = palloc(VARSIZE(hs)); int hs_count = HS_COUNT(hs); char *ps, *bufd, *pd; HEntry *es, *ed; int i, j; int outcount = 0; ArrayType *key_array = PG_GETARG_ARRAYTYPE_P(1); int nkeys; Pairs *key_pairs = hstoreArrayToPairs(key_array, &nkeys); SET_VARSIZE(out, VARSIZE(hs)); HS_SETCOUNT(out, hs_count); /* temporary! */ ps = STRPTR(hs); es = ARRPTR(hs); bufd = pd = STRPTR(out); ed = ARRPTR(out); if (nkeys == 0) { /* return a copy of the input, unchanged */ memcpy(out, hs, VARSIZE(hs)); HS_FIXSIZE(out, hs_count); HS_SETCOUNT(out, hs_count); PG_RETURN_POINTER(out); } /* * this is in effect a merge between hs and key_pairs, both of which are * already sorted by (keylen,key); we take keys from hs only */ for (i = j = 0; i < hs_count;) { int difference; if (j >= nkeys) difference = -1; else { int skeylen = HSTORE_KEYLEN(es, i); if (skeylen == key_pairs[j].keylen) difference = memcmp(HSTORE_KEY(es, ps, i), key_pairs[j].key, key_pairs[j].keylen); else difference = (skeylen > key_pairs[j].keylen) ? 1 : -1; } if (difference > 0) ++j; else if (difference == 0) ++i, ++j; else { HS_COPYITEM(ed, bufd, pd, HSTORE_KEY(es, ps, i), HSTORE_KEYLEN(es, i), HSTORE_VALLEN(es, i), HSTORE_VALISNULL(es, i)); ++outcount; ++i; } } HS_FINALIZE(out, outcount, bufd, pd); PG_RETURN_POINTER(out); } PG_FUNCTION_INFO_V1(hstore_delete_hstore); Datum hstore_delete_hstore(PG_FUNCTION_ARGS) { HStore *hs = PG_GETARG_HSTORE_P(0); HStore *hs2 = PG_GETARG_HSTORE_P(1); HStore *out = palloc(VARSIZE(hs)); int hs_count = HS_COUNT(hs); int hs2_count = HS_COUNT(hs2); char *ps, *ps2, *bufd, *pd; HEntry *es, *es2, *ed; int i, j; int outcount = 0; SET_VARSIZE(out, VARSIZE(hs)); HS_SETCOUNT(out, hs_count); /* temporary! */ ps = STRPTR(hs); es = ARRPTR(hs); ps2 = STRPTR(hs2); es2 = ARRPTR(hs2); bufd = pd = STRPTR(out); ed = ARRPTR(out); if (hs2_count == 0) { /* return a copy of the input, unchanged */ memcpy(out, hs, VARSIZE(hs)); HS_FIXSIZE(out, hs_count); HS_SETCOUNT(out, hs_count); PG_RETURN_POINTER(out); } /* * this is in effect a merge between hs and hs2, both of which are already * sorted by (keylen,key); we take keys from hs only; for equal keys, we * take the value from hs unless the values are equal */ for (i = j = 0; i < hs_count;) { int difference; if (j >= hs2_count) difference = -1; else { int skeylen = HSTORE_KEYLEN(es, i); int s2keylen = HSTORE_KEYLEN(es2, j); if (skeylen == s2keylen) difference = memcmp(HSTORE_KEY(es, ps, i), HSTORE_KEY(es2, ps2, j), skeylen); else difference = (skeylen > s2keylen) ? 1 : -1; } if (difference > 0) ++j; else if (difference == 0) { int svallen = HSTORE_VALLEN(es, i); int snullval = HSTORE_VALISNULL(es, i); if (snullval != HSTORE_VALISNULL(es2, j) || (!snullval && (svallen != HSTORE_VALLEN(es2, j) || memcmp(HSTORE_VAL(es, ps, i), HSTORE_VAL(es2, ps2, j), svallen) != 0))) { HS_COPYITEM(ed, bufd, pd, HSTORE_KEY(es, ps, i), HSTORE_KEYLEN(es, i), svallen, snullval); ++outcount; } ++i, ++j; } else { HS_COPYITEM(ed, bufd, pd, HSTORE_KEY(es, ps, i), HSTORE_KEYLEN(es, i), HSTORE_VALLEN(es, i), HSTORE_VALISNULL(es, i)); ++outcount; ++i; } } HS_FINALIZE(out, outcount, bufd, pd); PG_RETURN_POINTER(out); } PG_FUNCTION_INFO_V1(hstore_concat); Datum hstore_concat(PG_FUNCTION_ARGS) { HStore *s1 = PG_GETARG_HSTORE_P(0); HStore *s2 = PG_GETARG_HSTORE_P(1); HStore *out = palloc(VARSIZE(s1) + VARSIZE(s2)); char *ps1, *ps2, *bufd, *pd; HEntry *es1, *es2, *ed; int s1idx; int s2idx; int s1count = HS_COUNT(s1); int s2count = HS_COUNT(s2); int outcount = 0; SET_VARSIZE(out, VARSIZE(s1) + VARSIZE(s2) - HSHRDSIZE); HS_SETCOUNT(out, s1count + s2count); if (s1count == 0) { /* return a copy of the input, unchanged */ memcpy(out, s2, VARSIZE(s2)); HS_FIXSIZE(out, s2count); HS_SETCOUNT(out, s2count); PG_RETURN_POINTER(out); } if (s2count == 0) { /* return a copy of the input, unchanged */ memcpy(out, s1, VARSIZE(s1)); HS_FIXSIZE(out, s1count); HS_SETCOUNT(out, s1count); PG_RETURN_POINTER(out); } ps1 = STRPTR(s1); ps2 = STRPTR(s2); bufd = pd = STRPTR(out); es1 = ARRPTR(s1); es2 = ARRPTR(s2); ed = ARRPTR(out); /* * this is in effect a merge between s1 and s2, both of which are already * sorted by (keylen,key); we take s2 for equal keys */ for (s1idx = s2idx = 0; s1idx < s1count || s2idx < s2count; ++outcount) { int difference; if (s1idx >= s1count) difference = 1; else if (s2idx >= s2count) difference = -1; else { int s1keylen = HSTORE_KEYLEN(es1, s1idx); int s2keylen = HSTORE_KEYLEN(es2, s2idx); if (s1keylen == s2keylen) difference = memcmp(HSTORE_KEY(es1, ps1, s1idx), HSTORE_KEY(es2, ps2, s2idx), s1keylen); else difference = (s1keylen > s2keylen) ? 1 : -1; } if (difference >= 0) { HS_COPYITEM(ed, bufd, pd, HSTORE_KEY(es2, ps2, s2idx), HSTORE_KEYLEN(es2, s2idx), HSTORE_VALLEN(es2, s2idx), HSTORE_VALISNULL(es2, s2idx)); ++s2idx; if (difference == 0) ++s1idx; } else { HS_COPYITEM(ed, bufd, pd, HSTORE_KEY(es1, ps1, s1idx), HSTORE_KEYLEN(es1, s1idx), HSTORE_VALLEN(es1, s1idx), HSTORE_VALISNULL(es1, s1idx)); ++s1idx; } } HS_FINALIZE(out, outcount, bufd, pd); PG_RETURN_POINTER(out); } PG_FUNCTION_INFO_V1(hstore_slice_to_array); Datum hstore_slice_to_array(PG_FUNCTION_ARGS) { HStore *hs = PG_GETARG_HSTORE_P(0); HEntry *entries = ARRPTR(hs); char *ptr = STRPTR(hs); ArrayType *key_array = PG_GETARG_ARRAYTYPE_P(1); ArrayType *aout; Datum *key_datums; bool *key_nulls; Datum *out_datums; bool *out_nulls; int key_count; int i; deconstruct_array_builtin(key_array, TEXTOID, &key_datums, &key_nulls, &key_count); if (key_count == 0) { aout = construct_empty_array(TEXTOID); PG_RETURN_POINTER(aout); } out_datums = palloc(sizeof(Datum) * key_count); out_nulls = palloc(sizeof(bool) * key_count); for (i = 0; i < key_count; ++i) { text *key = (text *) DatumGetPointer(key_datums[i]); int idx; if (key_nulls[i]) idx = -1; else idx = hstoreFindKey(hs, NULL, VARDATA(key), VARSIZE(key) - VARHDRSZ); if (idx < 0 || HSTORE_VALISNULL(entries, idx)) { out_nulls[i] = true; out_datums[i] = (Datum) 0; } else { out_datums[i] = PointerGetDatum(cstring_to_text_with_len(HSTORE_VAL(entries, ptr, idx), HSTORE_VALLEN(entries, idx))); out_nulls[i] = false; } } aout = construct_md_array(out_datums, out_nulls, ARR_NDIM(key_array), ARR_DIMS(key_array), ARR_LBOUND(key_array), TEXTOID, -1, false, TYPALIGN_INT); PG_RETURN_POINTER(aout); } PG_FUNCTION_INFO_V1(hstore_slice_to_hstore); Datum hstore_slice_to_hstore(PG_FUNCTION_ARGS) { HStore *hs = PG_GETARG_HSTORE_P(0); HEntry *entries = ARRPTR(hs); char *ptr = STRPTR(hs); ArrayType *key_array = PG_GETARG_ARRAYTYPE_P(1); HStore *out; int nkeys; Pairs *key_pairs = hstoreArrayToPairs(key_array, &nkeys); Pairs *out_pairs; int bufsiz; int lastidx = 0; int i; int out_count = 0; if (nkeys == 0) { out = hstorePairs(NULL, 0, 0); PG_RETURN_POINTER(out); } /* hstoreArrayToPairs() checked overflow */ out_pairs = palloc(sizeof(Pairs) * nkeys); bufsiz = 0; /* * we exploit the fact that the pairs list is already sorted into strictly * increasing order to narrow the hstoreFindKey search; each search can * start one entry past the previous "found" entry, or at the lower bound * of the last search. */ for (i = 0; i < nkeys; ++i) { int idx = hstoreFindKey(hs, &lastidx, key_pairs[i].key, key_pairs[i].keylen); if (idx >= 0) { out_pairs[out_count].key = key_pairs[i].key; bufsiz += (out_pairs[out_count].keylen = key_pairs[i].keylen); out_pairs[out_count].val = HSTORE_VAL(entries, ptr, idx); bufsiz += (out_pairs[out_count].vallen = HSTORE_VALLEN(entries, idx)); out_pairs[out_count].isnull = HSTORE_VALISNULL(entries, idx); out_pairs[out_count].needfree = false; ++out_count; } } /* * we don't use hstoreUniquePairs here because we know that the pairs list * is already sorted and uniq'ed. */ out = hstorePairs(out_pairs, out_count, bufsiz); PG_RETURN_POINTER(out); } PG_FUNCTION_INFO_V1(hstore_akeys); Datum hstore_akeys(PG_FUNCTION_ARGS) { HStore *hs = PG_GETARG_HSTORE_P(0); Datum *d; ArrayType *a; HEntry *entries = ARRPTR(hs); char *base = STRPTR(hs); int count = HS_COUNT(hs); int i; if (count == 0) { a = construct_empty_array(TEXTOID); PG_RETURN_POINTER(a); } d = (Datum *) palloc(sizeof(Datum) * count); for (i = 0; i < count; ++i) { text *t = cstring_to_text_with_len(HSTORE_KEY(entries, base, i), HSTORE_KEYLEN(entries, i)); d[i] = PointerGetDatum(t); } a = construct_array_builtin(d, count, TEXTOID); PG_RETURN_POINTER(a); } PG_FUNCTION_INFO_V1(hstore_avals); Datum hstore_avals(PG_FUNCTION_ARGS) { HStore *hs = PG_GETARG_HSTORE_P(0); Datum *d; bool *nulls; ArrayType *a; HEntry *entries = ARRPTR(hs); char *base = STRPTR(hs); int count = HS_COUNT(hs); int lb = 1; int i; if (count == 0) { a = construct_empty_array(TEXTOID); PG_RETURN_POINTER(a); } d = (Datum *) palloc(sizeof(Datum) * count); nulls = (bool *) palloc(sizeof(bool) * count); for (i = 0; i < count; ++i) { if (HSTORE_VALISNULL(entries, i)) { d[i] = (Datum) 0; nulls[i] = true; } else { text *item = cstring_to_text_with_len(HSTORE_VAL(entries, base, i), HSTORE_VALLEN(entries, i)); d[i] = PointerGetDatum(item); nulls[i] = false; } } a = construct_md_array(d, nulls, 1, &count, &lb, TEXTOID, -1, false, TYPALIGN_INT); PG_RETURN_POINTER(a); } static ArrayType * hstore_to_array_internal(HStore *hs, int ndims) { HEntry *entries = ARRPTR(hs); char *base = STRPTR(hs); int count = HS_COUNT(hs); int out_size[2] = {0, 2}; int lb[2] = {1, 1}; Datum *out_datums; bool *out_nulls; int i; Assert(ndims < 3); if (count == 0 || ndims == 0) return construct_empty_array(TEXTOID); out_size[0] = count * 2 / ndims; out_datums = palloc(sizeof(Datum) * count * 2); out_nulls = palloc(sizeof(bool) * count * 2); for (i = 0; i < count; ++i) { text *key = cstring_to_text_with_len(HSTORE_KEY(entries, base, i), HSTORE_KEYLEN(entries, i)); out_datums[i * 2] = PointerGetDatum(key); out_nulls[i * 2] = false; if (HSTORE_VALISNULL(entries, i)) { out_datums[i * 2 + 1] = (Datum) 0; out_nulls[i * 2 + 1] = true; } else { text *item = cstring_to_text_with_len(HSTORE_VAL(entries, base, i), HSTORE_VALLEN(entries, i)); out_datums[i * 2 + 1] = PointerGetDatum(item); out_nulls[i * 2 + 1] = false; } } return construct_md_array(out_datums, out_nulls, ndims, out_size, lb, TEXTOID, -1, false, TYPALIGN_INT); } PG_FUNCTION_INFO_V1(hstore_to_array); Datum hstore_to_array(PG_FUNCTION_ARGS) { HStore *hs = PG_GETARG_HSTORE_P(0); ArrayType *out = hstore_to_array_internal(hs, 1); PG_RETURN_POINTER(out); } PG_FUNCTION_INFO_V1(hstore_to_matrix); Datum hstore_to_matrix(PG_FUNCTION_ARGS) { HStore *hs = PG_GETARG_HSTORE_P(0); ArrayType *out = hstore_to_array_internal(hs, 2); PG_RETURN_POINTER(out); } /* * Common initialization function for the various set-returning * funcs. fcinfo is only passed if the function is to return a * composite; it will be used to look up the return tupledesc. * we stash a copy of the hstore in the multi-call context in * case it was originally toasted. (At least I assume that's why; * there was no explanatory comment in the original code. --AG) */ static void setup_firstcall(FuncCallContext *funcctx, HStore *hs, FunctionCallInfo fcinfo) { MemoryContext oldcontext; HStore *st; oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); st = (HStore *) palloc(VARSIZE(hs)); memcpy(st, hs, VARSIZE(hs)); funcctx->user_fctx = (void *) st; if (fcinfo) { TupleDesc tupdesc; /* Build a tuple descriptor for our result type */ if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE) elog(ERROR, "return type must be a row type"); funcctx->tuple_desc = BlessTupleDesc(tupdesc); } MemoryContextSwitchTo(oldcontext); } PG_FUNCTION_INFO_V1(hstore_skeys); Datum hstore_skeys(PG_FUNCTION_ARGS) { FuncCallContext *funcctx; HStore *hs; int i; if (SRF_IS_FIRSTCALL()) { hs = PG_GETARG_HSTORE_P(0); funcctx = SRF_FIRSTCALL_INIT(); setup_firstcall(funcctx, hs, NULL); } funcctx = SRF_PERCALL_SETUP(); hs = (HStore *) funcctx->user_fctx; i = funcctx->call_cntr; if (i < HS_COUNT(hs)) { HEntry *entries = ARRPTR(hs); text *item; item = cstring_to_text_with_len(HSTORE_KEY(entries, STRPTR(hs), i), HSTORE_KEYLEN(entries, i)); SRF_RETURN_NEXT(funcctx, PointerGetDatum(item)); } SRF_RETURN_DONE(funcctx); } PG_FUNCTION_INFO_V1(hstore_svals); Datum hstore_svals(PG_FUNCTION_ARGS) { FuncCallContext *funcctx; HStore *hs; int i; if (SRF_IS_FIRSTCALL()) { hs = PG_GETARG_HSTORE_P(0); funcctx = SRF_FIRSTCALL_INIT(); setup_firstcall(funcctx, hs, NULL); } funcctx = SRF_PERCALL_SETUP(); hs = (HStore *) funcctx->user_fctx; i = funcctx->call_cntr; if (i < HS_COUNT(hs)) { HEntry *entries = ARRPTR(hs); if (HSTORE_VALISNULL(entries, i)) { ReturnSetInfo *rsi; /* ugly ugly ugly. why no macro for this? */ (funcctx)->call_cntr++; rsi = (ReturnSetInfo *) fcinfo->resultinfo; rsi->isDone = ExprMultipleResult; PG_RETURN_NULL(); } else { text *item; item = cstring_to_text_with_len(HSTORE_VAL(entries, STRPTR(hs), i), HSTORE_VALLEN(entries, i)); SRF_RETURN_NEXT(funcctx, PointerGetDatum(item)); } } SRF_RETURN_DONE(funcctx); } PG_FUNCTION_INFO_V1(hstore_contains); Datum hstore_contains(PG_FUNCTION_ARGS) { HStore *val = PG_GETARG_HSTORE_P(0); HStore *tmpl = PG_GETARG_HSTORE_P(1); bool res = true; HEntry *te = ARRPTR(tmpl); char *tstr = STRPTR(tmpl); HEntry *ve = ARRPTR(val); char *vstr = STRPTR(val); int tcount = HS_COUNT(tmpl); int lastidx = 0; int i; /* * we exploit the fact that keys in "tmpl" are in strictly increasing * order to narrow the hstoreFindKey search; each search can start one * entry past the previous "found" entry, or at the lower bound of the * search */ for (i = 0; res && i < tcount; ++i) { int idx = hstoreFindKey(val, &lastidx, HSTORE_KEY(te, tstr, i), HSTORE_KEYLEN(te, i)); if (idx >= 0) { bool nullval = HSTORE_VALISNULL(te, i); int vallen = HSTORE_VALLEN(te, i); if (nullval != HSTORE_VALISNULL(ve, idx) || (!nullval && (vallen != HSTORE_VALLEN(ve, idx) || memcmp(HSTORE_VAL(te, tstr, i), HSTORE_VAL(ve, vstr, idx), vallen) != 0))) res = false; } else res = false; } PG_RETURN_BOOL(res); } PG_FUNCTION_INFO_V1(hstore_contained); Datum hstore_contained(PG_FUNCTION_ARGS) { PG_RETURN_DATUM(DirectFunctionCall2(hstore_contains, PG_GETARG_DATUM(1), PG_GETARG_DATUM(0) )); } PG_FUNCTION_INFO_V1(hstore_each); Datum hstore_each(PG_FUNCTION_ARGS) { FuncCallContext *funcctx; HStore *hs; int i; if (SRF_IS_FIRSTCALL()) { hs = PG_GETARG_HSTORE_P(0); funcctx = SRF_FIRSTCALL_INIT(); setup_firstcall(funcctx, hs, fcinfo); } funcctx = SRF_PERCALL_SETUP(); hs = (HStore *) funcctx->user_fctx; i = funcctx->call_cntr; if (i < HS_COUNT(hs)) { HEntry *entries = ARRPTR(hs); char *ptr = STRPTR(hs); Datum res, dvalues[2]; bool nulls[2] = {false, false}; text *item; HeapTuple tuple; item = cstring_to_text_with_len(HSTORE_KEY(entries, ptr, i), HSTORE_KEYLEN(entries, i)); dvalues[0] = PointerGetDatum(item); if (HSTORE_VALISNULL(entries, i)) { dvalues[1] = (Datum) 0; nulls[1] = true; } else { item = cstring_to_text_with_len(HSTORE_VAL(entries, ptr, i), HSTORE_VALLEN(entries, i)); dvalues[1] = PointerGetDatum(item); } tuple = heap_form_tuple(funcctx->tuple_desc, dvalues, nulls); res = HeapTupleGetDatum(tuple); SRF_RETURN_NEXT(funcctx, res); } SRF_RETURN_DONE(funcctx); } /* * btree sort order for hstores isn't intended to be useful; we really only * care about equality versus non-equality. we compare the entire string * buffer first, then the entry pos array. */ PG_FUNCTION_INFO_V1(hstore_cmp); Datum hstore_cmp(PG_FUNCTION_ARGS) { HStore *hs1 = PG_GETARG_HSTORE_P(0); HStore *hs2 = PG_GETARG_HSTORE_P(1); int hcount1 = HS_COUNT(hs1); int hcount2 = HS_COUNT(hs2); int res = 0; if (hcount1 == 0 || hcount2 == 0) { /* * if either operand is empty, and the other is nonempty, the nonempty * one is larger. If both are empty they are equal. */ if (hcount1 > 0) res = 1; else if (hcount2 > 0) res = -1; } else { /* here we know both operands are nonempty */ char *str1 = STRPTR(hs1); char *str2 = STRPTR(hs2); HEntry *ent1 = ARRPTR(hs1); HEntry *ent2 = ARRPTR(hs2); size_t len1 = HSE_ENDPOS(ent1[2 * hcount1 - 1]); size_t len2 = HSE_ENDPOS(ent2[2 * hcount2 - 1]); res = memcmp(str1, str2, Min(len1, len2)); if (res == 0) { if (len1 > len2) res = 1; else if (len1 < len2) res = -1; else if (hcount1 > hcount2) res = 1; else if (hcount2 > hcount1) res = -1; else { int count = hcount1 * 2; int i; for (i = 0; i < count; ++i) if (HSE_ENDPOS(ent1[i]) != HSE_ENDPOS(ent2[i]) || HSE_ISNULL(ent1[i]) != HSE_ISNULL(ent2[i])) break; if (i < count) { if (HSE_ENDPOS(ent1[i]) < HSE_ENDPOS(ent2[i])) res = -1; else if (HSE_ENDPOS(ent1[i]) > HSE_ENDPOS(ent2[i])) res = 1; else if (HSE_ISNULL(ent1[i])) res = 1; else if (HSE_ISNULL(ent2[i])) res = -1; } } } else { res = (res > 0) ? 1 : -1; } } /* * this is a btree support function; this is one of the few places where * memory needs to be explicitly freed. */ PG_FREE_IF_COPY(hs1, 0); PG_FREE_IF_COPY(hs2, 1); PG_RETURN_INT32(res); } PG_FUNCTION_INFO_V1(hstore_eq); Datum hstore_eq(PG_FUNCTION_ARGS) { int res = DatumGetInt32(DirectFunctionCall2(hstore_cmp, PG_GETARG_DATUM(0), PG_GETARG_DATUM(1))); PG_RETURN_BOOL(res == 0); } PG_FUNCTION_INFO_V1(hstore_ne); Datum hstore_ne(PG_FUNCTION_ARGS) { int res = DatumGetInt32(DirectFunctionCall2(hstore_cmp, PG_GETARG_DATUM(0), PG_GETARG_DATUM(1))); PG_RETURN_BOOL(res != 0); } PG_FUNCTION_INFO_V1(hstore_gt); Datum hstore_gt(PG_FUNCTION_ARGS) { int res = DatumGetInt32(DirectFunctionCall2(hstore_cmp, PG_GETARG_DATUM(0), PG_GETARG_DATUM(1))); PG_RETURN_BOOL(res > 0); } PG_FUNCTION_INFO_V1(hstore_ge); Datum hstore_ge(PG_FUNCTION_ARGS) { int res = DatumGetInt32(DirectFunctionCall2(hstore_cmp, PG_GETARG_DATUM(0), PG_GETARG_DATUM(1))); PG_RETURN_BOOL(res >= 0); } PG_FUNCTION_INFO_V1(hstore_lt); Datum hstore_lt(PG_FUNCTION_ARGS) { int res = DatumGetInt32(DirectFunctionCall2(hstore_cmp, PG_GETARG_DATUM(0), PG_GETARG_DATUM(1))); PG_RETURN_BOOL(res < 0); } PG_FUNCTION_INFO_V1(hstore_le); Datum hstore_le(PG_FUNCTION_ARGS) { int res = DatumGetInt32(DirectFunctionCall2(hstore_cmp, PG_GETARG_DATUM(0), PG_GETARG_DATUM(1))); PG_RETURN_BOOL(res <= 0); } PG_FUNCTION_INFO_V1(hstore_hash); Datum hstore_hash(PG_FUNCTION_ARGS) { HStore *hs = PG_GETARG_HSTORE_P(0); Datum hval = hash_any((unsigned char *) VARDATA(hs), VARSIZE(hs) - VARHDRSZ); /* * This (along with hstore_hash_extended) is the only place in the code * that cares whether the overall varlena size exactly matches the true * data size; this assertion should be maintained by all the other code, * but we make it explicit here. */ Assert(VARSIZE(hs) == (HS_COUNT(hs) != 0 ? CALCDATASIZE(HS_COUNT(hs), HSE_ENDPOS(ARRPTR(hs)[2 * HS_COUNT(hs) - 1])) : HSHRDSIZE)); PG_FREE_IF_COPY(hs, 0); PG_RETURN_DATUM(hval); } PG_FUNCTION_INFO_V1(hstore_hash_extended); Datum hstore_hash_extended(PG_FUNCTION_ARGS) { HStore *hs = PG_GETARG_HSTORE_P(0); uint64 seed = PG_GETARG_INT64(1); Datum hval; hval = hash_any_extended((unsigned char *) VARDATA(hs), VARSIZE(hs) - VARHDRSZ, seed); /* See comment in hstore_hash */ Assert(VARSIZE(hs) == (HS_COUNT(hs) != 0 ? CALCDATASIZE(HS_COUNT(hs), HSE_ENDPOS(ARRPTR(hs)[2 * HS_COUNT(hs) - 1])) : HSHRDSIZE)); PG_FREE_IF_COPY(hs, 0); PG_RETURN_DATUM(hval); }