/*------------------------------------------------------------------------- * * jsonapi.c * JSON parser and lexer interfaces * * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * IDENTIFICATION * src/common/jsonapi.c * *------------------------------------------------------------------------- */ #ifndef FRONTEND #include "postgres.h" #else #include "postgres_fe.h" #endif #include "common/jsonapi.h" #include "mb/pg_wchar.h" #include "port/pg_lfind.h" #ifndef FRONTEND #include "miscadmin.h" #endif /* * The context of the parser is maintained by the recursive descent * mechanism, but is passed explicitly to the error reporting routine * for better diagnostics. */ typedef enum /* contexts of JSON parser */ { JSON_PARSE_VALUE, /* expecting a value */ JSON_PARSE_STRING, /* expecting a string (for a field name) */ JSON_PARSE_ARRAY_START, /* saw '[', expecting value or ']' */ JSON_PARSE_ARRAY_NEXT, /* saw array element, expecting ',' or ']' */ JSON_PARSE_OBJECT_START, /* saw '{', expecting label or '}' */ JSON_PARSE_OBJECT_LABEL, /* saw object label, expecting ':' */ JSON_PARSE_OBJECT_NEXT, /* saw object value, expecting ',' or '}' */ JSON_PARSE_OBJECT_COMMA, /* saw object ',', expecting next label */ JSON_PARSE_END, /* saw the end of a document, expect nothing */ } JsonParseContext; /* * Setup for table-driven parser. * These enums need to be separate from the JsonTokenType and from each other * so we can have all of them on the prediction stack, which consists of * tokens, non-terminals, and semantic action markers. */ enum JsonNonTerminal { JSON_NT_JSON = 32, JSON_NT_ARRAY_ELEMENTS, JSON_NT_MORE_ARRAY_ELEMENTS, JSON_NT_KEY_PAIRS, JSON_NT_MORE_KEY_PAIRS, }; enum JsonParserSem { JSON_SEM_OSTART = 64, JSON_SEM_OEND, JSON_SEM_ASTART, JSON_SEM_AEND, JSON_SEM_OFIELD_INIT, JSON_SEM_OFIELD_START, JSON_SEM_OFIELD_END, JSON_SEM_AELEM_START, JSON_SEM_AELEM_END, JSON_SEM_SCALAR_INIT, JSON_SEM_SCALAR_CALL, }; /* * struct containing the 3 stacks used in non-recursive parsing, * and the token and value for scalars that need to be preserved * across calls. * * typedef appears in jsonapi.h */ struct JsonParserStack { int stack_size; char *prediction; int pred_index; /* these two are indexed by lex_level */ char **fnames; bool *fnull; JsonTokenType scalar_tok; char *scalar_val; }; /* * struct containing state used when there is a possible partial token at the * end of a json chunk when we are doing incremental parsing. * * typedef appears in jsonapi.h */ struct JsonIncrementalState { bool is_last_chunk; bool partial_completed; StringInfoData partial_token; }; /* * constants and macros used in the nonrecursive parser */ #define JSON_NUM_TERMINALS 13 #define JSON_NUM_NONTERMINALS 5 #define JSON_NT_OFFSET JSON_NT_JSON /* for indexing the table */ #define OFS(NT) (NT) - JSON_NT_OFFSET /* classify items we get off the stack */ #define IS_SEM(x) ((x) & 0x40) #define IS_NT(x) ((x) & 0x20) /* * These productions are stored in reverse order right to left so that when * they are pushed on the stack what we expect next is at the top of the stack. */ static char JSON_PROD_EPSILON[] = {0}; /* epsilon - an empty production */ /* JSON -> string */ static char JSON_PROD_SCALAR_STRING[] = {JSON_SEM_SCALAR_CALL, JSON_TOKEN_STRING, JSON_SEM_SCALAR_INIT, 0}; /* JSON -> number */ static char JSON_PROD_SCALAR_NUMBER[] = {JSON_SEM_SCALAR_CALL, JSON_TOKEN_NUMBER, JSON_SEM_SCALAR_INIT, 0}; /* JSON -> 'true' */ static char JSON_PROD_SCALAR_TRUE[] = {JSON_SEM_SCALAR_CALL, JSON_TOKEN_TRUE, JSON_SEM_SCALAR_INIT, 0}; /* JSON -> 'false' */ static char JSON_PROD_SCALAR_FALSE[] = {JSON_SEM_SCALAR_CALL, JSON_TOKEN_FALSE, JSON_SEM_SCALAR_INIT, 0}; /* JSON -> 'null' */ static char JSON_PROD_SCALAR_NULL[] = {JSON_SEM_SCALAR_CALL, JSON_TOKEN_NULL, JSON_SEM_SCALAR_INIT, 0}; /* JSON -> '{' KEY_PAIRS '}' */ static char JSON_PROD_OBJECT[] = {JSON_SEM_OEND, JSON_TOKEN_OBJECT_END, JSON_NT_KEY_PAIRS, JSON_TOKEN_OBJECT_START, JSON_SEM_OSTART, 0}; /* JSON -> '[' ARRAY_ELEMENTS ']' */ static char JSON_PROD_ARRAY[] = {JSON_SEM_AEND, JSON_TOKEN_ARRAY_END, JSON_NT_ARRAY_ELEMENTS, JSON_TOKEN_ARRAY_START, JSON_SEM_ASTART, 0}; /* ARRAY_ELEMENTS -> JSON MORE_ARRAY_ELEMENTS */ static char JSON_PROD_ARRAY_ELEMENTS[] = {JSON_NT_MORE_ARRAY_ELEMENTS, JSON_SEM_AELEM_END, JSON_NT_JSON, JSON_SEM_AELEM_START, 0}; /* MORE_ARRAY_ELEMENTS -> ',' JSON MORE_ARRAY_ELEMENTS */ static char JSON_PROD_MORE_ARRAY_ELEMENTS[] = {JSON_NT_MORE_ARRAY_ELEMENTS, JSON_SEM_AELEM_END, JSON_NT_JSON, JSON_SEM_AELEM_START, JSON_TOKEN_COMMA, 0}; /* KEY_PAIRS -> string ':' JSON MORE_KEY_PAIRS */ static char JSON_PROD_KEY_PAIRS[] = {JSON_NT_MORE_KEY_PAIRS, JSON_SEM_OFIELD_END, JSON_NT_JSON, JSON_SEM_OFIELD_START, JSON_TOKEN_COLON, JSON_TOKEN_STRING, JSON_SEM_OFIELD_INIT, 0}; /* MORE_KEY_PAIRS -> ',' string ':' JSON MORE_KEY_PAIRS */ static char JSON_PROD_MORE_KEY_PAIRS[] = {JSON_NT_MORE_KEY_PAIRS, JSON_SEM_OFIELD_END, JSON_NT_JSON, JSON_SEM_OFIELD_START, JSON_TOKEN_COLON, JSON_TOKEN_STRING, JSON_SEM_OFIELD_INIT, JSON_TOKEN_COMMA, 0}; /* * Note: there are also epsilon productions for ARRAY_ELEMENTS, * MORE_ARRAY_ELEMENTS, KEY_PAIRS and MORE_KEY_PAIRS * They are all the same as none require any semantic actions. */ /* * Table connecting the productions with their director sets of * terminal symbols. * Any combination not specified here represents an error. */ typedef struct { size_t len; char *prod; } td_entry; #define TD_ENTRY(PROD) { sizeof(PROD) - 1, (PROD) } static td_entry td_parser_table[JSON_NUM_NONTERMINALS][JSON_NUM_TERMINALS] = { /* JSON */ [OFS(JSON_NT_JSON)][JSON_TOKEN_STRING] = TD_ENTRY(JSON_PROD_SCALAR_STRING), [OFS(JSON_NT_JSON)][JSON_TOKEN_NUMBER] = TD_ENTRY(JSON_PROD_SCALAR_NUMBER), [OFS(JSON_NT_JSON)][JSON_TOKEN_TRUE] = TD_ENTRY(JSON_PROD_SCALAR_TRUE), [OFS(JSON_NT_JSON)][JSON_TOKEN_FALSE] = TD_ENTRY(JSON_PROD_SCALAR_FALSE), [OFS(JSON_NT_JSON)][JSON_TOKEN_NULL] = TD_ENTRY(JSON_PROD_SCALAR_NULL), [OFS(JSON_NT_JSON)][JSON_TOKEN_ARRAY_START] = TD_ENTRY(JSON_PROD_ARRAY), [OFS(JSON_NT_JSON)][JSON_TOKEN_OBJECT_START] = TD_ENTRY(JSON_PROD_OBJECT), /* ARRAY_ELEMENTS */ [OFS(JSON_NT_ARRAY_ELEMENTS)][JSON_TOKEN_ARRAY_START] = TD_ENTRY(JSON_PROD_ARRAY_ELEMENTS), [OFS(JSON_NT_ARRAY_ELEMENTS)][JSON_TOKEN_OBJECT_START] = TD_ENTRY(JSON_PROD_ARRAY_ELEMENTS), [OFS(JSON_NT_ARRAY_ELEMENTS)][JSON_TOKEN_STRING] = TD_ENTRY(JSON_PROD_ARRAY_ELEMENTS), [OFS(JSON_NT_ARRAY_ELEMENTS)][JSON_TOKEN_NUMBER] = TD_ENTRY(JSON_PROD_ARRAY_ELEMENTS), [OFS(JSON_NT_ARRAY_ELEMENTS)][JSON_TOKEN_TRUE] = TD_ENTRY(JSON_PROD_ARRAY_ELEMENTS), [OFS(JSON_NT_ARRAY_ELEMENTS)][JSON_TOKEN_FALSE] = TD_ENTRY(JSON_PROD_ARRAY_ELEMENTS), [OFS(JSON_NT_ARRAY_ELEMENTS)][JSON_TOKEN_NULL] = TD_ENTRY(JSON_PROD_ARRAY_ELEMENTS), [OFS(JSON_NT_ARRAY_ELEMENTS)][JSON_TOKEN_ARRAY_END] = TD_ENTRY(JSON_PROD_EPSILON), /* MORE_ARRAY_ELEMENTS */ [OFS(JSON_NT_MORE_ARRAY_ELEMENTS)][JSON_TOKEN_COMMA] = TD_ENTRY(JSON_PROD_MORE_ARRAY_ELEMENTS), [OFS(JSON_NT_MORE_ARRAY_ELEMENTS)][JSON_TOKEN_ARRAY_END] = TD_ENTRY(JSON_PROD_EPSILON), /* KEY_PAIRS */ [OFS(JSON_NT_KEY_PAIRS)][JSON_TOKEN_STRING] = TD_ENTRY(JSON_PROD_KEY_PAIRS), [OFS(JSON_NT_KEY_PAIRS)][JSON_TOKEN_OBJECT_END] = TD_ENTRY(JSON_PROD_EPSILON), /* MORE_KEY_PAIRS */ [OFS(JSON_NT_MORE_KEY_PAIRS)][JSON_TOKEN_COMMA] = TD_ENTRY(JSON_PROD_MORE_KEY_PAIRS), [OFS(JSON_NT_MORE_KEY_PAIRS)][JSON_TOKEN_OBJECT_END] = TD_ENTRY(JSON_PROD_EPSILON), }; /* the GOAL production. Not stored in the table, but will be the initial contents of the prediction stack */ static char JSON_PROD_GOAL[] = {JSON_TOKEN_END, JSON_NT_JSON, 0}; static inline JsonParseErrorType json_lex_string(JsonLexContext *lex); static inline JsonParseErrorType json_lex_number(JsonLexContext *lex, char *s, bool *num_err, int *total_len); static inline JsonParseErrorType parse_scalar(JsonLexContext *lex, JsonSemAction *sem); static JsonParseErrorType parse_object_field(JsonLexContext *lex, JsonSemAction *sem); static JsonParseErrorType parse_object(JsonLexContext *lex, JsonSemAction *sem); static JsonParseErrorType parse_array_element(JsonLexContext *lex, JsonSemAction *sem); static JsonParseErrorType parse_array(JsonLexContext *lex, JsonSemAction *sem); static JsonParseErrorType report_parse_error(JsonParseContext ctx, JsonLexContext *lex); /* the null action object used for pure validation */ JsonSemAction nullSemAction = { NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; /* Parser support routines */ /* * lex_peek * * what is the current look_ahead token? */ static inline JsonTokenType lex_peek(JsonLexContext *lex) { return lex->token_type; } /* * lex_expect * * move the lexer to the next token if the current look_ahead token matches * the parameter token. Otherwise, report an error. */ static inline JsonParseErrorType lex_expect(JsonParseContext ctx, JsonLexContext *lex, JsonTokenType token) { if (lex_peek(lex) == token) return json_lex(lex); else return report_parse_error(ctx, lex); } /* chars to consider as part of an alphanumeric token */ #define JSON_ALPHANUMERIC_CHAR(c) \ (((c) >= 'a' && (c) <= 'z') || \ ((c) >= 'A' && (c) <= 'Z') || \ ((c) >= '0' && (c) <= '9') || \ (c) == '_' || \ IS_HIGHBIT_SET(c)) /* * Utility function to check if a string is a valid JSON number. * * str is of length len, and need not be null-terminated. */ bool IsValidJsonNumber(const char *str, int len) { bool numeric_error; int total_len; JsonLexContext dummy_lex; if (len <= 0) return false; dummy_lex.incremental = false; dummy_lex.inc_state = NULL; dummy_lex.pstack = NULL; /* * json_lex_number expects a leading '-' to have been eaten already. * * having to cast away the constness of str is ugly, but there's not much * easy alternative. */ if (*str == '-') { dummy_lex.input = unconstify(char *, str) + 1; dummy_lex.input_length = len - 1; } else { dummy_lex.input = unconstify(char *, str); dummy_lex.input_length = len; } dummy_lex.token_start = dummy_lex.input; json_lex_number(&dummy_lex, dummy_lex.input, &numeric_error, &total_len); return (!numeric_error) && (total_len == dummy_lex.input_length); } /* * makeJsonLexContextCstringLen * Initialize the given JsonLexContext object, or create one * * If a valid 'lex' pointer is given, it is initialized. This can * be used for stack-allocated structs, saving overhead. If NULL is * given, a new struct is allocated. * * If need_escapes is true, ->strval stores the unescaped lexemes. * Unescaping is expensive, so only request it when necessary. * * If need_escapes is true or lex was given as NULL, then caller is * responsible for freeing the returned struct, either by calling * freeJsonLexContext() or (in backend environment) via memory context * cleanup. */ JsonLexContext * makeJsonLexContextCstringLen(JsonLexContext *lex, char *json, int len, int encoding, bool need_escapes) { if (lex == NULL) { lex = palloc0(sizeof(JsonLexContext)); lex->flags |= JSONLEX_FREE_STRUCT; } else memset(lex, 0, sizeof(JsonLexContext)); lex->errormsg = NULL; lex->input = lex->token_terminator = lex->line_start = json; lex->line_number = 1; lex->input_length = len; lex->input_encoding = encoding; if (need_escapes) { lex->strval = makeStringInfo(); lex->flags |= JSONLEX_FREE_STRVAL; } return lex; } /* * makeJsonLexContextIncremental * * Similar to above but set up for use in incremental parsing. That means we * need explicit stacks for predictions, field names and null indicators, but * we don't need the input, that will be handed in bit by bit to the * parse routine. We also need an accumulator for partial tokens in case * the boundary between chunks happens to fall in the middle of a token. */ #define JS_STACK_CHUNK_SIZE 64 #define JS_MAX_PROD_LEN 10 /* more than we need */ #define JSON_TD_MAX_STACK 6400 /* hard coded for now - this is a REALLY high * number */ JsonLexContext * makeJsonLexContextIncremental(JsonLexContext *lex, int encoding, bool need_escapes) { if (lex == NULL) { lex = palloc0(sizeof(JsonLexContext)); lex->flags |= JSONLEX_FREE_STRUCT; } else memset(lex, 0, sizeof(JsonLexContext)); lex->line_number = 1; lex->input_encoding = encoding; lex->incremental = true; lex->inc_state = palloc0(sizeof(JsonIncrementalState)); initStringInfo(&(lex->inc_state->partial_token)); lex->pstack = palloc(sizeof(JsonParserStack)); lex->pstack->stack_size = JS_STACK_CHUNK_SIZE; lex->pstack->prediction = palloc(JS_STACK_CHUNK_SIZE * JS_MAX_PROD_LEN); lex->pstack->pred_index = 0; lex->pstack->fnames = palloc(JS_STACK_CHUNK_SIZE * sizeof(char *)); lex->pstack->fnull = palloc(JS_STACK_CHUNK_SIZE * sizeof(bool)); if (need_escapes) { lex->strval = makeStringInfo(); lex->flags |= JSONLEX_FREE_STRVAL; } return lex; } static inline void inc_lex_level(JsonLexContext *lex) { lex->lex_level += 1; if (lex->incremental && lex->lex_level >= lex->pstack->stack_size) { lex->pstack->stack_size += JS_STACK_CHUNK_SIZE; lex->pstack->prediction = repalloc(lex->pstack->prediction, lex->pstack->stack_size * JS_MAX_PROD_LEN); if (lex->pstack->fnames) lex->pstack->fnames = repalloc(lex->pstack->fnames, lex->pstack->stack_size * sizeof(char *)); if (lex->pstack->fnull) lex->pstack->fnull = repalloc(lex->pstack->fnull, lex->pstack->stack_size * sizeof(bool)); } } static inline void dec_lex_level(JsonLexContext *lex) { lex->lex_level -= 1; } static inline void push_prediction(JsonParserStack *pstack, td_entry entry) { memcpy(pstack->prediction + pstack->pred_index, entry.prod, entry.len); pstack->pred_index += entry.len; } static inline char pop_prediction(JsonParserStack *pstack) { Assert(pstack->pred_index > 0); return pstack->prediction[--pstack->pred_index]; } static inline char next_prediction(JsonParserStack *pstack) { Assert(pstack->pred_index > 0); return pstack->prediction[pstack->pred_index - 1]; } static inline bool have_prediction(JsonParserStack *pstack) { return pstack->pred_index > 0; } static inline void set_fname(JsonLexContext *lex, char *fname) { lex->pstack->fnames[lex->lex_level] = fname; } static inline char * get_fname(JsonLexContext *lex) { return lex->pstack->fnames[lex->lex_level]; } static inline void set_fnull(JsonLexContext *lex, bool fnull) { lex->pstack->fnull[lex->lex_level] = fnull; } static inline bool get_fnull(JsonLexContext *lex) { return lex->pstack->fnull[lex->lex_level]; } /* * Free memory in a JsonLexContext. * * There's no need for this if a *lex pointer was given when the object was * made, need_escapes was false, and json_errdetail() was not called; or if (in * backend environment) a memory context delete/reset is imminent. */ void freeJsonLexContext(JsonLexContext *lex) { if (lex->flags & JSONLEX_FREE_STRVAL) destroyStringInfo(lex->strval); if (lex->errormsg) destroyStringInfo(lex->errormsg); if (lex->incremental) { pfree(lex->inc_state->partial_token.data); pfree(lex->inc_state); pfree(lex->pstack->prediction); pfree(lex->pstack->fnames); pfree(lex->pstack->fnull); pfree(lex->pstack); } if (lex->flags & JSONLEX_FREE_STRUCT) pfree(lex); } /* * pg_parse_json * * Publicly visible entry point for the JSON parser. * * lex is a lexing context, set up for the json to be processed by calling * makeJsonLexContext(). sem is a structure of function pointers to semantic * action routines to be called at appropriate spots during parsing, and a * pointer to a state object to be passed to those routines. * * If FORCE_JSON_PSTACK is defined then the routine will call the non-recursive * JSON parser. This is a useful way to validate that it's doing the right * think at least for non-incremental cases. If this is on we expect to see * regression diffs relating to error messages about stack depth, but no * other differences. */ JsonParseErrorType pg_parse_json(JsonLexContext *lex, JsonSemAction *sem) { #ifdef FORCE_JSON_PSTACK lex->incremental = true; lex->inc_state = palloc0(sizeof(JsonIncrementalState)); /* * We don't need partial token processing, there is only one chunk. But we * still need to init the partial token string so that freeJsonLexContext * works. */ initStringInfo(&(lex->inc_state->partial_token)); lex->pstack = palloc(sizeof(JsonParserStack)); lex->pstack->stack_size = JS_STACK_CHUNK_SIZE; lex->pstack->prediction = palloc(JS_STACK_CHUNK_SIZE * JS_MAX_PROD_LEN); lex->pstack->pred_index = 0; lex->pstack->fnames = palloc(JS_STACK_CHUNK_SIZE * sizeof(char *)); lex->pstack->fnull = palloc(JS_STACK_CHUNK_SIZE * sizeof(bool)); return pg_parse_json_incremental(lex, sem, lex->input, lex->input_length, true); #else JsonTokenType tok; JsonParseErrorType result; if (lex->incremental) return JSON_INVALID_LEXER_TYPE; /* get the initial token */ result = json_lex(lex); if (result != JSON_SUCCESS) return result; tok = lex_peek(lex); /* parse by recursive descent */ switch (tok) { case JSON_TOKEN_OBJECT_START: result = parse_object(lex, sem); break; case JSON_TOKEN_ARRAY_START: result = parse_array(lex, sem); break; default: result = parse_scalar(lex, sem); /* json can be a bare scalar */ } if (result == JSON_SUCCESS) result = lex_expect(JSON_PARSE_END, lex, JSON_TOKEN_END); return result; #endif } /* * json_count_array_elements * * Returns number of array elements in lex context at start of array token * until end of array token at same nesting level. * * Designed to be called from array_start routines. */ JsonParseErrorType json_count_array_elements(JsonLexContext *lex, int *elements) { JsonLexContext copylex; int count; JsonParseErrorType result; /* * It's safe to do this with a shallow copy because the lexical routines * don't scribble on the input. They do scribble on the other pointers * etc, so doing this with a copy makes that safe. */ memcpy(©lex, lex, sizeof(JsonLexContext)); copylex.strval = NULL; /* not interested in values here */ copylex.lex_level++; count = 0; result = lex_expect(JSON_PARSE_ARRAY_START, ©lex, JSON_TOKEN_ARRAY_START); if (result != JSON_SUCCESS) return result; if (lex_peek(©lex) != JSON_TOKEN_ARRAY_END) { while (1) { count++; result = parse_array_element(©lex, &nullSemAction); if (result != JSON_SUCCESS) return result; if (copylex.token_type != JSON_TOKEN_COMMA) break; result = json_lex(©lex); if (result != JSON_SUCCESS) return result; } } result = lex_expect(JSON_PARSE_ARRAY_NEXT, ©lex, JSON_TOKEN_ARRAY_END); if (result != JSON_SUCCESS) return result; *elements = count; return JSON_SUCCESS; } /* * pg_parse_json_incremental * * Routine for incremental parsing of json. This uses the non-recursive top * down method of the Dragon Book Algorithm 4.3. It's somewhat slower than * the Recursive Descent pattern used above, so we only use it for incremental * parsing of JSON. * * The lexing context needs to be set up by a call to * makeJsonLexContextIncremental(). sem is a structure of function pointers * to semantic action routines, which should function exactly as those used * in the recursive descent parser. * * This routine can be called repeatedly with chunks of JSON. On the final * chunk is_last must be set to true. len is the length of the json chunk, * which does not need to be null terminated. */ JsonParseErrorType pg_parse_json_incremental(JsonLexContext *lex, JsonSemAction *sem, char *json, int len, bool is_last) { JsonTokenType tok; JsonParseErrorType result; JsonParseContext ctx = JSON_PARSE_VALUE; JsonParserStack *pstack = lex->pstack; if (!lex->incremental) return JSON_INVALID_LEXER_TYPE; lex->input = lex->token_terminator = lex->line_start = json; lex->input_length = len; lex->inc_state->is_last_chunk = is_last; /* get the initial token */ result = json_lex(lex); if (result != JSON_SUCCESS) return result; tok = lex_peek(lex); /* use prediction stack for incremental parsing */ if (!have_prediction(pstack)) { td_entry goal = TD_ENTRY(JSON_PROD_GOAL); push_prediction(pstack, goal); } while (have_prediction(pstack)) { char top = pop_prediction(pstack); td_entry entry; /* * these first two branches are the guts of the Table Driven method */ if (top == tok) { /* * tok can only be a terminal symbol, so top must be too. the * token matches the top of the stack, so get the next token. */ if (tok < JSON_TOKEN_END) { result = json_lex(lex); if (result != JSON_SUCCESS) return result; tok = lex_peek(lex); } } else if (IS_NT(top) && (entry = td_parser_table[OFS(top)][tok]).prod != NULL) { /* * the token is in the director set for a production of the * non-terminal at the top of the stack, so push the reversed RHS * of the production onto the stack. */ push_prediction(pstack, entry); } else if (IS_SEM(top)) { /* * top is a semantic action marker, so take action accordingly. * It's important to have these markers in the prediction stack * before any token they might need so we don't advance the token * prematurely. Note in a couple of cases we need to do something * both before and after the token. */ switch (top) { case JSON_SEM_OSTART: { json_struct_action ostart = sem->object_start; if (lex->lex_level >= JSON_TD_MAX_STACK) return JSON_NESTING_TOO_DEEP; if (ostart != NULL) { result = (*ostart) (sem->semstate); if (result != JSON_SUCCESS) return result; } inc_lex_level(lex); } break; case JSON_SEM_OEND: { json_struct_action oend = sem->object_end; dec_lex_level(lex); if (oend != NULL) { result = (*oend) (sem->semstate); if (result != JSON_SUCCESS) return result; } } break; case JSON_SEM_ASTART: { json_struct_action astart = sem->array_start; if (lex->lex_level >= JSON_TD_MAX_STACK) return JSON_NESTING_TOO_DEEP; if (astart != NULL) { result = (*astart) (sem->semstate); if (result != JSON_SUCCESS) return result; } inc_lex_level(lex); } break; case JSON_SEM_AEND: { json_struct_action aend = sem->array_end; dec_lex_level(lex); if (aend != NULL) { result = (*aend) (sem->semstate); if (result != JSON_SUCCESS) return result; } } break; case JSON_SEM_OFIELD_INIT: { /* * all we do here is save out the field name. We have * to wait to get past the ':' to see if the next * value is null so we can call the semantic routine */ char *fname = NULL; json_ofield_action ostart = sem->object_field_start; json_ofield_action oend = sem->object_field_end; if ((ostart != NULL || oend != NULL) && lex->strval != NULL) { fname = pstrdup(lex->strval->data); } set_fname(lex, fname); } break; case JSON_SEM_OFIELD_START: { /* * the current token should be the first token of the * value */ bool isnull = tok == JSON_TOKEN_NULL; json_ofield_action ostart = sem->object_field_start; set_fnull(lex, isnull); if (ostart != NULL) { char *fname = get_fname(lex); result = (*ostart) (sem->semstate, fname, isnull); if (result != JSON_SUCCESS) return result; } } break; case JSON_SEM_OFIELD_END: { json_ofield_action oend = sem->object_field_end; if (oend != NULL) { char *fname = get_fname(lex); bool isnull = get_fnull(lex); result = (*oend) (sem->semstate, fname, isnull); if (result != JSON_SUCCESS) return result; } } break; case JSON_SEM_AELEM_START: { json_aelem_action astart = sem->array_element_start; bool isnull = tok == JSON_TOKEN_NULL; set_fnull(lex, isnull); if (astart != NULL) { result = (*astart) (sem->semstate, isnull); if (result != JSON_SUCCESS) return result; } } break; case JSON_SEM_AELEM_END: { json_aelem_action aend = sem->array_element_end; if (aend != NULL) { bool isnull = get_fnull(lex); result = (*aend) (sem->semstate, isnull); if (result != JSON_SUCCESS) return result; } } break; case JSON_SEM_SCALAR_INIT: { json_scalar_action sfunc = sem->scalar; pstack->scalar_val = NULL; if (sfunc != NULL) { /* * extract the de-escaped string value, or the raw * lexeme */ /* * XXX copied from RD parser but looks like a * buglet */ if (tok == JSON_TOKEN_STRING) { if (lex->strval != NULL) pstack->scalar_val = pstrdup(lex->strval->data); } else { int tlen = (lex->token_terminator - lex->token_start); pstack->scalar_val = palloc(tlen + 1); memcpy(pstack->scalar_val, lex->token_start, tlen); pstack->scalar_val[tlen] = '\0'; } pstack->scalar_tok = tok; } } break; case JSON_SEM_SCALAR_CALL: { /* * We'd like to be able to get rid of this business of * two bits of scalar action, but we can't. It breaks * certain semantic actions which expect that when * called the lexer has consumed the item. See for * example get_scalar() in jsonfuncs.c. */ json_scalar_action sfunc = sem->scalar; if (sfunc != NULL) { result = (*sfunc) (sem->semstate, pstack->scalar_val, pstack->scalar_tok); if (result != JSON_SUCCESS) return result; } } break; default: /* should not happen */ break; } } else { /* * The token didn't match the stack top if it's a terminal nor a * production for the stack top if it's a non-terminal. * * Various cases here are Asserted to be not possible, as the * token would not appear at the top of the prediction stack * unless the lookahead matched. */ switch (top) { case JSON_TOKEN_STRING: if (next_prediction(pstack) == JSON_TOKEN_COLON) ctx = JSON_PARSE_STRING; else { Assert(false); ctx = JSON_PARSE_VALUE; } break; case JSON_TOKEN_NUMBER: case JSON_TOKEN_TRUE: case JSON_TOKEN_FALSE: case JSON_TOKEN_NULL: case JSON_TOKEN_ARRAY_START: case JSON_TOKEN_OBJECT_START: Assert(false); ctx = JSON_PARSE_VALUE; break; case JSON_TOKEN_ARRAY_END: Assert(false); ctx = JSON_PARSE_ARRAY_NEXT; break; case JSON_TOKEN_OBJECT_END: Assert(false); ctx = JSON_PARSE_OBJECT_NEXT; break; case JSON_TOKEN_COMMA: Assert(false); if (next_prediction(pstack) == JSON_TOKEN_STRING) ctx = JSON_PARSE_OBJECT_NEXT; else ctx = JSON_PARSE_ARRAY_NEXT; break; case JSON_TOKEN_COLON: ctx = JSON_PARSE_OBJECT_LABEL; break; case JSON_TOKEN_END: ctx = JSON_PARSE_END; break; case JSON_NT_MORE_ARRAY_ELEMENTS: ctx = JSON_PARSE_ARRAY_NEXT; break; case JSON_NT_ARRAY_ELEMENTS: ctx = JSON_PARSE_ARRAY_START; break; case JSON_NT_MORE_KEY_PAIRS: ctx = JSON_PARSE_OBJECT_NEXT; break; case JSON_NT_KEY_PAIRS: ctx = JSON_PARSE_OBJECT_START; break; default: ctx = JSON_PARSE_VALUE; } return report_parse_error(ctx, lex); } } return JSON_SUCCESS; } /* * Recursive Descent parse routines. There is one for each structural * element in a json document: * - scalar (string, number, true, false, null) * - array ( [ ] ) * - array element * - object ( { } ) * - object field */ static inline JsonParseErrorType parse_scalar(JsonLexContext *lex, JsonSemAction *sem) { char *val = NULL; json_scalar_action sfunc = sem->scalar; JsonTokenType tok = lex_peek(lex); JsonParseErrorType result; /* a scalar must be a string, a number, true, false, or null */ if (tok != JSON_TOKEN_STRING && tok != JSON_TOKEN_NUMBER && tok != JSON_TOKEN_TRUE && tok != JSON_TOKEN_FALSE && tok != JSON_TOKEN_NULL) return report_parse_error(JSON_PARSE_VALUE, lex); /* if no semantic function, just consume the token */ if (sfunc == NULL) return json_lex(lex); /* extract the de-escaped string value, or the raw lexeme */ if (lex_peek(lex) == JSON_TOKEN_STRING) { if (lex->strval != NULL) val = pstrdup(lex->strval->data); } else { int len = (lex->token_terminator - lex->token_start); val = palloc(len + 1); memcpy(val, lex->token_start, len); val[len] = '\0'; } /* consume the token */ result = json_lex(lex); if (result != JSON_SUCCESS) return result; /* invoke the callback */ result = (*sfunc) (sem->semstate, val, tok); return result; } static JsonParseErrorType parse_object_field(JsonLexContext *lex, JsonSemAction *sem) { /* * An object field is "fieldname" : value where value can be a scalar, * object or array. Note: in user-facing docs and error messages, we * generally call a field name a "key". */ char *fname = NULL; /* keep compiler quiet */ json_ofield_action ostart = sem->object_field_start; json_ofield_action oend = sem->object_field_end; bool isnull; JsonTokenType tok; JsonParseErrorType result; if (lex_peek(lex) != JSON_TOKEN_STRING) return report_parse_error(JSON_PARSE_STRING, lex); if ((ostart != NULL || oend != NULL) && lex->strval != NULL) fname = pstrdup(lex->strval->data); result = json_lex(lex); if (result != JSON_SUCCESS) return result; result = lex_expect(JSON_PARSE_OBJECT_LABEL, lex, JSON_TOKEN_COLON); if (result != JSON_SUCCESS) return result; tok = lex_peek(lex); isnull = tok == JSON_TOKEN_NULL; if (ostart != NULL) { result = (*ostart) (sem->semstate, fname, isnull); if (result != JSON_SUCCESS) return result; } switch (tok) { case JSON_TOKEN_OBJECT_START: result = parse_object(lex, sem); break; case JSON_TOKEN_ARRAY_START: result = parse_array(lex, sem); break; default: result = parse_scalar(lex, sem); } if (result != JSON_SUCCESS) return result; if (oend != NULL) { result = (*oend) (sem->semstate, fname, isnull); if (result != JSON_SUCCESS) return result; } return JSON_SUCCESS; } static JsonParseErrorType parse_object(JsonLexContext *lex, JsonSemAction *sem) { /* * an object is a possibly empty sequence of object fields, separated by * commas and surrounded by curly braces. */ json_struct_action ostart = sem->object_start; json_struct_action oend = sem->object_end; JsonTokenType tok; JsonParseErrorType result; #ifndef FRONTEND check_stack_depth(); #endif if (ostart != NULL) { result = (*ostart) (sem->semstate); if (result != JSON_SUCCESS) return result; } /* * Data inside an object is at a higher nesting level than the object * itself. Note that we increment this after we call the semantic routine * for the object start and restore it before we call the routine for the * object end. */ lex->lex_level++; Assert(lex_peek(lex) == JSON_TOKEN_OBJECT_START); result = json_lex(lex); if (result != JSON_SUCCESS) return result; tok = lex_peek(lex); switch (tok) { case JSON_TOKEN_STRING: result = parse_object_field(lex, sem); while (result == JSON_SUCCESS && lex_peek(lex) == JSON_TOKEN_COMMA) { result = json_lex(lex); if (result != JSON_SUCCESS) break; result = parse_object_field(lex, sem); } break; case JSON_TOKEN_OBJECT_END: break; default: /* case of an invalid initial token inside the object */ result = report_parse_error(JSON_PARSE_OBJECT_START, lex); } if (result != JSON_SUCCESS) return result; result = lex_expect(JSON_PARSE_OBJECT_NEXT, lex, JSON_TOKEN_OBJECT_END); if (result != JSON_SUCCESS) return result; lex->lex_level--; if (oend != NULL) { result = (*oend) (sem->semstate); if (result != JSON_SUCCESS) return result; } return JSON_SUCCESS; } static JsonParseErrorType parse_array_element(JsonLexContext *lex, JsonSemAction *sem) { json_aelem_action astart = sem->array_element_start; json_aelem_action aend = sem->array_element_end; JsonTokenType tok = lex_peek(lex); JsonParseErrorType result; bool isnull; isnull = tok == JSON_TOKEN_NULL; if (astart != NULL) { result = (*astart) (sem->semstate, isnull); if (result != JSON_SUCCESS) return result; } /* an array element is any object, array or scalar */ switch (tok) { case JSON_TOKEN_OBJECT_START: result = parse_object(lex, sem); break; case JSON_TOKEN_ARRAY_START: result = parse_array(lex, sem); break; default: result = parse_scalar(lex, sem); } if (result != JSON_SUCCESS) return result; if (aend != NULL) { result = (*aend) (sem->semstate, isnull); if (result != JSON_SUCCESS) return result; } return JSON_SUCCESS; } static JsonParseErrorType parse_array(JsonLexContext *lex, JsonSemAction *sem) { /* * an array is a possibly empty sequence of array elements, separated by * commas and surrounded by square brackets. */ json_struct_action astart = sem->array_start; json_struct_action aend = sem->array_end; JsonParseErrorType result; #ifndef FRONTEND check_stack_depth(); #endif if (astart != NULL) { result = (*astart) (sem->semstate); if (result != JSON_SUCCESS) return result; } /* * Data inside an array is at a higher nesting level than the array * itself. Note that we increment this after we call the semantic routine * for the array start and restore it before we call the routine for the * array end. */ lex->lex_level++; result = lex_expect(JSON_PARSE_ARRAY_START, lex, JSON_TOKEN_ARRAY_START); if (result == JSON_SUCCESS && lex_peek(lex) != JSON_TOKEN_ARRAY_END) { result = parse_array_element(lex, sem); while (result == JSON_SUCCESS && lex_peek(lex) == JSON_TOKEN_COMMA) { result = json_lex(lex); if (result != JSON_SUCCESS) break; result = parse_array_element(lex, sem); } } if (result != JSON_SUCCESS) return result; result = lex_expect(JSON_PARSE_ARRAY_NEXT, lex, JSON_TOKEN_ARRAY_END); if (result != JSON_SUCCESS) return result; lex->lex_level--; if (aend != NULL) { result = (*aend) (sem->semstate); if (result != JSON_SUCCESS) return result; } return JSON_SUCCESS; } /* * Lex one token from the input stream. * * When doing incremental parsing, we can reach the end of the input string * without having (or knowing we have) a complete token. If it's not the * final chunk of input, the partial token is then saved to the lex * structure's ptok StringInfo. On subsequent calls input is appended to this * buffer until we have something that we think is a complete token, * which is then lexed using a recursive call to json_lex. Processing then * continues as normal on subsequent calls. * * Note than when doing incremental processing, the lex.prev_token_terminator * should not be relied on. It could point into a previous input chunk or * worse. */ JsonParseErrorType json_lex(JsonLexContext *lex) { char *s; char *const end = lex->input + lex->input_length; JsonParseErrorType result; if (lex->incremental && lex->inc_state->partial_completed) { /* * We just lexed a completed partial token on the last call, so reset * everything */ resetStringInfo(&(lex->inc_state->partial_token)); lex->token_terminator = lex->input; lex->inc_state->partial_completed = false; } s = lex->token_terminator; if (lex->incremental && lex->inc_state->partial_token.len) { /* * We have a partial token. Extend it and if completed lex it by a * recursive call */ StringInfo ptok = &(lex->inc_state->partial_token); int added = 0; bool tok_done = false; JsonLexContext dummy_lex; JsonParseErrorType partial_result; if (ptok->data[0] == '"') { /* * It's a string. Accumulate characters until we reach an * unescaped '"'. */ int escapes = 0; for (int i = ptok->len - 1; i > 0; i--) { /* count the trailing backslashes on the partial token */ if (ptok->data[i] == '\\') escapes++; else break; } for (int i = 0; i < lex->input_length; i++) { char c = lex->input[i]; appendStringInfoCharMacro(ptok, c); added++; if (c == '"' && escapes % 2 == 0) { tok_done = true; break; } if (c == '\\') escapes++; else escapes = 0; } } else { /* not a string */ char c = ptok->data[0]; if (c == '-' || (c >= '0' && c <= '9')) { /* for numbers look for possible numeric continuations */ bool numend = false; for (int i = 0; i < lex->input_length && !numend; i++) { char cc = lex->input[i]; switch (cc) { case '+': case '-': case 'e': case 'E': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { appendStringInfoCharMacro(ptok, cc); added++; } break; default: numend = true; } } } /* * Add any remaining alphanumeric chars. This takes care of the * {null, false, true} literals as well as any trailing * alphanumeric junk on non-string tokens. */ for (int i = added; i < lex->input_length; i++) { char cc = lex->input[i]; if (JSON_ALPHANUMERIC_CHAR(cc)) { appendStringInfoCharMacro(ptok, cc); added++; } else { tok_done = true; break; } } if (added == lex->input_length && lex->inc_state->is_last_chunk) { tok_done = true; } } if (!tok_done) { /* We should have consumed the whole chunk in this case. */ Assert(added == lex->input_length); if (!lex->inc_state->is_last_chunk) return JSON_INCOMPLETE; /* json_errdetail() needs access to the accumulated token. */ lex->token_start = ptok->data; lex->token_terminator = ptok->data + ptok->len; return JSON_INVALID_TOKEN; } /* * Everything up to lex->input[added] has been added to the partial * token, so move the input past it. */ lex->input += added; lex->input_length -= added; dummy_lex.input = dummy_lex.token_terminator = dummy_lex.line_start = ptok->data; dummy_lex.line_number = lex->line_number; dummy_lex.input_length = ptok->len; dummy_lex.input_encoding = lex->input_encoding; dummy_lex.incremental = false; dummy_lex.strval = lex->strval; partial_result = json_lex(&dummy_lex); /* * We either have a complete token or an error. In either case we need * to point to the partial token data for the semantic or error * routines. If it's not an error we'll readjust on the next call to * json_lex. */ lex->token_type = dummy_lex.token_type; lex->line_number = dummy_lex.line_number; /* * We know the prev_token_terminator must be back in some previous * piece of input, so we just make it NULL. */ lex->prev_token_terminator = NULL; /* * Normally token_start would be ptok->data, but it could be later, * see json_lex_string's handling of invalid escapes. */ lex->token_start = dummy_lex.token_start; lex->token_terminator = dummy_lex.token_terminator; if (partial_result == JSON_SUCCESS) { /* make sure we've used all the input */ if (lex->token_terminator - lex->token_start != ptok->len) { Assert(false); return JSON_INVALID_TOKEN; } lex->inc_state->partial_completed = true; } return partial_result; /* end of partial token processing */ } /* Skip leading whitespace. */ while (s < end && (*s == ' ' || *s == '\t' || *s == '\n' || *s == '\r')) { if (*s++ == '\n') { ++lex->line_number; lex->line_start = s; } } lex->token_start = s; /* Determine token type. */ if (s >= end) { lex->token_start = NULL; lex->prev_token_terminator = lex->token_terminator; lex->token_terminator = s; lex->token_type = JSON_TOKEN_END; } else { switch (*s) { /* Single-character token, some kind of punctuation mark. */ case '{': lex->prev_token_terminator = lex->token_terminator; lex->token_terminator = s + 1; lex->token_type = JSON_TOKEN_OBJECT_START; break; case '}': lex->prev_token_terminator = lex->token_terminator; lex->token_terminator = s + 1; lex->token_type = JSON_TOKEN_OBJECT_END; break; case '[': lex->prev_token_terminator = lex->token_terminator; lex->token_terminator = s + 1; lex->token_type = JSON_TOKEN_ARRAY_START; break; case ']': lex->prev_token_terminator = lex->token_terminator; lex->token_terminator = s + 1; lex->token_type = JSON_TOKEN_ARRAY_END; break; case ',': lex->prev_token_terminator = lex->token_terminator; lex->token_terminator = s + 1; lex->token_type = JSON_TOKEN_COMMA; break; case ':': lex->prev_token_terminator = lex->token_terminator; lex->token_terminator = s + 1; lex->token_type = JSON_TOKEN_COLON; break; case '"': /* string */ result = json_lex_string(lex); if (result != JSON_SUCCESS) return result; lex->token_type = JSON_TOKEN_STRING; break; case '-': /* Negative number. */ result = json_lex_number(lex, s + 1, NULL, NULL); if (result != JSON_SUCCESS) return result; lex->token_type = JSON_TOKEN_NUMBER; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': /* Positive number. */ result = json_lex_number(lex, s, NULL, NULL); if (result != JSON_SUCCESS) return result; lex->token_type = JSON_TOKEN_NUMBER; break; default: { char *p; /* * We're not dealing with a string, number, legal * punctuation mark, or end of string. The only legal * tokens we might find here are true, false, and null, * but for error reporting purposes we scan until we see a * non-alphanumeric character. That way, we can report * the whole word as an unexpected token, rather than just * some unintuitive prefix thereof. */ for (p = s; p < end && JSON_ALPHANUMERIC_CHAR(*p); p++) /* skip */ ; /* * We got some sort of unexpected punctuation or an * otherwise unexpected character, so just complain about * that one character. */ if (p == s) { lex->prev_token_terminator = lex->token_terminator; lex->token_terminator = s + 1; return JSON_INVALID_TOKEN; } if (lex->incremental && !lex->inc_state->is_last_chunk && p == lex->input + lex->input_length) { appendBinaryStringInfo( &(lex->inc_state->partial_token), s, end - s); return JSON_INCOMPLETE; } /* * We've got a real alphanumeric token here. If it * happens to be true, false, or null, all is well. If * not, error out. */ lex->prev_token_terminator = lex->token_terminator; lex->token_terminator = p; if (p - s == 4) { if (memcmp(s, "true", 4) == 0) lex->token_type = JSON_TOKEN_TRUE; else if (memcmp(s, "null", 4) == 0) lex->token_type = JSON_TOKEN_NULL; else return JSON_INVALID_TOKEN; } else if (p - s == 5 && memcmp(s, "false", 5) == 0) lex->token_type = JSON_TOKEN_FALSE; else return JSON_INVALID_TOKEN; } } /* end of switch */ } if (lex->incremental && lex->token_type == JSON_TOKEN_END && !lex->inc_state->is_last_chunk) return JSON_INCOMPLETE; else return JSON_SUCCESS; } /* * The next token in the input stream is known to be a string; lex it. * * If lex->strval isn't NULL, fill it with the decoded string. * Set lex->token_terminator to the end of the decoded input, and in * success cases, transfer its previous value to lex->prev_token_terminator. * Return JSON_SUCCESS or an error code. * * Note: be careful that all error exits advance lex->token_terminator * to the point after the character we detected the error on. */ static inline JsonParseErrorType json_lex_string(JsonLexContext *lex) { char *s; char *const end = lex->input + lex->input_length; int hi_surrogate = -1; /* Convenience macros for error exits */ #define FAIL_OR_INCOMPLETE_AT_CHAR_START(code) \ do { \ if (lex->incremental && !lex->inc_state->is_last_chunk) \ { \ appendBinaryStringInfo(&lex->inc_state->partial_token, \ lex->token_start, end - lex->token_start); \ return JSON_INCOMPLETE; \ } \ lex->token_terminator = s; \ return code; \ } while (0) #define FAIL_AT_CHAR_END(code) \ do { \ char *term = s + pg_encoding_mblen(lex->input_encoding, s); \ lex->token_terminator = (term <= end) ? term : end; \ return code; \ } while (0) if (lex->strval != NULL) resetStringInfo(lex->strval); Assert(lex->input_length > 0); s = lex->token_start; for (;;) { s++; /* Premature end of the string. */ if (s >= end) FAIL_OR_INCOMPLETE_AT_CHAR_START(JSON_INVALID_TOKEN); else if (*s == '"') break; else if (*s == '\\') { /* OK, we have an escape character. */ s++; if (s >= end) FAIL_OR_INCOMPLETE_AT_CHAR_START(JSON_INVALID_TOKEN); else if (*s == 'u') { int i; int ch = 0; for (i = 1; i <= 4; i++) { s++; if (s >= end) FAIL_OR_INCOMPLETE_AT_CHAR_START(JSON_INVALID_TOKEN); else if (*s >= '0' && *s <= '9') ch = (ch * 16) + (*s - '0'); else if (*s >= 'a' && *s <= 'f') ch = (ch * 16) + (*s - 'a') + 10; else if (*s >= 'A' && *s <= 'F') ch = (ch * 16) + (*s - 'A') + 10; else FAIL_AT_CHAR_END(JSON_UNICODE_ESCAPE_FORMAT); } if (lex->strval != NULL) { /* * Combine surrogate pairs. */ if (is_utf16_surrogate_first(ch)) { if (hi_surrogate != -1) FAIL_AT_CHAR_END(JSON_UNICODE_HIGH_SURROGATE); hi_surrogate = ch; continue; } else if (is_utf16_surrogate_second(ch)) { if (hi_surrogate == -1) FAIL_AT_CHAR_END(JSON_UNICODE_LOW_SURROGATE); ch = surrogate_pair_to_codepoint(hi_surrogate, ch); hi_surrogate = -1; } if (hi_surrogate != -1) FAIL_AT_CHAR_END(JSON_UNICODE_LOW_SURROGATE); /* * Reject invalid cases. We can't have a value above * 0xFFFF here (since we only accepted 4 hex digits * above), so no need to test for out-of-range chars. */ if (ch == 0) { /* We can't allow this, since our TEXT type doesn't */ FAIL_AT_CHAR_END(JSON_UNICODE_CODE_POINT_ZERO); } /* * Add the represented character to lex->strval. In the * backend, we can let pg_unicode_to_server_noerror() * handle any required character set conversion; in * frontend, we can only deal with trivial conversions. */ #ifndef FRONTEND { char cbuf[MAX_UNICODE_EQUIVALENT_STRING + 1]; if (!pg_unicode_to_server_noerror(ch, (unsigned char *) cbuf)) FAIL_AT_CHAR_END(JSON_UNICODE_UNTRANSLATABLE); appendStringInfoString(lex->strval, cbuf); } #else if (lex->input_encoding == PG_UTF8) { /* OK, we can map the code point to UTF8 easily */ char utf8str[5]; int utf8len; unicode_to_utf8(ch, (unsigned char *) utf8str); utf8len = pg_utf_mblen((unsigned char *) utf8str); appendBinaryStringInfo(lex->strval, utf8str, utf8len); } else if (ch <= 0x007f) { /* The ASCII range is the same in all encodings */ appendStringInfoChar(lex->strval, (char) ch); } else FAIL_AT_CHAR_END(JSON_UNICODE_HIGH_ESCAPE); #endif /* FRONTEND */ } } else if (lex->strval != NULL) { if (hi_surrogate != -1) FAIL_AT_CHAR_END(JSON_UNICODE_LOW_SURROGATE); switch (*s) { case '"': case '\\': case '/': appendStringInfoChar(lex->strval, *s); break; case 'b': appendStringInfoChar(lex->strval, '\b'); break; case 'f': appendStringInfoChar(lex->strval, '\f'); break; case 'n': appendStringInfoChar(lex->strval, '\n'); break; case 'r': appendStringInfoChar(lex->strval, '\r'); break; case 't': appendStringInfoChar(lex->strval, '\t'); break; default: /* * Not a valid string escape, so signal error. We * adjust token_start so that just the escape sequence * is reported, not the whole string. */ lex->token_start = s; FAIL_AT_CHAR_END(JSON_ESCAPING_INVALID); } } else if (strchr("\"\\/bfnrt", *s) == NULL) { /* * Simpler processing if we're not bothered about de-escaping * * It's very tempting to remove the strchr() call here and * replace it with a switch statement, but testing so far has * shown it's not a performance win. */ lex->token_start = s; FAIL_AT_CHAR_END(JSON_ESCAPING_INVALID); } } else { char *p = s; if (hi_surrogate != -1) FAIL_AT_CHAR_END(JSON_UNICODE_LOW_SURROGATE); /* * Skip to the first byte that requires special handling, so we * can batch calls to appendBinaryStringInfo. */ while (p < end - sizeof(Vector8) && !pg_lfind8('\\', (uint8 *) p, sizeof(Vector8)) && !pg_lfind8('"', (uint8 *) p, sizeof(Vector8)) && !pg_lfind8_le(31, (uint8 *) p, sizeof(Vector8))) p += sizeof(Vector8); for (; p < end; p++) { if (*p == '\\' || *p == '"') break; else if ((unsigned char) *p <= 31) { /* Per RFC4627, these characters MUST be escaped. */ /* * Since *p isn't printable, exclude it from the context * string */ lex->token_terminator = p; return JSON_ESCAPING_REQUIRED; } } if (lex->strval != NULL) appendBinaryStringInfo(lex->strval, s, p - s); /* * s will be incremented at the top of the loop, so set it to just * behind our lookahead position */ s = p - 1; } } if (hi_surrogate != -1) { lex->token_terminator = s + 1; return JSON_UNICODE_LOW_SURROGATE; } /* Hooray, we found the end of the string! */ lex->prev_token_terminator = lex->token_terminator; lex->token_terminator = s + 1; return JSON_SUCCESS; #undef FAIL_OR_INCOMPLETE_AT_CHAR_START #undef FAIL_AT_CHAR_END } /* * The next token in the input stream is known to be a number; lex it. * * In JSON, a number consists of four parts: * * (1) An optional minus sign ('-'). * * (2) Either a single '0', or a string of one or more digits that does not * begin with a '0'. * * (3) An optional decimal part, consisting of a period ('.') followed by * one or more digits. (Note: While this part can be omitted * completely, it's not OK to have only the decimal point without * any digits afterwards.) * * (4) An optional exponent part, consisting of 'e' or 'E', optionally * followed by '+' or '-', followed by one or more digits. (Note: * As with the decimal part, if 'e' or 'E' is present, it must be * followed by at least one digit.) * * The 's' argument to this function points to the ostensible beginning * of part 2 - i.e. the character after any optional minus sign, or the * first character of the string if there is none. * * If num_err is not NULL, we return an error flag to *num_err rather than * raising an error for a badly-formed number. Also, if total_len is not NULL * the distance from lex->input to the token end+1 is returned to *total_len. */ static inline JsonParseErrorType json_lex_number(JsonLexContext *lex, char *s, bool *num_err, int *total_len) { bool error = false; int len = s - lex->input; /* Part (1): leading sign indicator. */ /* Caller already did this for us; so do nothing. */ /* Part (2): parse main digit string. */ if (len < lex->input_length && *s == '0') { s++; len++; } else if (len < lex->input_length && *s >= '1' && *s <= '9') { do { s++; len++; } while (len < lex->input_length && *s >= '0' && *s <= '9'); } else error = true; /* Part (3): parse optional decimal portion. */ if (len < lex->input_length && *s == '.') { s++; len++; if (len == lex->input_length || *s < '0' || *s > '9') error = true; else { do { s++; len++; } while (len < lex->input_length && *s >= '0' && *s <= '9'); } } /* Part (4): parse optional exponent. */ if (len < lex->input_length && (*s == 'e' || *s == 'E')) { s++; len++; if (len < lex->input_length && (*s == '+' || *s == '-')) { s++; len++; } if (len == lex->input_length || *s < '0' || *s > '9') error = true; else { do { s++; len++; } while (len < lex->input_length && *s >= '0' && *s <= '9'); } } /* * Check for trailing garbage. As in json_lex(), any alphanumeric stuff * here should be considered part of the token for error-reporting * purposes. */ for (; len < lex->input_length && JSON_ALPHANUMERIC_CHAR(*s); s++, len++) error = true; if (total_len != NULL) *total_len = len; if (lex->incremental && !lex->inc_state->is_last_chunk && len >= lex->input_length) { appendBinaryStringInfo(&lex->inc_state->partial_token, lex->token_start, s - lex->token_start); if (num_err != NULL) *num_err = error; return JSON_INCOMPLETE; } else if (num_err != NULL) { /* let the caller handle any error */ *num_err = error; } else { /* return token endpoint */ lex->prev_token_terminator = lex->token_terminator; lex->token_terminator = s; /* handle error if any */ if (error) return JSON_INVALID_TOKEN; } return JSON_SUCCESS; } /* * Report a parse error. * * lex->token_start and lex->token_terminator must identify the current token. */ static JsonParseErrorType report_parse_error(JsonParseContext ctx, JsonLexContext *lex) { /* Handle case where the input ended prematurely. */ if (lex->token_start == NULL || lex->token_type == JSON_TOKEN_END) return JSON_EXPECTED_MORE; /* Otherwise choose the error type based on the parsing context. */ switch (ctx) { case JSON_PARSE_END: return JSON_EXPECTED_END; case JSON_PARSE_VALUE: return JSON_EXPECTED_JSON; case JSON_PARSE_STRING: return JSON_EXPECTED_STRING; case JSON_PARSE_ARRAY_START: return JSON_EXPECTED_ARRAY_FIRST; case JSON_PARSE_ARRAY_NEXT: return JSON_EXPECTED_ARRAY_NEXT; case JSON_PARSE_OBJECT_START: return JSON_EXPECTED_OBJECT_FIRST; case JSON_PARSE_OBJECT_LABEL: return JSON_EXPECTED_COLON; case JSON_PARSE_OBJECT_NEXT: return JSON_EXPECTED_OBJECT_NEXT; case JSON_PARSE_OBJECT_COMMA: return JSON_EXPECTED_STRING; } /* * We don't use a default: case, so that the compiler will warn about * unhandled enum values. */ Assert(false); return JSON_SUCCESS; /* silence stupider compilers */ } /* * Construct an (already translated) detail message for a JSON error. * * The returned pointer should not be freed, the allocation is either static * or owned by the JsonLexContext. */ char * json_errdetail(JsonParseErrorType error, JsonLexContext *lex) { if (lex->errormsg) resetStringInfo(lex->errormsg); else lex->errormsg = makeStringInfo(); /* * A helper for error messages that should print the current token. The * format must contain exactly one %.*s specifier. */ #define json_token_error(lex, format) \ appendStringInfo((lex)->errormsg, _(format), \ (int) ((lex)->token_terminator - (lex)->token_start), \ (lex)->token_start); switch (error) { case JSON_INCOMPLETE: case JSON_SUCCESS: /* fall through to the error code after switch */ break; case JSON_INVALID_LEXER_TYPE: if (lex->incremental) return _("Recursive descent parser cannot use incremental lexer."); else return _("Incremental parser requires incremental lexer."); case JSON_NESTING_TOO_DEEP: return (_("JSON nested too deep, maximum permitted depth is 6400.")); case JSON_ESCAPING_INVALID: json_token_error(lex, "Escape sequence \"\\%.*s\" is invalid."); break; case JSON_ESCAPING_REQUIRED: appendStringInfo(lex->errormsg, _("Character with value 0x%02x must be escaped."), (unsigned char) *(lex->token_terminator)); break; case JSON_EXPECTED_END: json_token_error(lex, "Expected end of input, but found \"%.*s\"."); break; case JSON_EXPECTED_ARRAY_FIRST: json_token_error(lex, "Expected array element or \"]\", but found \"%.*s\"."); break; case JSON_EXPECTED_ARRAY_NEXT: json_token_error(lex, "Expected \",\" or \"]\", but found \"%.*s\"."); break; case JSON_EXPECTED_COLON: json_token_error(lex, "Expected \":\", but found \"%.*s\"."); break; case JSON_EXPECTED_JSON: json_token_error(lex, "Expected JSON value, but found \"%.*s\"."); break; case JSON_EXPECTED_MORE: return _("The input string ended unexpectedly."); case JSON_EXPECTED_OBJECT_FIRST: json_token_error(lex, "Expected string or \"}\", but found \"%.*s\"."); break; case JSON_EXPECTED_OBJECT_NEXT: json_token_error(lex, "Expected \",\" or \"}\", but found \"%.*s\"."); break; case JSON_EXPECTED_STRING: json_token_error(lex, "Expected string, but found \"%.*s\"."); break; case JSON_INVALID_TOKEN: json_token_error(lex, "Token \"%.*s\" is invalid."); break; case JSON_UNICODE_CODE_POINT_ZERO: return _("\\u0000 cannot be converted to text."); case JSON_UNICODE_ESCAPE_FORMAT: return _("\"\\u\" must be followed by four hexadecimal digits."); case JSON_UNICODE_HIGH_ESCAPE: /* note: this case is only reachable in frontend not backend */ return _("Unicode escape values cannot be used for code point values above 007F when the encoding is not UTF8."); case JSON_UNICODE_UNTRANSLATABLE: /* * Note: this case is only reachable in backend and not frontend. * #ifdef it away so the frontend doesn't try to link against * backend functionality. */ #ifndef FRONTEND return psprintf(_("Unicode escape value could not be translated to the server's encoding %s."), GetDatabaseEncodingName()); #else Assert(false); break; #endif case JSON_UNICODE_HIGH_SURROGATE: return _("Unicode high surrogate must not follow a high surrogate."); case JSON_UNICODE_LOW_SURROGATE: return _("Unicode low surrogate must follow a high surrogate."); case JSON_SEM_ACTION_FAILED: /* fall through to the error code after switch */ break; } #undef json_token_error /* * We don't use a default: case, so that the compiler will warn about * unhandled enum values. But this needs to be here anyway to cover the * possibility of an incorrect input. */ if (lex->errormsg->len == 0) appendStringInfo(lex->errormsg, "unexpected json parse error type: %d", (int) error); return lex->errormsg->data; }