/*------------------------------------------------------------------------- * * parse_node.c * various routines that make nodes for querytrees * * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * src/backend/parser/parse_node.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include "access/htup_details.h" #include "access/table.h" #include "catalog/pg_type.h" #include "mb/pg_wchar.h" #include "nodes/makefuncs.h" #include "nodes/miscnodes.h" #include "nodes/nodeFuncs.h" #include "nodes/subscripting.h" #include "parser/parse_coerce.h" #include "parser/parse_expr.h" #include "parser/parse_relation.h" #include "parser/parsetree.h" #include "utils/builtins.h" #include "utils/lsyscache.h" #include "utils/syscache.h" #include "utils/varbit.h" static void pcb_error_callback(void *arg); /* * make_parsestate * Allocate and initialize a new ParseState. * * Caller should eventually release the ParseState via free_parsestate(). */ ParseState * make_parsestate(ParseState *parentParseState) { ParseState *pstate; pstate = palloc0(sizeof(ParseState)); pstate->parentParseState = parentParseState; /* Fill in fields that don't start at null/false/zero */ pstate->p_next_resno = 1; pstate->p_resolve_unknowns = true; if (parentParseState) { pstate->p_sourcetext = parentParseState->p_sourcetext; /* all hooks are copied from parent */ pstate->p_pre_columnref_hook = parentParseState->p_pre_columnref_hook; pstate->p_post_columnref_hook = parentParseState->p_post_columnref_hook; pstate->p_paramref_hook = parentParseState->p_paramref_hook; pstate->p_coerce_param_hook = parentParseState->p_coerce_param_hook; pstate->p_ref_hook_state = parentParseState->p_ref_hook_state; /* query environment stays in context for the whole parse analysis */ pstate->p_queryEnv = parentParseState->p_queryEnv; } return pstate; } /* * free_parsestate * Release a ParseState and any subsidiary resources. */ void free_parsestate(ParseState *pstate) { /* * Check that we did not produce too many resnos; at the very least we * cannot allow more than 2^16, since that would exceed the range of a * AttrNumber. It seems safest to use MaxTupleAttributeNumber. */ if (pstate->p_next_resno - 1 > MaxTupleAttributeNumber) ereport(ERROR, (errcode(ERRCODE_TOO_MANY_COLUMNS), errmsg("target lists can have at most %d entries", MaxTupleAttributeNumber))); if (pstate->p_target_relation != NULL) table_close(pstate->p_target_relation, NoLock); pfree(pstate); } /* * parser_errposition * Report a parse-analysis-time cursor position, if possible. * * This is expected to be used within an ereport() call. The return value * is a dummy (always 0, in fact). * * The locations stored in raw parsetrees are byte offsets into the source * string. We have to convert them to 1-based character indexes for reporting * to clients. (We do things this way to avoid unnecessary overhead in the * normal non-error case: computing character indexes would be much more * expensive than storing token offsets.) */ int parser_errposition(ParseState *pstate, int location) { int pos; /* No-op if location was not provided */ if (location < 0) return 0; /* Can't do anything if source text is not available */ if (pstate == NULL || pstate->p_sourcetext == NULL) return 0; /* Convert offset to character number */ pos = pg_mbstrlen_with_len(pstate->p_sourcetext, location) + 1; /* And pass it to the ereport mechanism */ return errposition(pos); } /* * setup_parser_errposition_callback * Arrange for non-parser errors to report an error position * * Sometimes the parser calls functions that aren't part of the parser * subsystem and can't reasonably be passed a ParseState; yet we would * like any errors thrown in those functions to be tagged with a parse * error location. Use this function to set up an error context stack * entry that will accomplish that. Usage pattern: * * declare a local variable "ParseCallbackState pcbstate" * ... * setup_parser_errposition_callback(&pcbstate, pstate, location); * call function that might throw error; * cancel_parser_errposition_callback(&pcbstate); */ void setup_parser_errposition_callback(ParseCallbackState *pcbstate, ParseState *pstate, int location) { /* Setup error traceback support for ereport() */ pcbstate->pstate = pstate; pcbstate->location = location; pcbstate->errcallback.callback = pcb_error_callback; pcbstate->errcallback.arg = (void *) pcbstate; pcbstate->errcallback.previous = error_context_stack; error_context_stack = &pcbstate->errcallback; } /* * Cancel a previously-set-up errposition callback. */ void cancel_parser_errposition_callback(ParseCallbackState *pcbstate) { /* Pop the error context stack */ error_context_stack = pcbstate->errcallback.previous; } /* * Error context callback for inserting parser error location. * * Note that this will be called for *any* error occurring while the * callback is installed. We avoid inserting an irrelevant error location * if the error is a query cancel --- are there any other important cases? */ static void pcb_error_callback(void *arg) { ParseCallbackState *pcbstate = (ParseCallbackState *) arg; if (geterrcode() != ERRCODE_QUERY_CANCELED) (void) parser_errposition(pcbstate->pstate, pcbstate->location); } /* * transformContainerType() * Identify the actual container type for a subscripting operation. * * containerType/containerTypmod are modified if necessary to identify * the actual container type and typmod. This mainly involves smashing * any domain to its base type, but there are some special considerations. * Note that caller still needs to check if the result type is a container. */ void transformContainerType(Oid *containerType, int32 *containerTypmod) { /* * If the input is a domain, smash to base type, and extract the actual * typmod to be applied to the base type. Subscripting a domain is an * operation that necessarily works on the base container type, not the * domain itself. (Note that we provide no method whereby the creator of a * domain over a container type could hide its ability to be subscripted.) */ *containerType = getBaseTypeAndTypmod(*containerType, containerTypmod); /* * We treat int2vector and oidvector as though they were domains over * int2[] and oid[]. This is needed because array slicing could create an * array that doesn't satisfy the dimensionality constraints of the * xxxvector type; so we want the result of a slice operation to be * considered to be of the more general type. */ if (*containerType == INT2VECTOROID) *containerType = INT2ARRAYOID; else if (*containerType == OIDVECTOROID) *containerType = OIDARRAYOID; } /* * transformContainerSubscripts() * Transform container (array, etc) subscripting. This is used for both * container fetch and container assignment. * * In a container fetch, we are given a source container value and we produce * an expression that represents the result of extracting a single container * element or a container slice. * * Container assignments are treated basically the same as container fetches * here. The caller will modify the result node to insert the source value * that is to be assigned to the element or slice that a fetch would have * retrieved. The execution result will be a new container value with * the source value inserted into the right part of the container. * * For both cases, if the source is of a domain-over-container type, the * result is the same as if it had been of the container type; essentially, * we must fold a domain to its base type before applying subscripting. * (Note that int2vector and oidvector are treated as domains here.) * * pstate Parse state * containerBase Already-transformed expression for the container as a whole * containerType OID of container's datatype (should match type of * containerBase, or be the base type of containerBase's * domain type) * containerTypMod typmod for the container * indirection Untransformed list of subscripts (must not be NIL) * isAssignment True if this will become a container assignment. */ SubscriptingRef * transformContainerSubscripts(ParseState *pstate, Node *containerBase, Oid containerType, int32 containerTypMod, List *indirection, bool isAssignment) { SubscriptingRef *sbsref; const SubscriptRoutines *sbsroutines; Oid elementType; bool isSlice = false; ListCell *idx; /* * Determine the actual container type, smashing any domain. In the * assignment case the caller already did this, since it also needs to * know the actual container type. */ if (!isAssignment) transformContainerType(&containerType, &containerTypMod); /* * Verify that the container type is subscriptable, and get its support * functions and typelem. */ sbsroutines = getSubscriptingRoutines(containerType, &elementType); if (!sbsroutines) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("cannot subscript type %s because it does not support subscripting", format_type_be(containerType)), parser_errposition(pstate, exprLocation(containerBase)))); /* * Detect whether any of the indirection items are slice specifiers. * * A list containing only simple subscripts refers to a single container * element. If any of the items are slice specifiers (lower:upper), then * the subscript expression means a container slice operation. */ foreach(idx, indirection) { A_Indices *ai = lfirst_node(A_Indices, idx); if (ai->is_slice) { isSlice = true; break; } } /* * Ready to build the SubscriptingRef node. */ sbsref = makeNode(SubscriptingRef); sbsref->refcontainertype = containerType; sbsref->refelemtype = elementType; /* refrestype is to be set by container-specific logic */ sbsref->reftypmod = containerTypMod; /* refcollid will be set by parse_collate.c */ /* refupperindexpr, reflowerindexpr are to be set by container logic */ sbsref->refexpr = (Expr *) containerBase; sbsref->refassgnexpr = NULL; /* caller will fill if it's an assignment */ /* * Call the container-type-specific logic to transform the subscripts and * determine the subscripting result type. */ sbsroutines->transform(sbsref, indirection, pstate, isSlice, isAssignment); /* * Verify we got a valid type (this defends, for example, against someone * using array_subscript_handler as typsubscript without setting typelem). */ if (!OidIsValid(sbsref->refrestype)) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("cannot subscript type %s because it does not support subscripting", format_type_be(containerType)))); return sbsref; } /* * make_const * * Convert an A_Const node (as returned by the grammar) to a Const node * of the "natural" type for the constant. Note that this routine is * only used when there is no explicit cast for the constant, so we * have to guess what type is wanted. * * For string literals we produce a constant of type UNKNOWN ---- whose * representation is the same as cstring, but it indicates to later type * resolution that we're not sure yet what type it should be considered. * Explicit "NULL" constants are also typed as UNKNOWN. * * For integers and floats we produce int4, int8, or numeric depending * on the value of the number. XXX We should produce int2 as well, * but additional cleanup is needed before we can do that; there are * too many examples that fail if we try. */ Const * make_const(ParseState *pstate, A_Const *aconst) { Const *con; Datum val; Oid typeid; int typelen; bool typebyval; ParseCallbackState pcbstate; if (aconst->isnull) { /* return a null const */ con = makeConst(UNKNOWNOID, -1, InvalidOid, -2, (Datum) 0, true, false); con->location = aconst->location; return con; } switch (nodeTag(&aconst->val)) { case T_Integer: val = Int32GetDatum(intVal(&aconst->val)); typeid = INT4OID; typelen = sizeof(int32); typebyval = true; break; case T_Float: { /* could be an oversize integer as well as a float ... */ ErrorSaveContext escontext = {T_ErrorSaveContext}; int64 val64; val64 = pg_strtoint64_safe(aconst->val.fval.fval, (Node *) &escontext); if (!escontext.error_occurred) { /* * It might actually fit in int32. Probably only INT_MIN * can occur, but we'll code the test generally just to be * sure. */ int32 val32 = (int32) val64; if (val64 == (int64) val32) { val = Int32GetDatum(val32); typeid = INT4OID; typelen = sizeof(int32); typebyval = true; } else { val = Int64GetDatum(val64); typeid = INT8OID; typelen = sizeof(int64); typebyval = FLOAT8PASSBYVAL; /* int8 and float8 alike */ } } else { /* arrange to report location if numeric_in() fails */ setup_parser_errposition_callback(&pcbstate, pstate, aconst->location); val = DirectFunctionCall3(numeric_in, CStringGetDatum(aconst->val.fval.fval), ObjectIdGetDatum(InvalidOid), Int32GetDatum(-1)); cancel_parser_errposition_callback(&pcbstate); typeid = NUMERICOID; typelen = -1; /* variable len */ typebyval = false; } break; } case T_Boolean: val = BoolGetDatum(boolVal(&aconst->val)); typeid = BOOLOID; typelen = 1; typebyval = true; break; case T_String: /* * We assume here that UNKNOWN's internal representation is the * same as CSTRING */ val = CStringGetDatum(strVal(&aconst->val)); typeid = UNKNOWNOID; /* will be coerced later */ typelen = -2; /* cstring-style varwidth type */ typebyval = false; break; case T_BitString: /* arrange to report location if bit_in() fails */ setup_parser_errposition_callback(&pcbstate, pstate, aconst->location); val = DirectFunctionCall3(bit_in, CStringGetDatum(aconst->val.bsval.bsval), ObjectIdGetDatum(InvalidOid), Int32GetDatum(-1)); cancel_parser_errposition_callback(&pcbstate); typeid = BITOID; typelen = -1; typebyval = false; break; default: elog(ERROR, "unrecognized node type: %d", (int) nodeTag(&aconst->val)); return NULL; /* keep compiler quiet */ } con = makeConst(typeid, -1, /* typmod -1 is OK for all cases */ InvalidOid, /* all cases are uncollatable types */ typelen, val, false, typebyval); con->location = aconst->location; return con; }