/*------------------------------------------------------------------------- * * lock.h-- * * * * Copyright (c) 1994, Regents of the University of California * * $Id: lock.h,v 1.7 1997/09/08 02:39:05 momjian Exp $ * *------------------------------------------------------------------------- */ #ifndef LOCK_H_ #define LOCK_H_ #include #include extern SPINLOCK LockMgrLock; typedef int MASK; #define INIT_TABLE_SIZE 100 #define MAX_TABLE_SIZE 1000 /* ---------------------- * The following defines are used to estimate how much shared * memory the lock manager is going to require. * * NBACKENDS - The number of concurrently running backends * NLOCKS_PER_XACT - The number of unique locks acquired in a transaction * NLOCKENTS - The maximum number of lock entries in the lock table. * ---------------------- */ #define NBACKENDS 50 #define NLOCKS_PER_XACT 40 #define NLOCKENTS NLOCKS_PER_XACT*NBACKENDS typedef int LOCK_TYPE; typedef int LOCKT; typedef int LockTableId; /* MAX_LOCKTYPES cannot be larger than the bits in MASK */ #define MAX_LOCKTYPES 6 /* * MAX_TABLES corresponds to the number of spin locks allocated in * CreateSpinLocks() or the number of shared memory locations allocated * for lock table spin locks in the case of machines with TAS instructions. */ #define MAX_TABLES 2 #define INVALID_TABLEID 0 /*typedef struct LOCK LOCK; */ typedef struct ltag { Oid relId; Oid dbId; ItemPointerData tupleId; } LOCKTAG; #define TAGSIZE (sizeof(LOCKTAG)) /* This is the control structure for a lock table. It * lives in shared memory: * * tableID -- the handle used by the lock table's clients to * refer to the table. * * nLockTypes -- number of lock types (READ,WRITE,etc) that * are defined on this lock table * * conflictTab -- this is an array of bitmasks showing lock * type conflicts. conflictTab[i] is a mask with the j-th bit * turned on if lock types i and j conflict. * * prio -- each locktype has a priority, so, for example, waiting * writers can be given priority over readers (to avoid * starvation). * * masterlock -- synchronizes access to the table * */ typedef struct lockctl { LockTableId tableId; int nLockTypes; int conflictTab[MAX_LOCKTYPES]; int prio[MAX_LOCKTYPES]; SPINLOCK masterLock; } LOCKCTL; /* * lockHash -- hash table on lock Ids, * xidHash -- hash on xid and lockId in case * multiple processes are holding the lock * ctl - control structure described above. */ typedef struct ltable { HTAB *lockHash; HTAB *xidHash; LOCKCTL *ctl; } LOCKTAB; /* ----------------------- * A transaction never conflicts with its own locks. Hence, if * multiple transactions hold non-conflicting locks on the same * data, private per-transaction information must be stored in the * XID table. The tag is XID + shared memory lock address so that * all locks can use the same XID table. The private information * we store is the number of locks of each type (holders) and the * total number of locks (nHolding) held by the transaction. * * NOTE: -- * There were some problems with the fact that currently TransactionIdData * is a 5 byte entity and compilers long word aligning of structure fields. * If the 3 byte padding is put in front of the actual xid data then the * hash function (which uses XID_TAGSIZE when deciding how many bytes of a * struct to look at for the key) might only see the last two bytes of the xid. * * Clearly this is not good since its likely that these bytes will be the * same for many transactions and hence they will share the same entry in * hash table causing the entry to be corrupted. For this long-winded * reason I have put the tag in a struct of its own to ensure that the * XID_TAGSIZE is computed correctly. It used to be sizeof (SHMEM_OFFSET) + * sizeof(TransactionIdData) which != sizeof(XIDTAG). * * Finally since the hash function will now look at all 12 bytes of the tag * the padding bytes MUST be zero'd before use in hash_search() as they * will have random values otherwise. Jeff 22 July 1991. * ----------------------- */ typedef struct XIDTAG { SHMEM_OFFSET lock; int pid; TransactionId xid; } XIDTAG; typedef struct XIDLookupEnt { /* tag */ XIDTAG tag; /* data */ int holders[MAX_LOCKTYPES]; int nHolding; SHM_QUEUE queue; } XIDLookupEnt; #define XID_TAGSIZE (sizeof(XIDTAG)) /* originally in procq.h */ typedef struct procQueue { SHM_QUEUE links; int size; } PROC_QUEUE; /* * lock information: * * tag -- uniquely identifies the object being locked * mask -- union of the conflict masks of all lock types * currently held on this object. * waitProcs -- queue of processes waiting for this lock * holders -- count of each lock type currently held on the * lock. * nHolding -- total locks of all types. */ typedef struct Lock { /* hash key */ LOCKTAG tag; /* data */ int mask; PROC_QUEUE waitProcs; int holders[MAX_LOCKTYPES]; int nHolding; int activeHolders[MAX_LOCKTYPES]; int nActive; } LOCK; #define LockGetLock_nHolders(l) l->nHolders #define LockDecrWaitHolders(lock, lockt) \ lock->nHolding--; \ lock->holders[lockt]-- #define LockLockTable() SpinAcquire(LockMgrLock); #define UnlockLockTable() SpinRelease(LockMgrLock); extern SPINLOCK LockMgrLock; /* * function prototypes */ extern void InitLocks(void); extern void LockDisable(int status); extern LockTableId LockTabInit(char *tabName, MASK * conflictsP, int *prioP, int ntypes); extern bool LockAcquire(LockTableId tableId, LOCKTAG * lockName, LOCKT lockt); extern int LockResolveConflicts(LOCKTAB * ltable, LOCK * lock, LOCKT lockt, TransactionId xid); extern bool LockRelease(LockTableId tableId, LOCKTAG * lockName, LOCKT lockt); extern void GrantLock(LOCK * lock, LOCKT lockt); extern bool LockReleaseAll(LockTableId tableId, SHM_QUEUE * lockQueue); extern int LockShmemSize(void); extern bool LockingDisabled(void); #ifdef DEADLOCK_DEBUG extern void DumpLocks(void); #endif #endif /* LOCK_H */