/*------------------------------------------------------------------------- * * heaptuple.c-- * This file contains heap tuple accessor and mutator routines, as well * as a few various tuple utilities. * * Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $Header: /cvsroot/pgsql/src/backend/access/common/heaptuple.c,v 1.39 1998/08/19 02:00:53 momjian Exp $ * * NOTES * The old interface functions have been converted to macros * and moved to heapam.h * *------------------------------------------------------------------------- */ #include #include #include #include #include #include #include #include #ifndef HAVE_MEMMOVE #include #else #include #endif /* Used by heap_getattr() macro, for speed */ long heap_sysoffset[] = { /* Only the first one is pass-by-ref, and is handled specially in the macro */ offsetof(HeapTupleData, t_ctid), offsetof(HeapTupleData, t_oid), offsetof(HeapTupleData, t_xmin), offsetof(HeapTupleData, t_cmin), offsetof(HeapTupleData, t_xmax), offsetof(HeapTupleData, t_cmax) }; /* ---------------------------------------------------------------- * misc support routines * ---------------------------------------------------------------- */ /* ---------------- * ComputeDataSize * ---------------- */ Size ComputeDataSize(TupleDesc tupleDesc, Datum value[], char nulls[]) { uint32 data_length; int i; int numberOfAttributes = tupleDesc->natts; AttributeTupleForm *att = tupleDesc->attrs; for (data_length = 0, i = 0; i < numberOfAttributes; i++) { if (nulls[i] != ' ') continue; switch (att[i]->attlen) { case -1: /* * This is the size of the disk representation and so must * include the additional sizeof long. */ if (att[i]->attalign == 'd') { data_length = DOUBLEALIGN(data_length) + VARSIZE(DatumGetPointer(value[i])); } else { data_length = INTALIGN(data_length) + VARSIZE(DatumGetPointer(value[i])); } break; case sizeof(char): data_length++; break; case sizeof(short): data_length = SHORTALIGN(data_length + sizeof(short)); break; case sizeof(int32): data_length = INTALIGN(data_length + sizeof(int32)); break; default: if (att[i]->attlen < sizeof(int32)) elog(ERROR, "ComputeDataSize: attribute %d has len %d", i, att[i]->attlen); if (att[i]->attalign == 'd') data_length = DOUBLEALIGN(data_length) + att[i]->attlen; else data_length = LONGALIGN(data_length) + att[i]->attlen; break; } } return data_length; } /* ---------------- * DataFill * ---------------- */ void DataFill(char *data, TupleDesc tupleDesc, Datum value[], char nulls[], uint16 *infomask, bits8 *bit) { bits8 *bitP = 0; int bitmask = 0; uint32 data_length; int i; int numberOfAttributes = tupleDesc->natts; AttributeTupleForm *att = tupleDesc->attrs; if (bit != NULL) { bitP = &bit[-1]; bitmask = CSIGNBIT; } *infomask = 0; for (i = 0; i < numberOfAttributes; i++) { if (bit != NULL) { if (bitmask != CSIGNBIT) bitmask <<= 1; else { bitP += 1; *bitP = 0x0; bitmask = 1; } if (nulls[i] == 'n') { *infomask |= HEAP_HASNULL; continue; } *bitP |= bitmask; } switch (att[i]->attlen) { case -1: *infomask |= HEAP_HASVARLENA; if (att[i]->attalign == 'd') data = (char *) DOUBLEALIGN(data); else data = (char *) INTALIGN(data); data_length = VARSIZE(DatumGetPointer(value[i])); memmove(data, DatumGetPointer(value[i]), data_length); data += data_length; break; case sizeof(char): *data = att[i]->attbyval ? DatumGetChar(value[i]) : *((char *) value[i]); data += sizeof(char); break; case sizeof(int16): data = (char *) SHORTALIGN(data); *(short *) data = (att[i]->attbyval ? DatumGetInt16(value[i]) : *((short *) value[i])); data += sizeof(short); break; case sizeof(int32): data = (char *) INTALIGN(data); *(int32 *) data = (att[i]->attbyval ? DatumGetInt32(value[i]) : *((int32 *) value[i])); data += sizeof(int32); break; default: if (att[i]->attlen < sizeof(int32)) elog(ERROR, "DataFill: attribute %d has len %d", i, att[i]->attlen); if (att[i]->attalign == 'd') { data = (char *) DOUBLEALIGN(data); memmove(data, DatumGetPointer(value[i]), att[i]->attlen); data += att[i]->attlen; } else { data = (char *) LONGALIGN(data); memmove(data, DatumGetPointer(value[i]), att[i]->attlen); data += att[i]->attlen; } break; } } } /* ---------------------------------------------------------------- * heap tuple interface * ---------------------------------------------------------------- */ /* ---------------- * heap_attisnull - returns 1 iff tuple attribute is not present * ---------------- */ int heap_attisnull(HeapTuple tup, int attnum) { if (attnum > (int) tup->t_natts) return (1); if (HeapTupleNoNulls(tup)) return (0); if (attnum > 0) return (att_isnull(attnum - 1, tup->t_bits)); else switch (attnum) { case SelfItemPointerAttributeNumber: case ObjectIdAttributeNumber: case MinTransactionIdAttributeNumber: case MinCommandIdAttributeNumber: case MaxTransactionIdAttributeNumber: case MaxCommandIdAttributeNumber: break; case 0: elog(ERROR, "heap_attisnull: zero attnum disallowed"); default: elog(ERROR, "heap_attisnull: undefined negative attnum"); } return (0); } /* ---------------------------------------------------------------- * system attribute heap tuple support * ---------------------------------------------------------------- */ /* ---------------- * heap_sysattrlen * * This routine returns the length of a system attribute. * ---------------- */ int heap_sysattrlen(AttrNumber attno) { HeapTupleData *f = NULL; switch (attno) { case SelfItemPointerAttributeNumber: return sizeof f->t_ctid; case ObjectIdAttributeNumber: return sizeof f->t_oid; case MinTransactionIdAttributeNumber: return sizeof f->t_xmin; case MinCommandIdAttributeNumber: return sizeof f->t_cmin; case MaxTransactionIdAttributeNumber: return sizeof f->t_xmax; case MaxCommandIdAttributeNumber: return sizeof f->t_cmax; default: elog(ERROR, "sysattrlen: System attribute number %d unknown.", attno); return 0; } } /* ---------------- * heap_sysattrbyval * * This routine returns the "by-value" property of a system attribute. * ---------------- */ bool heap_sysattrbyval(AttrNumber attno) { bool byval; switch (attno) { case SelfItemPointerAttributeNumber: byval = false; break; case ObjectIdAttributeNumber: byval = true; break; case MinTransactionIdAttributeNumber: byval = true; break; case MinCommandIdAttributeNumber: byval = true; break; case MaxTransactionIdAttributeNumber: byval = true; break; case MaxCommandIdAttributeNumber: byval = true; break; default: byval = true; elog(ERROR, "sysattrbyval: System attribute number %d unknown.", attno); break; } return byval; } /* ---------------- * heap_getsysattr * ---------------- */ Datum heap_getsysattr(HeapTuple tup, Buffer b, int attnum) { switch (attnum) { case SelfItemPointerAttributeNumber: return ((Datum) &tup->t_ctid); case ObjectIdAttributeNumber: return ((Datum) (long) tup->t_oid); case MinTransactionIdAttributeNumber: return ((Datum) (long) tup->t_xmin); case MinCommandIdAttributeNumber: return ((Datum) (long) tup->t_cmin); case MaxTransactionIdAttributeNumber: return ((Datum) (long) tup->t_xmax); case MaxCommandIdAttributeNumber: return ((Datum) (long) tup->t_cmax); default: elog(ERROR, "heap_getsysattr: undefined attnum %d", attnum); } return ((Datum) NULL); } /* ---------------- * nocachegetattr * * This only gets called from fastgetattr() macro, in cases where * we can't use a cacheoffset and the value is not null. * * This caches attribute offsets in the attribute descriptor. * * an alternate way to speed things up would be to cache offsets * with the tuple, but that seems more difficult unless you take * the storage hit of actually putting those offsets into the * tuple you send to disk. Yuck. * * This scheme will be slightly slower than that, but should * preform well for queries which hit large #'s of tuples. After * you cache the offsets once, examining all the other tuples using * the same attribute descriptor will go much quicker. -cim 5/4/91 * ---------------- */ Datum nocachegetattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull) { char *tp; /* ptr to att in tuple */ bits8 *bp = tup->t_bits; /* ptr to att in tuple */ int slow; /* do we have to walk nulls? */ AttributeTupleForm *att = tupleDesc->attrs; #if IN_MACRO /* This is handled in the macro */ Assert(attnum > 0); if (isnull) *isnull = false; #endif /* ---------------- * Three cases: * * 1: No nulls and no variable length attributes. * 2: Has a null or a varlena AFTER att. * 3: Has nulls or varlenas BEFORE att. * ---------------- */ if (HeapTupleNoNulls(tup)) { attnum--; #if IN_MACRO /* This is handled in the macro */ if (att[attnum]->attcacheoff != -1) { return (Datum) fetchatt(&(att[attnum]), (char *) tup + tup->t_hoff + att[attnum]->attcacheoff); } else if (attnum == 0) { /* * first attribute is always at position zero */ return ((Datum) fetchatt(&(att[0]), (char *) tup + tup->t_hoff)); } #endif slow = 0; } else { /* * there's a null somewhere in the tuple */ tp = (char *) tup + tup->t_hoff; slow = 0; attnum--; /* ---------------- * check to see if desired att is null * ---------------- */ #if IN_MACRO /* This is handled in the macro */ if (att_isnull(attnum, bp)) { if (isnull) *isnull = true; return (Datum) NULL; } #endif /* ---------------- * Now check to see if any preceeding bits are null... * ---------------- */ { int i = 0; /* current offset in bp */ int mask; /* bit in byte we're looking at */ char n; /* current byte in bp */ int byte, finalbit; byte = attnum >> 3; finalbit = attnum & 0x07; for (; i <= byte && !slow; i++) { n = bp[i]; if (i < byte) { /* check for nulls in any "earlier" bytes */ if ((~n) != 0) slow = 1; } else { /* check for nulls "before" final bit of last byte */ mask = (1 << finalbit) - 1; if ((~n) & mask) slow = 1; } } } } tp = (char *) tup + tup->t_hoff; /* * now check for any non-fixed length attrs before our attribute */ if (!slow) { if (att[attnum]->attcacheoff != -1) { return (Datum) fetchatt(&(att[attnum]), tp + att[attnum]->attcacheoff); } else if (attnum == 0) return ((Datum) fetchatt(&(att[0]), (char *) tp)); else if (!HeapTupleAllFixed(tup)) { int j = 0; /* * In for(), we make this <= and not < because we want to test * if we can go past it in initializing offsets. */ for (j = 0; j <= attnum && !slow; j++) if (att[j]->attlen < 1 && !VARLENA_FIXED_SIZE(att[j])) slow = 1; } } /* * if slow is zero, and we got here, we know that we have a tuple with * no nulls. We also have to initialize the remainder of the * attribute cached offset values. */ if (!slow) { int j = 1; long off; /* * need to set cache for some atts */ att[0]->attcacheoff = 0; while (att[j]->attcacheoff > 0) j++; if (!VARLENA_FIXED_SIZE(att[j - 1])) off = att[j - 1]->attcacheoff + att[j - 1]->attlen; else off = att[j - 1]->attcacheoff + att[j - 1]->atttypmod; for (; j <= attnum || /* Can we compute more? We will probably need them */ (j < tup->t_natts && att[j]->attcacheoff == -1 && (HeapTupleNoNulls(tup) || !att_isnull(j, bp)) && (HeapTupleAllFixed(tup) || att[j]->attlen > 0 || VARLENA_FIXED_SIZE(att[j]))); j++) { /* * Fix me when going to a machine with more than a four-byte * word! */ switch (att[j]->attlen) { case -1: off = (att[j]->attalign == 'd') ? DOUBLEALIGN(off) : INTALIGN(off); break; case sizeof(char): break; case sizeof(short): off = SHORTALIGN(off); break; case sizeof(int32): off = INTALIGN(off); break; default: if (att[j]->attlen > sizeof(int32)) off = (att[j]->attalign == 'd') ? DOUBLEALIGN(off) : LONGALIGN(off); else elog(ERROR, "nocache_index_getattr: attribute %d has len %d", j, att[j]->attlen); break; } att[j]->attcacheoff = off; switch (att[j]->attlen) { case sizeof(char): off++; break; case sizeof(short): off += sizeof(short); break; case sizeof(int32): off += sizeof(int32); break; case -1: Assert(!VARLENA_FIXED_SIZE(att[j]) || att[j]->atttypmod == VARSIZE(tp + off)); off += VARSIZE(tp + off); break; default: off += att[j]->attlen; break; } } return (Datum) fetchatt(&(att[attnum]), tp + att[attnum]->attcacheoff); } else { bool usecache = true; int off = 0; int i; /* * Now we know that we have to walk the tuple CAREFULLY. * * Note - This loop is a little tricky. On iteration i we first set * the offset for attribute i and figure out how much the offset * should be incremented. Finally, we need to align the offset * based on the size of attribute i+1 (for which the offset has * been computed). -mer 12 Dec 1991 */ for (i = 0; i < attnum; i++) { if (!HeapTupleNoNulls(tup)) { if (att_isnull(i, bp)) { usecache = false; continue; } } /* If we know the next offset, we can skip the rest */ if (usecache && att[i]->attcacheoff != -1) off = att[i]->attcacheoff; else { switch (att[i]->attlen) { case -1: off = (att[i]->attalign == 'd') ? DOUBLEALIGN(off) : INTALIGN(off); break; case sizeof(char): break; case sizeof(short): off = SHORTALIGN(off); break; case sizeof(int32): off = INTALIGN(off); break; default: if (att[i]->attlen < sizeof(int32)) elog(ERROR, "nocachegetattr2: attribute %d has len %d", i, att[i]->attlen); if (att[i]->attalign == 'd') off = DOUBLEALIGN(off); else off = LONGALIGN(off); break; } if (usecache) att[i]->attcacheoff = off; } switch (att[i]->attlen) { case sizeof(char): off++; break; case sizeof(short): off += sizeof(short); break; case sizeof(int32): off += sizeof(int32); break; case -1: Assert(!VARLENA_FIXED_SIZE(att[i]) || att[i]->atttypmod == VARSIZE(tp + off)); off += VARSIZE(tp + off); if (!VARLENA_FIXED_SIZE(att[i])) usecache = false; break; default: off += att[i]->attlen; break; } } switch (att[attnum]->attlen) { case -1: off = (att[attnum]->attalign == 'd') ? DOUBLEALIGN(off) : INTALIGN(off); break; case sizeof(char): break; case sizeof(short): off = SHORTALIGN(off); break; case sizeof(int32): off = INTALIGN(off); break; default: if (att[attnum]->attlen < sizeof(int32)) elog(ERROR, "nocachegetattr3: attribute %d has len %d", attnum, att[attnum]->attlen); if (att[attnum]->attalign == 'd') off = DOUBLEALIGN(off); else off = LONGALIGN(off); break; } return (Datum) fetchatt(&(att[attnum]), tp + off); } } /* ---------------- * heap_copytuple * * returns a copy of an entire tuple * ---------------- */ HeapTuple heap_copytuple(HeapTuple tuple) { HeapTuple newTuple; if (!HeapTupleIsValid(tuple)) return (NULL); newTuple = (HeapTuple) palloc(tuple->t_len); memmove((char *) newTuple, (char *) tuple, (int) tuple->t_len); return (newTuple); } #ifdef NOT_USED /* ---------------- * heap_deformtuple * * the inverse of heap_formtuple (see below) * ---------------- */ void heap_deformtuple(HeapTuple tuple, TupleDesc tdesc, Datum values[], char nulls[]) { int i; int natts; Assert(HeapTupleIsValid(tuple)); natts = tuple->t_natts; for (i = 0; i < natts; i++) { bool isnull; values[i] = heap_getattr(tuple, i + 1, tdesc, &isnull); if (isnull) nulls[i] = 'n'; else nulls[i] = ' '; } } #endif /* ---------------- * heap_formtuple * * constructs a tuple from the given value[] and null[] arrays * * old comments * Handles alignment by aligning 2 byte attributes on short boundries * and 3 or 4 byte attributes on long word boundries on a vax; and * aligning non-byte attributes on short boundries on a sun. Does * not properly align fixed length arrays of 1 or 2 byte types (yet). * * Null attributes are indicated by a 'n' in the appropriate byte * of the null[]. Non-null attributes are indicated by a ' ' (space). * * Fix me. (Figure that must keep context if debug--allow give oid.) * Assumes in order. * ---------------- */ HeapTuple heap_formtuple(TupleDesc tupleDescriptor, Datum value[], char nulls[]) { char *tp; /* tuple pointer */ HeapTuple tuple; /* return tuple */ int bitmaplen; long len; int hoff; bool hasnull = false; int i; int numberOfAttributes = tupleDescriptor->natts; len = sizeof *tuple - sizeof tuple->t_bits; for (i = 0; i < numberOfAttributes && !hasnull; i++) { if (nulls[i] != ' ') hasnull = true; } if (numberOfAttributes > MaxHeapAttributeNumber) elog(ERROR, "heap_formtuple: numberOfAttributes of %d > %d", numberOfAttributes, MaxHeapAttributeNumber); if (hasnull) { bitmaplen = BITMAPLEN(numberOfAttributes); len += bitmaplen; } hoff = len = DOUBLEALIGN(len); /* be conservative here */ len += ComputeDataSize(tupleDescriptor, value, nulls); tp = (char *) palloc(len); tuple = (HeapTuple) tp; MemSet(tp, 0, (int) len); tuple->t_len = len; tuple->t_natts = numberOfAttributes; tuple->t_hoff = hoff; DataFill((char *) tuple + tuple->t_hoff, tupleDescriptor, value, nulls, &tuple->t_infomask, (hasnull ? tuple->t_bits : NULL)); tuple->t_infomask |= HEAP_XMAX_INVALID; return (tuple); } /* ---------------- * heap_modifytuple * * forms a new tuple from an old tuple and a set of replacement values. * returns a new palloc'ed tuple. * ---------------- */ HeapTuple heap_modifytuple(HeapTuple tuple, Relation relation, Datum replValue[], char replNull[], char repl[]) { int attoff; int numberOfAttributes; Datum *value; char *nulls; bool isNull; HeapTuple newTuple; uint8 infomask; /* ---------------- * sanity checks * ---------------- */ Assert(HeapTupleIsValid(tuple)); Assert(RelationIsValid(relation)); Assert(PointerIsValid(replValue)); Assert(PointerIsValid(replNull)); Assert(PointerIsValid(repl)); numberOfAttributes = RelationGetRelationTupleForm(relation)->relnatts; /* ---------------- * allocate and fill value[] and nulls[] arrays from either * the tuple or the repl information, as appropriate. * ---------------- */ value = (Datum *) palloc(numberOfAttributes * sizeof *value); nulls = (char *) palloc(numberOfAttributes * sizeof *nulls); for (attoff = 0; attoff < numberOfAttributes; attoff += 1) { if (repl[attoff] == ' ') { value[attoff] = heap_getattr(tuple, AttrOffsetGetAttrNumber(attoff), RelationGetTupleDescriptor(relation), &isNull); nulls[attoff] = (isNull) ? 'n' : ' '; } else if (repl[attoff] != 'r') elog(ERROR, "heap_modifytuple: repl is \\%3d", repl[attoff]); else { /* == 'r' */ value[attoff] = replValue[attoff]; nulls[attoff] = replNull[attoff]; } } /* ---------------- * create a new tuple from the values[] and nulls[] arrays * ---------------- */ newTuple = heap_formtuple(RelationGetTupleDescriptor(relation), value, nulls); /* ---------------- * copy the header except for t_len, t_natts, t_hoff, t_bits, t_infomask * ---------------- */ infomask = newTuple->t_infomask; memmove((char *) &newTuple->t_oid, /* XXX */ (char *) &tuple->t_oid, ((char *) &tuple->t_hoff - (char *) &tuple->t_oid)); /* XXX */ newTuple->t_infomask = infomask; newTuple->t_natts = numberOfAttributes; /* fix t_natts just in case */ return newTuple; } /* ---------------------------------------------------------------- * other misc functions * ---------------------------------------------------------------- */ HeapTuple heap_addheader(uint32 natts, /* max domain index */ int structlen, /* its length */ char *structure) /* pointer to the struct */ { char *tp; /* tuple data pointer */ HeapTuple tup; long len; int hoff; AssertArg(natts > 0); len = sizeof(HeapTupleData) - sizeof(tup->t_bits); hoff = len = DOUBLEALIGN(len); /* be conservative */ len += structlen; tp = (char *) palloc(len); tup = (HeapTuple) tp; MemSet((char *) tup, 0, len); tup->t_len = len; tp += tup->t_hoff = hoff; tup->t_natts = natts; tup->t_infomask = 0; tup->t_infomask |= HEAP_XMAX_INVALID; memmove(tp, structure, structlen); return (tup); }