/*------------------------------------------------------------------------- * * execMain.c * top level executor interface routines * * INTERFACE ROUTINES * ExecutorStart() * ExecutorRun() * ExecutorEnd() * * The old ExecutorMain() has been replaced by ExecutorStart(), * ExecutorRun() and ExecutorEnd() * * These three procedures are the external interfaces to the executor. * In each case, the query descriptor and the execution state is required * as arguments * * ExecutorStart() must be called at the beginning of any execution of any * query plan and ExecutorEnd() should always be called at the end of * execution of a plan. * * ExecutorRun accepts 'feature' and 'count' arguments that specify whether * the plan is to be executed forwards, backwards, and for how many tuples. * * Portions Copyright (c) 1996-2000, PostgreSQL, Inc * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $Header: /cvsroot/pgsql/src/backend/executor/execMain.c,v 1.122 2000/07/12 02:37:00 tgl Exp $ * *------------------------------------------------------------------------- */ #include "postgres.h" #include "access/heapam.h" #include "catalog/heap.h" #include "commands/command.h" #include "commands/trigger.h" #include "executor/execdebug.h" #include "executor/execdefs.h" #include "miscadmin.h" #include "optimizer/var.h" #include "parser/parsetree.h" #include "utils/acl.h" /* decls for local routines only used within this module */ static TupleDesc InitPlan(CmdType operation, Query *parseTree, Plan *plan, EState *estate); static void EndPlan(Plan *plan, EState *estate); static TupleTableSlot *ExecutePlan(EState *estate, Plan *plan, CmdType operation, int offsetTuples, int numberTuples, ScanDirection direction, DestReceiver *destfunc); static void ExecRetrieve(TupleTableSlot *slot, DestReceiver *destfunc, EState *estate); static void ExecAppend(TupleTableSlot *slot, ItemPointer tupleid, EState *estate); static void ExecDelete(TupleTableSlot *slot, ItemPointer tupleid, EState *estate); static void ExecReplace(TupleTableSlot *slot, ItemPointer tupleid, EState *estate); static TupleTableSlot *EvalPlanQualNext(EState *estate); static void EndEvalPlanQual(EState *estate); static void ExecCheckQueryPerms(CmdType operation, Query *parseTree, Plan *plan); static void ExecCheckPlanPerms(Plan *plan, CmdType operation, int resultRelation, bool resultIsScanned); static void ExecCheckRTPerms(List *rangeTable, CmdType operation, int resultRelation, bool resultIsScanned); static void ExecCheckRTEPerms(RangeTblEntry *rte, CmdType operation, bool isResultRelation, bool resultIsScanned); /* end of local decls */ /* ---------------------------------------------------------------- * ExecutorStart * * This routine must be called at the beginning of any execution of any * query plan * * returns a TupleDesc which describes the attributes of the tuples to * be returned by the query. * * NB: the CurrentMemoryContext when this is called must be the context * to be used as the per-query context for the query plan. ExecutorRun() * and ExecutorEnd() must be called in this same memory context. * ---------------------------------------------------------------- */ TupleDesc ExecutorStart(QueryDesc *queryDesc, EState *estate) { TupleDesc result; /* sanity checks */ Assert(queryDesc != NULL); if (queryDesc->plantree->nParamExec > 0) { estate->es_param_exec_vals = (ParamExecData *) palloc(queryDesc->plantree->nParamExec * sizeof(ParamExecData)); MemSet(estate->es_param_exec_vals, 0, queryDesc->plantree->nParamExec * sizeof(ParamExecData)); } /* * Make our own private copy of the current queries snapshot data */ if (QuerySnapshot == NULL) estate->es_snapshot = NULL; else { estate->es_snapshot = (Snapshot) palloc(sizeof(SnapshotData)); memcpy(estate->es_snapshot, QuerySnapshot, sizeof(SnapshotData)); if (estate->es_snapshot->xcnt > 0) { estate->es_snapshot->xip = (TransactionId *) palloc(estate->es_snapshot->xcnt * sizeof(TransactionId)); memcpy(estate->es_snapshot->xip, QuerySnapshot->xip, estate->es_snapshot->xcnt * sizeof(TransactionId)); } } /* * Initialize the plan */ result = InitPlan(queryDesc->operation, queryDesc->parsetree, queryDesc->plantree, estate); return result; } /* ---------------------------------------------------------------- * ExecutorRun * * This is the main routine of the executor module. It accepts * the query descriptor from the traffic cop and executes the * query plan. * * ExecutorStart must have been called already. * * the different features supported are: * EXEC_RUN: retrieve all tuples in the forward direction * EXEC_FOR: retrieve 'count' number of tuples in the forward dir * EXEC_BACK: retrieve 'count' number of tuples in the backward dir * EXEC_RETONE: return one tuple but don't 'retrieve' it * used in postquel function processing * * ---------------------------------------------------------------- */ TupleTableSlot * ExecutorRun(QueryDesc *queryDesc, EState *estate, int feature, Node *limoffset, Node *limcount) { CmdType operation; Plan *plan; TupleTableSlot *result; CommandDest dest; DestReceiver *destfunc; int offset = 0; int count = 0; /* * sanity checks */ Assert(queryDesc != NULL); /* * extract information from the query descriptor and the query * feature. */ operation = queryDesc->operation; plan = queryDesc->plantree; dest = queryDesc->dest; destfunc = DestToFunction(dest); estate->es_processed = 0; estate->es_lastoid = InvalidOid; /* * FIXME: the dest setup function ought to be handed the tuple desc * for the tuples to be output, but I'm not quite sure how to get that * info at this point. For now, passing NULL is OK because no * existing dest setup function actually uses the pointer. */ (*destfunc->setup) (destfunc, (TupleDesc) NULL); /* * if given get the offset of the LIMIT clause */ if (limoffset != NULL) { Const *coffset; Param *poffset; ParamListInfo paramLI; int i; switch (nodeTag(limoffset)) { case T_Const: coffset = (Const *) limoffset; offset = (int) (coffset->constvalue); break; case T_Param: poffset = (Param *) limoffset; paramLI = estate->es_param_list_info; if (paramLI == NULL) elog(ERROR, "parameter for limit offset not in executor state"); for (i = 0; paramLI[i].kind != PARAM_INVALID; i++) { if (paramLI[i].kind == PARAM_NUM && paramLI[i].id == poffset->paramid) break; } if (paramLI[i].kind == PARAM_INVALID) elog(ERROR, "parameter for limit offset not in executor state"); if (paramLI[i].isnull) elog(ERROR, "limit offset cannot be NULL value"); offset = (int) (paramLI[i].value); break; default: elog(ERROR, "unexpected node type %d as limit offset", nodeTag(limoffset)); } if (offset < 0) elog(ERROR, "limit offset cannot be negative"); } /* * if given get the count of the LIMIT clause */ if (limcount != NULL) { Const *ccount; Param *pcount; ParamListInfo paramLI; int i; switch (nodeTag(limcount)) { case T_Const: ccount = (Const *) limcount; count = (int) (ccount->constvalue); break; case T_Param: pcount = (Param *) limcount; paramLI = estate->es_param_list_info; if (paramLI == NULL) elog(ERROR, "parameter for limit count not in executor state"); for (i = 0; paramLI[i].kind != PARAM_INVALID; i++) { if (paramLI[i].kind == PARAM_NUM && paramLI[i].id == pcount->paramid) break; } if (paramLI[i].kind == PARAM_INVALID) elog(ERROR, "parameter for limit count not in executor state"); if (paramLI[i].isnull) elog(ERROR, "limit count cannot be NULL value"); count = (int) (paramLI[i].value); break; default: elog(ERROR, "unexpected node type %d as limit count", nodeTag(limcount)); } if (count < 0) elog(ERROR, "limit count cannot be negative"); } switch (feature) { case EXEC_RUN: result = ExecutePlan(estate, plan, operation, offset, count, ForwardScanDirection, destfunc); break; case EXEC_FOR: result = ExecutePlan(estate, plan, operation, offset, count, ForwardScanDirection, destfunc); break; /* * retrieve next n "backward" tuples */ case EXEC_BACK: result = ExecutePlan(estate, plan, operation, offset, count, BackwardScanDirection, destfunc); break; /* * return one tuple but don't "retrieve" it. (this is used by * the rule manager..) -cim 9/14/89 */ case EXEC_RETONE: result = ExecutePlan(estate, plan, operation, 0, ONE_TUPLE, ForwardScanDirection, destfunc); break; default: result = NULL; elog(DEBUG, "ExecutorRun: Unknown feature %d", feature); break; } (*destfunc->cleanup) (destfunc); return result; } /* ---------------------------------------------------------------- * ExecutorEnd * * This routine must be called at the end of any execution of any * query plan * * returns (AttrInfo*) which describes the attributes of the tuples to * be returned by the query. * * ---------------------------------------------------------------- */ void ExecutorEnd(QueryDesc *queryDesc, EState *estate) { /* sanity checks */ Assert(queryDesc != NULL); EndPlan(queryDesc->plantree, estate); /* XXX - clean up some more from ExecutorStart() - er1p */ if (NULL == estate->es_snapshot) { /* nothing to free */ } else { if (estate->es_snapshot->xcnt > 0) pfree(estate->es_snapshot->xip); pfree(estate->es_snapshot); } if (NULL == estate->es_param_exec_vals) { /* nothing to free */ } else { pfree(estate->es_param_exec_vals); estate->es_param_exec_vals = NULL; } } /* * ExecCheckQueryPerms * Check access permissions for all relations referenced in a query. */ static void ExecCheckQueryPerms(CmdType operation, Query *parseTree, Plan *plan) { List *rangeTable = parseTree->rtable; int resultRelation = parseTree->resultRelation; bool resultIsScanned = false; List *lp; /* * If we have a result relation, determine whether the result rel is * scanned or merely written. If scanned, we will insist on read * permission as well as modify permission. */ if (resultRelation > 0) { List *qvars = pull_varnos(parseTree->qual); List *tvars = pull_varnos((Node *) parseTree->targetList); resultIsScanned = (intMember(resultRelation, qvars) || intMember(resultRelation, tvars)); freeList(qvars); freeList(tvars); } /* * Check RTEs in the query's primary rangetable. */ ExecCheckRTPerms(rangeTable, operation, resultRelation, resultIsScanned); /* * Check SELECT FOR UPDATE access rights. */ foreach(lp, parseTree->rowMark) { RowMark *rm = lfirst(lp); if (!(rm->info & ROW_ACL_FOR_UPDATE)) continue; ExecCheckRTEPerms(rt_fetch(rm->rti, rangeTable), CMD_UPDATE, true, false); } /* * Search for subplans and APPEND nodes to check their rangetables. */ ExecCheckPlanPerms(plan, operation, resultRelation, resultIsScanned); } /* * ExecCheckPlanPerms * Recursively scan the plan tree to check access permissions in * subplans. * * We also need to look at the local rangetables in Append plan nodes, * which is pretty bogus --- most likely, those tables should be mentioned * in the query's main rangetable. But at the moment, they're not. */ static void ExecCheckPlanPerms(Plan *plan, CmdType operation, int resultRelation, bool resultIsScanned) { List *subp; if (plan == NULL) return; /* Check subplans, which we assume are plain SELECT queries */ foreach(subp, plan->initPlan) { SubPlan *subplan = (SubPlan *) lfirst(subp); ExecCheckRTPerms(subplan->rtable, CMD_SELECT, 0, false); ExecCheckPlanPerms(subplan->plan, CMD_SELECT, 0, false); } foreach(subp, plan->subPlan) { SubPlan *subplan = (SubPlan *) lfirst(subp); ExecCheckRTPerms(subplan->rtable, CMD_SELECT, 0, false); ExecCheckPlanPerms(subplan->plan, CMD_SELECT, 0, false); } /* Check lower plan nodes */ ExecCheckPlanPerms(plan->lefttree, operation, resultRelation, resultIsScanned); ExecCheckPlanPerms(plan->righttree, operation, resultRelation, resultIsScanned); /* Do node-type-specific checks */ switch (nodeTag(plan)) { case T_Append: { Append *app = (Append *) plan; List *appendplans; if (app->inheritrelid > 0) { /* * Append implements expansion of inheritance; all * members of inheritrtable list will be plugged into * same RTE slot. Therefore, they are either all * result relations or none. */ List *rtable; foreach(rtable, app->inheritrtable) { ExecCheckRTEPerms((RangeTblEntry *) lfirst(rtable), operation, (app->inheritrelid == resultRelation), resultIsScanned); } } else { /* Append implements UNION, which must be a SELECT */ List *rtables; foreach(rtables, app->unionrtables) { ExecCheckRTPerms((List *) lfirst(rtables), CMD_SELECT, 0, false); } } /* Check appended plans */ foreach(appendplans, app->appendplans) { ExecCheckPlanPerms((Plan *) lfirst(appendplans), operation, resultRelation, resultIsScanned); } break; } default: break; } } /* * ExecCheckRTPerms * Check access permissions for all relations listed in a range table. * * If resultRelation is not 0, it is the RT index of the relation to be * treated as the result relation. All other relations are assumed to be * read-only for the query. */ static void ExecCheckRTPerms(List *rangeTable, CmdType operation, int resultRelation, bool resultIsScanned) { int rtindex = 0; List *lp; foreach(lp, rangeTable) { RangeTblEntry *rte = lfirst(lp); ++rtindex; ExecCheckRTEPerms(rte, operation, (rtindex == resultRelation), resultIsScanned); } } /* * ExecCheckRTEPerms * Check access permissions for a single RTE. */ static void ExecCheckRTEPerms(RangeTblEntry *rte, CmdType operation, bool isResultRelation, bool resultIsScanned) { char *relName; char *userName; int32 aclcheck_result; if (rte->skipAcl) { /* * This happens if the access to this table is due to a view query * rewriting - the rewrite handler already checked the permissions * against the view owner, so we just skip this entry. */ return; } relName = rte->relname; /* * Note: GetPgUserName is presently fast enough that there's no harm * in calling it separately for each RTE. If that stops being true, * we could call it once in ExecCheckQueryPerms and pass the userName * down from there. But for now, no need for the extra clutter. */ userName = GetPgUserName(); #define CHECK(MODE) pg_aclcheck(relName, userName, MODE) if (isResultRelation) { if (resultIsScanned) { aclcheck_result = CHECK(ACL_RD); if (aclcheck_result != ACLCHECK_OK) elog(ERROR, "%s: %s", relName, aclcheck_error_strings[aclcheck_result]); } switch (operation) { case CMD_INSERT: /* Accept either APPEND or WRITE access for this */ aclcheck_result = CHECK(ACL_AP); if (aclcheck_result != ACLCHECK_OK) aclcheck_result = CHECK(ACL_WR); break; case CMD_DELETE: case CMD_UPDATE: aclcheck_result = CHECK(ACL_WR); break; default: elog(ERROR, "ExecCheckRTEPerms: bogus operation %d", operation); aclcheck_result = ACLCHECK_OK; /* keep compiler quiet */ break; } } else aclcheck_result = CHECK(ACL_RD); if (aclcheck_result != ACLCHECK_OK) elog(ERROR, "%s: %s", relName, aclcheck_error_strings[aclcheck_result]); } /* =============================================================== * =============================================================== static routines follow * =============================================================== * =============================================================== */ typedef struct execRowMark { Relation relation; Index rti; char resname[32]; } execRowMark; typedef struct evalPlanQual { Plan *plan; Index rti; EState estate; struct evalPlanQual *free; } evalPlanQual; /* ---------------------------------------------------------------- * InitPlan * * Initializes the query plan: open files, allocate storage * and start up the rule manager * ---------------------------------------------------------------- */ static TupleDesc InitPlan(CmdType operation, Query *parseTree, Plan *plan, EState *estate) { List *rangeTable; int resultRelation; Relation intoRelationDesc; TupleDesc tupType; List *targetList; /* * Do permissions checks. */ #ifndef NO_SECURITY ExecCheckQueryPerms(operation, parseTree, plan); #endif /* * get information from query descriptor */ rangeTable = parseTree->rtable; resultRelation = parseTree->resultRelation; /* * initialize the node's execution state */ estate->es_range_table = rangeTable; /* * initialize result relation stuff */ if (resultRelation != 0 && operation != CMD_SELECT) { /* * if we have a result relation, open it and initialize the result * relation info stuff. */ RelationInfo *resultRelationInfo; Index resultRelationIndex; RangeTblEntry *rtentry; Oid resultRelationOid; Relation resultRelationDesc; resultRelationIndex = resultRelation; rtentry = rt_fetch(resultRelationIndex, rangeTable); resultRelationOid = rtentry->relid; resultRelationDesc = heap_open(resultRelationOid, RowExclusiveLock); if (resultRelationDesc->rd_rel->relkind == RELKIND_SEQUENCE) elog(ERROR, "You can't change sequence relation %s", RelationGetRelationName(resultRelationDesc)); if (resultRelationDesc->rd_rel->relkind == RELKIND_TOASTVALUE) elog(ERROR, "You can't change toast relation %s", RelationGetRelationName(resultRelationDesc)); resultRelationInfo = makeNode(RelationInfo); resultRelationInfo->ri_RangeTableIndex = resultRelationIndex; resultRelationInfo->ri_RelationDesc = resultRelationDesc; resultRelationInfo->ri_NumIndices = 0; resultRelationInfo->ri_IndexRelationDescs = NULL; resultRelationInfo->ri_IndexRelationInfo = NULL; /* * If there are indices on the result relation, open them and save * descriptors in the result relation info, so that we can add new * index entries for the tuples we add/update. We need not do * this for a DELETE, however, since deletion doesn't affect * indexes. */ if (resultRelationDesc->rd_rel->relhasindex && operation != CMD_DELETE) ExecOpenIndices(resultRelationInfo); estate->es_result_relation_info = resultRelationInfo; } else { /* * if no result relation, then set state appropriately */ estate->es_result_relation_info = NULL; } /* * Have to lock relations selected for update */ estate->es_rowMark = NULL; if (parseTree->rowMark != NULL) { List *l; foreach(l, parseTree->rowMark) { RowMark *rm = lfirst(l); Oid relid; Relation relation; execRowMark *erm; if (!(rm->info & ROW_MARK_FOR_UPDATE)) continue; relid = rt_fetch(rm->rti, rangeTable)->relid; relation = heap_open(relid, RowShareLock); erm = (execRowMark *) palloc(sizeof(execRowMark)); erm->relation = relation; erm->rti = rm->rti; sprintf(erm->resname, "ctid%u", rm->rti); estate->es_rowMark = lappend(estate->es_rowMark, erm); } } /* * initialize the executor "tuple" table. */ { int nSlots = ExecCountSlotsNode(plan); TupleTable tupleTable = ExecCreateTupleTable(nSlots + 10); /* why add ten? - jolly */ estate->es_tupleTable = tupleTable; } /* * initialize the private state information for all the nodes in the * query tree. This opens files, allocates storage and leaves us * ready to start processing tuples. */ ExecInitNode(plan, estate, NULL); /* * get the tuple descriptor describing the type of tuples to return.. * (this is especially important if we are creating a relation with * "retrieve into") */ tupType = ExecGetTupType(plan); /* tuple descriptor */ targetList = plan->targetlist; /* * Now that we have the target list, initialize the junk filter if * needed. SELECT and INSERT queries need a filter if there are any * junk attrs in the tlist. UPDATE and DELETE always need one, since * there's always a junk 'ctid' attribute present --- no need to look * first. */ { bool junk_filter_needed = false; List *tlist; switch (operation) { case CMD_SELECT: case CMD_INSERT: foreach(tlist, targetList) { TargetEntry *tle = (TargetEntry *) lfirst(tlist); if (tle->resdom->resjunk) { junk_filter_needed = true; break; } } break; case CMD_UPDATE: case CMD_DELETE: junk_filter_needed = true; break; default: break; } if (junk_filter_needed) { JunkFilter *j = ExecInitJunkFilter(targetList, tupType); estate->es_junkFilter = j; if (operation == CMD_SELECT) tupType = j->jf_cleanTupType; } else estate->es_junkFilter = NULL; } /* * initialize the "into" relation */ intoRelationDesc = (Relation) NULL; if (operation == CMD_SELECT) { char *intoName; Oid intoRelationId; TupleDesc tupdesc; if (!parseTree->isPortal) { /* * a select into table */ if (parseTree->into != NULL) { /* * create the "into" relation */ intoName = parseTree->into; /* * have to copy tupType to get rid of constraints */ tupdesc = CreateTupleDescCopy(tupType); intoRelationId = heap_create_with_catalog(intoName, tupdesc, RELKIND_RELATION, parseTree->isTemp, allowSystemTableMods); FreeTupleDesc(tupdesc); /* * Advance command counter so that the newly-created * relation's catalog tuples will be visible to heap_open. */ CommandCounterIncrement(); /* * Eventually create a TOAST table for the into relation */ AlterTableCreateToastTable(intoName, true); intoRelationDesc = heap_open(intoRelationId, AccessExclusiveLock); } } } estate->es_into_relation_descriptor = intoRelationDesc; estate->es_origPlan = plan; estate->es_evalPlanQual = NULL; estate->es_evTuple = NULL; estate->es_useEvalPlan = false; return tupType; } /* ---------------------------------------------------------------- * EndPlan * * Cleans up the query plan -- closes files and free up storages * ---------------------------------------------------------------- */ static void EndPlan(Plan *plan, EState *estate) { RelationInfo *resultRelationInfo; List *l; /* * shut down any PlanQual processing we were doing */ if (estate->es_evalPlanQual != NULL) EndEvalPlanQual(estate); /* * shut down the node-type-specific query processing */ ExecEndNode(plan, plan); /* * destroy the executor "tuple" table. */ ExecDropTupleTable(estate->es_tupleTable, true); estate->es_tupleTable = NULL; /* * close the result relation if necessary, but hold lock on it * until xact commit. NB: must not do this till after ExecEndNode(), * see nodeAppend.c ... */ resultRelationInfo = estate->es_result_relation_info; if (resultRelationInfo != NULL) { heap_close(resultRelationInfo->ri_RelationDesc, NoLock); /* close indices on the result relation, too */ ExecCloseIndices(resultRelationInfo); } /* * close the "into" relation if necessary, again keeping lock */ if (estate->es_into_relation_descriptor != NULL) heap_close(estate->es_into_relation_descriptor, NoLock); /* * close any relations selected FOR UPDATE, again keeping locks */ foreach(l, estate->es_rowMark) { execRowMark *erm = lfirst(l); heap_close(erm->relation, NoLock); } } /* ---------------------------------------------------------------- * ExecutePlan * * processes the query plan to retrieve 'tupleCount' tuples in the * direction specified. * Retrieves all tuples if tupleCount is 0 * * result is either a slot containing a tuple in the case * of a RETRIEVE or NULL otherwise. * * ---------------------------------------------------------------- */ /* the ctid attribute is a 'junk' attribute that is removed before the user can see it*/ static TupleTableSlot * ExecutePlan(EState *estate, Plan *plan, CmdType operation, int offsetTuples, int numberTuples, ScanDirection direction, DestReceiver *destfunc) { JunkFilter *junkfilter; TupleTableSlot *slot; ItemPointer tupleid = NULL; ItemPointerData tuple_ctid; int current_tuple_count; TupleTableSlot *result; /* * initialize local variables */ slot = NULL; current_tuple_count = 0; result = NULL; /* * Set the direction. */ estate->es_direction = direction; /* * Loop until we've processed the proper number of tuples from the * plan.. */ for (;;) { /* * Execute the plan and obtain a tuple */ /* at the top level, the parent of a plan (2nd arg) is itself */ lnext: ; if (estate->es_useEvalPlan) { slot = EvalPlanQualNext(estate); if (TupIsNull(slot)) slot = ExecProcNode(plan, plan); } else slot = ExecProcNode(plan, plan); /* * if the tuple is null, then we assume there is nothing more to * process so we just return null... */ if (TupIsNull(slot)) { result = NULL; break; } /* * For now we completely execute the plan and skip result tuples * if requested by LIMIT offset. Finally we should try to do it in * deeper levels if possible (during index scan) - Jan */ if (offsetTuples > 0) { --offsetTuples; continue; } /* * if we have a junk filter, then project a new tuple with the * junk removed. * * Store this new "clean" tuple in the place of the original tuple. * * Also, extract all the junk information we need. */ if ((junkfilter = estate->es_junkFilter) != (JunkFilter *) NULL) { Datum datum; HeapTuple newTuple; bool isNull; /* * extract the 'ctid' junk attribute. */ if (operation == CMD_UPDATE || operation == CMD_DELETE) { if (!ExecGetJunkAttribute(junkfilter, slot, "ctid", &datum, &isNull)) elog(ERROR, "ExecutePlan: NO (junk) `ctid' was found!"); if (isNull) elog(ERROR, "ExecutePlan: (junk) `ctid' is NULL!"); tupleid = (ItemPointer) DatumGetPointer(datum); tuple_ctid = *tupleid; /* make sure we don't free the * ctid!! */ tupleid = &tuple_ctid; } else if (estate->es_rowMark != NULL) { List *l; lmark: ; foreach(l, estate->es_rowMark) { execRowMark *erm = lfirst(l); Buffer buffer; HeapTupleData tuple; TupleTableSlot *newSlot; int test; if (!ExecGetJunkAttribute(junkfilter, slot, erm->resname, &datum, &isNull)) elog(ERROR, "ExecutePlan: NO (junk) `%s' was found!", erm->resname); if (isNull) elog(ERROR, "ExecutePlan: (junk) `%s' is NULL!", erm->resname); tuple.t_self = *((ItemPointer) DatumGetPointer(datum)); test = heap_mark4update(erm->relation, &tuple, &buffer); ReleaseBuffer(buffer); switch (test) { case HeapTupleSelfUpdated: case HeapTupleMayBeUpdated: break; case HeapTupleUpdated: if (XactIsoLevel == XACT_SERIALIZABLE) { elog(ERROR, "Can't serialize access due to concurrent update"); return (NULL); } else if (!(ItemPointerEquals(&(tuple.t_self), (ItemPointer) DatumGetPointer(datum)))) { newSlot = EvalPlanQual(estate, erm->rti, &(tuple.t_self)); if (!(TupIsNull(newSlot))) { slot = newSlot; estate->es_useEvalPlan = true; goto lmark; } } /* * if tuple was deleted or PlanQual failed for * updated tuple - we have not return this * tuple! */ goto lnext; default: elog(ERROR, "Unknown status %u from heap_mark4update", test); return (NULL); } } } /* * Finally create a new "clean" tuple with all junk attributes * removed */ newTuple = ExecRemoveJunk(junkfilter, slot); slot = ExecStoreTuple(newTuple, /* tuple to store */ slot, /* destination slot */ InvalidBuffer, /* this tuple has no * buffer */ true); /* tuple should be pfreed */ } /* if (junkfilter... */ /* * now that we have a tuple, do the appropriate thing with it.. * either return it to the user, add it to a relation someplace, * delete it from a relation, or modify some of its attributes. */ switch (operation) { case CMD_SELECT: ExecRetrieve(slot, /* slot containing tuple */ destfunc, /* destination's tuple-receiver * obj */ estate); /* */ result = slot; break; case CMD_INSERT: ExecAppend(slot, tupleid, estate); result = NULL; break; case CMD_DELETE: ExecDelete(slot, tupleid, estate); result = NULL; break; case CMD_UPDATE: ExecReplace(slot, tupleid, estate); result = NULL; break; default: elog(DEBUG, "ExecutePlan: unknown operation in queryDesc"); result = NULL; break; } /* * check our tuple count.. if we've returned the proper number * then return, else loop again and process more tuples.. */ current_tuple_count += 1; if (numberTuples == current_tuple_count) break; } /* * here, result is either a slot containing a tuple in the case of a * RETRIEVE or NULL otherwise. */ return result; } /* ---------------------------------------------------------------- * ExecRetrieve * * RETRIEVEs are easy.. we just pass the tuple to the appropriate * print function. The only complexity is when we do a * "retrieve into", in which case we insert the tuple into * the appropriate relation (note: this is a newly created relation * so we don't need to worry about indices or locks.) * ---------------------------------------------------------------- */ static void ExecRetrieve(TupleTableSlot *slot, DestReceiver *destfunc, EState *estate) { HeapTuple tuple; TupleDesc attrtype; /* * get the heap tuple out of the tuple table slot */ tuple = slot->val; attrtype = slot->ttc_tupleDescriptor; /* * insert the tuple into the "into relation" */ if (estate->es_into_relation_descriptor != NULL) { heap_insert(estate->es_into_relation_descriptor, tuple); IncrAppended(); } /* * send the tuple to the front end (or the screen) */ (*destfunc->receiveTuple) (tuple, attrtype, destfunc); IncrRetrieved(); (estate->es_processed)++; } /* ---------------------------------------------------------------- * ExecAppend * * APPENDs are trickier.. we have to insert the tuple into * the base relation and insert appropriate tuples into the * index relations. * ---------------------------------------------------------------- */ static void ExecAppend(TupleTableSlot *slot, ItemPointer tupleid, EState *estate) { HeapTuple tuple; RelationInfo *resultRelationInfo; Relation resultRelationDesc; int numIndices; Oid newId; /* * get the heap tuple out of the tuple table slot */ tuple = slot->val; /* * get information on the result relation */ resultRelationInfo = estate->es_result_relation_info; resultRelationDesc = resultRelationInfo->ri_RelationDesc; /* * have to add code to preform unique checking here. cim -12/1/89 */ /* BEFORE ROW INSERT Triggers */ if (resultRelationDesc->trigdesc && resultRelationDesc->trigdesc->n_before_row[TRIGGER_EVENT_INSERT] > 0) { HeapTuple newtuple; newtuple = ExecBRInsertTriggers(resultRelationDesc, tuple); if (newtuple == NULL) /* "do nothing" */ return; if (newtuple != tuple) /* modified by Trigger(s) */ { Assert(slot->ttc_shouldFree); heap_freetuple(tuple); slot->val = tuple = newtuple; } } /* * Check the constraints of a tuple */ if (resultRelationDesc->rd_att->constr) ExecConstraints("ExecAppend", resultRelationDesc, tuple, estate); /* * insert the tuple */ newId = heap_insert(resultRelationDesc, /* relation desc */ tuple); /* heap tuple */ IncrAppended(); /* * process indices * * Note: heap_insert adds a new tuple to a relation. As a side effect, * the tupleid of the new tuple is placed in the new tuple's t_ctid * field. */ numIndices = resultRelationInfo->ri_NumIndices; if (numIndices > 0) ExecInsertIndexTuples(slot, &(tuple->t_self), estate, false); (estate->es_processed)++; estate->es_lastoid = newId; /* AFTER ROW INSERT Triggers */ if (resultRelationDesc->trigdesc) ExecARInsertTriggers(resultRelationDesc, tuple); } /* ---------------------------------------------------------------- * ExecDelete * * DELETE is like append, we delete the tuple and its * index tuples. * ---------------------------------------------------------------- */ static void ExecDelete(TupleTableSlot *slot, ItemPointer tupleid, EState *estate) { RelationInfo *resultRelationInfo; Relation resultRelationDesc; ItemPointerData ctid; int result; /* * get the result relation information */ resultRelationInfo = estate->es_result_relation_info; resultRelationDesc = resultRelationInfo->ri_RelationDesc; /* BEFORE ROW DELETE Triggers */ if (resultRelationDesc->trigdesc && resultRelationDesc->trigdesc->n_before_row[TRIGGER_EVENT_DELETE] > 0) { bool dodelete; dodelete = ExecBRDeleteTriggers(estate, tupleid); if (!dodelete) /* "do nothing" */ return; } /* * delete the tuple */ ldelete:; result = heap_delete(resultRelationDesc, tupleid, &ctid); switch (result) { case HeapTupleSelfUpdated: return; case HeapTupleMayBeUpdated: break; case HeapTupleUpdated: if (XactIsoLevel == XACT_SERIALIZABLE) elog(ERROR, "Can't serialize access due to concurrent update"); else if (!(ItemPointerEquals(tupleid, &ctid))) { TupleTableSlot *epqslot = EvalPlanQual(estate, resultRelationInfo->ri_RangeTableIndex, &ctid); if (!TupIsNull(epqslot)) { *tupleid = ctid; goto ldelete; } } return; default: elog(ERROR, "Unknown status %u from heap_delete", result); return; } IncrDeleted(); (estate->es_processed)++; /* * Note: Normally one would think that we have to delete index tuples * associated with the heap tuple now.. * * ... but in POSTGRES, we have no need to do this because the vacuum * daemon automatically opens an index scan and deletes index tuples * when it finds deleted heap tuples. -cim 9/27/89 */ /* AFTER ROW DELETE Triggers */ if (resultRelationDesc->trigdesc) ExecARDeleteTriggers(estate, tupleid); } /* ---------------------------------------------------------------- * ExecReplace * * note: we can't run replace queries with transactions * off because replaces are actually appends and our * scan will mistakenly loop forever, replacing the tuple * it just appended.. This should be fixed but until it * is, we don't want to get stuck in an infinite loop * which corrupts your database.. * ---------------------------------------------------------------- */ static void ExecReplace(TupleTableSlot *slot, ItemPointer tupleid, EState *estate) { HeapTuple tuple; RelationInfo *resultRelationInfo; Relation resultRelationDesc; ItemPointerData ctid; int result; int numIndices; /* * abort the operation if not running transactions */ if (IsBootstrapProcessingMode()) { elog(DEBUG, "ExecReplace: replace can't run without transactions"); return; } /* * get the heap tuple out of the tuple table slot */ tuple = slot->val; /* * get the result relation information */ resultRelationInfo = estate->es_result_relation_info; resultRelationDesc = resultRelationInfo->ri_RelationDesc; /* * have to add code to preform unique checking here. in the event of * unique tuples, this becomes a deletion of the original tuple * affected by the replace. cim -12/1/89 */ /* BEFORE ROW UPDATE Triggers */ if (resultRelationDesc->trigdesc && resultRelationDesc->trigdesc->n_before_row[TRIGGER_EVENT_UPDATE] > 0) { HeapTuple newtuple; newtuple = ExecBRUpdateTriggers(estate, tupleid, tuple); if (newtuple == NULL) /* "do nothing" */ return; if (newtuple != tuple) /* modified by Trigger(s) */ { Assert(slot->ttc_shouldFree); heap_freetuple(tuple); slot->val = tuple = newtuple; } } /* * Check the constraints of a tuple */ if (resultRelationDesc->rd_att->constr) ExecConstraints("ExecReplace", resultRelationDesc, tuple, estate); /* * replace the heap tuple */ lreplace:; result = heap_update(resultRelationDesc, tupleid, tuple, &ctid); switch (result) { case HeapTupleSelfUpdated: return; case HeapTupleMayBeUpdated: break; case HeapTupleUpdated: if (XactIsoLevel == XACT_SERIALIZABLE) elog(ERROR, "Can't serialize access due to concurrent update"); else if (!(ItemPointerEquals(tupleid, &ctid))) { TupleTableSlot *epqslot = EvalPlanQual(estate, resultRelationInfo->ri_RangeTableIndex, &ctid); if (!TupIsNull(epqslot)) { *tupleid = ctid; tuple = ExecRemoveJunk(estate->es_junkFilter, epqslot); slot = ExecStoreTuple(tuple, slot, InvalidBuffer, true); goto lreplace; } } return; default: elog(ERROR, "Unknown status %u from heap_update", result); return; } IncrReplaced(); (estate->es_processed)++; /* * Note: instead of having to update the old index tuples associated * with the heap tuple, all we do is form and insert new index * tuples.. This is because replaces are actually deletes and inserts * and index tuple deletion is done automagically by the vaccuum * deamon.. All we do is insert new index tuples. -cim 9/27/89 */ /* * process indices * * heap_update updates a tuple in the base relation by invalidating it * and then appending a new tuple to the relation. As a side effect, * the tupleid of the new tuple is placed in the new tuple's t_ctid * field. So we now insert index tuples using the new tupleid stored * there. */ numIndices = resultRelationInfo->ri_NumIndices; if (numIndices > 0) ExecInsertIndexTuples(slot, &(tuple->t_self), estate, true); /* AFTER ROW UPDATE Triggers */ if (resultRelationDesc->trigdesc) ExecARUpdateTriggers(estate, tupleid, tuple); } #ifdef NOT_USED static HeapTuple ExecAttrDefault(Relation rel, HeapTuple tuple) { int ndef = rel->rd_att->constr->num_defval; AttrDefault *attrdef = rel->rd_att->constr->defval; ExprContext *econtext = MakeExprContext(NULL, CurrentMemoryContext); HeapTuple newtuple; Node *expr; bool isnull; bool isdone; Datum val; Datum *replValue = NULL; char *replNull = NULL; char *repl = NULL; int i; for (i = 0; i < ndef; i++) { if (!heap_attisnull(tuple, attrdef[i].adnum)) continue; expr = (Node *) stringToNode(attrdef[i].adbin); val = ExecEvalExprSwitchContext(expr, econtext, &isnull, &isdone); if (isnull) continue; if (repl == NULL) { repl = (char *) palloc(rel->rd_att->natts * sizeof(char)); replNull = (char *) palloc(rel->rd_att->natts * sizeof(char)); replValue = (Datum *) palloc(rel->rd_att->natts * sizeof(Datum)); MemSet(repl, ' ', rel->rd_att->natts * sizeof(char)); } repl[attrdef[i].adnum - 1] = 'r'; replNull[attrdef[i].adnum - 1] = ' '; replValue[attrdef[i].adnum - 1] = val; } if (repl == NULL) { /* no changes needed */ newtuple = tuple; } else { newtuple = heap_modifytuple(tuple, rel, replValue, replNull, repl); pfree(repl); pfree(replNull); pfree(replValue); heap_freetuple(tuple); } FreeMemoryContext(econtext); return newtuple; } #endif static char * ExecRelCheck(Relation rel, HeapTuple tuple, EState *estate) { int ncheck = rel->rd_att->constr->num_check; ConstrCheck *check = rel->rd_att->constr->check; TupleTableSlot *slot = makeNode(TupleTableSlot); RangeTblEntry *rte = makeNode(RangeTblEntry); ExprContext *econtext = MakeExprContext(slot, TransactionCommandContext); List *rtlist; List *qual; int i; slot->val = tuple; slot->ttc_shouldFree = false; slot->ttc_descIsNew = true; slot->ttc_tupleDescriptor = rel->rd_att; slot->ttc_buffer = InvalidBuffer; slot->ttc_whichplan = -1; rte->relname = RelationGetRelationName(rel); rte->ref = makeNode(Attr); rte->ref->relname = rte->relname; rte->relid = RelationGetRelid(rel); /* inh, inFromCl, inJoinSet, skipAcl won't be used, leave them zero */ rtlist = lcons(rte, NIL); econtext->ecxt_range_table = rtlist; /* phony range table */ /* * Save the de-stringized constraint expressions in command-level * memory context. XXX should build the above stuff there too, * instead of doing it over for each tuple. * XXX Is it sufficient to have just one es_result_relation_constraints * in an inherited insert/update? */ if (estate->es_result_relation_constraints == NULL) { MemoryContext oldContext; oldContext = MemoryContextSwitchTo(TransactionCommandContext); estate->es_result_relation_constraints = (List **) palloc(ncheck * sizeof(List *)); for (i = 0; i < ncheck; i++) { qual = (List *) stringToNode(check[i].ccbin); estate->es_result_relation_constraints[i] = qual; } MemoryContextSwitchTo(oldContext); } for (i = 0; i < ncheck; i++) { qual = estate->es_result_relation_constraints[i]; /* * NOTE: SQL92 specifies that a NULL result from a constraint * expression is not to be treated as a failure. Therefore, tell * ExecQual to return TRUE for NULL. */ if (!ExecQual(qual, econtext, true)) return check[i].ccname; } pfree(slot); pfree(rte); pfree(rtlist); FreeExprContext(econtext); return (char *) NULL; } void ExecConstraints(char *caller, Relation rel, HeapTuple tuple, EState *estate) { Assert(rel->rd_att->constr); if (rel->rd_att->constr->has_not_null) { int attrChk; for (attrChk = 1; attrChk <= rel->rd_att->natts; attrChk++) { if (rel->rd_att->attrs[attrChk-1]->attnotnull && heap_attisnull(tuple, attrChk)) elog(ERROR, "%s: Fail to add null value in not null attribute %s", caller, NameStr(rel->rd_att->attrs[attrChk-1]->attname)); } } if (rel->rd_att->constr->num_check > 0) { char *failed; if ((failed = ExecRelCheck(rel, tuple, estate)) != NULL) elog(ERROR, "%s: rejected due to CHECK constraint %s", caller, failed); } } TupleTableSlot * EvalPlanQual(EState *estate, Index rti, ItemPointer tid) { evalPlanQual *epq = (evalPlanQual *) estate->es_evalPlanQual; evalPlanQual *oldepq; EState *epqstate = NULL; Relation relation; Buffer buffer; HeapTupleData tuple; bool endNode = true; Assert(rti != 0); if (epq != NULL && epq->rti == 0) { Assert(!(estate->es_useEvalPlan) && epq->estate.es_evalPlanQual == NULL); epq->rti = rti; endNode = false; } /* * If this is request for another RTE - Ra, - then we have to check * wasn't PlanQual requested for Ra already and if so then Ra' row was * updated again and we have to re-start old execution for Ra and * forget all what we done after Ra was suspended. Cool? -:)) */ if (epq != NULL && epq->rti != rti && epq->estate.es_evTuple[rti - 1] != NULL) { do { /* pop previous PlanQual from the stack */ epqstate = &(epq->estate); oldepq = (evalPlanQual *) epqstate->es_evalPlanQual; Assert(oldepq->rti != 0); /* stop execution */ ExecEndNode(epq->plan, epq->plan); epqstate->es_tupleTable->next = 0; heap_freetuple(epqstate->es_evTuple[epq->rti - 1]); epqstate->es_evTuple[epq->rti - 1] = NULL; /* push current PQ to freePQ stack */ oldepq->free = epq; epq = oldepq; } while (epq->rti != rti); estate->es_evalPlanQual = (Pointer) epq; } /* * If we are requested for another RTE then we have to suspend * execution of current PlanQual and start execution for new one. */ if (epq == NULL || epq->rti != rti) { /* try to reuse plan used previously */ evalPlanQual *newepq = (epq != NULL) ? epq->free : NULL; if (newepq == NULL) /* first call or freePQ stack is empty */ { newepq = (evalPlanQual *) palloc(sizeof(evalPlanQual)); /* Init EState */ epqstate = &(newepq->estate); memset(epqstate, 0, sizeof(EState)); epqstate->type = T_EState; epqstate->es_direction = ForwardScanDirection; epqstate->es_snapshot = estate->es_snapshot; epqstate->es_range_table = estate->es_range_table; epqstate->es_param_list_info = estate->es_param_list_info; if (estate->es_origPlan->nParamExec > 0) epqstate->es_param_exec_vals = (ParamExecData *) palloc(estate->es_origPlan->nParamExec * sizeof(ParamExecData)); epqstate->es_tupleTable = ExecCreateTupleTable(estate->es_tupleTable->size); /* ... rest */ newepq->plan = copyObject(estate->es_origPlan); newepq->free = NULL; epqstate->es_evTupleNull = (bool *) palloc(length(estate->es_range_table) * sizeof(bool)); if (epq == NULL) /* first call */ { epqstate->es_evTuple = (HeapTuple *) palloc(length(estate->es_range_table) * sizeof(HeapTuple)); memset(epqstate->es_evTuple, 0, length(estate->es_range_table) * sizeof(HeapTuple)); } else epqstate->es_evTuple = epq->estate.es_evTuple; } else epqstate = &(newepq->estate); /* push current PQ to the stack */ epqstate->es_evalPlanQual = (Pointer) epq; epq = newepq; estate->es_evalPlanQual = (Pointer) epq; epq->rti = rti; endNode = false; } epqstate = &(epq->estate); /* * Ok - we're requested for the same RTE (-:)). I'm not sure about * ability to use ExecReScan instead of ExecInitNode, so... */ if (endNode) { ExecEndNode(epq->plan, epq->plan); epqstate->es_tupleTable->next = 0; } /* free old RTE' tuple */ if (epqstate->es_evTuple[epq->rti - 1] != NULL) { heap_freetuple(epqstate->es_evTuple[epq->rti - 1]); epqstate->es_evTuple[epq->rti - 1] = NULL; } /* ** fetch tid tuple ** */ if (estate->es_result_relation_info != NULL && estate->es_result_relation_info->ri_RangeTableIndex == rti) relation = estate->es_result_relation_info->ri_RelationDesc; else { List *l; foreach(l, estate->es_rowMark) { if (((execRowMark *) lfirst(l))->rti == rti) break; } relation = ((execRowMark *) lfirst(l))->relation; } tuple.t_self = *tid; for (;;) { heap_fetch(relation, SnapshotDirty, &tuple, &buffer); if (tuple.t_data != NULL) { TransactionId xwait = SnapshotDirty->xmax; if (TransactionIdIsValid(SnapshotDirty->xmin)) { elog(NOTICE, "EvalPlanQual: t_xmin is uncommitted ?!"); Assert(!TransactionIdIsValid(SnapshotDirty->xmin)); elog(ERROR, "Aborting this transaction"); } /* * If tuple is being updated by other transaction then we have * to wait for its commit/abort. */ if (TransactionIdIsValid(xwait)) { ReleaseBuffer(buffer); XactLockTableWait(xwait); continue; } /* * Nice! We got tuple - now copy it. */ if (epqstate->es_evTuple[epq->rti - 1] != NULL) heap_freetuple(epqstate->es_evTuple[epq->rti - 1]); epqstate->es_evTuple[epq->rti - 1] = heap_copytuple(&tuple); ReleaseBuffer(buffer); break; } /* * Ops! Invalid tuple. Have to check is it updated or deleted. * Note that it's possible to get invalid SnapshotDirty->tid if * tuple updated by this transaction. Have we to check this ? */ if (ItemPointerIsValid(&(SnapshotDirty->tid)) && !(ItemPointerEquals(&(tuple.t_self), &(SnapshotDirty->tid)))) { tuple.t_self = SnapshotDirty->tid; /* updated ... */ continue; } /* * Deleted or updated by this transaction. Do not (re-)start * execution of this PQ. Continue previous PQ. */ oldepq = (evalPlanQual *) epqstate->es_evalPlanQual; if (oldepq != NULL) { Assert(oldepq->rti != 0); /* push current PQ to freePQ stack */ oldepq->free = epq; epq = oldepq; epqstate = &(epq->estate); estate->es_evalPlanQual = (Pointer) epq; } else { epq->rti = 0; /* this is the first (oldest) */ estate->es_useEvalPlan = false; /* PQ - mark as free and */ return (NULL); /* continue Query execution */ } } if (estate->es_origPlan->nParamExec > 0) memset(epqstate->es_param_exec_vals, 0, estate->es_origPlan->nParamExec * sizeof(ParamExecData)); memset(epqstate->es_evTupleNull, false, length(estate->es_range_table) * sizeof(bool)); Assert(epqstate->es_tupleTable->next == 0); ExecInitNode(epq->plan, epqstate, NULL); /* * For UPDATE/DELETE we have to return tid of actual row we're * executing PQ for. */ *tid = tuple.t_self; return EvalPlanQualNext(estate); } static TupleTableSlot * EvalPlanQualNext(EState *estate) { evalPlanQual *epq = (evalPlanQual *) estate->es_evalPlanQual; EState *epqstate = &(epq->estate); evalPlanQual *oldepq; TupleTableSlot *slot; Assert(epq->rti != 0); lpqnext:; slot = ExecProcNode(epq->plan, epq->plan); /* * No more tuples for this PQ. Continue previous one. */ if (TupIsNull(slot)) { ExecEndNode(epq->plan, epq->plan); epqstate->es_tupleTable->next = 0; heap_freetuple(epqstate->es_evTuple[epq->rti - 1]); epqstate->es_evTuple[epq->rti - 1] = NULL; /* pop old PQ from the stack */ oldepq = (evalPlanQual *) epqstate->es_evalPlanQual; if (oldepq == (evalPlanQual *) NULL) { epq->rti = 0; /* this is the first (oldest) */ estate->es_useEvalPlan = false; /* PQ - mark as free and */ return (NULL); /* continue Query execution */ } Assert(oldepq->rti != 0); /* push current PQ to freePQ stack */ oldepq->free = epq; epq = oldepq; epqstate = &(epq->estate); estate->es_evalPlanQual = (Pointer) epq; goto lpqnext; } return (slot); } static void EndEvalPlanQual(EState *estate) { evalPlanQual *epq = (evalPlanQual *) estate->es_evalPlanQual; EState *epqstate = &(epq->estate); evalPlanQual *oldepq; if (epq->rti == 0) /* plans already shutdowned */ { Assert(epq->estate.es_evalPlanQual == NULL); return; } for (;;) { ExecEndNode(epq->plan, epq->plan); epqstate->es_tupleTable->next = 0; if (epqstate->es_evTuple[epq->rti - 1] != NULL) { heap_freetuple(epqstate->es_evTuple[epq->rti - 1]); epqstate->es_evTuple[epq->rti - 1] = NULL; } /* pop old PQ from the stack */ oldepq = (evalPlanQual *) epqstate->es_evalPlanQual; if (oldepq == (evalPlanQual *) NULL) { epq->rti = 0; /* this is the first (oldest) */ estate->es_useEvalPlan = false; /* PQ - mark as free */ break; } Assert(oldepq->rti != 0); /* push current PQ to freePQ stack */ oldepq->free = epq; epq = oldepq; epqstate = &(epq->estate); estate->es_evalPlanQual = (Pointer) epq; } }